1 /* 2 ** 2008 November 05 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file implements the default page cache implementation (the 14 ** sqlite3_pcache interface). It also contains part of the implementation 15 ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features. 16 ** If the default page cache implementation is overridden, then neither of 17 ** these two features are available. 18 ** 19 ** A Page cache line looks like this: 20 ** 21 ** ------------------------------------------------------------- 22 ** | database page content | PgHdr1 | MemPage | PgHdr | 23 ** ------------------------------------------------------------- 24 ** 25 ** The database page content is up front (so that buffer overreads tend to 26 ** flow harmlessly into the PgHdr1, MemPage, and PgHdr extensions). MemPage 27 ** is the extension added by the btree.c module containing information such 28 ** as the database page number and how that database page is used. PgHdr 29 ** is added by the pcache.c layer and contains information used to keep track 30 ** of which pages are "dirty". PgHdr1 is an extension added by this 31 ** module (pcache1.c). The PgHdr1 header is a subclass of sqlite3_pcache_page. 32 ** PgHdr1 contains information needed to look up a page by its page number. 33 ** The superclass sqlite3_pcache_page.pBuf points to the start of the 34 ** database page content and sqlite3_pcache_page.pExtra points to PgHdr. 35 ** 36 ** The size of the extension (MemPage+PgHdr+PgHdr1) can be determined at 37 ** runtime using sqlite3_config(SQLITE_CONFIG_PCACHE_HDRSZ, &size). The 38 ** sizes of the extensions sum to 272 bytes on x64 for 3.8.10, but this 39 ** size can vary according to architecture, compile-time options, and 40 ** SQLite library version number. 41 ** 42 ** If SQLITE_PCACHE_SEPARATE_HEADER is defined, then the extension is obtained 43 ** using a separate memory allocation from the database page content. This 44 ** seeks to overcome the "clownshoe" problem (also called "internal 45 ** fragmentation" in academic literature) of allocating a few bytes more 46 ** than a power of two with the memory allocator rounding up to the next 47 ** power of two, and leaving the rounded-up space unused. 48 ** 49 ** This module tracks pointers to PgHdr1 objects. Only pcache.c communicates 50 ** with this module. Information is passed back and forth as PgHdr1 pointers. 51 ** 52 ** The pcache.c and pager.c modules deal pointers to PgHdr objects. 53 ** The btree.c module deals with pointers to MemPage objects. 54 ** 55 ** SOURCE OF PAGE CACHE MEMORY: 56 ** 57 ** Memory for a page might come from any of three sources: 58 ** 59 ** (1) The general-purpose memory allocator - sqlite3Malloc() 60 ** (2) Global page-cache memory provided using sqlite3_config() with 61 ** SQLITE_CONFIG_PAGECACHE. 62 ** (3) PCache-local bulk allocation. 63 ** 64 ** The third case is a chunk of heap memory (defaulting to 100 pages worth) 65 ** that is allocated when the page cache is created. The size of the local 66 ** bulk allocation can be adjusted using 67 ** 68 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, (void*)0, 0, N). 69 ** 70 ** If N is positive, then N pages worth of memory are allocated using a single 71 ** sqlite3Malloc() call and that memory is used for the first N pages allocated. 72 ** Or if N is negative, then -1024*N bytes of memory are allocated and used 73 ** for as many pages as can be accomodated. 74 ** 75 ** Only one of (2) or (3) can be used. Once the memory available to (2) or 76 ** (3) is exhausted, subsequent allocations fail over to the general-purpose 77 ** memory allocator (1). 78 ** 79 ** Earlier versions of SQLite used only methods (1) and (2). But experiments 80 ** show that method (3) with N==100 provides about a 5% performance boost for 81 ** common workloads. 82 */ 83 #include "sqliteInt.h" 84 85 typedef struct PCache1 PCache1; 86 typedef struct PgHdr1 PgHdr1; 87 typedef struct PgFreeslot PgFreeslot; 88 typedef struct PGroup PGroup; 89 90 /* 91 ** Each cache entry is represented by an instance of the following 92 ** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of 93 ** PgHdr1.pCache->szPage bytes is allocated directly before this structure 94 ** in memory. 95 */ 96 struct PgHdr1 { 97 sqlite3_pcache_page page; /* Base class. Must be first. pBuf & pExtra */ 98 unsigned int iKey; /* Key value (page number) */ 99 u8 isPinned; /* Page in use, not on the LRU list */ 100 u8 isBulkLocal; /* This page from bulk local storage */ 101 u8 isAnchor; /* This is the PGroup.lru element */ 102 PgHdr1 *pNext; /* Next in hash table chain */ 103 PCache1 *pCache; /* Cache that currently owns this page */ 104 PgHdr1 *pLruNext; /* Next in LRU list of unpinned pages */ 105 PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */ 106 }; 107 108 /* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set 109 ** of one or more PCaches that are able to recycle each other's unpinned 110 ** pages when they are under memory pressure. A PGroup is an instance of 111 ** the following object. 112 ** 113 ** This page cache implementation works in one of two modes: 114 ** 115 ** (1) Every PCache is the sole member of its own PGroup. There is 116 ** one PGroup per PCache. 117 ** 118 ** (2) There is a single global PGroup that all PCaches are a member 119 ** of. 120 ** 121 ** Mode 1 uses more memory (since PCache instances are not able to rob 122 ** unused pages from other PCaches) but it also operates without a mutex, 123 ** and is therefore often faster. Mode 2 requires a mutex in order to be 124 ** threadsafe, but recycles pages more efficiently. 125 ** 126 ** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single 127 ** PGroup which is the pcache1.grp global variable and its mutex is 128 ** SQLITE_MUTEX_STATIC_LRU. 129 */ 130 struct PGroup { 131 sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */ 132 unsigned int nMaxPage; /* Sum of nMax for purgeable caches */ 133 unsigned int nMinPage; /* Sum of nMin for purgeable caches */ 134 unsigned int mxPinned; /* nMaxpage + 10 - nMinPage */ 135 unsigned int nCurrentPage; /* Number of purgeable pages allocated */ 136 PgHdr1 lru; /* The beginning and end of the LRU list */ 137 }; 138 139 /* Each page cache is an instance of the following object. Every 140 ** open database file (including each in-memory database and each 141 ** temporary or transient database) has a single page cache which 142 ** is an instance of this object. 143 ** 144 ** Pointers to structures of this type are cast and returned as 145 ** opaque sqlite3_pcache* handles. 146 */ 147 struct PCache1 { 148 /* Cache configuration parameters. Page size (szPage) and the purgeable 149 ** flag (bPurgeable) are set when the cache is created. nMax may be 150 ** modified at any time by a call to the pcache1Cachesize() method. 151 ** The PGroup mutex must be held when accessing nMax. 152 */ 153 PGroup *pGroup; /* PGroup this cache belongs to */ 154 int szPage; /* Size of database content section */ 155 int szExtra; /* sizeof(MemPage)+sizeof(PgHdr) */ 156 int szAlloc; /* Total size of one pcache line */ 157 int bPurgeable; /* True if cache is purgeable */ 158 unsigned int nMin; /* Minimum number of pages reserved */ 159 unsigned int nMax; /* Configured "cache_size" value */ 160 unsigned int n90pct; /* nMax*9/10 */ 161 unsigned int iMaxKey; /* Largest key seen since xTruncate() */ 162 163 /* Hash table of all pages. The following variables may only be accessed 164 ** when the accessor is holding the PGroup mutex. 165 */ 166 unsigned int nRecyclable; /* Number of pages in the LRU list */ 167 unsigned int nPage; /* Total number of pages in apHash */ 168 unsigned int nHash; /* Number of slots in apHash[] */ 169 PgHdr1 **apHash; /* Hash table for fast lookup by key */ 170 PgHdr1 *pFree; /* List of unused pcache-local pages */ 171 void *pBulk; /* Bulk memory used by pcache-local */ 172 }; 173 174 /* 175 ** Free slots in the allocator used to divide up the global page cache 176 ** buffer provided using the SQLITE_CONFIG_PAGECACHE mechanism. 177 */ 178 struct PgFreeslot { 179 PgFreeslot *pNext; /* Next free slot */ 180 }; 181 182 /* 183 ** Global data used by this cache. 184 */ 185 static SQLITE_WSD struct PCacheGlobal { 186 PGroup grp; /* The global PGroup for mode (2) */ 187 188 /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The 189 ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all 190 ** fixed at sqlite3_initialize() time and do not require mutex protection. 191 ** The nFreeSlot and pFree values do require mutex protection. 192 */ 193 int isInit; /* True if initialized */ 194 int separateCache; /* Use a new PGroup for each PCache */ 195 int nInitPage; /* Initial bulk allocation size */ 196 int szSlot; /* Size of each free slot */ 197 int nSlot; /* The number of pcache slots */ 198 int nReserve; /* Try to keep nFreeSlot above this */ 199 void *pStart, *pEnd; /* Bounds of global page cache memory */ 200 /* Above requires no mutex. Use mutex below for variable that follow. */ 201 sqlite3_mutex *mutex; /* Mutex for accessing the following: */ 202 PgFreeslot *pFree; /* Free page blocks */ 203 int nFreeSlot; /* Number of unused pcache slots */ 204 /* The following value requires a mutex to change. We skip the mutex on 205 ** reading because (1) most platforms read a 32-bit integer atomically and 206 ** (2) even if an incorrect value is read, no great harm is done since this 207 ** is really just an optimization. */ 208 int bUnderPressure; /* True if low on PAGECACHE memory */ 209 } pcache1_g; 210 211 /* 212 ** All code in this file should access the global structure above via the 213 ** alias "pcache1". This ensures that the WSD emulation is used when 214 ** compiling for systems that do not support real WSD. 215 */ 216 #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g)) 217 218 /* 219 ** Macros to enter and leave the PCache LRU mutex. 220 */ 221 #if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0 222 # define pcache1EnterMutex(X) assert((X)->mutex==0) 223 # define pcache1LeaveMutex(X) assert((X)->mutex==0) 224 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 0 225 #else 226 # define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex) 227 # define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex) 228 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 1 229 #endif 230 231 /******************************************************************************/ 232 /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/ 233 234 235 /* 236 ** This function is called during initialization if a static buffer is 237 ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE 238 ** verb to sqlite3_config(). Parameter pBuf points to an allocation large 239 ** enough to contain 'n' buffers of 'sz' bytes each. 240 ** 241 ** This routine is called from sqlite3_initialize() and so it is guaranteed 242 ** to be serialized already. There is no need for further mutexing. 243 */ 244 void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){ 245 if( pcache1.isInit ){ 246 PgFreeslot *p; 247 if( pBuf==0 ) sz = n = 0; 248 sz = ROUNDDOWN8(sz); 249 pcache1.szSlot = sz; 250 pcache1.nSlot = pcache1.nFreeSlot = n; 251 pcache1.nReserve = n>90 ? 10 : (n/10 + 1); 252 pcache1.pStart = pBuf; 253 pcache1.pFree = 0; 254 pcache1.bUnderPressure = 0; 255 while( n-- ){ 256 p = (PgFreeslot*)pBuf; 257 p->pNext = pcache1.pFree; 258 pcache1.pFree = p; 259 pBuf = (void*)&((char*)pBuf)[sz]; 260 } 261 pcache1.pEnd = pBuf; 262 } 263 } 264 265 /* 266 ** Try to initialize the pCache->pFree and pCache->pBulk fields. Return 267 ** true if pCache->pFree ends up containing one or more free pages. 268 */ 269 static int pcache1InitBulk(PCache1 *pCache){ 270 i64 szBulk; 271 char *zBulk; 272 if( pcache1.nInitPage==0 ) return 0; 273 /* Do not bother with a bulk allocation if the cache size very small */ 274 if( pCache->nMax<3 ) return 0; 275 sqlite3BeginBenignMalloc(); 276 if( pcache1.nInitPage>0 ){ 277 szBulk = pCache->szAlloc * (i64)pcache1.nInitPage; 278 }else{ 279 szBulk = -1024 * (i64)pcache1.nInitPage; 280 } 281 if( szBulk > pCache->szAlloc*(i64)pCache->nMax ){ 282 szBulk = pCache->szAlloc*(i64)pCache->nMax; 283 } 284 zBulk = pCache->pBulk = sqlite3Malloc( szBulk ); 285 sqlite3EndBenignMalloc(); 286 if( zBulk ){ 287 int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc; 288 do{ 289 PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage]; 290 pX->page.pBuf = zBulk; 291 pX->page.pExtra = &pX[1]; 292 pX->isBulkLocal = 1; 293 pX->isAnchor = 0; 294 pX->pNext = pCache->pFree; 295 pCache->pFree = pX; 296 zBulk += pCache->szAlloc; 297 }while( --nBulk ); 298 } 299 return pCache->pFree!=0; 300 } 301 302 /* 303 ** Malloc function used within this file to allocate space from the buffer 304 ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no 305 ** such buffer exists or there is no space left in it, this function falls 306 ** back to sqlite3Malloc(). 307 ** 308 ** Multiple threads can run this routine at the same time. Global variables 309 ** in pcache1 need to be protected via mutex. 310 */ 311 static void *pcache1Alloc(int nByte){ 312 void *p = 0; 313 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); 314 if( nByte<=pcache1.szSlot ){ 315 sqlite3_mutex_enter(pcache1.mutex); 316 p = (PgHdr1 *)pcache1.pFree; 317 if( p ){ 318 pcache1.pFree = pcache1.pFree->pNext; 319 pcache1.nFreeSlot--; 320 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; 321 assert( pcache1.nFreeSlot>=0 ); 322 sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte); 323 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1); 324 } 325 sqlite3_mutex_leave(pcache1.mutex); 326 } 327 if( p==0 ){ 328 /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get 329 ** it from sqlite3Malloc instead. 330 */ 331 p = sqlite3Malloc(nByte); 332 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS 333 if( p ){ 334 int sz = sqlite3MallocSize(p); 335 sqlite3_mutex_enter(pcache1.mutex); 336 sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte); 337 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz); 338 sqlite3_mutex_leave(pcache1.mutex); 339 } 340 #endif 341 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); 342 } 343 return p; 344 } 345 346 /* 347 ** Free an allocated buffer obtained from pcache1Alloc(). 348 */ 349 static void pcache1Free(void *p){ 350 if( p==0 ) return; 351 if( SQLITE_WITHIN(p, pcache1.pStart, pcache1.pEnd) ){ 352 PgFreeslot *pSlot; 353 sqlite3_mutex_enter(pcache1.mutex); 354 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1); 355 pSlot = (PgFreeslot*)p; 356 pSlot->pNext = pcache1.pFree; 357 pcache1.pFree = pSlot; 358 pcache1.nFreeSlot++; 359 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; 360 assert( pcache1.nFreeSlot<=pcache1.nSlot ); 361 sqlite3_mutex_leave(pcache1.mutex); 362 }else{ 363 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); 364 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 365 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS 366 { 367 int nFreed = 0; 368 nFreed = sqlite3MallocSize(p); 369 sqlite3_mutex_enter(pcache1.mutex); 370 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_OVERFLOW, nFreed); 371 sqlite3_mutex_leave(pcache1.mutex); 372 } 373 #endif 374 sqlite3_free(p); 375 } 376 } 377 378 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 379 /* 380 ** Return the size of a pcache allocation 381 */ 382 static int pcache1MemSize(void *p){ 383 if( p>=pcache1.pStart && p<pcache1.pEnd ){ 384 return pcache1.szSlot; 385 }else{ 386 int iSize; 387 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); 388 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 389 iSize = sqlite3MallocSize(p); 390 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); 391 return iSize; 392 } 393 } 394 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ 395 396 /* 397 ** Allocate a new page object initially associated with cache pCache. 398 */ 399 static PgHdr1 *pcache1AllocPage(PCache1 *pCache, int benignMalloc){ 400 PgHdr1 *p = 0; 401 void *pPg; 402 403 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 404 if( pCache->pFree || (pCache->nPage==0 && pcache1InitBulk(pCache)) ){ 405 p = pCache->pFree; 406 pCache->pFree = p->pNext; 407 p->pNext = 0; 408 }else{ 409 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 410 /* The group mutex must be released before pcache1Alloc() is called. This 411 ** is because it might call sqlite3_release_memory(), which assumes that 412 ** this mutex is not held. */ 413 assert( pcache1.separateCache==0 ); 414 assert( pCache->pGroup==&pcache1.grp ); 415 pcache1LeaveMutex(pCache->pGroup); 416 #endif 417 if( benignMalloc ){ sqlite3BeginBenignMalloc(); } 418 #ifdef SQLITE_PCACHE_SEPARATE_HEADER 419 pPg = pcache1Alloc(pCache->szPage); 420 p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra); 421 if( !pPg || !p ){ 422 pcache1Free(pPg); 423 sqlite3_free(p); 424 pPg = 0; 425 } 426 #else 427 pPg = pcache1Alloc(pCache->szAlloc); 428 p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage]; 429 #endif 430 if( benignMalloc ){ sqlite3EndBenignMalloc(); } 431 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 432 pcache1EnterMutex(pCache->pGroup); 433 #endif 434 if( pPg==0 ) return 0; 435 p->page.pBuf = pPg; 436 p->page.pExtra = &p[1]; 437 p->isBulkLocal = 0; 438 p->isAnchor = 0; 439 } 440 if( pCache->bPurgeable ){ 441 pCache->pGroup->nCurrentPage++; 442 } 443 return p; 444 } 445 446 /* 447 ** Free a page object allocated by pcache1AllocPage(). 448 */ 449 static void pcache1FreePage(PgHdr1 *p){ 450 PCache1 *pCache; 451 assert( p!=0 ); 452 pCache = p->pCache; 453 assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) ); 454 if( p->isBulkLocal ){ 455 p->pNext = pCache->pFree; 456 pCache->pFree = p; 457 }else{ 458 pcache1Free(p->page.pBuf); 459 #ifdef SQLITE_PCACHE_SEPARATE_HEADER 460 sqlite3_free(p); 461 #endif 462 } 463 if( pCache->bPurgeable ){ 464 pCache->pGroup->nCurrentPage--; 465 } 466 } 467 468 /* 469 ** Malloc function used by SQLite to obtain space from the buffer configured 470 ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer 471 ** exists, this function falls back to sqlite3Malloc(). 472 */ 473 void *sqlite3PageMalloc(int sz){ 474 return pcache1Alloc(sz); 475 } 476 477 /* 478 ** Free an allocated buffer obtained from sqlite3PageMalloc(). 479 */ 480 void sqlite3PageFree(void *p){ 481 pcache1Free(p); 482 } 483 484 485 /* 486 ** Return true if it desirable to avoid allocating a new page cache 487 ** entry. 488 ** 489 ** If memory was allocated specifically to the page cache using 490 ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then 491 ** it is desirable to avoid allocating a new page cache entry because 492 ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient 493 ** for all page cache needs and we should not need to spill the 494 ** allocation onto the heap. 495 ** 496 ** Or, the heap is used for all page cache memory but the heap is 497 ** under memory pressure, then again it is desirable to avoid 498 ** allocating a new page cache entry in order to avoid stressing 499 ** the heap even further. 500 */ 501 static int pcache1UnderMemoryPressure(PCache1 *pCache){ 502 if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){ 503 return pcache1.bUnderPressure; 504 }else{ 505 return sqlite3HeapNearlyFull(); 506 } 507 } 508 509 /******************************************************************************/ 510 /******** General Implementation Functions ************************************/ 511 512 /* 513 ** This function is used to resize the hash table used by the cache passed 514 ** as the first argument. 515 ** 516 ** The PCache mutex must be held when this function is called. 517 */ 518 static void pcache1ResizeHash(PCache1 *p){ 519 PgHdr1 **apNew; 520 unsigned int nNew; 521 unsigned int i; 522 523 assert( sqlite3_mutex_held(p->pGroup->mutex) ); 524 525 nNew = p->nHash*2; 526 if( nNew<256 ){ 527 nNew = 256; 528 } 529 530 pcache1LeaveMutex(p->pGroup); 531 if( p->nHash ){ sqlite3BeginBenignMalloc(); } 532 apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew); 533 if( p->nHash ){ sqlite3EndBenignMalloc(); } 534 pcache1EnterMutex(p->pGroup); 535 if( apNew ){ 536 for(i=0; i<p->nHash; i++){ 537 PgHdr1 *pPage; 538 PgHdr1 *pNext = p->apHash[i]; 539 while( (pPage = pNext)!=0 ){ 540 unsigned int h = pPage->iKey % nNew; 541 pNext = pPage->pNext; 542 pPage->pNext = apNew[h]; 543 apNew[h] = pPage; 544 } 545 } 546 sqlite3_free(p->apHash); 547 p->apHash = apNew; 548 p->nHash = nNew; 549 } 550 } 551 552 /* 553 ** This function is used internally to remove the page pPage from the 554 ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup 555 ** LRU list, then this function is a no-op. 556 ** 557 ** The PGroup mutex must be held when this function is called. 558 */ 559 static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){ 560 PCache1 *pCache; 561 562 assert( pPage!=0 ); 563 assert( pPage->isPinned==0 ); 564 pCache = pPage->pCache; 565 assert( pPage->pLruNext ); 566 assert( pPage->pLruPrev ); 567 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 568 pPage->pLruPrev->pLruNext = pPage->pLruNext; 569 pPage->pLruNext->pLruPrev = pPage->pLruPrev; 570 pPage->pLruNext = 0; 571 pPage->pLruPrev = 0; 572 pPage->isPinned = 1; 573 assert( pPage->isAnchor==0 ); 574 assert( pCache->pGroup->lru.isAnchor==1 ); 575 pCache->nRecyclable--; 576 return pPage; 577 } 578 579 580 /* 581 ** Remove the page supplied as an argument from the hash table 582 ** (PCache1.apHash structure) that it is currently stored in. 583 ** Also free the page if freePage is true. 584 ** 585 ** The PGroup mutex must be held when this function is called. 586 */ 587 static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){ 588 unsigned int h; 589 PCache1 *pCache = pPage->pCache; 590 PgHdr1 **pp; 591 592 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 593 h = pPage->iKey % pCache->nHash; 594 for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext); 595 *pp = (*pp)->pNext; 596 597 pCache->nPage--; 598 if( freeFlag ) pcache1FreePage(pPage); 599 } 600 601 /* 602 ** If there are currently more than nMaxPage pages allocated, try 603 ** to recycle pages to reduce the number allocated to nMaxPage. 604 */ 605 static void pcache1EnforceMaxPage(PCache1 *pCache){ 606 PGroup *pGroup = pCache->pGroup; 607 PgHdr1 *p; 608 assert( sqlite3_mutex_held(pGroup->mutex) ); 609 while( pGroup->nCurrentPage>pGroup->nMaxPage 610 && (p=pGroup->lru.pLruPrev)->isAnchor==0 611 ){ 612 assert( p->pCache->pGroup==pGroup ); 613 assert( p->isPinned==0 ); 614 pcache1PinPage(p); 615 pcache1RemoveFromHash(p, 1); 616 } 617 if( pCache->nPage==0 && pCache->pBulk ){ 618 sqlite3_free(pCache->pBulk); 619 pCache->pBulk = pCache->pFree = 0; 620 } 621 } 622 623 /* 624 ** Discard all pages from cache pCache with a page number (key value) 625 ** greater than or equal to iLimit. Any pinned pages that meet this 626 ** criteria are unpinned before they are discarded. 627 ** 628 ** The PCache mutex must be held when this function is called. 629 */ 630 static void pcache1TruncateUnsafe( 631 PCache1 *pCache, /* The cache to truncate */ 632 unsigned int iLimit /* Drop pages with this pgno or larger */ 633 ){ 634 TESTONLY( int nPage = 0; ) /* To assert pCache->nPage is correct */ 635 unsigned int h, iStop; 636 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 637 assert( pCache->iMaxKey >= iLimit ); 638 assert( pCache->nHash > 0 ); 639 if( pCache->iMaxKey - iLimit < pCache->nHash ){ 640 /* If we are just shaving the last few pages off the end of the 641 ** cache, then there is no point in scanning the entire hash table. 642 ** Only scan those hash slots that might contain pages that need to 643 ** be removed. */ 644 h = iLimit % pCache->nHash; 645 iStop = pCache->iMaxKey % pCache->nHash; 646 TESTONLY( nPage = -10; ) /* Disable the pCache->nPage validity check */ 647 }else{ 648 /* This is the general case where many pages are being removed. 649 ** It is necessary to scan the entire hash table */ 650 h = pCache->nHash/2; 651 iStop = h - 1; 652 } 653 for(;;){ 654 PgHdr1 **pp; 655 PgHdr1 *pPage; 656 assert( h<pCache->nHash ); 657 pp = &pCache->apHash[h]; 658 while( (pPage = *pp)!=0 ){ 659 if( pPage->iKey>=iLimit ){ 660 pCache->nPage--; 661 *pp = pPage->pNext; 662 if( !pPage->isPinned ) pcache1PinPage(pPage); 663 pcache1FreePage(pPage); 664 }else{ 665 pp = &pPage->pNext; 666 TESTONLY( if( nPage>=0 ) nPage++; ) 667 } 668 } 669 if( h==iStop ) break; 670 h = (h+1) % pCache->nHash; 671 } 672 assert( nPage<0 || pCache->nPage==(unsigned)nPage ); 673 } 674 675 /******************************************************************************/ 676 /******** sqlite3_pcache Methods **********************************************/ 677 678 /* 679 ** Implementation of the sqlite3_pcache.xInit method. 680 */ 681 static int pcache1Init(void *NotUsed){ 682 UNUSED_PARAMETER(NotUsed); 683 assert( pcache1.isInit==0 ); 684 memset(&pcache1, 0, sizeof(pcache1)); 685 686 687 /* 688 ** The pcache1.separateCache variable is true if each PCache has its own 689 ** private PGroup (mode-1). pcache1.separateCache is false if the single 690 ** PGroup in pcache1.grp is used for all page caches (mode-2). 691 ** 692 ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT 693 ** 694 ** * Use a unified cache in single-threaded applications that have 695 ** configured a start-time buffer for use as page-cache memory using 696 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, pBuf, sz, N) with non-NULL 697 ** pBuf argument. 698 ** 699 ** * Otherwise use separate caches (mode-1) 700 */ 701 #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) 702 pcache1.separateCache = 0; 703 #elif SQLITE_THREADSAFE 704 pcache1.separateCache = sqlite3GlobalConfig.pPage==0 705 || sqlite3GlobalConfig.bCoreMutex>0; 706 #else 707 pcache1.separateCache = sqlite3GlobalConfig.pPage==0; 708 #endif 709 710 #if SQLITE_THREADSAFE 711 if( sqlite3GlobalConfig.bCoreMutex ){ 712 pcache1.grp.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU); 713 pcache1.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PMEM); 714 } 715 #endif 716 if( pcache1.separateCache 717 && sqlite3GlobalConfig.nPage!=0 718 && sqlite3GlobalConfig.pPage==0 719 ){ 720 pcache1.nInitPage = sqlite3GlobalConfig.nPage; 721 }else{ 722 pcache1.nInitPage = 0; 723 } 724 pcache1.grp.mxPinned = 10; 725 pcache1.isInit = 1; 726 return SQLITE_OK; 727 } 728 729 /* 730 ** Implementation of the sqlite3_pcache.xShutdown method. 731 ** Note that the static mutex allocated in xInit does 732 ** not need to be freed. 733 */ 734 static void pcache1Shutdown(void *NotUsed){ 735 UNUSED_PARAMETER(NotUsed); 736 assert( pcache1.isInit!=0 ); 737 memset(&pcache1, 0, sizeof(pcache1)); 738 } 739 740 /* forward declaration */ 741 static void pcache1Destroy(sqlite3_pcache *p); 742 743 /* 744 ** Implementation of the sqlite3_pcache.xCreate method. 745 ** 746 ** Allocate a new cache. 747 */ 748 static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){ 749 PCache1 *pCache; /* The newly created page cache */ 750 PGroup *pGroup; /* The group the new page cache will belong to */ 751 int sz; /* Bytes of memory required to allocate the new cache */ 752 753 assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 ); 754 assert( szExtra < 300 ); 755 756 sz = sizeof(PCache1) + sizeof(PGroup)*pcache1.separateCache; 757 pCache = (PCache1 *)sqlite3MallocZero(sz); 758 if( pCache ){ 759 if( pcache1.separateCache ){ 760 pGroup = (PGroup*)&pCache[1]; 761 pGroup->mxPinned = 10; 762 }else{ 763 pGroup = &pcache1.grp; 764 } 765 if( pGroup->lru.isAnchor==0 ){ 766 pGroup->lru.isAnchor = 1; 767 pGroup->lru.pLruPrev = pGroup->lru.pLruNext = &pGroup->lru; 768 } 769 pCache->pGroup = pGroup; 770 pCache->szPage = szPage; 771 pCache->szExtra = szExtra; 772 pCache->szAlloc = szPage + szExtra + ROUND8(sizeof(PgHdr1)); 773 pCache->bPurgeable = (bPurgeable ? 1 : 0); 774 pcache1EnterMutex(pGroup); 775 pcache1ResizeHash(pCache); 776 if( bPurgeable ){ 777 pCache->nMin = 10; 778 pGroup->nMinPage += pCache->nMin; 779 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 780 } 781 pcache1LeaveMutex(pGroup); 782 if( pCache->nHash==0 ){ 783 pcache1Destroy((sqlite3_pcache*)pCache); 784 pCache = 0; 785 } 786 } 787 return (sqlite3_pcache *)pCache; 788 } 789 790 /* 791 ** Implementation of the sqlite3_pcache.xCachesize method. 792 ** 793 ** Configure the cache_size limit for a cache. 794 */ 795 static void pcache1Cachesize(sqlite3_pcache *p, int nMax){ 796 PCache1 *pCache = (PCache1 *)p; 797 if( pCache->bPurgeable ){ 798 PGroup *pGroup = pCache->pGroup; 799 pcache1EnterMutex(pGroup); 800 pGroup->nMaxPage += (nMax - pCache->nMax); 801 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 802 pCache->nMax = nMax; 803 pCache->n90pct = pCache->nMax*9/10; 804 pcache1EnforceMaxPage(pCache); 805 pcache1LeaveMutex(pGroup); 806 } 807 } 808 809 /* 810 ** Implementation of the sqlite3_pcache.xShrink method. 811 ** 812 ** Free up as much memory as possible. 813 */ 814 static void pcache1Shrink(sqlite3_pcache *p){ 815 PCache1 *pCache = (PCache1*)p; 816 if( pCache->bPurgeable ){ 817 PGroup *pGroup = pCache->pGroup; 818 int savedMaxPage; 819 pcache1EnterMutex(pGroup); 820 savedMaxPage = pGroup->nMaxPage; 821 pGroup->nMaxPage = 0; 822 pcache1EnforceMaxPage(pCache); 823 pGroup->nMaxPage = savedMaxPage; 824 pcache1LeaveMutex(pGroup); 825 } 826 } 827 828 /* 829 ** Implementation of the sqlite3_pcache.xPagecount method. 830 */ 831 static int pcache1Pagecount(sqlite3_pcache *p){ 832 int n; 833 PCache1 *pCache = (PCache1*)p; 834 pcache1EnterMutex(pCache->pGroup); 835 n = pCache->nPage; 836 pcache1LeaveMutex(pCache->pGroup); 837 return n; 838 } 839 840 841 /* 842 ** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described 843 ** in the header of the pcache1Fetch() procedure. 844 ** 845 ** This steps are broken out into a separate procedure because they are 846 ** usually not needed, and by avoiding the stack initialization required 847 ** for these steps, the main pcache1Fetch() procedure can run faster. 848 */ 849 static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2( 850 PCache1 *pCache, 851 unsigned int iKey, 852 int createFlag 853 ){ 854 unsigned int nPinned; 855 PGroup *pGroup = pCache->pGroup; 856 PgHdr1 *pPage = 0; 857 858 /* Step 3: Abort if createFlag is 1 but the cache is nearly full */ 859 assert( pCache->nPage >= pCache->nRecyclable ); 860 nPinned = pCache->nPage - pCache->nRecyclable; 861 assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage ); 862 assert( pCache->n90pct == pCache->nMax*9/10 ); 863 if( createFlag==1 && ( 864 nPinned>=pGroup->mxPinned 865 || nPinned>=pCache->n90pct 866 || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned) 867 )){ 868 return 0; 869 } 870 871 if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache); 872 assert( pCache->nHash>0 && pCache->apHash ); 873 874 /* Step 4. Try to recycle a page. */ 875 if( pCache->bPurgeable 876 && !pGroup->lru.pLruPrev->isAnchor 877 && ((pCache->nPage+1>=pCache->nMax) || pcache1UnderMemoryPressure(pCache)) 878 ){ 879 PCache1 *pOther; 880 pPage = pGroup->lru.pLruPrev; 881 assert( pPage->isPinned==0 ); 882 pcache1RemoveFromHash(pPage, 0); 883 pcache1PinPage(pPage); 884 pOther = pPage->pCache; 885 if( pOther->szAlloc != pCache->szAlloc ){ 886 pcache1FreePage(pPage); 887 pPage = 0; 888 }else{ 889 pGroup->nCurrentPage -= (pOther->bPurgeable - pCache->bPurgeable); 890 } 891 } 892 893 /* Step 5. If a usable page buffer has still not been found, 894 ** attempt to allocate a new one. 895 */ 896 if( !pPage ){ 897 pPage = pcache1AllocPage(pCache, createFlag==1); 898 } 899 900 if( pPage ){ 901 unsigned int h = iKey % pCache->nHash; 902 pCache->nPage++; 903 pPage->iKey = iKey; 904 pPage->pNext = pCache->apHash[h]; 905 pPage->pCache = pCache; 906 pPage->pLruPrev = 0; 907 pPage->pLruNext = 0; 908 pPage->isPinned = 1; 909 *(void **)pPage->page.pExtra = 0; 910 pCache->apHash[h] = pPage; 911 if( iKey>pCache->iMaxKey ){ 912 pCache->iMaxKey = iKey; 913 } 914 } 915 return pPage; 916 } 917 918 /* 919 ** Implementation of the sqlite3_pcache.xFetch method. 920 ** 921 ** Fetch a page by key value. 922 ** 923 ** Whether or not a new page may be allocated by this function depends on 924 ** the value of the createFlag argument. 0 means do not allocate a new 925 ** page. 1 means allocate a new page if space is easily available. 2 926 ** means to try really hard to allocate a new page. 927 ** 928 ** For a non-purgeable cache (a cache used as the storage for an in-memory 929 ** database) there is really no difference between createFlag 1 and 2. So 930 ** the calling function (pcache.c) will never have a createFlag of 1 on 931 ** a non-purgeable cache. 932 ** 933 ** There are three different approaches to obtaining space for a page, 934 ** depending on the value of parameter createFlag (which may be 0, 1 or 2). 935 ** 936 ** 1. Regardless of the value of createFlag, the cache is searched for a 937 ** copy of the requested page. If one is found, it is returned. 938 ** 939 ** 2. If createFlag==0 and the page is not already in the cache, NULL is 940 ** returned. 941 ** 942 ** 3. If createFlag is 1, and the page is not already in the cache, then 943 ** return NULL (do not allocate a new page) if any of the following 944 ** conditions are true: 945 ** 946 ** (a) the number of pages pinned by the cache is greater than 947 ** PCache1.nMax, or 948 ** 949 ** (b) the number of pages pinned by the cache is greater than 950 ** the sum of nMax for all purgeable caches, less the sum of 951 ** nMin for all other purgeable caches, or 952 ** 953 ** 4. If none of the first three conditions apply and the cache is marked 954 ** as purgeable, and if one of the following is true: 955 ** 956 ** (a) The number of pages allocated for the cache is already 957 ** PCache1.nMax, or 958 ** 959 ** (b) The number of pages allocated for all purgeable caches is 960 ** already equal to or greater than the sum of nMax for all 961 ** purgeable caches, 962 ** 963 ** (c) The system is under memory pressure and wants to avoid 964 ** unnecessary pages cache entry allocations 965 ** 966 ** then attempt to recycle a page from the LRU list. If it is the right 967 ** size, return the recycled buffer. Otherwise, free the buffer and 968 ** proceed to step 5. 969 ** 970 ** 5. Otherwise, allocate and return a new page buffer. 971 ** 972 ** There are two versions of this routine. pcache1FetchWithMutex() is 973 ** the general case. pcache1FetchNoMutex() is a faster implementation for 974 ** the common case where pGroup->mutex is NULL. The pcache1Fetch() wrapper 975 ** invokes the appropriate routine. 976 */ 977 static PgHdr1 *pcache1FetchNoMutex( 978 sqlite3_pcache *p, 979 unsigned int iKey, 980 int createFlag 981 ){ 982 PCache1 *pCache = (PCache1 *)p; 983 PgHdr1 *pPage = 0; 984 985 /* Step 1: Search the hash table for an existing entry. */ 986 pPage = pCache->apHash[iKey % pCache->nHash]; 987 while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; } 988 989 /* Step 2: If the page was found in the hash table, then return it. 990 ** If the page was not in the hash table and createFlag is 0, abort. 991 ** Otherwise (page not in hash and createFlag!=0) continue with 992 ** subsequent steps to try to create the page. */ 993 if( pPage ){ 994 if( !pPage->isPinned ){ 995 return pcache1PinPage(pPage); 996 }else{ 997 return pPage; 998 } 999 }else if( createFlag ){ 1000 /* Steps 3, 4, and 5 implemented by this subroutine */ 1001 return pcache1FetchStage2(pCache, iKey, createFlag); 1002 }else{ 1003 return 0; 1004 } 1005 } 1006 #if PCACHE1_MIGHT_USE_GROUP_MUTEX 1007 static PgHdr1 *pcache1FetchWithMutex( 1008 sqlite3_pcache *p, 1009 unsigned int iKey, 1010 int createFlag 1011 ){ 1012 PCache1 *pCache = (PCache1 *)p; 1013 PgHdr1 *pPage; 1014 1015 pcache1EnterMutex(pCache->pGroup); 1016 pPage = pcache1FetchNoMutex(p, iKey, createFlag); 1017 assert( pPage==0 || pCache->iMaxKey>=iKey ); 1018 pcache1LeaveMutex(pCache->pGroup); 1019 return pPage; 1020 } 1021 #endif 1022 static sqlite3_pcache_page *pcache1Fetch( 1023 sqlite3_pcache *p, 1024 unsigned int iKey, 1025 int createFlag 1026 ){ 1027 #if PCACHE1_MIGHT_USE_GROUP_MUTEX || defined(SQLITE_DEBUG) 1028 PCache1 *pCache = (PCache1 *)p; 1029 #endif 1030 1031 assert( offsetof(PgHdr1,page)==0 ); 1032 assert( pCache->bPurgeable || createFlag!=1 ); 1033 assert( pCache->bPurgeable || pCache->nMin==0 ); 1034 assert( pCache->bPurgeable==0 || pCache->nMin==10 ); 1035 assert( pCache->nMin==0 || pCache->bPurgeable ); 1036 assert( pCache->nHash>0 ); 1037 #if PCACHE1_MIGHT_USE_GROUP_MUTEX 1038 if( pCache->pGroup->mutex ){ 1039 return (sqlite3_pcache_page*)pcache1FetchWithMutex(p, iKey, createFlag); 1040 }else 1041 #endif 1042 { 1043 return (sqlite3_pcache_page*)pcache1FetchNoMutex(p, iKey, createFlag); 1044 } 1045 } 1046 1047 1048 /* 1049 ** Implementation of the sqlite3_pcache.xUnpin method. 1050 ** 1051 ** Mark a page as unpinned (eligible for asynchronous recycling). 1052 */ 1053 static void pcache1Unpin( 1054 sqlite3_pcache *p, 1055 sqlite3_pcache_page *pPg, 1056 int reuseUnlikely 1057 ){ 1058 PCache1 *pCache = (PCache1 *)p; 1059 PgHdr1 *pPage = (PgHdr1 *)pPg; 1060 PGroup *pGroup = pCache->pGroup; 1061 1062 assert( pPage->pCache==pCache ); 1063 pcache1EnterMutex(pGroup); 1064 1065 /* It is an error to call this function if the page is already 1066 ** part of the PGroup LRU list. 1067 */ 1068 assert( pPage->pLruPrev==0 && pPage->pLruNext==0 ); 1069 assert( pPage->isPinned==1 ); 1070 1071 if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){ 1072 pcache1RemoveFromHash(pPage, 1); 1073 }else{ 1074 /* Add the page to the PGroup LRU list. */ 1075 PgHdr1 **ppFirst = &pGroup->lru.pLruNext; 1076 pPage->pLruPrev = &pGroup->lru; 1077 (pPage->pLruNext = *ppFirst)->pLruPrev = pPage; 1078 *ppFirst = pPage; 1079 pCache->nRecyclable++; 1080 pPage->isPinned = 0; 1081 } 1082 1083 pcache1LeaveMutex(pCache->pGroup); 1084 } 1085 1086 /* 1087 ** Implementation of the sqlite3_pcache.xRekey method. 1088 */ 1089 static void pcache1Rekey( 1090 sqlite3_pcache *p, 1091 sqlite3_pcache_page *pPg, 1092 unsigned int iOld, 1093 unsigned int iNew 1094 ){ 1095 PCache1 *pCache = (PCache1 *)p; 1096 PgHdr1 *pPage = (PgHdr1 *)pPg; 1097 PgHdr1 **pp; 1098 unsigned int h; 1099 assert( pPage->iKey==iOld ); 1100 assert( pPage->pCache==pCache ); 1101 1102 pcache1EnterMutex(pCache->pGroup); 1103 1104 h = iOld%pCache->nHash; 1105 pp = &pCache->apHash[h]; 1106 while( (*pp)!=pPage ){ 1107 pp = &(*pp)->pNext; 1108 } 1109 *pp = pPage->pNext; 1110 1111 h = iNew%pCache->nHash; 1112 pPage->iKey = iNew; 1113 pPage->pNext = pCache->apHash[h]; 1114 pCache->apHash[h] = pPage; 1115 if( iNew>pCache->iMaxKey ){ 1116 pCache->iMaxKey = iNew; 1117 } 1118 1119 pcache1LeaveMutex(pCache->pGroup); 1120 } 1121 1122 /* 1123 ** Implementation of the sqlite3_pcache.xTruncate method. 1124 ** 1125 ** Discard all unpinned pages in the cache with a page number equal to 1126 ** or greater than parameter iLimit. Any pinned pages with a page number 1127 ** equal to or greater than iLimit are implicitly unpinned. 1128 */ 1129 static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){ 1130 PCache1 *pCache = (PCache1 *)p; 1131 pcache1EnterMutex(pCache->pGroup); 1132 if( iLimit<=pCache->iMaxKey ){ 1133 pcache1TruncateUnsafe(pCache, iLimit); 1134 pCache->iMaxKey = iLimit-1; 1135 } 1136 pcache1LeaveMutex(pCache->pGroup); 1137 } 1138 1139 /* 1140 ** Implementation of the sqlite3_pcache.xDestroy method. 1141 ** 1142 ** Destroy a cache allocated using pcache1Create(). 1143 */ 1144 static void pcache1Destroy(sqlite3_pcache *p){ 1145 PCache1 *pCache = (PCache1 *)p; 1146 PGroup *pGroup = pCache->pGroup; 1147 assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) ); 1148 pcache1EnterMutex(pGroup); 1149 if( pCache->nPage ) pcache1TruncateUnsafe(pCache, 0); 1150 assert( pGroup->nMaxPage >= pCache->nMax ); 1151 pGroup->nMaxPage -= pCache->nMax; 1152 assert( pGroup->nMinPage >= pCache->nMin ); 1153 pGroup->nMinPage -= pCache->nMin; 1154 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 1155 pcache1EnforceMaxPage(pCache); 1156 pcache1LeaveMutex(pGroup); 1157 sqlite3_free(pCache->pBulk); 1158 sqlite3_free(pCache->apHash); 1159 sqlite3_free(pCache); 1160 } 1161 1162 /* 1163 ** This function is called during initialization (sqlite3_initialize()) to 1164 ** install the default pluggable cache module, assuming the user has not 1165 ** already provided an alternative. 1166 */ 1167 void sqlite3PCacheSetDefault(void){ 1168 static const sqlite3_pcache_methods2 defaultMethods = { 1169 1, /* iVersion */ 1170 0, /* pArg */ 1171 pcache1Init, /* xInit */ 1172 pcache1Shutdown, /* xShutdown */ 1173 pcache1Create, /* xCreate */ 1174 pcache1Cachesize, /* xCachesize */ 1175 pcache1Pagecount, /* xPagecount */ 1176 pcache1Fetch, /* xFetch */ 1177 pcache1Unpin, /* xUnpin */ 1178 pcache1Rekey, /* xRekey */ 1179 pcache1Truncate, /* xTruncate */ 1180 pcache1Destroy, /* xDestroy */ 1181 pcache1Shrink /* xShrink */ 1182 }; 1183 sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods); 1184 } 1185 1186 /* 1187 ** Return the size of the header on each page of this PCACHE implementation. 1188 */ 1189 int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); } 1190 1191 /* 1192 ** Return the global mutex used by this PCACHE implementation. The 1193 ** sqlite3_status() routine needs access to this mutex. 1194 */ 1195 sqlite3_mutex *sqlite3Pcache1Mutex(void){ 1196 return pcache1.mutex; 1197 } 1198 1199 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 1200 /* 1201 ** This function is called to free superfluous dynamically allocated memory 1202 ** held by the pager system. Memory in use by any SQLite pager allocated 1203 ** by the current thread may be sqlite3_free()ed. 1204 ** 1205 ** nReq is the number of bytes of memory required. Once this much has 1206 ** been released, the function returns. The return value is the total number 1207 ** of bytes of memory released. 1208 */ 1209 int sqlite3PcacheReleaseMemory(int nReq){ 1210 int nFree = 0; 1211 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); 1212 assert( sqlite3_mutex_notheld(pcache1.mutex) ); 1213 if( sqlite3GlobalConfig.pPage==0 ){ 1214 PgHdr1 *p; 1215 pcache1EnterMutex(&pcache1.grp); 1216 while( (nReq<0 || nFree<nReq) 1217 && (p=pcache1.grp.lru.pLruPrev)!=0 1218 && p->isAnchor==0 1219 ){ 1220 nFree += pcache1MemSize(p->page.pBuf); 1221 #ifdef SQLITE_PCACHE_SEPARATE_HEADER 1222 nFree += sqlite3MemSize(p); 1223 #endif 1224 assert( p->isPinned==0 ); 1225 pcache1PinPage(p); 1226 pcache1RemoveFromHash(p, 1); 1227 } 1228 pcache1LeaveMutex(&pcache1.grp); 1229 } 1230 return nFree; 1231 } 1232 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ 1233 1234 #ifdef SQLITE_TEST 1235 /* 1236 ** This function is used by test procedures to inspect the internal state 1237 ** of the global cache. 1238 */ 1239 void sqlite3PcacheStats( 1240 int *pnCurrent, /* OUT: Total number of pages cached */ 1241 int *pnMax, /* OUT: Global maximum cache size */ 1242 int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */ 1243 int *pnRecyclable /* OUT: Total number of pages available for recycling */ 1244 ){ 1245 PgHdr1 *p; 1246 int nRecyclable = 0; 1247 for(p=pcache1.grp.lru.pLruNext; p && !p->isAnchor; p=p->pLruNext){ 1248 assert( p->isPinned==0 ); 1249 nRecyclable++; 1250 } 1251 *pnCurrent = pcache1.grp.nCurrentPage; 1252 *pnMax = (int)pcache1.grp.nMaxPage; 1253 *pnMin = (int)pcache1.grp.nMinPage; 1254 *pnRecyclable = nRecyclable; 1255 } 1256 #endif 1257