1 /* 2 ** 2008 November 05 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file implements the default page cache implementation (the 14 ** sqlite3_pcache interface). It also contains part of the implementation 15 ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features. 16 ** If the default page cache implementation is overridden, then neither of 17 ** these two features are available. 18 ** 19 ** A Page cache line looks like this: 20 ** 21 ** ------------------------------------------------------------- 22 ** | database page content | PgHdr1 | MemPage | PgHdr | 23 ** ------------------------------------------------------------- 24 ** 25 ** The database page content is up front (so that buffer overreads tend to 26 ** flow harmlessly into the PgHdr1, MemPage, and PgHdr extensions). MemPage 27 ** is the extension added by the btree.c module containing information such 28 ** as the database page number and how that database page is used. PgHdr 29 ** is added by the pcache.c layer and contains information used to keep track 30 ** of which pages are "dirty". PgHdr1 is an extension added by this 31 ** module (pcache1.c). The PgHdr1 header is a subclass of sqlite3_pcache_page. 32 ** PgHdr1 contains information needed to look up a page by its page number. 33 ** The superclass sqlite3_pcache_page.pBuf points to the start of the 34 ** database page content and sqlite3_pcache_page.pExtra points to PgHdr. 35 ** 36 ** The size of the extension (MemPage+PgHdr+PgHdr1) can be determined at 37 ** runtime using sqlite3_config(SQLITE_CONFIG_PCACHE_HDRSZ, &size). The 38 ** sizes of the extensions sum to 272 bytes on x64 for 3.8.10, but this 39 ** size can vary according to architecture, compile-time options, and 40 ** SQLite library version number. 41 ** 42 ** If SQLITE_PCACHE_SEPARATE_HEADER is defined, then the extension is obtained 43 ** using a separate memory allocation from the database page content. This 44 ** seeks to overcome the "clownshoe" problem (also called "internal 45 ** fragmentation" in academic literature) of allocating a few bytes more 46 ** than a power of two with the memory allocator rounding up to the next 47 ** power of two, and leaving the rounded-up space unused. 48 ** 49 ** This module tracks pointers to PgHdr1 objects. Only pcache.c communicates 50 ** with this module. Information is passed back and forth as PgHdr1 pointers. 51 ** 52 ** The pcache.c and pager.c modules deal pointers to PgHdr objects. 53 ** The btree.c module deals with pointers to MemPage objects. 54 ** 55 ** SOURCE OF PAGE CACHE MEMORY: 56 ** 57 ** Memory for a page might come from any of three sources: 58 ** 59 ** (1) The general-purpose memory allocator - sqlite3Malloc() 60 ** (2) Global page-cache memory provided using sqlite3_config() with 61 ** SQLITE_CONFIG_PAGECACHE. 62 ** (3) PCache-local bulk allocation. 63 ** 64 ** The third case is a chunk of heap memory (defaulting to 100 pages worth) 65 ** that is allocated when the page cache is created. The size of the local 66 ** bulk allocation can be adjusted using 67 ** 68 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, (void*)0, 0, N). 69 ** 70 ** If N is positive, then N pages worth of memory are allocated using a single 71 ** sqlite3Malloc() call and that memory is used for the first N pages allocated. 72 ** Or if N is negative, then -1024*N bytes of memory are allocated and used 73 ** for as many pages as can be accomodated. 74 ** 75 ** Only one of (2) or (3) can be used. Once the memory available to (2) or 76 ** (3) is exhausted, subsequent allocations fail over to the general-purpose 77 ** memory allocator (1). 78 ** 79 ** Earlier versions of SQLite used only methods (1) and (2). But experiments 80 ** show that method (3) with N==100 provides about a 5% performance boost for 81 ** common workloads. 82 */ 83 #include "sqliteInt.h" 84 85 typedef struct PCache1 PCache1; 86 typedef struct PgHdr1 PgHdr1; 87 typedef struct PgFreeslot PgFreeslot; 88 typedef struct PGroup PGroup; 89 90 /* 91 ** Each cache entry is represented by an instance of the following 92 ** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of 93 ** PgHdr1.pCache->szPage bytes is allocated directly before this structure 94 ** in memory. 95 ** 96 ** Note: Variables isBulkLocal and isAnchor were once type "u8". That works, 97 ** but causes a 2-byte gap in the structure for most architectures (since 98 ** pointers must be either 4 or 8-byte aligned). As this structure is located 99 ** in memory directly after the associated page data, if the database is 100 ** corrupt, code at the b-tree layer may overread the page buffer and 101 ** read part of this structure before the corruption is detected. This 102 ** can cause a valgrind error if the unitialized gap is accessed. Using u16 103 ** ensures there is no such gap, and therefore no bytes of unitialized memory 104 ** in the structure. 105 */ 106 struct PgHdr1 { 107 sqlite3_pcache_page page; /* Base class. Must be first. pBuf & pExtra */ 108 unsigned int iKey; /* Key value (page number) */ 109 u16 isBulkLocal; /* This page from bulk local storage */ 110 u16 isAnchor; /* This is the PGroup.lru element */ 111 PgHdr1 *pNext; /* Next in hash table chain */ 112 PCache1 *pCache; /* Cache that currently owns this page */ 113 PgHdr1 *pLruNext; /* Next in LRU list of unpinned pages */ 114 PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */ 115 /* NB: pLruPrev is only valid if pLruNext!=0 */ 116 }; 117 118 /* 119 ** A page is pinned if it is not on the LRU list. To be "pinned" means 120 ** that the page is in active use and must not be deallocated. 121 */ 122 #define PAGE_IS_PINNED(p) ((p)->pLruNext==0) 123 #define PAGE_IS_UNPINNED(p) ((p)->pLruNext!=0) 124 125 /* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set 126 ** of one or more PCaches that are able to recycle each other's unpinned 127 ** pages when they are under memory pressure. A PGroup is an instance of 128 ** the following object. 129 ** 130 ** This page cache implementation works in one of two modes: 131 ** 132 ** (1) Every PCache is the sole member of its own PGroup. There is 133 ** one PGroup per PCache. 134 ** 135 ** (2) There is a single global PGroup that all PCaches are a member 136 ** of. 137 ** 138 ** Mode 1 uses more memory (since PCache instances are not able to rob 139 ** unused pages from other PCaches) but it also operates without a mutex, 140 ** and is therefore often faster. Mode 2 requires a mutex in order to be 141 ** threadsafe, but recycles pages more efficiently. 142 ** 143 ** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single 144 ** PGroup which is the pcache1.grp global variable and its mutex is 145 ** SQLITE_MUTEX_STATIC_LRU. 146 */ 147 struct PGroup { 148 sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */ 149 unsigned int nMaxPage; /* Sum of nMax for purgeable caches */ 150 unsigned int nMinPage; /* Sum of nMin for purgeable caches */ 151 unsigned int mxPinned; /* nMaxpage + 10 - nMinPage */ 152 unsigned int nPurgeable; /* Number of purgeable pages allocated */ 153 PgHdr1 lru; /* The beginning and end of the LRU list */ 154 }; 155 156 /* Each page cache is an instance of the following object. Every 157 ** open database file (including each in-memory database and each 158 ** temporary or transient database) has a single page cache which 159 ** is an instance of this object. 160 ** 161 ** Pointers to structures of this type are cast and returned as 162 ** opaque sqlite3_pcache* handles. 163 */ 164 struct PCache1 { 165 /* Cache configuration parameters. Page size (szPage) and the purgeable 166 ** flag (bPurgeable) and the pnPurgeable pointer are all set when the 167 ** cache is created and are never changed thereafter. nMax may be 168 ** modified at any time by a call to the pcache1Cachesize() method. 169 ** The PGroup mutex must be held when accessing nMax. 170 */ 171 PGroup *pGroup; /* PGroup this cache belongs to */ 172 unsigned int *pnPurgeable; /* Pointer to pGroup->nPurgeable */ 173 int szPage; /* Size of database content section */ 174 int szExtra; /* sizeof(MemPage)+sizeof(PgHdr) */ 175 int szAlloc; /* Total size of one pcache line */ 176 int bPurgeable; /* True if cache is purgeable */ 177 unsigned int nMin; /* Minimum number of pages reserved */ 178 unsigned int nMax; /* Configured "cache_size" value */ 179 unsigned int n90pct; /* nMax*9/10 */ 180 unsigned int iMaxKey; /* Largest key seen since xTruncate() */ 181 unsigned int nPurgeableDummy; /* pnPurgeable points here when not used*/ 182 183 /* Hash table of all pages. The following variables may only be accessed 184 ** when the accessor is holding the PGroup mutex. 185 */ 186 unsigned int nRecyclable; /* Number of pages in the LRU list */ 187 unsigned int nPage; /* Total number of pages in apHash */ 188 unsigned int nHash; /* Number of slots in apHash[] */ 189 PgHdr1 **apHash; /* Hash table for fast lookup by key */ 190 PgHdr1 *pFree; /* List of unused pcache-local pages */ 191 void *pBulk; /* Bulk memory used by pcache-local */ 192 }; 193 194 /* 195 ** Free slots in the allocator used to divide up the global page cache 196 ** buffer provided using the SQLITE_CONFIG_PAGECACHE mechanism. 197 */ 198 struct PgFreeslot { 199 PgFreeslot *pNext; /* Next free slot */ 200 }; 201 202 /* 203 ** Global data used by this cache. 204 */ 205 static SQLITE_WSD struct PCacheGlobal { 206 PGroup grp; /* The global PGroup for mode (2) */ 207 208 /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The 209 ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all 210 ** fixed at sqlite3_initialize() time and do not require mutex protection. 211 ** The nFreeSlot and pFree values do require mutex protection. 212 */ 213 int isInit; /* True if initialized */ 214 int separateCache; /* Use a new PGroup for each PCache */ 215 int nInitPage; /* Initial bulk allocation size */ 216 int szSlot; /* Size of each free slot */ 217 int nSlot; /* The number of pcache slots */ 218 int nReserve; /* Try to keep nFreeSlot above this */ 219 void *pStart, *pEnd; /* Bounds of global page cache memory */ 220 /* Above requires no mutex. Use mutex below for variable that follow. */ 221 sqlite3_mutex *mutex; /* Mutex for accessing the following: */ 222 PgFreeslot *pFree; /* Free page blocks */ 223 int nFreeSlot; /* Number of unused pcache slots */ 224 /* The following value requires a mutex to change. We skip the mutex on 225 ** reading because (1) most platforms read a 32-bit integer atomically and 226 ** (2) even if an incorrect value is read, no great harm is done since this 227 ** is really just an optimization. */ 228 int bUnderPressure; /* True if low on PAGECACHE memory */ 229 } pcache1_g; 230 231 /* 232 ** All code in this file should access the global structure above via the 233 ** alias "pcache1". This ensures that the WSD emulation is used when 234 ** compiling for systems that do not support real WSD. 235 */ 236 #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g)) 237 238 /* 239 ** Macros to enter and leave the PCache LRU mutex. 240 */ 241 #if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0 242 # define pcache1EnterMutex(X) assert((X)->mutex==0) 243 # define pcache1LeaveMutex(X) assert((X)->mutex==0) 244 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 0 245 #else 246 # define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex) 247 # define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex) 248 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 1 249 #endif 250 251 /******************************************************************************/ 252 /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/ 253 254 255 /* 256 ** This function is called during initialization if a static buffer is 257 ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE 258 ** verb to sqlite3_config(). Parameter pBuf points to an allocation large 259 ** enough to contain 'n' buffers of 'sz' bytes each. 260 ** 261 ** This routine is called from sqlite3_initialize() and so it is guaranteed 262 ** to be serialized already. There is no need for further mutexing. 263 */ 264 void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){ 265 if( pcache1.isInit ){ 266 PgFreeslot *p; 267 if( pBuf==0 ) sz = n = 0; 268 if( n==0 ) sz = 0; 269 sz = ROUNDDOWN8(sz); 270 pcache1.szSlot = sz; 271 pcache1.nSlot = pcache1.nFreeSlot = n; 272 pcache1.nReserve = n>90 ? 10 : (n/10 + 1); 273 pcache1.pStart = pBuf; 274 pcache1.pFree = 0; 275 pcache1.bUnderPressure = 0; 276 while( n-- ){ 277 p = (PgFreeslot*)pBuf; 278 p->pNext = pcache1.pFree; 279 pcache1.pFree = p; 280 pBuf = (void*)&((char*)pBuf)[sz]; 281 } 282 pcache1.pEnd = pBuf; 283 } 284 } 285 286 /* 287 ** Try to initialize the pCache->pFree and pCache->pBulk fields. Return 288 ** true if pCache->pFree ends up containing one or more free pages. 289 */ 290 static int pcache1InitBulk(PCache1 *pCache){ 291 i64 szBulk; 292 char *zBulk; 293 if( pcache1.nInitPage==0 ) return 0; 294 /* Do not bother with a bulk allocation if the cache size very small */ 295 if( pCache->nMax<3 ) return 0; 296 sqlite3BeginBenignMalloc(); 297 if( pcache1.nInitPage>0 ){ 298 szBulk = pCache->szAlloc * (i64)pcache1.nInitPage; 299 }else{ 300 szBulk = -1024 * (i64)pcache1.nInitPage; 301 } 302 if( szBulk > pCache->szAlloc*(i64)pCache->nMax ){ 303 szBulk = pCache->szAlloc*(i64)pCache->nMax; 304 } 305 zBulk = pCache->pBulk = sqlite3Malloc( szBulk ); 306 sqlite3EndBenignMalloc(); 307 if( zBulk ){ 308 int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc; 309 do{ 310 PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage]; 311 pX->page.pBuf = zBulk; 312 pX->page.pExtra = &pX[1]; 313 pX->isBulkLocal = 1; 314 pX->isAnchor = 0; 315 pX->pNext = pCache->pFree; 316 pX->pLruPrev = 0; /* Initializing this saves a valgrind error */ 317 pCache->pFree = pX; 318 zBulk += pCache->szAlloc; 319 }while( --nBulk ); 320 } 321 return pCache->pFree!=0; 322 } 323 324 /* 325 ** Malloc function used within this file to allocate space from the buffer 326 ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no 327 ** such buffer exists or there is no space left in it, this function falls 328 ** back to sqlite3Malloc(). 329 ** 330 ** Multiple threads can run this routine at the same time. Global variables 331 ** in pcache1 need to be protected via mutex. 332 */ 333 static void *pcache1Alloc(int nByte){ 334 void *p = 0; 335 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); 336 if( nByte<=pcache1.szSlot ){ 337 sqlite3_mutex_enter(pcache1.mutex); 338 p = (PgHdr1 *)pcache1.pFree; 339 if( p ){ 340 pcache1.pFree = pcache1.pFree->pNext; 341 pcache1.nFreeSlot--; 342 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; 343 assert( pcache1.nFreeSlot>=0 ); 344 sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte); 345 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1); 346 } 347 sqlite3_mutex_leave(pcache1.mutex); 348 } 349 if( p==0 ){ 350 /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get 351 ** it from sqlite3Malloc instead. 352 */ 353 p = sqlite3Malloc(nByte); 354 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS 355 if( p ){ 356 int sz = sqlite3MallocSize(p); 357 sqlite3_mutex_enter(pcache1.mutex); 358 sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte); 359 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz); 360 sqlite3_mutex_leave(pcache1.mutex); 361 } 362 #endif 363 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); 364 } 365 return p; 366 } 367 368 /* 369 ** Free an allocated buffer obtained from pcache1Alloc(). 370 */ 371 static void pcache1Free(void *p){ 372 if( p==0 ) return; 373 if( SQLITE_WITHIN(p, pcache1.pStart, pcache1.pEnd) ){ 374 PgFreeslot *pSlot; 375 sqlite3_mutex_enter(pcache1.mutex); 376 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1); 377 pSlot = (PgFreeslot*)p; 378 pSlot->pNext = pcache1.pFree; 379 pcache1.pFree = pSlot; 380 pcache1.nFreeSlot++; 381 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; 382 assert( pcache1.nFreeSlot<=pcache1.nSlot ); 383 sqlite3_mutex_leave(pcache1.mutex); 384 }else{ 385 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); 386 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 387 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS 388 { 389 int nFreed = 0; 390 nFreed = sqlite3MallocSize(p); 391 sqlite3_mutex_enter(pcache1.mutex); 392 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_OVERFLOW, nFreed); 393 sqlite3_mutex_leave(pcache1.mutex); 394 } 395 #endif 396 sqlite3_free(p); 397 } 398 } 399 400 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 401 /* 402 ** Return the size of a pcache allocation 403 */ 404 static int pcache1MemSize(void *p){ 405 if( p>=pcache1.pStart && p<pcache1.pEnd ){ 406 return pcache1.szSlot; 407 }else{ 408 int iSize; 409 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); 410 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 411 iSize = sqlite3MallocSize(p); 412 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); 413 return iSize; 414 } 415 } 416 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ 417 418 /* 419 ** Allocate a new page object initially associated with cache pCache. 420 */ 421 static PgHdr1 *pcache1AllocPage(PCache1 *pCache, int benignMalloc){ 422 PgHdr1 *p = 0; 423 void *pPg; 424 425 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 426 if( pCache->pFree || (pCache->nPage==0 && pcache1InitBulk(pCache)) ){ 427 assert( pCache->pFree!=0 ); 428 p = pCache->pFree; 429 pCache->pFree = p->pNext; 430 p->pNext = 0; 431 }else{ 432 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 433 /* The group mutex must be released before pcache1Alloc() is called. This 434 ** is because it might call sqlite3_release_memory(), which assumes that 435 ** this mutex is not held. */ 436 assert( pcache1.separateCache==0 ); 437 assert( pCache->pGroup==&pcache1.grp ); 438 pcache1LeaveMutex(pCache->pGroup); 439 #endif 440 if( benignMalloc ){ sqlite3BeginBenignMalloc(); } 441 #ifdef SQLITE_PCACHE_SEPARATE_HEADER 442 pPg = pcache1Alloc(pCache->szPage); 443 p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra); 444 if( !pPg || !p ){ 445 pcache1Free(pPg); 446 sqlite3_free(p); 447 pPg = 0; 448 } 449 #else 450 pPg = pcache1Alloc(pCache->szAlloc); 451 #endif 452 if( benignMalloc ){ sqlite3EndBenignMalloc(); } 453 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 454 pcache1EnterMutex(pCache->pGroup); 455 #endif 456 if( pPg==0 ) return 0; 457 #ifndef SQLITE_PCACHE_SEPARATE_HEADER 458 p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage]; 459 #endif 460 p->page.pBuf = pPg; 461 p->page.pExtra = &p[1]; 462 p->isBulkLocal = 0; 463 p->isAnchor = 0; 464 p->pLruPrev = 0; /* Initializing this saves a valgrind error */ 465 } 466 (*pCache->pnPurgeable)++; 467 return p; 468 } 469 470 /* 471 ** Free a page object allocated by pcache1AllocPage(). 472 */ 473 static void pcache1FreePage(PgHdr1 *p){ 474 PCache1 *pCache; 475 assert( p!=0 ); 476 pCache = p->pCache; 477 assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) ); 478 if( p->isBulkLocal ){ 479 p->pNext = pCache->pFree; 480 pCache->pFree = p; 481 }else{ 482 pcache1Free(p->page.pBuf); 483 #ifdef SQLITE_PCACHE_SEPARATE_HEADER 484 sqlite3_free(p); 485 #endif 486 } 487 (*pCache->pnPurgeable)--; 488 } 489 490 /* 491 ** Malloc function used by SQLite to obtain space from the buffer configured 492 ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer 493 ** exists, this function falls back to sqlite3Malloc(). 494 */ 495 void *sqlite3PageMalloc(int sz){ 496 assert( sz<=65536+8 ); /* These allocations are never very large */ 497 return pcache1Alloc(sz); 498 } 499 500 /* 501 ** Free an allocated buffer obtained from sqlite3PageMalloc(). 502 */ 503 void sqlite3PageFree(void *p){ 504 pcache1Free(p); 505 } 506 507 508 /* 509 ** Return true if it desirable to avoid allocating a new page cache 510 ** entry. 511 ** 512 ** If memory was allocated specifically to the page cache using 513 ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then 514 ** it is desirable to avoid allocating a new page cache entry because 515 ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient 516 ** for all page cache needs and we should not need to spill the 517 ** allocation onto the heap. 518 ** 519 ** Or, the heap is used for all page cache memory but the heap is 520 ** under memory pressure, then again it is desirable to avoid 521 ** allocating a new page cache entry in order to avoid stressing 522 ** the heap even further. 523 */ 524 static int pcache1UnderMemoryPressure(PCache1 *pCache){ 525 if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){ 526 return pcache1.bUnderPressure; 527 }else{ 528 return sqlite3HeapNearlyFull(); 529 } 530 } 531 532 /******************************************************************************/ 533 /******** General Implementation Functions ************************************/ 534 535 /* 536 ** This function is used to resize the hash table used by the cache passed 537 ** as the first argument. 538 ** 539 ** The PCache mutex must be held when this function is called. 540 */ 541 static void pcache1ResizeHash(PCache1 *p){ 542 PgHdr1 **apNew; 543 unsigned int nNew; 544 unsigned int i; 545 546 assert( sqlite3_mutex_held(p->pGroup->mutex) ); 547 548 nNew = p->nHash*2; 549 if( nNew<256 ){ 550 nNew = 256; 551 } 552 553 pcache1LeaveMutex(p->pGroup); 554 if( p->nHash ){ sqlite3BeginBenignMalloc(); } 555 apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew); 556 if( p->nHash ){ sqlite3EndBenignMalloc(); } 557 pcache1EnterMutex(p->pGroup); 558 if( apNew ){ 559 for(i=0; i<p->nHash; i++){ 560 PgHdr1 *pPage; 561 PgHdr1 *pNext = p->apHash[i]; 562 while( (pPage = pNext)!=0 ){ 563 unsigned int h = pPage->iKey % nNew; 564 pNext = pPage->pNext; 565 pPage->pNext = apNew[h]; 566 apNew[h] = pPage; 567 } 568 } 569 sqlite3_free(p->apHash); 570 p->apHash = apNew; 571 p->nHash = nNew; 572 } 573 } 574 575 /* 576 ** This function is used internally to remove the page pPage from the 577 ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup 578 ** LRU list, then this function is a no-op. 579 ** 580 ** The PGroup mutex must be held when this function is called. 581 */ 582 static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){ 583 assert( pPage!=0 ); 584 assert( PAGE_IS_UNPINNED(pPage) ); 585 assert( pPage->pLruNext ); 586 assert( pPage->pLruPrev ); 587 assert( sqlite3_mutex_held(pPage->pCache->pGroup->mutex) ); 588 pPage->pLruPrev->pLruNext = pPage->pLruNext; 589 pPage->pLruNext->pLruPrev = pPage->pLruPrev; 590 pPage->pLruNext = 0; 591 /* pPage->pLruPrev = 0; 592 ** No need to clear pLruPrev as it is never accessed if pLruNext is 0 */ 593 assert( pPage->isAnchor==0 ); 594 assert( pPage->pCache->pGroup->lru.isAnchor==1 ); 595 pPage->pCache->nRecyclable--; 596 return pPage; 597 } 598 599 600 /* 601 ** Remove the page supplied as an argument from the hash table 602 ** (PCache1.apHash structure) that it is currently stored in. 603 ** Also free the page if freePage is true. 604 ** 605 ** The PGroup mutex must be held when this function is called. 606 */ 607 static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){ 608 unsigned int h; 609 PCache1 *pCache = pPage->pCache; 610 PgHdr1 **pp; 611 612 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 613 h = pPage->iKey % pCache->nHash; 614 for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext); 615 *pp = (*pp)->pNext; 616 617 pCache->nPage--; 618 if( freeFlag ) pcache1FreePage(pPage); 619 } 620 621 /* 622 ** If there are currently more than nMaxPage pages allocated, try 623 ** to recycle pages to reduce the number allocated to nMaxPage. 624 */ 625 static void pcache1EnforceMaxPage(PCache1 *pCache){ 626 PGroup *pGroup = pCache->pGroup; 627 PgHdr1 *p; 628 assert( sqlite3_mutex_held(pGroup->mutex) ); 629 while( pGroup->nPurgeable>pGroup->nMaxPage 630 && (p=pGroup->lru.pLruPrev)->isAnchor==0 631 ){ 632 assert( p->pCache->pGroup==pGroup ); 633 assert( PAGE_IS_UNPINNED(p) ); 634 pcache1PinPage(p); 635 pcache1RemoveFromHash(p, 1); 636 } 637 if( pCache->nPage==0 && pCache->pBulk ){ 638 sqlite3_free(pCache->pBulk); 639 pCache->pBulk = pCache->pFree = 0; 640 } 641 } 642 643 /* 644 ** Discard all pages from cache pCache with a page number (key value) 645 ** greater than or equal to iLimit. Any pinned pages that meet this 646 ** criteria are unpinned before they are discarded. 647 ** 648 ** The PCache mutex must be held when this function is called. 649 */ 650 static void pcache1TruncateUnsafe( 651 PCache1 *pCache, /* The cache to truncate */ 652 unsigned int iLimit /* Drop pages with this pgno or larger */ 653 ){ 654 TESTONLY( int nPage = 0; ) /* To assert pCache->nPage is correct */ 655 unsigned int h, iStop; 656 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 657 assert( pCache->iMaxKey >= iLimit ); 658 assert( pCache->nHash > 0 ); 659 if( pCache->iMaxKey - iLimit < pCache->nHash ){ 660 /* If we are just shaving the last few pages off the end of the 661 ** cache, then there is no point in scanning the entire hash table. 662 ** Only scan those hash slots that might contain pages that need to 663 ** be removed. */ 664 h = iLimit % pCache->nHash; 665 iStop = pCache->iMaxKey % pCache->nHash; 666 TESTONLY( nPage = -10; ) /* Disable the pCache->nPage validity check */ 667 }else{ 668 /* This is the general case where many pages are being removed. 669 ** It is necessary to scan the entire hash table */ 670 h = pCache->nHash/2; 671 iStop = h - 1; 672 } 673 for(;;){ 674 PgHdr1 **pp; 675 PgHdr1 *pPage; 676 assert( h<pCache->nHash ); 677 pp = &pCache->apHash[h]; 678 while( (pPage = *pp)!=0 ){ 679 if( pPage->iKey>=iLimit ){ 680 pCache->nPage--; 681 *pp = pPage->pNext; 682 if( PAGE_IS_UNPINNED(pPage) ) pcache1PinPage(pPage); 683 pcache1FreePage(pPage); 684 }else{ 685 pp = &pPage->pNext; 686 TESTONLY( if( nPage>=0 ) nPage++; ) 687 } 688 } 689 if( h==iStop ) break; 690 h = (h+1) % pCache->nHash; 691 } 692 assert( nPage<0 || pCache->nPage==(unsigned)nPage ); 693 } 694 695 /******************************************************************************/ 696 /******** sqlite3_pcache Methods **********************************************/ 697 698 /* 699 ** Implementation of the sqlite3_pcache.xInit method. 700 */ 701 static int pcache1Init(void *NotUsed){ 702 UNUSED_PARAMETER(NotUsed); 703 assert( pcache1.isInit==0 ); 704 memset(&pcache1, 0, sizeof(pcache1)); 705 706 707 /* 708 ** The pcache1.separateCache variable is true if each PCache has its own 709 ** private PGroup (mode-1). pcache1.separateCache is false if the single 710 ** PGroup in pcache1.grp is used for all page caches (mode-2). 711 ** 712 ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT 713 ** 714 ** * Use a unified cache in single-threaded applications that have 715 ** configured a start-time buffer for use as page-cache memory using 716 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, pBuf, sz, N) with non-NULL 717 ** pBuf argument. 718 ** 719 ** * Otherwise use separate caches (mode-1) 720 */ 721 #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) 722 pcache1.separateCache = 0; 723 #elif SQLITE_THREADSAFE 724 pcache1.separateCache = sqlite3GlobalConfig.pPage==0 725 || sqlite3GlobalConfig.bCoreMutex>0; 726 #else 727 pcache1.separateCache = sqlite3GlobalConfig.pPage==0; 728 #endif 729 730 #if SQLITE_THREADSAFE 731 if( sqlite3GlobalConfig.bCoreMutex ){ 732 pcache1.grp.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU); 733 pcache1.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PMEM); 734 } 735 #endif 736 if( pcache1.separateCache 737 && sqlite3GlobalConfig.nPage!=0 738 && sqlite3GlobalConfig.pPage==0 739 ){ 740 pcache1.nInitPage = sqlite3GlobalConfig.nPage; 741 }else{ 742 pcache1.nInitPage = 0; 743 } 744 pcache1.grp.mxPinned = 10; 745 pcache1.isInit = 1; 746 return SQLITE_OK; 747 } 748 749 /* 750 ** Implementation of the sqlite3_pcache.xShutdown method. 751 ** Note that the static mutex allocated in xInit does 752 ** not need to be freed. 753 */ 754 static void pcache1Shutdown(void *NotUsed){ 755 UNUSED_PARAMETER(NotUsed); 756 assert( pcache1.isInit!=0 ); 757 memset(&pcache1, 0, sizeof(pcache1)); 758 } 759 760 /* forward declaration */ 761 static void pcache1Destroy(sqlite3_pcache *p); 762 763 /* 764 ** Implementation of the sqlite3_pcache.xCreate method. 765 ** 766 ** Allocate a new cache. 767 */ 768 static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){ 769 PCache1 *pCache; /* The newly created page cache */ 770 PGroup *pGroup; /* The group the new page cache will belong to */ 771 int sz; /* Bytes of memory required to allocate the new cache */ 772 773 assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 ); 774 assert( szExtra < 300 ); 775 776 sz = sizeof(PCache1) + sizeof(PGroup)*pcache1.separateCache; 777 pCache = (PCache1 *)sqlite3MallocZero(sz); 778 if( pCache ){ 779 if( pcache1.separateCache ){ 780 pGroup = (PGroup*)&pCache[1]; 781 pGroup->mxPinned = 10; 782 }else{ 783 pGroup = &pcache1.grp; 784 } 785 pcache1EnterMutex(pGroup); 786 if( pGroup->lru.isAnchor==0 ){ 787 pGroup->lru.isAnchor = 1; 788 pGroup->lru.pLruPrev = pGroup->lru.pLruNext = &pGroup->lru; 789 } 790 pCache->pGroup = pGroup; 791 pCache->szPage = szPage; 792 pCache->szExtra = szExtra; 793 pCache->szAlloc = szPage + szExtra + ROUND8(sizeof(PgHdr1)); 794 pCache->bPurgeable = (bPurgeable ? 1 : 0); 795 pcache1ResizeHash(pCache); 796 if( bPurgeable ){ 797 pCache->nMin = 10; 798 pGroup->nMinPage += pCache->nMin; 799 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 800 pCache->pnPurgeable = &pGroup->nPurgeable; 801 }else{ 802 pCache->pnPurgeable = &pCache->nPurgeableDummy; 803 } 804 pcache1LeaveMutex(pGroup); 805 if( pCache->nHash==0 ){ 806 pcache1Destroy((sqlite3_pcache*)pCache); 807 pCache = 0; 808 } 809 } 810 return (sqlite3_pcache *)pCache; 811 } 812 813 /* 814 ** Implementation of the sqlite3_pcache.xCachesize method. 815 ** 816 ** Configure the cache_size limit for a cache. 817 */ 818 static void pcache1Cachesize(sqlite3_pcache *p, int nMax){ 819 PCache1 *pCache = (PCache1 *)p; 820 if( pCache->bPurgeable ){ 821 PGroup *pGroup = pCache->pGroup; 822 pcache1EnterMutex(pGroup); 823 pGroup->nMaxPage += (nMax - pCache->nMax); 824 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 825 pCache->nMax = nMax; 826 pCache->n90pct = pCache->nMax*9/10; 827 pcache1EnforceMaxPage(pCache); 828 pcache1LeaveMutex(pGroup); 829 } 830 } 831 832 /* 833 ** Implementation of the sqlite3_pcache.xShrink method. 834 ** 835 ** Free up as much memory as possible. 836 */ 837 static void pcache1Shrink(sqlite3_pcache *p){ 838 PCache1 *pCache = (PCache1*)p; 839 if( pCache->bPurgeable ){ 840 PGroup *pGroup = pCache->pGroup; 841 int savedMaxPage; 842 pcache1EnterMutex(pGroup); 843 savedMaxPage = pGroup->nMaxPage; 844 pGroup->nMaxPage = 0; 845 pcache1EnforceMaxPage(pCache); 846 pGroup->nMaxPage = savedMaxPage; 847 pcache1LeaveMutex(pGroup); 848 } 849 } 850 851 /* 852 ** Implementation of the sqlite3_pcache.xPagecount method. 853 */ 854 static int pcache1Pagecount(sqlite3_pcache *p){ 855 int n; 856 PCache1 *pCache = (PCache1*)p; 857 pcache1EnterMutex(pCache->pGroup); 858 n = pCache->nPage; 859 pcache1LeaveMutex(pCache->pGroup); 860 return n; 861 } 862 863 864 /* 865 ** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described 866 ** in the header of the pcache1Fetch() procedure. 867 ** 868 ** This steps are broken out into a separate procedure because they are 869 ** usually not needed, and by avoiding the stack initialization required 870 ** for these steps, the main pcache1Fetch() procedure can run faster. 871 */ 872 static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2( 873 PCache1 *pCache, 874 unsigned int iKey, 875 int createFlag 876 ){ 877 unsigned int nPinned; 878 PGroup *pGroup = pCache->pGroup; 879 PgHdr1 *pPage = 0; 880 881 /* Step 3: Abort if createFlag is 1 but the cache is nearly full */ 882 assert( pCache->nPage >= pCache->nRecyclable ); 883 nPinned = pCache->nPage - pCache->nRecyclable; 884 assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage ); 885 assert( pCache->n90pct == pCache->nMax*9/10 ); 886 if( createFlag==1 && ( 887 nPinned>=pGroup->mxPinned 888 || nPinned>=pCache->n90pct 889 || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned) 890 )){ 891 return 0; 892 } 893 894 if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache); 895 assert( pCache->nHash>0 && pCache->apHash ); 896 897 /* Step 4. Try to recycle a page. */ 898 if( pCache->bPurgeable 899 && !pGroup->lru.pLruPrev->isAnchor 900 && ((pCache->nPage+1>=pCache->nMax) || pcache1UnderMemoryPressure(pCache)) 901 ){ 902 PCache1 *pOther; 903 pPage = pGroup->lru.pLruPrev; 904 assert( PAGE_IS_UNPINNED(pPage) ); 905 pcache1RemoveFromHash(pPage, 0); 906 pcache1PinPage(pPage); 907 pOther = pPage->pCache; 908 if( pOther->szAlloc != pCache->szAlloc ){ 909 pcache1FreePage(pPage); 910 pPage = 0; 911 }else{ 912 pGroup->nPurgeable -= (pOther->bPurgeable - pCache->bPurgeable); 913 } 914 } 915 916 /* Step 5. If a usable page buffer has still not been found, 917 ** attempt to allocate a new one. 918 */ 919 if( !pPage ){ 920 pPage = pcache1AllocPage(pCache, createFlag==1); 921 } 922 923 if( pPage ){ 924 unsigned int h = iKey % pCache->nHash; 925 pCache->nPage++; 926 pPage->iKey = iKey; 927 pPage->pNext = pCache->apHash[h]; 928 pPage->pCache = pCache; 929 pPage->pLruNext = 0; 930 /* pPage->pLruPrev = 0; 931 ** No need to clear pLruPrev since it is not accessed when pLruNext==0 */ 932 *(void **)pPage->page.pExtra = 0; 933 pCache->apHash[h] = pPage; 934 if( iKey>pCache->iMaxKey ){ 935 pCache->iMaxKey = iKey; 936 } 937 } 938 return pPage; 939 } 940 941 /* 942 ** Implementation of the sqlite3_pcache.xFetch method. 943 ** 944 ** Fetch a page by key value. 945 ** 946 ** Whether or not a new page may be allocated by this function depends on 947 ** the value of the createFlag argument. 0 means do not allocate a new 948 ** page. 1 means allocate a new page if space is easily available. 2 949 ** means to try really hard to allocate a new page. 950 ** 951 ** For a non-purgeable cache (a cache used as the storage for an in-memory 952 ** database) there is really no difference between createFlag 1 and 2. So 953 ** the calling function (pcache.c) will never have a createFlag of 1 on 954 ** a non-purgeable cache. 955 ** 956 ** There are three different approaches to obtaining space for a page, 957 ** depending on the value of parameter createFlag (which may be 0, 1 or 2). 958 ** 959 ** 1. Regardless of the value of createFlag, the cache is searched for a 960 ** copy of the requested page. If one is found, it is returned. 961 ** 962 ** 2. If createFlag==0 and the page is not already in the cache, NULL is 963 ** returned. 964 ** 965 ** 3. If createFlag is 1, and the page is not already in the cache, then 966 ** return NULL (do not allocate a new page) if any of the following 967 ** conditions are true: 968 ** 969 ** (a) the number of pages pinned by the cache is greater than 970 ** PCache1.nMax, or 971 ** 972 ** (b) the number of pages pinned by the cache is greater than 973 ** the sum of nMax for all purgeable caches, less the sum of 974 ** nMin for all other purgeable caches, or 975 ** 976 ** 4. If none of the first three conditions apply and the cache is marked 977 ** as purgeable, and if one of the following is true: 978 ** 979 ** (a) The number of pages allocated for the cache is already 980 ** PCache1.nMax, or 981 ** 982 ** (b) The number of pages allocated for all purgeable caches is 983 ** already equal to or greater than the sum of nMax for all 984 ** purgeable caches, 985 ** 986 ** (c) The system is under memory pressure and wants to avoid 987 ** unnecessary pages cache entry allocations 988 ** 989 ** then attempt to recycle a page from the LRU list. If it is the right 990 ** size, return the recycled buffer. Otherwise, free the buffer and 991 ** proceed to step 5. 992 ** 993 ** 5. Otherwise, allocate and return a new page buffer. 994 ** 995 ** There are two versions of this routine. pcache1FetchWithMutex() is 996 ** the general case. pcache1FetchNoMutex() is a faster implementation for 997 ** the common case where pGroup->mutex is NULL. The pcache1Fetch() wrapper 998 ** invokes the appropriate routine. 999 */ 1000 static PgHdr1 *pcache1FetchNoMutex( 1001 sqlite3_pcache *p, 1002 unsigned int iKey, 1003 int createFlag 1004 ){ 1005 PCache1 *pCache = (PCache1 *)p; 1006 PgHdr1 *pPage = 0; 1007 1008 /* Step 1: Search the hash table for an existing entry. */ 1009 pPage = pCache->apHash[iKey % pCache->nHash]; 1010 while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; } 1011 1012 /* Step 2: If the page was found in the hash table, then return it. 1013 ** If the page was not in the hash table and createFlag is 0, abort. 1014 ** Otherwise (page not in hash and createFlag!=0) continue with 1015 ** subsequent steps to try to create the page. */ 1016 if( pPage ){ 1017 if( PAGE_IS_UNPINNED(pPage) ){ 1018 return pcache1PinPage(pPage); 1019 }else{ 1020 return pPage; 1021 } 1022 }else if( createFlag ){ 1023 /* Steps 3, 4, and 5 implemented by this subroutine */ 1024 return pcache1FetchStage2(pCache, iKey, createFlag); 1025 }else{ 1026 return 0; 1027 } 1028 } 1029 #if PCACHE1_MIGHT_USE_GROUP_MUTEX 1030 static PgHdr1 *pcache1FetchWithMutex( 1031 sqlite3_pcache *p, 1032 unsigned int iKey, 1033 int createFlag 1034 ){ 1035 PCache1 *pCache = (PCache1 *)p; 1036 PgHdr1 *pPage; 1037 1038 pcache1EnterMutex(pCache->pGroup); 1039 pPage = pcache1FetchNoMutex(p, iKey, createFlag); 1040 assert( pPage==0 || pCache->iMaxKey>=iKey ); 1041 pcache1LeaveMutex(pCache->pGroup); 1042 return pPage; 1043 } 1044 #endif 1045 static sqlite3_pcache_page *pcache1Fetch( 1046 sqlite3_pcache *p, 1047 unsigned int iKey, 1048 int createFlag 1049 ){ 1050 #if PCACHE1_MIGHT_USE_GROUP_MUTEX || defined(SQLITE_DEBUG) 1051 PCache1 *pCache = (PCache1 *)p; 1052 #endif 1053 1054 assert( offsetof(PgHdr1,page)==0 ); 1055 assert( pCache->bPurgeable || createFlag!=1 ); 1056 assert( pCache->bPurgeable || pCache->nMin==0 ); 1057 assert( pCache->bPurgeable==0 || pCache->nMin==10 ); 1058 assert( pCache->nMin==0 || pCache->bPurgeable ); 1059 assert( pCache->nHash>0 ); 1060 #if PCACHE1_MIGHT_USE_GROUP_MUTEX 1061 if( pCache->pGroup->mutex ){ 1062 return (sqlite3_pcache_page*)pcache1FetchWithMutex(p, iKey, createFlag); 1063 }else 1064 #endif 1065 { 1066 return (sqlite3_pcache_page*)pcache1FetchNoMutex(p, iKey, createFlag); 1067 } 1068 } 1069 1070 1071 /* 1072 ** Implementation of the sqlite3_pcache.xUnpin method. 1073 ** 1074 ** Mark a page as unpinned (eligible for asynchronous recycling). 1075 */ 1076 static void pcache1Unpin( 1077 sqlite3_pcache *p, 1078 sqlite3_pcache_page *pPg, 1079 int reuseUnlikely 1080 ){ 1081 PCache1 *pCache = (PCache1 *)p; 1082 PgHdr1 *pPage = (PgHdr1 *)pPg; 1083 PGroup *pGroup = pCache->pGroup; 1084 1085 assert( pPage->pCache==pCache ); 1086 pcache1EnterMutex(pGroup); 1087 1088 /* It is an error to call this function if the page is already 1089 ** part of the PGroup LRU list. 1090 */ 1091 assert( pPage->pLruNext==0 ); 1092 assert( PAGE_IS_PINNED(pPage) ); 1093 1094 if( reuseUnlikely || pGroup->nPurgeable>pGroup->nMaxPage ){ 1095 pcache1RemoveFromHash(pPage, 1); 1096 }else{ 1097 /* Add the page to the PGroup LRU list. */ 1098 PgHdr1 **ppFirst = &pGroup->lru.pLruNext; 1099 pPage->pLruPrev = &pGroup->lru; 1100 (pPage->pLruNext = *ppFirst)->pLruPrev = pPage; 1101 *ppFirst = pPage; 1102 pCache->nRecyclable++; 1103 } 1104 1105 pcache1LeaveMutex(pCache->pGroup); 1106 } 1107 1108 /* 1109 ** Implementation of the sqlite3_pcache.xRekey method. 1110 */ 1111 static void pcache1Rekey( 1112 sqlite3_pcache *p, 1113 sqlite3_pcache_page *pPg, 1114 unsigned int iOld, 1115 unsigned int iNew 1116 ){ 1117 PCache1 *pCache = (PCache1 *)p; 1118 PgHdr1 *pPage = (PgHdr1 *)pPg; 1119 PgHdr1 **pp; 1120 unsigned int h; 1121 assert( pPage->iKey==iOld ); 1122 assert( pPage->pCache==pCache ); 1123 1124 pcache1EnterMutex(pCache->pGroup); 1125 1126 h = iOld%pCache->nHash; 1127 pp = &pCache->apHash[h]; 1128 while( (*pp)!=pPage ){ 1129 pp = &(*pp)->pNext; 1130 } 1131 *pp = pPage->pNext; 1132 1133 h = iNew%pCache->nHash; 1134 pPage->iKey = iNew; 1135 pPage->pNext = pCache->apHash[h]; 1136 pCache->apHash[h] = pPage; 1137 if( iNew>pCache->iMaxKey ){ 1138 pCache->iMaxKey = iNew; 1139 } 1140 1141 pcache1LeaveMutex(pCache->pGroup); 1142 } 1143 1144 /* 1145 ** Implementation of the sqlite3_pcache.xTruncate method. 1146 ** 1147 ** Discard all unpinned pages in the cache with a page number equal to 1148 ** or greater than parameter iLimit. Any pinned pages with a page number 1149 ** equal to or greater than iLimit are implicitly unpinned. 1150 */ 1151 static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){ 1152 PCache1 *pCache = (PCache1 *)p; 1153 pcache1EnterMutex(pCache->pGroup); 1154 if( iLimit<=pCache->iMaxKey ){ 1155 pcache1TruncateUnsafe(pCache, iLimit); 1156 pCache->iMaxKey = iLimit-1; 1157 } 1158 pcache1LeaveMutex(pCache->pGroup); 1159 } 1160 1161 /* 1162 ** Implementation of the sqlite3_pcache.xDestroy method. 1163 ** 1164 ** Destroy a cache allocated using pcache1Create(). 1165 */ 1166 static void pcache1Destroy(sqlite3_pcache *p){ 1167 PCache1 *pCache = (PCache1 *)p; 1168 PGroup *pGroup = pCache->pGroup; 1169 assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) ); 1170 pcache1EnterMutex(pGroup); 1171 if( pCache->nPage ) pcache1TruncateUnsafe(pCache, 0); 1172 assert( pGroup->nMaxPage >= pCache->nMax ); 1173 pGroup->nMaxPage -= pCache->nMax; 1174 assert( pGroup->nMinPage >= pCache->nMin ); 1175 pGroup->nMinPage -= pCache->nMin; 1176 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 1177 pcache1EnforceMaxPage(pCache); 1178 pcache1LeaveMutex(pGroup); 1179 sqlite3_free(pCache->pBulk); 1180 sqlite3_free(pCache->apHash); 1181 sqlite3_free(pCache); 1182 } 1183 1184 /* 1185 ** This function is called during initialization (sqlite3_initialize()) to 1186 ** install the default pluggable cache module, assuming the user has not 1187 ** already provided an alternative. 1188 */ 1189 void sqlite3PCacheSetDefault(void){ 1190 static const sqlite3_pcache_methods2 defaultMethods = { 1191 1, /* iVersion */ 1192 0, /* pArg */ 1193 pcache1Init, /* xInit */ 1194 pcache1Shutdown, /* xShutdown */ 1195 pcache1Create, /* xCreate */ 1196 pcache1Cachesize, /* xCachesize */ 1197 pcache1Pagecount, /* xPagecount */ 1198 pcache1Fetch, /* xFetch */ 1199 pcache1Unpin, /* xUnpin */ 1200 pcache1Rekey, /* xRekey */ 1201 pcache1Truncate, /* xTruncate */ 1202 pcache1Destroy, /* xDestroy */ 1203 pcache1Shrink /* xShrink */ 1204 }; 1205 sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods); 1206 } 1207 1208 /* 1209 ** Return the size of the header on each page of this PCACHE implementation. 1210 */ 1211 int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); } 1212 1213 /* 1214 ** Return the global mutex used by this PCACHE implementation. The 1215 ** sqlite3_status() routine needs access to this mutex. 1216 */ 1217 sqlite3_mutex *sqlite3Pcache1Mutex(void){ 1218 return pcache1.mutex; 1219 } 1220 1221 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 1222 /* 1223 ** This function is called to free superfluous dynamically allocated memory 1224 ** held by the pager system. Memory in use by any SQLite pager allocated 1225 ** by the current thread may be sqlite3_free()ed. 1226 ** 1227 ** nReq is the number of bytes of memory required. Once this much has 1228 ** been released, the function returns. The return value is the total number 1229 ** of bytes of memory released. 1230 */ 1231 int sqlite3PcacheReleaseMemory(int nReq){ 1232 int nFree = 0; 1233 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); 1234 assert( sqlite3_mutex_notheld(pcache1.mutex) ); 1235 if( sqlite3GlobalConfig.pPage==0 ){ 1236 PgHdr1 *p; 1237 pcache1EnterMutex(&pcache1.grp); 1238 while( (nReq<0 || nFree<nReq) 1239 && (p=pcache1.grp.lru.pLruPrev)!=0 1240 && p->isAnchor==0 1241 ){ 1242 nFree += pcache1MemSize(p->page.pBuf); 1243 #ifdef SQLITE_PCACHE_SEPARATE_HEADER 1244 nFree += sqlite3MemSize(p); 1245 #endif 1246 assert( PAGE_IS_UNPINNED(p) ); 1247 pcache1PinPage(p); 1248 pcache1RemoveFromHash(p, 1); 1249 } 1250 pcache1LeaveMutex(&pcache1.grp); 1251 } 1252 return nFree; 1253 } 1254 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ 1255 1256 #ifdef SQLITE_TEST 1257 /* 1258 ** This function is used by test procedures to inspect the internal state 1259 ** of the global cache. 1260 */ 1261 void sqlite3PcacheStats( 1262 int *pnCurrent, /* OUT: Total number of pages cached */ 1263 int *pnMax, /* OUT: Global maximum cache size */ 1264 int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */ 1265 int *pnRecyclable /* OUT: Total number of pages available for recycling */ 1266 ){ 1267 PgHdr1 *p; 1268 int nRecyclable = 0; 1269 for(p=pcache1.grp.lru.pLruNext; p && !p->isAnchor; p=p->pLruNext){ 1270 assert( PAGE_IS_UNPINNED(p) ); 1271 nRecyclable++; 1272 } 1273 *pnCurrent = pcache1.grp.nPurgeable; 1274 *pnMax = (int)pcache1.grp.nMaxPage; 1275 *pnMin = (int)pcache1.grp.nMinPage; 1276 *pnRecyclable = nRecyclable; 1277 } 1278 #endif 1279