1 /* 2 ** 2008 November 05 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file implements the default page cache implementation (the 14 ** sqlite3_pcache interface). It also contains part of the implementation 15 ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features. 16 ** If the default page cache implementation is overridden, then neither of 17 ** these two features are available. 18 ** 19 ** A Page cache line looks like this: 20 ** 21 ** ------------------------------------------------------------- 22 ** | database page content | PgHdr1 | MemPage | PgHdr | 23 ** ------------------------------------------------------------- 24 ** 25 ** The database page content is up front (so that buffer overreads tend to 26 ** flow harmlessly into the PgHdr1, MemPage, and PgHdr extensions). MemPage 27 ** is the extension added by the btree.c module containing information such 28 ** as the database page number and how that database page is used. PgHdr 29 ** is added by the pcache.c layer and contains information used to keep track 30 ** of which pages are "dirty". PgHdr1 is an extension added by this 31 ** module (pcache1.c). The PgHdr1 header is a subclass of sqlite3_pcache_page. 32 ** PgHdr1 contains information needed to look up a page by its page number. 33 ** The superclass sqlite3_pcache_page.pBuf points to the start of the 34 ** database page content and sqlite3_pcache_page.pExtra points to PgHdr. 35 ** 36 ** The size of the extension (MemPage+PgHdr+PgHdr1) can be determined at 37 ** runtime using sqlite3_config(SQLITE_CONFIG_PCACHE_HDRSZ, &size). The 38 ** sizes of the extensions sum to 272 bytes on x64 for 3.8.10, but this 39 ** size can vary according to architecture, compile-time options, and 40 ** SQLite library version number. 41 ** 42 ** If SQLITE_PCACHE_SEPARATE_HEADER is defined, then the extension is obtained 43 ** using a separate memory allocation from the database page content. This 44 ** seeks to overcome the "clownshoe" problem (also called "internal 45 ** fragmentation" in academic literature) of allocating a few bytes more 46 ** than a power of two with the memory allocator rounding up to the next 47 ** power of two, and leaving the rounded-up space unused. 48 ** 49 ** This module tracks pointers to PgHdr1 objects. Only pcache.c communicates 50 ** with this module. Information is passed back and forth as PgHdr1 pointers. 51 ** 52 ** The pcache.c and pager.c modules deal pointers to PgHdr objects. 53 ** The btree.c module deals with pointers to MemPage objects. 54 ** 55 ** SOURCE OF PAGE CACHE MEMORY: 56 ** 57 ** Memory for a page might come from any of three sources: 58 ** 59 ** (1) The general-purpose memory allocator - sqlite3Malloc() 60 ** (2) Global page-cache memory provided using sqlite3_config() with 61 ** SQLITE_CONFIG_PAGECACHE. 62 ** (3) PCache-local bulk allocation. 63 ** 64 ** The third case is a chunk of heap memory (defaulting to 100 pages worth) 65 ** that is allocated when the page cache is created. The size of the local 66 ** bulk allocation can be adjusted using 67 ** 68 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, (void*)0, 0, N). 69 ** 70 ** If N is positive, then N pages worth of memory are allocated using a single 71 ** sqlite3Malloc() call and that memory is used for the first N pages allocated. 72 ** Or if N is negative, then -1024*N bytes of memory are allocated and used 73 ** for as many pages as can be accomodated. 74 ** 75 ** Only one of (2) or (3) can be used. Once the memory available to (2) or 76 ** (3) is exhausted, subsequent allocations fail over to the general-purpose 77 ** memory allocator (1). 78 ** 79 ** Earlier versions of SQLite used only methods (1) and (2). But experiments 80 ** show that method (3) with N==100 provides about a 5% performance boost for 81 ** common workloads. 82 */ 83 #include "sqliteInt.h" 84 85 typedef struct PCache1 PCache1; 86 typedef struct PgHdr1 PgHdr1; 87 typedef struct PgFreeslot PgFreeslot; 88 typedef struct PGroup PGroup; 89 90 /* 91 ** Each cache entry is represented by an instance of the following 92 ** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of 93 ** PgHdr1.pCache->szPage bytes is allocated directly before this structure 94 ** in memory. 95 */ 96 struct PgHdr1 { 97 sqlite3_pcache_page page; /* Base class. Must be first. pBuf & pExtra */ 98 unsigned int iKey; /* Key value (page number) */ 99 u8 isPinned; /* Page in use, not on the LRU list */ 100 u8 isBulkLocal; /* This page from bulk local storage */ 101 u8 isAnchor; /* This is the PGroup.lru element */ 102 PgHdr1 *pNext; /* Next in hash table chain */ 103 PCache1 *pCache; /* Cache that currently owns this page */ 104 PgHdr1 *pLruNext; /* Next in LRU list of unpinned pages */ 105 PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */ 106 }; 107 108 /* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set 109 ** of one or more PCaches that are able to recycle each other's unpinned 110 ** pages when they are under memory pressure. A PGroup is an instance of 111 ** the following object. 112 ** 113 ** This page cache implementation works in one of two modes: 114 ** 115 ** (1) Every PCache is the sole member of its own PGroup. There is 116 ** one PGroup per PCache. 117 ** 118 ** (2) There is a single global PGroup that all PCaches are a member 119 ** of. 120 ** 121 ** Mode 1 uses more memory (since PCache instances are not able to rob 122 ** unused pages from other PCaches) but it also operates without a mutex, 123 ** and is therefore often faster. Mode 2 requires a mutex in order to be 124 ** threadsafe, but recycles pages more efficiently. 125 ** 126 ** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single 127 ** PGroup which is the pcache1.grp global variable and its mutex is 128 ** SQLITE_MUTEX_STATIC_LRU. 129 */ 130 struct PGroup { 131 sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */ 132 unsigned int nMaxPage; /* Sum of nMax for purgeable caches */ 133 unsigned int nMinPage; /* Sum of nMin for purgeable caches */ 134 unsigned int mxPinned; /* nMaxpage + 10 - nMinPage */ 135 unsigned int nCurrentPage; /* Number of purgeable pages allocated */ 136 PgHdr1 lru; /* The beginning and end of the LRU list */ 137 }; 138 139 /* Each page cache is an instance of the following object. Every 140 ** open database file (including each in-memory database and each 141 ** temporary or transient database) has a single page cache which 142 ** is an instance of this object. 143 ** 144 ** Pointers to structures of this type are cast and returned as 145 ** opaque sqlite3_pcache* handles. 146 */ 147 struct PCache1 { 148 /* Cache configuration parameters. Page size (szPage) and the purgeable 149 ** flag (bPurgeable) are set when the cache is created. nMax may be 150 ** modified at any time by a call to the pcache1Cachesize() method. 151 ** The PGroup mutex must be held when accessing nMax. 152 */ 153 PGroup *pGroup; /* PGroup this cache belongs to */ 154 int szPage; /* Size of database content section */ 155 int szExtra; /* sizeof(MemPage)+sizeof(PgHdr) */ 156 int szAlloc; /* Total size of one pcache line */ 157 int bPurgeable; /* True if cache is purgeable */ 158 unsigned int nMin; /* Minimum number of pages reserved */ 159 unsigned int nMax; /* Configured "cache_size" value */ 160 unsigned int n90pct; /* nMax*9/10 */ 161 unsigned int iMaxKey; /* Largest key seen since xTruncate() */ 162 163 /* Hash table of all pages. The following variables may only be accessed 164 ** when the accessor is holding the PGroup mutex. 165 */ 166 unsigned int nRecyclable; /* Number of pages in the LRU list */ 167 unsigned int nPage; /* Total number of pages in apHash */ 168 unsigned int nHash; /* Number of slots in apHash[] */ 169 PgHdr1 **apHash; /* Hash table for fast lookup by key */ 170 PgHdr1 *pFree; /* List of unused pcache-local pages */ 171 void *pBulk; /* Bulk memory used by pcache-local */ 172 }; 173 174 /* 175 ** Free slots in the allocator used to divide up the global page cache 176 ** buffer provided using the SQLITE_CONFIG_PAGECACHE mechanism. 177 */ 178 struct PgFreeslot { 179 PgFreeslot *pNext; /* Next free slot */ 180 }; 181 182 /* 183 ** Global data used by this cache. 184 */ 185 static SQLITE_WSD struct PCacheGlobal { 186 PGroup grp; /* The global PGroup for mode (2) */ 187 188 /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The 189 ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all 190 ** fixed at sqlite3_initialize() time and do not require mutex protection. 191 ** The nFreeSlot and pFree values do require mutex protection. 192 */ 193 int isInit; /* True if initialized */ 194 int separateCache; /* Use a new PGroup for each PCache */ 195 int nInitPage; /* Initial bulk allocation size */ 196 int szSlot; /* Size of each free slot */ 197 int nSlot; /* The number of pcache slots */ 198 int nReserve; /* Try to keep nFreeSlot above this */ 199 void *pStart, *pEnd; /* Bounds of global page cache memory */ 200 /* Above requires no mutex. Use mutex below for variable that follow. */ 201 sqlite3_mutex *mutex; /* Mutex for accessing the following: */ 202 PgFreeslot *pFree; /* Free page blocks */ 203 int nFreeSlot; /* Number of unused pcache slots */ 204 /* The following value requires a mutex to change. We skip the mutex on 205 ** reading because (1) most platforms read a 32-bit integer atomically and 206 ** (2) even if an incorrect value is read, no great harm is done since this 207 ** is really just an optimization. */ 208 int bUnderPressure; /* True if low on PAGECACHE memory */ 209 } pcache1_g; 210 211 /* 212 ** All code in this file should access the global structure above via the 213 ** alias "pcache1". This ensures that the WSD emulation is used when 214 ** compiling for systems that do not support real WSD. 215 */ 216 #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g)) 217 218 /* 219 ** Macros to enter and leave the PCache LRU mutex. 220 */ 221 #if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0 222 # define pcache1EnterMutex(X) assert((X)->mutex==0) 223 # define pcache1LeaveMutex(X) assert((X)->mutex==0) 224 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 0 225 #else 226 # define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex) 227 # define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex) 228 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 1 229 #endif 230 231 /******************************************************************************/ 232 /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/ 233 234 235 /* 236 ** This function is called during initialization if a static buffer is 237 ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE 238 ** verb to sqlite3_config(). Parameter pBuf points to an allocation large 239 ** enough to contain 'n' buffers of 'sz' bytes each. 240 ** 241 ** This routine is called from sqlite3_initialize() and so it is guaranteed 242 ** to be serialized already. There is no need for further mutexing. 243 */ 244 void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){ 245 if( pcache1.isInit ){ 246 PgFreeslot *p; 247 if( pBuf==0 ) sz = n = 0; 248 sz = ROUNDDOWN8(sz); 249 pcache1.szSlot = sz; 250 pcache1.nSlot = pcache1.nFreeSlot = n; 251 pcache1.nReserve = n>90 ? 10 : (n/10 + 1); 252 pcache1.pStart = pBuf; 253 pcache1.pFree = 0; 254 pcache1.bUnderPressure = 0; 255 while( n-- ){ 256 p = (PgFreeslot*)pBuf; 257 p->pNext = pcache1.pFree; 258 pcache1.pFree = p; 259 pBuf = (void*)&((char*)pBuf)[sz]; 260 } 261 pcache1.pEnd = pBuf; 262 } 263 } 264 265 /* 266 ** Try to initialize the pCache->pFree and pCache->pBulk fields. Return 267 ** true if pCache->pFree ends up containing one or more free pages. 268 */ 269 static int pcache1InitBulk(PCache1 *pCache){ 270 i64 szBulk; 271 char *zBulk; 272 if( pcache1.nInitPage==0 ) return 0; 273 /* Do not bother with a bulk allocation if the cache size very small */ 274 if( pCache->nMax<3 ) return 0; 275 sqlite3BeginBenignMalloc(); 276 if( pcache1.nInitPage>0 ){ 277 szBulk = pCache->szAlloc * (i64)pcache1.nInitPage; 278 }else{ 279 szBulk = -1024 * (i64)pcache1.nInitPage; 280 } 281 if( szBulk > pCache->szAlloc*(i64)pCache->nMax ){ 282 szBulk = pCache->szAlloc*pCache->nMax; 283 } 284 zBulk = pCache->pBulk = sqlite3Malloc( szBulk ); 285 sqlite3EndBenignMalloc(); 286 if( zBulk ){ 287 int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc; 288 int i; 289 for(i=0; i<nBulk; i++){ 290 PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage]; 291 pX->page.pBuf = zBulk; 292 pX->page.pExtra = &pX[1]; 293 pX->isBulkLocal = 1; 294 pX->isAnchor = 0; 295 pX->pNext = pCache->pFree; 296 pCache->pFree = pX; 297 zBulk += pCache->szAlloc; 298 } 299 } 300 return pCache->pFree!=0; 301 } 302 303 /* 304 ** Malloc function used within this file to allocate space from the buffer 305 ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no 306 ** such buffer exists or there is no space left in it, this function falls 307 ** back to sqlite3Malloc(). 308 ** 309 ** Multiple threads can run this routine at the same time. Global variables 310 ** in pcache1 need to be protected via mutex. 311 */ 312 static void *pcache1Alloc(int nByte){ 313 void *p = 0; 314 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); 315 if( nByte<=pcache1.szSlot ){ 316 sqlite3_mutex_enter(pcache1.mutex); 317 p = (PgHdr1 *)pcache1.pFree; 318 if( p ){ 319 pcache1.pFree = pcache1.pFree->pNext; 320 pcache1.nFreeSlot--; 321 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; 322 assert( pcache1.nFreeSlot>=0 ); 323 sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte); 324 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1); 325 } 326 sqlite3_mutex_leave(pcache1.mutex); 327 } 328 if( p==0 ){ 329 /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get 330 ** it from sqlite3Malloc instead. 331 */ 332 p = sqlite3Malloc(nByte); 333 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS 334 if( p ){ 335 int sz = sqlite3MallocSize(p); 336 sqlite3_mutex_enter(pcache1.mutex); 337 sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte); 338 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz); 339 sqlite3_mutex_leave(pcache1.mutex); 340 } 341 #endif 342 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); 343 } 344 return p; 345 } 346 347 /* 348 ** Free an allocated buffer obtained from pcache1Alloc(). 349 */ 350 static void pcache1Free(void *p){ 351 if( p==0 ) return; 352 if( SQLITE_WITHIN(p, pcache1.pStart, pcache1.pEnd) ){ 353 PgFreeslot *pSlot; 354 sqlite3_mutex_enter(pcache1.mutex); 355 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1); 356 pSlot = (PgFreeslot*)p; 357 pSlot->pNext = pcache1.pFree; 358 pcache1.pFree = pSlot; 359 pcache1.nFreeSlot++; 360 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; 361 assert( pcache1.nFreeSlot<=pcache1.nSlot ); 362 sqlite3_mutex_leave(pcache1.mutex); 363 }else{ 364 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); 365 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 366 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS 367 { 368 int nFreed = 0; 369 nFreed = sqlite3MallocSize(p); 370 sqlite3_mutex_enter(pcache1.mutex); 371 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_OVERFLOW, nFreed); 372 sqlite3_mutex_leave(pcache1.mutex); 373 } 374 #endif 375 sqlite3_free(p); 376 } 377 } 378 379 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 380 /* 381 ** Return the size of a pcache allocation 382 */ 383 static int pcache1MemSize(void *p){ 384 if( p>=pcache1.pStart && p<pcache1.pEnd ){ 385 return pcache1.szSlot; 386 }else{ 387 int iSize; 388 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); 389 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 390 iSize = sqlite3MallocSize(p); 391 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); 392 return iSize; 393 } 394 } 395 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ 396 397 /* 398 ** Allocate a new page object initially associated with cache pCache. 399 */ 400 static PgHdr1 *pcache1AllocPage(PCache1 *pCache, int benignMalloc){ 401 PgHdr1 *p = 0; 402 void *pPg; 403 404 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 405 if( pCache->pFree || (pCache->nPage==0 && pcache1InitBulk(pCache)) ){ 406 p = pCache->pFree; 407 pCache->pFree = p->pNext; 408 p->pNext = 0; 409 }else{ 410 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 411 /* The group mutex must be released before pcache1Alloc() is called. This 412 ** is because it might call sqlite3_release_memory(), which assumes that 413 ** this mutex is not held. */ 414 assert( pcache1.separateCache==0 ); 415 assert( pCache->pGroup==&pcache1.grp ); 416 pcache1LeaveMutex(pCache->pGroup); 417 #endif 418 if( benignMalloc ){ sqlite3BeginBenignMalloc(); } 419 #ifdef SQLITE_PCACHE_SEPARATE_HEADER 420 pPg = pcache1Alloc(pCache->szPage); 421 p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra); 422 if( !pPg || !p ){ 423 pcache1Free(pPg); 424 sqlite3_free(p); 425 pPg = 0; 426 } 427 #else 428 pPg = pcache1Alloc(pCache->szAlloc); 429 p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage]; 430 #endif 431 if( benignMalloc ){ sqlite3EndBenignMalloc(); } 432 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 433 pcache1EnterMutex(pCache->pGroup); 434 #endif 435 if( pPg==0 ) return 0; 436 p->page.pBuf = pPg; 437 p->page.pExtra = &p[1]; 438 p->isBulkLocal = 0; 439 p->isAnchor = 0; 440 } 441 if( pCache->bPurgeable ){ 442 pCache->pGroup->nCurrentPage++; 443 } 444 return p; 445 } 446 447 /* 448 ** Free a page object allocated by pcache1AllocPage(). 449 */ 450 static void pcache1FreePage(PgHdr1 *p){ 451 PCache1 *pCache; 452 assert( p!=0 ); 453 pCache = p->pCache; 454 assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) ); 455 if( p->isBulkLocal ){ 456 p->pNext = pCache->pFree; 457 pCache->pFree = p; 458 }else{ 459 pcache1Free(p->page.pBuf); 460 #ifdef SQLITE_PCACHE_SEPARATE_HEADER 461 sqlite3_free(p); 462 #endif 463 } 464 if( pCache->bPurgeable ){ 465 pCache->pGroup->nCurrentPage--; 466 } 467 } 468 469 /* 470 ** Malloc function used by SQLite to obtain space from the buffer configured 471 ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer 472 ** exists, this function falls back to sqlite3Malloc(). 473 */ 474 void *sqlite3PageMalloc(int sz){ 475 return pcache1Alloc(sz); 476 } 477 478 /* 479 ** Free an allocated buffer obtained from sqlite3PageMalloc(). 480 */ 481 void sqlite3PageFree(void *p){ 482 pcache1Free(p); 483 } 484 485 486 /* 487 ** Return true if it desirable to avoid allocating a new page cache 488 ** entry. 489 ** 490 ** If memory was allocated specifically to the page cache using 491 ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then 492 ** it is desirable to avoid allocating a new page cache entry because 493 ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient 494 ** for all page cache needs and we should not need to spill the 495 ** allocation onto the heap. 496 ** 497 ** Or, the heap is used for all page cache memory but the heap is 498 ** under memory pressure, then again it is desirable to avoid 499 ** allocating a new page cache entry in order to avoid stressing 500 ** the heap even further. 501 */ 502 static int pcache1UnderMemoryPressure(PCache1 *pCache){ 503 if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){ 504 return pcache1.bUnderPressure; 505 }else{ 506 return sqlite3HeapNearlyFull(); 507 } 508 } 509 510 /******************************************************************************/ 511 /******** General Implementation Functions ************************************/ 512 513 /* 514 ** This function is used to resize the hash table used by the cache passed 515 ** as the first argument. 516 ** 517 ** The PCache mutex must be held when this function is called. 518 */ 519 static void pcache1ResizeHash(PCache1 *p){ 520 PgHdr1 **apNew; 521 unsigned int nNew; 522 unsigned int i; 523 524 assert( sqlite3_mutex_held(p->pGroup->mutex) ); 525 526 nNew = p->nHash*2; 527 if( nNew<256 ){ 528 nNew = 256; 529 } 530 531 pcache1LeaveMutex(p->pGroup); 532 if( p->nHash ){ sqlite3BeginBenignMalloc(); } 533 apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew); 534 if( p->nHash ){ sqlite3EndBenignMalloc(); } 535 pcache1EnterMutex(p->pGroup); 536 if( apNew ){ 537 for(i=0; i<p->nHash; i++){ 538 PgHdr1 *pPage; 539 PgHdr1 *pNext = p->apHash[i]; 540 while( (pPage = pNext)!=0 ){ 541 unsigned int h = pPage->iKey % nNew; 542 pNext = pPage->pNext; 543 pPage->pNext = apNew[h]; 544 apNew[h] = pPage; 545 } 546 } 547 sqlite3_free(p->apHash); 548 p->apHash = apNew; 549 p->nHash = nNew; 550 } 551 } 552 553 /* 554 ** This function is used internally to remove the page pPage from the 555 ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup 556 ** LRU list, then this function is a no-op. 557 ** 558 ** The PGroup mutex must be held when this function is called. 559 */ 560 static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){ 561 PCache1 *pCache; 562 563 assert( pPage!=0 ); 564 assert( pPage->isPinned==0 ); 565 pCache = pPage->pCache; 566 assert( pPage->pLruNext ); 567 assert( pPage->pLruPrev ); 568 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 569 pPage->pLruPrev->pLruNext = pPage->pLruNext; 570 pPage->pLruNext->pLruPrev = pPage->pLruPrev; 571 pPage->pLruNext = 0; 572 pPage->pLruPrev = 0; 573 pPage->isPinned = 1; 574 assert( pPage->isAnchor==0 ); 575 assert( pCache->pGroup->lru.isAnchor==1 ); 576 pCache->nRecyclable--; 577 return pPage; 578 } 579 580 581 /* 582 ** Remove the page supplied as an argument from the hash table 583 ** (PCache1.apHash structure) that it is currently stored in. 584 ** Also free the page if freePage is true. 585 ** 586 ** The PGroup mutex must be held when this function is called. 587 */ 588 static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){ 589 unsigned int h; 590 PCache1 *pCache = pPage->pCache; 591 PgHdr1 **pp; 592 593 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 594 h = pPage->iKey % pCache->nHash; 595 for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext); 596 *pp = (*pp)->pNext; 597 598 pCache->nPage--; 599 if( freeFlag ) pcache1FreePage(pPage); 600 } 601 602 /* 603 ** If there are currently more than nMaxPage pages allocated, try 604 ** to recycle pages to reduce the number allocated to nMaxPage. 605 */ 606 static void pcache1EnforceMaxPage(PCache1 *pCache){ 607 PGroup *pGroup = pCache->pGroup; 608 PgHdr1 *p; 609 assert( sqlite3_mutex_held(pGroup->mutex) ); 610 while( pGroup->nCurrentPage>pGroup->nMaxPage 611 && (p=pGroup->lru.pLruPrev)->isAnchor==0 612 ){ 613 assert( p->pCache->pGroup==pGroup ); 614 assert( p->isPinned==0 ); 615 pcache1PinPage(p); 616 pcache1RemoveFromHash(p, 1); 617 } 618 if( pCache->nPage==0 && pCache->pBulk ){ 619 sqlite3_free(pCache->pBulk); 620 pCache->pBulk = pCache->pFree = 0; 621 } 622 } 623 624 /* 625 ** Discard all pages from cache pCache with a page number (key value) 626 ** greater than or equal to iLimit. Any pinned pages that meet this 627 ** criteria are unpinned before they are discarded. 628 ** 629 ** The PCache mutex must be held when this function is called. 630 */ 631 static void pcache1TruncateUnsafe( 632 PCache1 *pCache, /* The cache to truncate */ 633 unsigned int iLimit /* Drop pages with this pgno or larger */ 634 ){ 635 TESTONLY( unsigned int nPage = 0; ) /* To assert pCache->nPage is correct */ 636 unsigned int h; 637 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 638 for(h=0; h<pCache->nHash; h++){ 639 PgHdr1 **pp = &pCache->apHash[h]; 640 PgHdr1 *pPage; 641 while( (pPage = *pp)!=0 ){ 642 if( pPage->iKey>=iLimit ){ 643 pCache->nPage--; 644 *pp = pPage->pNext; 645 if( !pPage->isPinned ) pcache1PinPage(pPage); 646 pcache1FreePage(pPage); 647 }else{ 648 pp = &pPage->pNext; 649 TESTONLY( nPage++; ) 650 } 651 } 652 } 653 assert( pCache->nPage==nPage ); 654 } 655 656 /******************************************************************************/ 657 /******** sqlite3_pcache Methods **********************************************/ 658 659 /* 660 ** Implementation of the sqlite3_pcache.xInit method. 661 */ 662 static int pcache1Init(void *NotUsed){ 663 UNUSED_PARAMETER(NotUsed); 664 assert( pcache1.isInit==0 ); 665 memset(&pcache1, 0, sizeof(pcache1)); 666 667 668 /* 669 ** The pcache1.separateCache variable is true if each PCache has its own 670 ** private PGroup (mode-1). pcache1.separateCache is false if the single 671 ** PGroup in pcache1.grp is used for all page caches (mode-2). 672 ** 673 ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT 674 ** 675 ** * Use a unified cache in single-threaded applications that have 676 ** configured a start-time buffer for use as page-cache memory using 677 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, pBuf, sz, N) with non-NULL 678 ** pBuf argument. 679 ** 680 ** * Otherwise use separate caches (mode-1) 681 */ 682 #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) 683 pcache1.separateCache = 0; 684 #elif SQLITE_THREADSAFE 685 pcache1.separateCache = sqlite3GlobalConfig.pPage==0 686 || sqlite3GlobalConfig.bCoreMutex>0; 687 #else 688 pcache1.separateCache = sqlite3GlobalConfig.pPage==0; 689 #endif 690 691 #if SQLITE_THREADSAFE 692 if( sqlite3GlobalConfig.bCoreMutex ){ 693 pcache1.grp.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU); 694 pcache1.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_PMEM); 695 } 696 #endif 697 if( pcache1.separateCache 698 && sqlite3GlobalConfig.nPage!=0 699 && sqlite3GlobalConfig.pPage==0 700 ){ 701 pcache1.nInitPage = sqlite3GlobalConfig.nPage; 702 }else{ 703 pcache1.nInitPage = 0; 704 } 705 pcache1.grp.mxPinned = 10; 706 pcache1.isInit = 1; 707 return SQLITE_OK; 708 } 709 710 /* 711 ** Implementation of the sqlite3_pcache.xShutdown method. 712 ** Note that the static mutex allocated in xInit does 713 ** not need to be freed. 714 */ 715 static void pcache1Shutdown(void *NotUsed){ 716 UNUSED_PARAMETER(NotUsed); 717 assert( pcache1.isInit!=0 ); 718 memset(&pcache1, 0, sizeof(pcache1)); 719 } 720 721 /* forward declaration */ 722 static void pcache1Destroy(sqlite3_pcache *p); 723 724 /* 725 ** Implementation of the sqlite3_pcache.xCreate method. 726 ** 727 ** Allocate a new cache. 728 */ 729 static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){ 730 PCache1 *pCache; /* The newly created page cache */ 731 PGroup *pGroup; /* The group the new page cache will belong to */ 732 int sz; /* Bytes of memory required to allocate the new cache */ 733 734 assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 ); 735 assert( szExtra < 300 ); 736 737 sz = sizeof(PCache1) + sizeof(PGroup)*pcache1.separateCache; 738 pCache = (PCache1 *)sqlite3MallocZero(sz); 739 if( pCache ){ 740 if( pcache1.separateCache ){ 741 pGroup = (PGroup*)&pCache[1]; 742 pGroup->mxPinned = 10; 743 }else{ 744 pGroup = &pcache1.grp; 745 } 746 if( pGroup->lru.isAnchor==0 ){ 747 pGroup->lru.isAnchor = 1; 748 pGroup->lru.pLruPrev = pGroup->lru.pLruNext = &pGroup->lru; 749 } 750 pCache->pGroup = pGroup; 751 pCache->szPage = szPage; 752 pCache->szExtra = szExtra; 753 pCache->szAlloc = szPage + szExtra + ROUND8(sizeof(PgHdr1)); 754 pCache->bPurgeable = (bPurgeable ? 1 : 0); 755 pcache1EnterMutex(pGroup); 756 pcache1ResizeHash(pCache); 757 if( bPurgeable ){ 758 pCache->nMin = 10; 759 pGroup->nMinPage += pCache->nMin; 760 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 761 } 762 pcache1LeaveMutex(pGroup); 763 if( pCache->nHash==0 ){ 764 pcache1Destroy((sqlite3_pcache*)pCache); 765 pCache = 0; 766 } 767 } 768 return (sqlite3_pcache *)pCache; 769 } 770 771 /* 772 ** Implementation of the sqlite3_pcache.xCachesize method. 773 ** 774 ** Configure the cache_size limit for a cache. 775 */ 776 static void pcache1Cachesize(sqlite3_pcache *p, int nMax){ 777 PCache1 *pCache = (PCache1 *)p; 778 if( pCache->bPurgeable ){ 779 PGroup *pGroup = pCache->pGroup; 780 pcache1EnterMutex(pGroup); 781 pGroup->nMaxPage += (nMax - pCache->nMax); 782 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 783 pCache->nMax = nMax; 784 pCache->n90pct = pCache->nMax*9/10; 785 pcache1EnforceMaxPage(pCache); 786 pcache1LeaveMutex(pGroup); 787 } 788 } 789 790 /* 791 ** Implementation of the sqlite3_pcache.xShrink method. 792 ** 793 ** Free up as much memory as possible. 794 */ 795 static void pcache1Shrink(sqlite3_pcache *p){ 796 PCache1 *pCache = (PCache1*)p; 797 if( pCache->bPurgeable ){ 798 PGroup *pGroup = pCache->pGroup; 799 int savedMaxPage; 800 pcache1EnterMutex(pGroup); 801 savedMaxPage = pGroup->nMaxPage; 802 pGroup->nMaxPage = 0; 803 pcache1EnforceMaxPage(pCache); 804 pGroup->nMaxPage = savedMaxPage; 805 pcache1LeaveMutex(pGroup); 806 } 807 } 808 809 /* 810 ** Implementation of the sqlite3_pcache.xPagecount method. 811 */ 812 static int pcache1Pagecount(sqlite3_pcache *p){ 813 int n; 814 PCache1 *pCache = (PCache1*)p; 815 pcache1EnterMutex(pCache->pGroup); 816 n = pCache->nPage; 817 pcache1LeaveMutex(pCache->pGroup); 818 return n; 819 } 820 821 822 /* 823 ** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described 824 ** in the header of the pcache1Fetch() procedure. 825 ** 826 ** This steps are broken out into a separate procedure because they are 827 ** usually not needed, and by avoiding the stack initialization required 828 ** for these steps, the main pcache1Fetch() procedure can run faster. 829 */ 830 static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2( 831 PCache1 *pCache, 832 unsigned int iKey, 833 int createFlag 834 ){ 835 unsigned int nPinned; 836 PGroup *pGroup = pCache->pGroup; 837 PgHdr1 *pPage = 0; 838 839 /* Step 3: Abort if createFlag is 1 but the cache is nearly full */ 840 assert( pCache->nPage >= pCache->nRecyclable ); 841 nPinned = pCache->nPage - pCache->nRecyclable; 842 assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage ); 843 assert( pCache->n90pct == pCache->nMax*9/10 ); 844 if( createFlag==1 && ( 845 nPinned>=pGroup->mxPinned 846 || nPinned>=pCache->n90pct 847 || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned) 848 )){ 849 return 0; 850 } 851 852 if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache); 853 assert( pCache->nHash>0 && pCache->apHash ); 854 855 /* Step 4. Try to recycle a page. */ 856 if( pCache->bPurgeable 857 && !pGroup->lru.pLruPrev->isAnchor 858 && ((pCache->nPage+1>=pCache->nMax) || pcache1UnderMemoryPressure(pCache)) 859 ){ 860 PCache1 *pOther; 861 pPage = pGroup->lru.pLruPrev; 862 assert( pPage->isPinned==0 ); 863 pcache1RemoveFromHash(pPage, 0); 864 pcache1PinPage(pPage); 865 pOther = pPage->pCache; 866 if( pOther->szAlloc != pCache->szAlloc ){ 867 pcache1FreePage(pPage); 868 pPage = 0; 869 }else{ 870 pGroup->nCurrentPage -= (pOther->bPurgeable - pCache->bPurgeable); 871 } 872 } 873 874 /* Step 5. If a usable page buffer has still not been found, 875 ** attempt to allocate a new one. 876 */ 877 if( !pPage ){ 878 pPage = pcache1AllocPage(pCache, createFlag==1); 879 } 880 881 if( pPage ){ 882 unsigned int h = iKey % pCache->nHash; 883 pCache->nPage++; 884 pPage->iKey = iKey; 885 pPage->pNext = pCache->apHash[h]; 886 pPage->pCache = pCache; 887 pPage->pLruPrev = 0; 888 pPage->pLruNext = 0; 889 pPage->isPinned = 1; 890 *(void **)pPage->page.pExtra = 0; 891 pCache->apHash[h] = pPage; 892 if( iKey>pCache->iMaxKey ){ 893 pCache->iMaxKey = iKey; 894 } 895 } 896 return pPage; 897 } 898 899 /* 900 ** Implementation of the sqlite3_pcache.xFetch method. 901 ** 902 ** Fetch a page by key value. 903 ** 904 ** Whether or not a new page may be allocated by this function depends on 905 ** the value of the createFlag argument. 0 means do not allocate a new 906 ** page. 1 means allocate a new page if space is easily available. 2 907 ** means to try really hard to allocate a new page. 908 ** 909 ** For a non-purgeable cache (a cache used as the storage for an in-memory 910 ** database) there is really no difference between createFlag 1 and 2. So 911 ** the calling function (pcache.c) will never have a createFlag of 1 on 912 ** a non-purgeable cache. 913 ** 914 ** There are three different approaches to obtaining space for a page, 915 ** depending on the value of parameter createFlag (which may be 0, 1 or 2). 916 ** 917 ** 1. Regardless of the value of createFlag, the cache is searched for a 918 ** copy of the requested page. If one is found, it is returned. 919 ** 920 ** 2. If createFlag==0 and the page is not already in the cache, NULL is 921 ** returned. 922 ** 923 ** 3. If createFlag is 1, and the page is not already in the cache, then 924 ** return NULL (do not allocate a new page) if any of the following 925 ** conditions are true: 926 ** 927 ** (a) the number of pages pinned by the cache is greater than 928 ** PCache1.nMax, or 929 ** 930 ** (b) the number of pages pinned by the cache is greater than 931 ** the sum of nMax for all purgeable caches, less the sum of 932 ** nMin for all other purgeable caches, or 933 ** 934 ** 4. If none of the first three conditions apply and the cache is marked 935 ** as purgeable, and if one of the following is true: 936 ** 937 ** (a) The number of pages allocated for the cache is already 938 ** PCache1.nMax, or 939 ** 940 ** (b) The number of pages allocated for all purgeable caches is 941 ** already equal to or greater than the sum of nMax for all 942 ** purgeable caches, 943 ** 944 ** (c) The system is under memory pressure and wants to avoid 945 ** unnecessary pages cache entry allocations 946 ** 947 ** then attempt to recycle a page from the LRU list. If it is the right 948 ** size, return the recycled buffer. Otherwise, free the buffer and 949 ** proceed to step 5. 950 ** 951 ** 5. Otherwise, allocate and return a new page buffer. 952 ** 953 ** There are two versions of this routine. pcache1FetchWithMutex() is 954 ** the general case. pcache1FetchNoMutex() is a faster implementation for 955 ** the common case where pGroup->mutex is NULL. The pcache1Fetch() wrapper 956 ** invokes the appropriate routine. 957 */ 958 static PgHdr1 *pcache1FetchNoMutex( 959 sqlite3_pcache *p, 960 unsigned int iKey, 961 int createFlag 962 ){ 963 PCache1 *pCache = (PCache1 *)p; 964 PgHdr1 *pPage = 0; 965 966 /* Step 1: Search the hash table for an existing entry. */ 967 pPage = pCache->apHash[iKey % pCache->nHash]; 968 while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; } 969 970 /* Step 2: If the page was found in the hash table, then return it. 971 ** If the page was not in the hash table and createFlag is 0, abort. 972 ** Otherwise (page not in hash and createFlag!=0) continue with 973 ** subsequent steps to try to create the page. */ 974 if( pPage ){ 975 if( !pPage->isPinned ){ 976 return pcache1PinPage(pPage); 977 }else{ 978 return pPage; 979 } 980 }else if( createFlag ){ 981 /* Steps 3, 4, and 5 implemented by this subroutine */ 982 return pcache1FetchStage2(pCache, iKey, createFlag); 983 }else{ 984 return 0; 985 } 986 } 987 #if PCACHE1_MIGHT_USE_GROUP_MUTEX 988 static PgHdr1 *pcache1FetchWithMutex( 989 sqlite3_pcache *p, 990 unsigned int iKey, 991 int createFlag 992 ){ 993 PCache1 *pCache = (PCache1 *)p; 994 PgHdr1 *pPage; 995 996 pcache1EnterMutex(pCache->pGroup); 997 pPage = pcache1FetchNoMutex(p, iKey, createFlag); 998 assert( pPage==0 || pCache->iMaxKey>=iKey ); 999 pcache1LeaveMutex(pCache->pGroup); 1000 return pPage; 1001 } 1002 #endif 1003 static sqlite3_pcache_page *pcache1Fetch( 1004 sqlite3_pcache *p, 1005 unsigned int iKey, 1006 int createFlag 1007 ){ 1008 #if PCACHE1_MIGHT_USE_GROUP_MUTEX || defined(SQLITE_DEBUG) 1009 PCache1 *pCache = (PCache1 *)p; 1010 #endif 1011 1012 assert( offsetof(PgHdr1,page)==0 ); 1013 assert( pCache->bPurgeable || createFlag!=1 ); 1014 assert( pCache->bPurgeable || pCache->nMin==0 ); 1015 assert( pCache->bPurgeable==0 || pCache->nMin==10 ); 1016 assert( pCache->nMin==0 || pCache->bPurgeable ); 1017 assert( pCache->nHash>0 ); 1018 #if PCACHE1_MIGHT_USE_GROUP_MUTEX 1019 if( pCache->pGroup->mutex ){ 1020 return (sqlite3_pcache_page*)pcache1FetchWithMutex(p, iKey, createFlag); 1021 }else 1022 #endif 1023 { 1024 return (sqlite3_pcache_page*)pcache1FetchNoMutex(p, iKey, createFlag); 1025 } 1026 } 1027 1028 1029 /* 1030 ** Implementation of the sqlite3_pcache.xUnpin method. 1031 ** 1032 ** Mark a page as unpinned (eligible for asynchronous recycling). 1033 */ 1034 static void pcache1Unpin( 1035 sqlite3_pcache *p, 1036 sqlite3_pcache_page *pPg, 1037 int reuseUnlikely 1038 ){ 1039 PCache1 *pCache = (PCache1 *)p; 1040 PgHdr1 *pPage = (PgHdr1 *)pPg; 1041 PGroup *pGroup = pCache->pGroup; 1042 1043 assert( pPage->pCache==pCache ); 1044 pcache1EnterMutex(pGroup); 1045 1046 /* It is an error to call this function if the page is already 1047 ** part of the PGroup LRU list. 1048 */ 1049 assert( pPage->pLruPrev==0 && pPage->pLruNext==0 ); 1050 assert( pPage->isPinned==1 ); 1051 1052 if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){ 1053 pcache1RemoveFromHash(pPage, 1); 1054 }else{ 1055 /* Add the page to the PGroup LRU list. */ 1056 PgHdr1 **ppFirst = &pGroup->lru.pLruNext; 1057 pPage->pLruPrev = &pGroup->lru; 1058 (pPage->pLruNext = *ppFirst)->pLruPrev = pPage; 1059 *ppFirst = pPage; 1060 pCache->nRecyclable++; 1061 pPage->isPinned = 0; 1062 } 1063 1064 pcache1LeaveMutex(pCache->pGroup); 1065 } 1066 1067 /* 1068 ** Implementation of the sqlite3_pcache.xRekey method. 1069 */ 1070 static void pcache1Rekey( 1071 sqlite3_pcache *p, 1072 sqlite3_pcache_page *pPg, 1073 unsigned int iOld, 1074 unsigned int iNew 1075 ){ 1076 PCache1 *pCache = (PCache1 *)p; 1077 PgHdr1 *pPage = (PgHdr1 *)pPg; 1078 PgHdr1 **pp; 1079 unsigned int h; 1080 assert( pPage->iKey==iOld ); 1081 assert( pPage->pCache==pCache ); 1082 1083 pcache1EnterMutex(pCache->pGroup); 1084 1085 h = iOld%pCache->nHash; 1086 pp = &pCache->apHash[h]; 1087 while( (*pp)!=pPage ){ 1088 pp = &(*pp)->pNext; 1089 } 1090 *pp = pPage->pNext; 1091 1092 h = iNew%pCache->nHash; 1093 pPage->iKey = iNew; 1094 pPage->pNext = pCache->apHash[h]; 1095 pCache->apHash[h] = pPage; 1096 if( iNew>pCache->iMaxKey ){ 1097 pCache->iMaxKey = iNew; 1098 } 1099 1100 pcache1LeaveMutex(pCache->pGroup); 1101 } 1102 1103 /* 1104 ** Implementation of the sqlite3_pcache.xTruncate method. 1105 ** 1106 ** Discard all unpinned pages in the cache with a page number equal to 1107 ** or greater than parameter iLimit. Any pinned pages with a page number 1108 ** equal to or greater than iLimit are implicitly unpinned. 1109 */ 1110 static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){ 1111 PCache1 *pCache = (PCache1 *)p; 1112 pcache1EnterMutex(pCache->pGroup); 1113 if( iLimit<=pCache->iMaxKey ){ 1114 pcache1TruncateUnsafe(pCache, iLimit); 1115 pCache->iMaxKey = iLimit-1; 1116 } 1117 pcache1LeaveMutex(pCache->pGroup); 1118 } 1119 1120 /* 1121 ** Implementation of the sqlite3_pcache.xDestroy method. 1122 ** 1123 ** Destroy a cache allocated using pcache1Create(). 1124 */ 1125 static void pcache1Destroy(sqlite3_pcache *p){ 1126 PCache1 *pCache = (PCache1 *)p; 1127 PGroup *pGroup = pCache->pGroup; 1128 assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) ); 1129 pcache1EnterMutex(pGroup); 1130 pcache1TruncateUnsafe(pCache, 0); 1131 assert( pGroup->nMaxPage >= pCache->nMax ); 1132 pGroup->nMaxPage -= pCache->nMax; 1133 assert( pGroup->nMinPage >= pCache->nMin ); 1134 pGroup->nMinPage -= pCache->nMin; 1135 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 1136 pcache1EnforceMaxPage(pCache); 1137 pcache1LeaveMutex(pGroup); 1138 sqlite3_free(pCache->pBulk); 1139 sqlite3_free(pCache->apHash); 1140 sqlite3_free(pCache); 1141 } 1142 1143 /* 1144 ** This function is called during initialization (sqlite3_initialize()) to 1145 ** install the default pluggable cache module, assuming the user has not 1146 ** already provided an alternative. 1147 */ 1148 void sqlite3PCacheSetDefault(void){ 1149 static const sqlite3_pcache_methods2 defaultMethods = { 1150 1, /* iVersion */ 1151 0, /* pArg */ 1152 pcache1Init, /* xInit */ 1153 pcache1Shutdown, /* xShutdown */ 1154 pcache1Create, /* xCreate */ 1155 pcache1Cachesize, /* xCachesize */ 1156 pcache1Pagecount, /* xPagecount */ 1157 pcache1Fetch, /* xFetch */ 1158 pcache1Unpin, /* xUnpin */ 1159 pcache1Rekey, /* xRekey */ 1160 pcache1Truncate, /* xTruncate */ 1161 pcache1Destroy, /* xDestroy */ 1162 pcache1Shrink /* xShrink */ 1163 }; 1164 sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods); 1165 } 1166 1167 /* 1168 ** Return the size of the header on each page of this PCACHE implementation. 1169 */ 1170 int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); } 1171 1172 /* 1173 ** Return the global mutex used by this PCACHE implementation. The 1174 ** sqlite3_status() routine needs access to this mutex. 1175 */ 1176 sqlite3_mutex *sqlite3Pcache1Mutex(void){ 1177 return pcache1.mutex; 1178 } 1179 1180 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 1181 /* 1182 ** This function is called to free superfluous dynamically allocated memory 1183 ** held by the pager system. Memory in use by any SQLite pager allocated 1184 ** by the current thread may be sqlite3_free()ed. 1185 ** 1186 ** nReq is the number of bytes of memory required. Once this much has 1187 ** been released, the function returns. The return value is the total number 1188 ** of bytes of memory released. 1189 */ 1190 int sqlite3PcacheReleaseMemory(int nReq){ 1191 int nFree = 0; 1192 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); 1193 assert( sqlite3_mutex_notheld(pcache1.mutex) ); 1194 if( sqlite3GlobalConfig.nPage==0 ){ 1195 PgHdr1 *p; 1196 pcache1EnterMutex(&pcache1.grp); 1197 while( (nReq<0 || nFree<nReq) 1198 && (p=pcache1.grp.lru.pLruPrev)!=0 1199 && p->isAnchor==0 1200 ){ 1201 nFree += pcache1MemSize(p->page.pBuf); 1202 #ifdef SQLITE_PCACHE_SEPARATE_HEADER 1203 nFree += sqlite3MemSize(p); 1204 #endif 1205 assert( p->isPinned==0 ); 1206 pcache1PinPage(p); 1207 pcache1RemoveFromHash(p, 1); 1208 } 1209 pcache1LeaveMutex(&pcache1.grp); 1210 } 1211 return nFree; 1212 } 1213 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ 1214 1215 #ifdef SQLITE_TEST 1216 /* 1217 ** This function is used by test procedures to inspect the internal state 1218 ** of the global cache. 1219 */ 1220 void sqlite3PcacheStats( 1221 int *pnCurrent, /* OUT: Total number of pages cached */ 1222 int *pnMax, /* OUT: Global maximum cache size */ 1223 int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */ 1224 int *pnRecyclable /* OUT: Total number of pages available for recycling */ 1225 ){ 1226 PgHdr1 *p; 1227 int nRecyclable = 0; 1228 for(p=pcache1.grp.lru.pLruNext; p && !p->isAnchor; p=p->pLruNext){ 1229 assert( p->isPinned==0 ); 1230 nRecyclable++; 1231 } 1232 *pnCurrent = pcache1.grp.nCurrentPage; 1233 *pnMax = (int)pcache1.grp.nMaxPage; 1234 *pnMin = (int)pcache1.grp.nMinPage; 1235 *pnRecyclable = nRecyclable; 1236 } 1237 #endif 1238