xref: /sqlite-3.40.0/src/pcache1.c (revision 4eb8d7fa)
1 /*
2 ** 2008 November 05
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file implements the default page cache implementation (the
14 ** sqlite3_pcache interface). It also contains part of the implementation
15 ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features.
16 ** If the default page cache implementation is overridden, then neither of
17 ** these two features are available.
18 **
19 ** A Page cache line looks like this:
20 **
21 **  -------------------------------------------------------------
22 **  |  database page content   |  PgHdr1  |  MemPage  |  PgHdr  |
23 **  -------------------------------------------------------------
24 **
25 ** The database page content is up front (so that buffer overreads tend to
26 ** flow harmlessly into the PgHdr1, MemPage, and PgHdr extensions).   MemPage
27 ** is the extension added by the btree.c module containing information such
28 ** as the database page number and how that database page is used.  PgHdr
29 ** is added by the pcache.c layer and contains information used to keep track
30 ** of which pages are "dirty".  PgHdr1 is an extension added by this
31 ** module (pcache1.c).  The PgHdr1 header is a subclass of sqlite3_pcache_page.
32 ** PgHdr1 contains information needed to look up a page by its page number.
33 ** The superclass sqlite3_pcache_page.pBuf points to the start of the
34 ** database page content and sqlite3_pcache_page.pExtra points to PgHdr.
35 **
36 ** The size of the extension (MemPage+PgHdr+PgHdr1) can be determined at
37 ** runtime using sqlite3_config(SQLITE_CONFIG_PCACHE_HDRSZ, &size).  The
38 ** sizes of the extensions sum to 272 bytes on x64 for 3.8.10, but this
39 ** size can vary according to architecture, compile-time options, and
40 ** SQLite library version number.
41 **
42 ** If SQLITE_PCACHE_SEPARATE_HEADER is defined, then the extension is obtained
43 ** using a separate memory allocation from the database page content.  This
44 ** seeks to overcome the "clownshoe" problem (also called "internal
45 ** fragmentation" in academic literature) of allocating a few bytes more
46 ** than a power of two with the memory allocator rounding up to the next
47 ** power of two, and leaving the rounded-up space unused.
48 **
49 ** This module tracks pointers to PgHdr1 objects.  Only pcache.c communicates
50 ** with this module.  Information is passed back and forth as PgHdr1 pointers.
51 **
52 ** The pcache.c and pager.c modules deal pointers to PgHdr objects.
53 ** The btree.c module deals with pointers to MemPage objects.
54 **
55 ** SOURCE OF PAGE CACHE MEMORY:
56 **
57 ** Memory for a page might come from any of three sources:
58 **
59 **    (1)  The general-purpose memory allocator - sqlite3Malloc()
60 **    (2)  Global page-cache memory provided using sqlite3_config() with
61 **         SQLITE_CONFIG_PAGECACHE.
62 **    (3)  PCache-local bulk allocation.
63 **
64 ** The third case is a chunk of heap memory (defaulting to 100 pages worth)
65 ** that is allocated when the page cache is created.  The size of the local
66 ** bulk allocation can be adjusted using
67 **
68 **     sqlite3_config(SQLITE_CONFIG_PAGECACHE, (void*)0, 0, N).
69 **
70 ** If N is positive, then N pages worth of memory are allocated using a single
71 ** sqlite3Malloc() call and that memory is used for the first N pages allocated.
72 ** Or if N is negative, then -1024*N bytes of memory are allocated and used
73 ** for as many pages as can be accomodated.
74 **
75 ** Only one of (2) or (3) can be used.  Once the memory available to (2) or
76 ** (3) is exhausted, subsequent allocations fail over to the general-purpose
77 ** memory allocator (1).
78 **
79 ** Earlier versions of SQLite used only methods (1) and (2).  But experiments
80 ** show that method (3) with N==100 provides about a 5% performance boost for
81 ** common workloads.
82 */
83 #include "sqliteInt.h"
84 
85 typedef struct PCache1 PCache1;
86 typedef struct PgHdr1 PgHdr1;
87 typedef struct PgFreeslot PgFreeslot;
88 typedef struct PGroup PGroup;
89 
90 /*
91 ** Each cache entry is represented by an instance of the following
92 ** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of
93 ** PgHdr1.pCache->szPage bytes is allocated directly before this structure
94 ** in memory.
95 */
96 struct PgHdr1 {
97   sqlite3_pcache_page page;      /* Base class. Must be first. pBuf & pExtra */
98   unsigned int iKey;             /* Key value (page number) */
99   u8 isPinned;                   /* Page in use, not on the LRU list */
100   u8 isBulkLocal;                /* This page from bulk local storage */
101   u8 isAnchor;                   /* This is the PGroup.lru element */
102   PgHdr1 *pNext;                 /* Next in hash table chain */
103   PCache1 *pCache;               /* Cache that currently owns this page */
104   PgHdr1 *pLruNext;              /* Next in LRU list of unpinned pages */
105   PgHdr1 *pLruPrev;              /* Previous in LRU list of unpinned pages */
106 };
107 
108 /* Each page cache (or PCache) belongs to a PGroup.  A PGroup is a set
109 ** of one or more PCaches that are able to recycle each other's unpinned
110 ** pages when they are under memory pressure.  A PGroup is an instance of
111 ** the following object.
112 **
113 ** This page cache implementation works in one of two modes:
114 **
115 **   (1)  Every PCache is the sole member of its own PGroup.  There is
116 **        one PGroup per PCache.
117 **
118 **   (2)  There is a single global PGroup that all PCaches are a member
119 **        of.
120 **
121 ** Mode 1 uses more memory (since PCache instances are not able to rob
122 ** unused pages from other PCaches) but it also operates without a mutex,
123 ** and is therefore often faster.  Mode 2 requires a mutex in order to be
124 ** threadsafe, but recycles pages more efficiently.
125 **
126 ** For mode (1), PGroup.mutex is NULL.  For mode (2) there is only a single
127 ** PGroup which is the pcache1.grp global variable and its mutex is
128 ** SQLITE_MUTEX_STATIC_LRU.
129 */
130 struct PGroup {
131   sqlite3_mutex *mutex;          /* MUTEX_STATIC_LRU or NULL */
132   unsigned int nMaxPage;         /* Sum of nMax for purgeable caches */
133   unsigned int nMinPage;         /* Sum of nMin for purgeable caches */
134   unsigned int mxPinned;         /* nMaxpage + 10 - nMinPage */
135   unsigned int nCurrentPage;     /* Number of purgeable pages allocated */
136   PgHdr1 lru;                    /* The beginning and end of the LRU list */
137 };
138 
139 /* Each page cache is an instance of the following object.  Every
140 ** open database file (including each in-memory database and each
141 ** temporary or transient database) has a single page cache which
142 ** is an instance of this object.
143 **
144 ** Pointers to structures of this type are cast and returned as
145 ** opaque sqlite3_pcache* handles.
146 */
147 struct PCache1 {
148   /* Cache configuration parameters. Page size (szPage) and the purgeable
149   ** flag (bPurgeable) are set when the cache is created. nMax may be
150   ** modified at any time by a call to the pcache1Cachesize() method.
151   ** The PGroup mutex must be held when accessing nMax.
152   */
153   PGroup *pGroup;                     /* PGroup this cache belongs to */
154   int szPage;                         /* Size of database content section */
155   int szExtra;                        /* sizeof(MemPage)+sizeof(PgHdr) */
156   int szAlloc;                        /* Total size of one pcache line */
157   int bPurgeable;                     /* True if cache is purgeable */
158   unsigned int nMin;                  /* Minimum number of pages reserved */
159   unsigned int nMax;                  /* Configured "cache_size" value */
160   unsigned int n90pct;                /* nMax*9/10 */
161   unsigned int iMaxKey;               /* Largest key seen since xTruncate() */
162 
163   /* Hash table of all pages. The following variables may only be accessed
164   ** when the accessor is holding the PGroup mutex.
165   */
166   unsigned int nRecyclable;           /* Number of pages in the LRU list */
167   unsigned int nPage;                 /* Total number of pages in apHash */
168   unsigned int nHash;                 /* Number of slots in apHash[] */
169   PgHdr1 **apHash;                    /* Hash table for fast lookup by key */
170   PgHdr1 *pFree;                      /* List of unused pcache-local pages */
171   void *pBulk;                        /* Bulk memory used by pcache-local */
172 };
173 
174 /*
175 ** Free slots in the allocator used to divide up the global page cache
176 ** buffer provided using the SQLITE_CONFIG_PAGECACHE mechanism.
177 */
178 struct PgFreeslot {
179   PgFreeslot *pNext;  /* Next free slot */
180 };
181 
182 /*
183 ** Global data used by this cache.
184 */
185 static SQLITE_WSD struct PCacheGlobal {
186   PGroup grp;                    /* The global PGroup for mode (2) */
187 
188   /* Variables related to SQLITE_CONFIG_PAGECACHE settings.  The
189   ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all
190   ** fixed at sqlite3_initialize() time and do not require mutex protection.
191   ** The nFreeSlot and pFree values do require mutex protection.
192   */
193   int isInit;                    /* True if initialized */
194   int separateCache;             /* Use a new PGroup for each PCache */
195   int nInitPage;                 /* Initial bulk allocation size */
196   int szSlot;                    /* Size of each free slot */
197   int nSlot;                     /* The number of pcache slots */
198   int nReserve;                  /* Try to keep nFreeSlot above this */
199   void *pStart, *pEnd;           /* Bounds of global page cache memory */
200   /* Above requires no mutex.  Use mutex below for variable that follow. */
201   sqlite3_mutex *mutex;          /* Mutex for accessing the following: */
202   PgFreeslot *pFree;             /* Free page blocks */
203   int nFreeSlot;                 /* Number of unused pcache slots */
204   /* The following value requires a mutex to change.  We skip the mutex on
205   ** reading because (1) most platforms read a 32-bit integer atomically and
206   ** (2) even if an incorrect value is read, no great harm is done since this
207   ** is really just an optimization. */
208   int bUnderPressure;            /* True if low on PAGECACHE memory */
209 } pcache1_g;
210 
211 /*
212 ** All code in this file should access the global structure above via the
213 ** alias "pcache1". This ensures that the WSD emulation is used when
214 ** compiling for systems that do not support real WSD.
215 */
216 #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g))
217 
218 /*
219 ** Macros to enter and leave the PCache LRU mutex.
220 */
221 #if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0
222 # define pcache1EnterMutex(X)  assert((X)->mutex==0)
223 # define pcache1LeaveMutex(X)  assert((X)->mutex==0)
224 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 0
225 #else
226 # define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex)
227 # define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex)
228 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 1
229 #endif
230 
231 /******************************************************************************/
232 /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/
233 
234 
235 /*
236 ** This function is called during initialization if a static buffer is
237 ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
238 ** verb to sqlite3_config(). Parameter pBuf points to an allocation large
239 ** enough to contain 'n' buffers of 'sz' bytes each.
240 **
241 ** This routine is called from sqlite3_initialize() and so it is guaranteed
242 ** to be serialized already.  There is no need for further mutexing.
243 */
244 void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
245   if( pcache1.isInit ){
246     PgFreeslot *p;
247     if( pBuf==0 ) sz = n = 0;
248     sz = ROUNDDOWN8(sz);
249     pcache1.szSlot = sz;
250     pcache1.nSlot = pcache1.nFreeSlot = n;
251     pcache1.nReserve = n>90 ? 10 : (n/10 + 1);
252     pcache1.pStart = pBuf;
253     pcache1.pFree = 0;
254     pcache1.bUnderPressure = 0;
255     while( n-- ){
256       p = (PgFreeslot*)pBuf;
257       p->pNext = pcache1.pFree;
258       pcache1.pFree = p;
259       pBuf = (void*)&((char*)pBuf)[sz];
260     }
261     pcache1.pEnd = pBuf;
262   }
263 }
264 
265 /*
266 ** Try to initialize the pCache->pFree and pCache->pBulk fields.  Return
267 ** true if pCache->pFree ends up containing one or more free pages.
268 */
269 static int pcache1InitBulk(PCache1 *pCache){
270   i64 szBulk;
271   char *zBulk;
272   if( pcache1.nInitPage==0 ) return 0;
273   /* Do not bother with a bulk allocation if the cache size very small */
274   if( pCache->nMax<3 ) return 0;
275   sqlite3BeginBenignMalloc();
276   if( pcache1.nInitPage>0 ){
277     szBulk = pCache->szAlloc * (i64)pcache1.nInitPage;
278   }else{
279     szBulk = -1024 * (i64)pcache1.nInitPage;
280   }
281   if( szBulk > pCache->szAlloc*(i64)pCache->nMax ){
282     szBulk = pCache->szAlloc*(i64)pCache->nMax;
283   }
284   zBulk = pCache->pBulk = sqlite3Malloc( szBulk );
285   sqlite3EndBenignMalloc();
286   if( zBulk ){
287     int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc;
288     do{
289       PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage];
290       pX->page.pBuf = zBulk;
291       pX->page.pExtra = &pX[1];
292       pX->isBulkLocal = 1;
293       pX->isAnchor = 0;
294       pX->pNext = pCache->pFree;
295       pCache->pFree = pX;
296       zBulk += pCache->szAlloc;
297     }while( --nBulk );
298   }
299   return pCache->pFree!=0;
300 }
301 
302 /*
303 ** Malloc function used within this file to allocate space from the buffer
304 ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no
305 ** such buffer exists or there is no space left in it, this function falls
306 ** back to sqlite3Malloc().
307 **
308 ** Multiple threads can run this routine at the same time.  Global variables
309 ** in pcache1 need to be protected via mutex.
310 */
311 static void *pcache1Alloc(int nByte){
312   void *p = 0;
313   assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
314   if( nByte<=pcache1.szSlot ){
315     sqlite3_mutex_enter(pcache1.mutex);
316     p = (PgHdr1 *)pcache1.pFree;
317     if( p ){
318       pcache1.pFree = pcache1.pFree->pNext;
319       pcache1.nFreeSlot--;
320       pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
321       assert( pcache1.nFreeSlot>=0 );
322       sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
323       sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1);
324     }
325     sqlite3_mutex_leave(pcache1.mutex);
326   }
327   if( p==0 ){
328     /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool.  Get
329     ** it from sqlite3Malloc instead.
330     */
331     p = sqlite3Malloc(nByte);
332 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
333     if( p ){
334       int sz = sqlite3MallocSize(p);
335       sqlite3_mutex_enter(pcache1.mutex);
336       sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
337       sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
338       sqlite3_mutex_leave(pcache1.mutex);
339     }
340 #endif
341     sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
342   }
343   return p;
344 }
345 
346 /*
347 ** Free an allocated buffer obtained from pcache1Alloc().
348 */
349 static void pcache1Free(void *p){
350   if( p==0 ) return;
351   if( SQLITE_WITHIN(p, pcache1.pStart, pcache1.pEnd) ){
352     PgFreeslot *pSlot;
353     sqlite3_mutex_enter(pcache1.mutex);
354     sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1);
355     pSlot = (PgFreeslot*)p;
356     pSlot->pNext = pcache1.pFree;
357     pcache1.pFree = pSlot;
358     pcache1.nFreeSlot++;
359     pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
360     assert( pcache1.nFreeSlot<=pcache1.nSlot );
361     sqlite3_mutex_leave(pcache1.mutex);
362   }else{
363     assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
364     sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
365 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
366     {
367       int nFreed = 0;
368       nFreed = sqlite3MallocSize(p);
369       sqlite3_mutex_enter(pcache1.mutex);
370       sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_OVERFLOW, nFreed);
371       sqlite3_mutex_leave(pcache1.mutex);
372     }
373 #endif
374     sqlite3_free(p);
375   }
376 }
377 
378 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
379 /*
380 ** Return the size of a pcache allocation
381 */
382 static int pcache1MemSize(void *p){
383   if( p>=pcache1.pStart && p<pcache1.pEnd ){
384     return pcache1.szSlot;
385   }else{
386     int iSize;
387     assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
388     sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
389     iSize = sqlite3MallocSize(p);
390     sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
391     return iSize;
392   }
393 }
394 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
395 
396 /*
397 ** Allocate a new page object initially associated with cache pCache.
398 */
399 static PgHdr1 *pcache1AllocPage(PCache1 *pCache, int benignMalloc){
400   PgHdr1 *p = 0;
401   void *pPg;
402 
403   assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
404   if( pCache->pFree || (pCache->nPage==0 && pcache1InitBulk(pCache)) ){
405     p = pCache->pFree;
406     pCache->pFree = p->pNext;
407     p->pNext = 0;
408   }else{
409 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
410     /* The group mutex must be released before pcache1Alloc() is called. This
411     ** is because it might call sqlite3_release_memory(), which assumes that
412     ** this mutex is not held. */
413     assert( pcache1.separateCache==0 );
414     assert( pCache->pGroup==&pcache1.grp );
415     pcache1LeaveMutex(pCache->pGroup);
416 #endif
417     if( benignMalloc ){ sqlite3BeginBenignMalloc(); }
418 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
419     pPg = pcache1Alloc(pCache->szPage);
420     p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra);
421     if( !pPg || !p ){
422       pcache1Free(pPg);
423       sqlite3_free(p);
424       pPg = 0;
425     }
426 #else
427     pPg = pcache1Alloc(pCache->szAlloc);
428     p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage];
429 #endif
430     if( benignMalloc ){ sqlite3EndBenignMalloc(); }
431 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
432     pcache1EnterMutex(pCache->pGroup);
433 #endif
434     if( pPg==0 ) return 0;
435     p->page.pBuf = pPg;
436     p->page.pExtra = &p[1];
437     p->isBulkLocal = 0;
438     p->isAnchor = 0;
439   }
440   if( pCache->bPurgeable ){
441     pCache->pGroup->nCurrentPage++;
442   }
443   return p;
444 }
445 
446 /*
447 ** Free a page object allocated by pcache1AllocPage().
448 */
449 static void pcache1FreePage(PgHdr1 *p){
450   PCache1 *pCache;
451   assert( p!=0 );
452   pCache = p->pCache;
453   assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) );
454   if( p->isBulkLocal ){
455     p->pNext = pCache->pFree;
456     pCache->pFree = p;
457   }else{
458     pcache1Free(p->page.pBuf);
459 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
460     sqlite3_free(p);
461 #endif
462   }
463   if( pCache->bPurgeable ){
464     pCache->pGroup->nCurrentPage--;
465   }
466 }
467 
468 /*
469 ** Malloc function used by SQLite to obtain space from the buffer configured
470 ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer
471 ** exists, this function falls back to sqlite3Malloc().
472 */
473 void *sqlite3PageMalloc(int sz){
474   return pcache1Alloc(sz);
475 }
476 
477 /*
478 ** Free an allocated buffer obtained from sqlite3PageMalloc().
479 */
480 void sqlite3PageFree(void *p){
481   pcache1Free(p);
482 }
483 
484 
485 /*
486 ** Return true if it desirable to avoid allocating a new page cache
487 ** entry.
488 **
489 ** If memory was allocated specifically to the page cache using
490 ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then
491 ** it is desirable to avoid allocating a new page cache entry because
492 ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient
493 ** for all page cache needs and we should not need to spill the
494 ** allocation onto the heap.
495 **
496 ** Or, the heap is used for all page cache memory but the heap is
497 ** under memory pressure, then again it is desirable to avoid
498 ** allocating a new page cache entry in order to avoid stressing
499 ** the heap even further.
500 */
501 static int pcache1UnderMemoryPressure(PCache1 *pCache){
502   if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){
503     return pcache1.bUnderPressure;
504   }else{
505     return sqlite3HeapNearlyFull();
506   }
507 }
508 
509 /******************************************************************************/
510 /******** General Implementation Functions ************************************/
511 
512 /*
513 ** This function is used to resize the hash table used by the cache passed
514 ** as the first argument.
515 **
516 ** The PCache mutex must be held when this function is called.
517 */
518 static void pcache1ResizeHash(PCache1 *p){
519   PgHdr1 **apNew;
520   unsigned int nNew;
521   unsigned int i;
522 
523   assert( sqlite3_mutex_held(p->pGroup->mutex) );
524 
525   nNew = p->nHash*2;
526   if( nNew<256 ){
527     nNew = 256;
528   }
529 
530   pcache1LeaveMutex(p->pGroup);
531   if( p->nHash ){ sqlite3BeginBenignMalloc(); }
532   apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew);
533   if( p->nHash ){ sqlite3EndBenignMalloc(); }
534   pcache1EnterMutex(p->pGroup);
535   if( apNew ){
536     for(i=0; i<p->nHash; i++){
537       PgHdr1 *pPage;
538       PgHdr1 *pNext = p->apHash[i];
539       while( (pPage = pNext)!=0 ){
540         unsigned int h = pPage->iKey % nNew;
541         pNext = pPage->pNext;
542         pPage->pNext = apNew[h];
543         apNew[h] = pPage;
544       }
545     }
546     sqlite3_free(p->apHash);
547     p->apHash = apNew;
548     p->nHash = nNew;
549   }
550 }
551 
552 /*
553 ** This function is used internally to remove the page pPage from the
554 ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup
555 ** LRU list, then this function is a no-op.
556 **
557 ** The PGroup mutex must be held when this function is called.
558 */
559 static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){
560   PCache1 *pCache;
561 
562   assert( pPage!=0 );
563   assert( pPage->isPinned==0 );
564   pCache = pPage->pCache;
565   assert( pPage->pLruNext );
566   assert( pPage->pLruPrev );
567   assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
568   pPage->pLruPrev->pLruNext = pPage->pLruNext;
569   pPage->pLruNext->pLruPrev = pPage->pLruPrev;
570   pPage->pLruNext = 0;
571   pPage->pLruPrev = 0;
572   pPage->isPinned = 1;
573   assert( pPage->isAnchor==0 );
574   assert( pCache->pGroup->lru.isAnchor==1 );
575   pCache->nRecyclable--;
576   return pPage;
577 }
578 
579 
580 /*
581 ** Remove the page supplied as an argument from the hash table
582 ** (PCache1.apHash structure) that it is currently stored in.
583 ** Also free the page if freePage is true.
584 **
585 ** The PGroup mutex must be held when this function is called.
586 */
587 static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){
588   unsigned int h;
589   PCache1 *pCache = pPage->pCache;
590   PgHdr1 **pp;
591 
592   assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
593   h = pPage->iKey % pCache->nHash;
594   for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
595   *pp = (*pp)->pNext;
596 
597   pCache->nPage--;
598   if( freeFlag ) pcache1FreePage(pPage);
599 }
600 
601 /*
602 ** If there are currently more than nMaxPage pages allocated, try
603 ** to recycle pages to reduce the number allocated to nMaxPage.
604 */
605 static void pcache1EnforceMaxPage(PCache1 *pCache){
606   PGroup *pGroup = pCache->pGroup;
607   PgHdr1 *p;
608   assert( sqlite3_mutex_held(pGroup->mutex) );
609   while( pGroup->nCurrentPage>pGroup->nMaxPage
610       && (p=pGroup->lru.pLruPrev)->isAnchor==0
611   ){
612     assert( p->pCache->pGroup==pGroup );
613     assert( p->isPinned==0 );
614     pcache1PinPage(p);
615     pcache1RemoveFromHash(p, 1);
616   }
617   if( pCache->nPage==0 && pCache->pBulk ){
618     sqlite3_free(pCache->pBulk);
619     pCache->pBulk = pCache->pFree = 0;
620   }
621 }
622 
623 /*
624 ** Discard all pages from cache pCache with a page number (key value)
625 ** greater than or equal to iLimit. Any pinned pages that meet this
626 ** criteria are unpinned before they are discarded.
627 **
628 ** The PCache mutex must be held when this function is called.
629 */
630 static void pcache1TruncateUnsafe(
631   PCache1 *pCache,             /* The cache to truncate */
632   unsigned int iLimit          /* Drop pages with this pgno or larger */
633 ){
634   TESTONLY( int nPage = 0; )  /* To assert pCache->nPage is correct */
635   unsigned int h, iStop;
636   assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
637   assert( pCache->iMaxKey >= iLimit );
638   assert( pCache->nHash > 0 );
639   if( pCache->iMaxKey - iLimit < pCache->nHash ){
640     /* If we are just shaving the last few pages off the end of the
641     ** cache, then there is no point in scanning the entire hash table.
642     ** Only scan those hash slots that might contain pages that need to
643     ** be removed. */
644     h = iLimit % pCache->nHash;
645     iStop = pCache->iMaxKey % pCache->nHash;
646     TESTONLY( nPage = -10; )  /* Disable the pCache->nPage validity check */
647   }else{
648     /* This is the general case where many pages are being removed.
649     ** It is necessary to scan the entire hash table */
650     h = pCache->nHash/2;
651     iStop = h - 1;
652   }
653   for(;;){
654     PgHdr1 **pp;
655     PgHdr1 *pPage;
656     assert( h<pCache->nHash );
657     pp = &pCache->apHash[h];
658     while( (pPage = *pp)!=0 ){
659       if( pPage->iKey>=iLimit ){
660         pCache->nPage--;
661         *pp = pPage->pNext;
662         if( !pPage->isPinned ) pcache1PinPage(pPage);
663         pcache1FreePage(pPage);
664       }else{
665         pp = &pPage->pNext;
666         TESTONLY( if( nPage>=0 ) nPage++; )
667       }
668     }
669     if( h==iStop ) break;
670     h = (h+1) % pCache->nHash;
671   }
672   assert( nPage<0 || pCache->nPage==(unsigned)nPage );
673 }
674 
675 /******************************************************************************/
676 /******** sqlite3_pcache Methods **********************************************/
677 
678 /*
679 ** Implementation of the sqlite3_pcache.xInit method.
680 */
681 static int pcache1Init(void *NotUsed){
682   UNUSED_PARAMETER(NotUsed);
683   assert( pcache1.isInit==0 );
684   memset(&pcache1, 0, sizeof(pcache1));
685 
686 
687   /*
688   ** The pcache1.separateCache variable is true if each PCache has its own
689   ** private PGroup (mode-1).  pcache1.separateCache is false if the single
690   ** PGroup in pcache1.grp is used for all page caches (mode-2).
691   **
692   **   *  Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT
693   **
694   **   *  Use a unified cache in single-threaded applications that have
695   **      configured a start-time buffer for use as page-cache memory using
696   **      sqlite3_config(SQLITE_CONFIG_PAGECACHE, pBuf, sz, N) with non-NULL
697   **      pBuf argument.
698   **
699   **   *  Otherwise use separate caches (mode-1)
700   */
701 #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT)
702   pcache1.separateCache = 0;
703 #elif SQLITE_THREADSAFE
704   pcache1.separateCache = sqlite3GlobalConfig.pPage==0
705                           || sqlite3GlobalConfig.bCoreMutex>0;
706 #else
707   pcache1.separateCache = sqlite3GlobalConfig.pPage==0;
708 #endif
709 
710 #if SQLITE_THREADSAFE
711   if( sqlite3GlobalConfig.bCoreMutex ){
712     pcache1.grp.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU);
713     pcache1.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PMEM);
714   }
715 #endif
716   if( pcache1.separateCache
717    && sqlite3GlobalConfig.nPage!=0
718    && sqlite3GlobalConfig.pPage==0
719   ){
720     pcache1.nInitPage = sqlite3GlobalConfig.nPage;
721   }else{
722     pcache1.nInitPage = 0;
723   }
724   pcache1.grp.mxPinned = 10;
725   pcache1.isInit = 1;
726   return SQLITE_OK;
727 }
728 
729 /*
730 ** Implementation of the sqlite3_pcache.xShutdown method.
731 ** Note that the static mutex allocated in xInit does
732 ** not need to be freed.
733 */
734 static void pcache1Shutdown(void *NotUsed){
735   UNUSED_PARAMETER(NotUsed);
736   assert( pcache1.isInit!=0 );
737   memset(&pcache1, 0, sizeof(pcache1));
738 }
739 
740 /* forward declaration */
741 static void pcache1Destroy(sqlite3_pcache *p);
742 
743 /*
744 ** Implementation of the sqlite3_pcache.xCreate method.
745 **
746 ** Allocate a new cache.
747 */
748 static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){
749   PCache1 *pCache;      /* The newly created page cache */
750   PGroup *pGroup;       /* The group the new page cache will belong to */
751   int sz;               /* Bytes of memory required to allocate the new cache */
752 
753   assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 );
754   assert( szExtra < 300 );
755 
756   sz = sizeof(PCache1) + sizeof(PGroup)*pcache1.separateCache;
757   pCache = (PCache1 *)sqlite3MallocZero(sz);
758   if( pCache ){
759     if( pcache1.separateCache ){
760       pGroup = (PGroup*)&pCache[1];
761       pGroup->mxPinned = 10;
762     }else{
763       pGroup = &pcache1.grp;
764     }
765     if( pGroup->lru.isAnchor==0 ){
766       pGroup->lru.isAnchor = 1;
767       pGroup->lru.pLruPrev = pGroup->lru.pLruNext = &pGroup->lru;
768     }
769     pCache->pGroup = pGroup;
770     pCache->szPage = szPage;
771     pCache->szExtra = szExtra;
772     pCache->szAlloc = szPage + szExtra + ROUND8(sizeof(PgHdr1));
773     pCache->bPurgeable = (bPurgeable ? 1 : 0);
774     pcache1EnterMutex(pGroup);
775     pcache1ResizeHash(pCache);
776     if( bPurgeable ){
777       pCache->nMin = 10;
778       pGroup->nMinPage += pCache->nMin;
779       pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
780     }
781     pcache1LeaveMutex(pGroup);
782     if( pCache->nHash==0 ){
783       pcache1Destroy((sqlite3_pcache*)pCache);
784       pCache = 0;
785     }
786   }
787   return (sqlite3_pcache *)pCache;
788 }
789 
790 /*
791 ** Implementation of the sqlite3_pcache.xCachesize method.
792 **
793 ** Configure the cache_size limit for a cache.
794 */
795 static void pcache1Cachesize(sqlite3_pcache *p, int nMax){
796   PCache1 *pCache = (PCache1 *)p;
797   if( pCache->bPurgeable ){
798     PGroup *pGroup = pCache->pGroup;
799     pcache1EnterMutex(pGroup);
800     pGroup->nMaxPage += (nMax - pCache->nMax);
801     pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
802     pCache->nMax = nMax;
803     pCache->n90pct = pCache->nMax*9/10;
804     pcache1EnforceMaxPage(pCache);
805     pcache1LeaveMutex(pGroup);
806   }
807 }
808 
809 /*
810 ** Implementation of the sqlite3_pcache.xShrink method.
811 **
812 ** Free up as much memory as possible.
813 */
814 static void pcache1Shrink(sqlite3_pcache *p){
815   PCache1 *pCache = (PCache1*)p;
816   if( pCache->bPurgeable ){
817     PGroup *pGroup = pCache->pGroup;
818     int savedMaxPage;
819     pcache1EnterMutex(pGroup);
820     savedMaxPage = pGroup->nMaxPage;
821     pGroup->nMaxPage = 0;
822     pcache1EnforceMaxPage(pCache);
823     pGroup->nMaxPage = savedMaxPage;
824     pcache1LeaveMutex(pGroup);
825   }
826 }
827 
828 /*
829 ** Implementation of the sqlite3_pcache.xPagecount method.
830 */
831 static int pcache1Pagecount(sqlite3_pcache *p){
832   int n;
833   PCache1 *pCache = (PCache1*)p;
834   pcache1EnterMutex(pCache->pGroup);
835   n = pCache->nPage;
836   pcache1LeaveMutex(pCache->pGroup);
837   return n;
838 }
839 
840 
841 /*
842 ** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described
843 ** in the header of the pcache1Fetch() procedure.
844 **
845 ** This steps are broken out into a separate procedure because they are
846 ** usually not needed, and by avoiding the stack initialization required
847 ** for these steps, the main pcache1Fetch() procedure can run faster.
848 */
849 static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2(
850   PCache1 *pCache,
851   unsigned int iKey,
852   int createFlag
853 ){
854   unsigned int nPinned;
855   PGroup *pGroup = pCache->pGroup;
856   PgHdr1 *pPage = 0;
857 
858   /* Step 3: Abort if createFlag is 1 but the cache is nearly full */
859   assert( pCache->nPage >= pCache->nRecyclable );
860   nPinned = pCache->nPage - pCache->nRecyclable;
861   assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage );
862   assert( pCache->n90pct == pCache->nMax*9/10 );
863   if( createFlag==1 && (
864         nPinned>=pGroup->mxPinned
865      || nPinned>=pCache->n90pct
866      || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned)
867   )){
868     return 0;
869   }
870 
871   if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache);
872   assert( pCache->nHash>0 && pCache->apHash );
873 
874   /* Step 4. Try to recycle a page. */
875   if( pCache->bPurgeable
876    && !pGroup->lru.pLruPrev->isAnchor
877    && ((pCache->nPage+1>=pCache->nMax) || pcache1UnderMemoryPressure(pCache))
878   ){
879     PCache1 *pOther;
880     pPage = pGroup->lru.pLruPrev;
881     assert( pPage->isPinned==0 );
882     pcache1RemoveFromHash(pPage, 0);
883     pcache1PinPage(pPage);
884     pOther = pPage->pCache;
885     if( pOther->szAlloc != pCache->szAlloc ){
886       pcache1FreePage(pPage);
887       pPage = 0;
888     }else{
889       pGroup->nCurrentPage -= (pOther->bPurgeable - pCache->bPurgeable);
890     }
891   }
892 
893   /* Step 5. If a usable page buffer has still not been found,
894   ** attempt to allocate a new one.
895   */
896   if( !pPage ){
897     pPage = pcache1AllocPage(pCache, createFlag==1);
898   }
899 
900   if( pPage ){
901     unsigned int h = iKey % pCache->nHash;
902     pCache->nPage++;
903     pPage->iKey = iKey;
904     pPage->pNext = pCache->apHash[h];
905     pPage->pCache = pCache;
906     pPage->pLruPrev = 0;
907     pPage->pLruNext = 0;
908     pPage->isPinned = 1;
909     *(void **)pPage->page.pExtra = 0;
910     pCache->apHash[h] = pPage;
911     if( iKey>pCache->iMaxKey ){
912       pCache->iMaxKey = iKey;
913     }
914   }
915   return pPage;
916 }
917 
918 /*
919 ** Implementation of the sqlite3_pcache.xFetch method.
920 **
921 ** Fetch a page by key value.
922 **
923 ** Whether or not a new page may be allocated by this function depends on
924 ** the value of the createFlag argument.  0 means do not allocate a new
925 ** page.  1 means allocate a new page if space is easily available.  2
926 ** means to try really hard to allocate a new page.
927 **
928 ** For a non-purgeable cache (a cache used as the storage for an in-memory
929 ** database) there is really no difference between createFlag 1 and 2.  So
930 ** the calling function (pcache.c) will never have a createFlag of 1 on
931 ** a non-purgeable cache.
932 **
933 ** There are three different approaches to obtaining space for a page,
934 ** depending on the value of parameter createFlag (which may be 0, 1 or 2).
935 **
936 **   1. Regardless of the value of createFlag, the cache is searched for a
937 **      copy of the requested page. If one is found, it is returned.
938 **
939 **   2. If createFlag==0 and the page is not already in the cache, NULL is
940 **      returned.
941 **
942 **   3. If createFlag is 1, and the page is not already in the cache, then
943 **      return NULL (do not allocate a new page) if any of the following
944 **      conditions are true:
945 **
946 **       (a) the number of pages pinned by the cache is greater than
947 **           PCache1.nMax, or
948 **
949 **       (b) the number of pages pinned by the cache is greater than
950 **           the sum of nMax for all purgeable caches, less the sum of
951 **           nMin for all other purgeable caches, or
952 **
953 **   4. If none of the first three conditions apply and the cache is marked
954 **      as purgeable, and if one of the following is true:
955 **
956 **       (a) The number of pages allocated for the cache is already
957 **           PCache1.nMax, or
958 **
959 **       (b) The number of pages allocated for all purgeable caches is
960 **           already equal to or greater than the sum of nMax for all
961 **           purgeable caches,
962 **
963 **       (c) The system is under memory pressure and wants to avoid
964 **           unnecessary pages cache entry allocations
965 **
966 **      then attempt to recycle a page from the LRU list. If it is the right
967 **      size, return the recycled buffer. Otherwise, free the buffer and
968 **      proceed to step 5.
969 **
970 **   5. Otherwise, allocate and return a new page buffer.
971 **
972 ** There are two versions of this routine.  pcache1FetchWithMutex() is
973 ** the general case.  pcache1FetchNoMutex() is a faster implementation for
974 ** the common case where pGroup->mutex is NULL.  The pcache1Fetch() wrapper
975 ** invokes the appropriate routine.
976 */
977 static PgHdr1 *pcache1FetchNoMutex(
978   sqlite3_pcache *p,
979   unsigned int iKey,
980   int createFlag
981 ){
982   PCache1 *pCache = (PCache1 *)p;
983   PgHdr1 *pPage = 0;
984 
985   /* Step 1: Search the hash table for an existing entry. */
986   pPage = pCache->apHash[iKey % pCache->nHash];
987   while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; }
988 
989   /* Step 2: If the page was found in the hash table, then return it.
990   ** If the page was not in the hash table and createFlag is 0, abort.
991   ** Otherwise (page not in hash and createFlag!=0) continue with
992   ** subsequent steps to try to create the page. */
993   if( pPage ){
994     if( !pPage->isPinned ){
995       return pcache1PinPage(pPage);
996     }else{
997       return pPage;
998     }
999   }else if( createFlag ){
1000     /* Steps 3, 4, and 5 implemented by this subroutine */
1001     return pcache1FetchStage2(pCache, iKey, createFlag);
1002   }else{
1003     return 0;
1004   }
1005 }
1006 #if PCACHE1_MIGHT_USE_GROUP_MUTEX
1007 static PgHdr1 *pcache1FetchWithMutex(
1008   sqlite3_pcache *p,
1009   unsigned int iKey,
1010   int createFlag
1011 ){
1012   PCache1 *pCache = (PCache1 *)p;
1013   PgHdr1 *pPage;
1014 
1015   pcache1EnterMutex(pCache->pGroup);
1016   pPage = pcache1FetchNoMutex(p, iKey, createFlag);
1017   assert( pPage==0 || pCache->iMaxKey>=iKey );
1018   pcache1LeaveMutex(pCache->pGroup);
1019   return pPage;
1020 }
1021 #endif
1022 static sqlite3_pcache_page *pcache1Fetch(
1023   sqlite3_pcache *p,
1024   unsigned int iKey,
1025   int createFlag
1026 ){
1027 #if PCACHE1_MIGHT_USE_GROUP_MUTEX || defined(SQLITE_DEBUG)
1028   PCache1 *pCache = (PCache1 *)p;
1029 #endif
1030 
1031   assert( offsetof(PgHdr1,page)==0 );
1032   assert( pCache->bPurgeable || createFlag!=1 );
1033   assert( pCache->bPurgeable || pCache->nMin==0 );
1034   assert( pCache->bPurgeable==0 || pCache->nMin==10 );
1035   assert( pCache->nMin==0 || pCache->bPurgeable );
1036   assert( pCache->nHash>0 );
1037 #if PCACHE1_MIGHT_USE_GROUP_MUTEX
1038   if( pCache->pGroup->mutex ){
1039     return (sqlite3_pcache_page*)pcache1FetchWithMutex(p, iKey, createFlag);
1040   }else
1041 #endif
1042   {
1043     return (sqlite3_pcache_page*)pcache1FetchNoMutex(p, iKey, createFlag);
1044   }
1045 }
1046 
1047 
1048 /*
1049 ** Implementation of the sqlite3_pcache.xUnpin method.
1050 **
1051 ** Mark a page as unpinned (eligible for asynchronous recycling).
1052 */
1053 static void pcache1Unpin(
1054   sqlite3_pcache *p,
1055   sqlite3_pcache_page *pPg,
1056   int reuseUnlikely
1057 ){
1058   PCache1 *pCache = (PCache1 *)p;
1059   PgHdr1 *pPage = (PgHdr1 *)pPg;
1060   PGroup *pGroup = pCache->pGroup;
1061 
1062   assert( pPage->pCache==pCache );
1063   pcache1EnterMutex(pGroup);
1064 
1065   /* It is an error to call this function if the page is already
1066   ** part of the PGroup LRU list.
1067   */
1068   assert( pPage->pLruPrev==0 && pPage->pLruNext==0 );
1069   assert( pPage->isPinned==1 );
1070 
1071   if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){
1072     pcache1RemoveFromHash(pPage, 1);
1073   }else{
1074     /* Add the page to the PGroup LRU list. */
1075     PgHdr1 **ppFirst = &pGroup->lru.pLruNext;
1076     pPage->pLruPrev = &pGroup->lru;
1077     (pPage->pLruNext = *ppFirst)->pLruPrev = pPage;
1078     *ppFirst = pPage;
1079     pCache->nRecyclable++;
1080     pPage->isPinned = 0;
1081   }
1082 
1083   pcache1LeaveMutex(pCache->pGroup);
1084 }
1085 
1086 /*
1087 ** Implementation of the sqlite3_pcache.xRekey method.
1088 */
1089 static void pcache1Rekey(
1090   sqlite3_pcache *p,
1091   sqlite3_pcache_page *pPg,
1092   unsigned int iOld,
1093   unsigned int iNew
1094 ){
1095   PCache1 *pCache = (PCache1 *)p;
1096   PgHdr1 *pPage = (PgHdr1 *)pPg;
1097   PgHdr1 **pp;
1098   unsigned int h;
1099   assert( pPage->iKey==iOld );
1100   assert( pPage->pCache==pCache );
1101 
1102   pcache1EnterMutex(pCache->pGroup);
1103 
1104   h = iOld%pCache->nHash;
1105   pp = &pCache->apHash[h];
1106   while( (*pp)!=pPage ){
1107     pp = &(*pp)->pNext;
1108   }
1109   *pp = pPage->pNext;
1110 
1111   h = iNew%pCache->nHash;
1112   pPage->iKey = iNew;
1113   pPage->pNext = pCache->apHash[h];
1114   pCache->apHash[h] = pPage;
1115   if( iNew>pCache->iMaxKey ){
1116     pCache->iMaxKey = iNew;
1117   }
1118 
1119   pcache1LeaveMutex(pCache->pGroup);
1120 }
1121 
1122 /*
1123 ** Implementation of the sqlite3_pcache.xTruncate method.
1124 **
1125 ** Discard all unpinned pages in the cache with a page number equal to
1126 ** or greater than parameter iLimit. Any pinned pages with a page number
1127 ** equal to or greater than iLimit are implicitly unpinned.
1128 */
1129 static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){
1130   PCache1 *pCache = (PCache1 *)p;
1131   pcache1EnterMutex(pCache->pGroup);
1132   if( iLimit<=pCache->iMaxKey ){
1133     pcache1TruncateUnsafe(pCache, iLimit);
1134     pCache->iMaxKey = iLimit-1;
1135   }
1136   pcache1LeaveMutex(pCache->pGroup);
1137 }
1138 
1139 /*
1140 ** Implementation of the sqlite3_pcache.xDestroy method.
1141 **
1142 ** Destroy a cache allocated using pcache1Create().
1143 */
1144 static void pcache1Destroy(sqlite3_pcache *p){
1145   PCache1 *pCache = (PCache1 *)p;
1146   PGroup *pGroup = pCache->pGroup;
1147   assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) );
1148   pcache1EnterMutex(pGroup);
1149   if( pCache->nPage ) pcache1TruncateUnsafe(pCache, 0);
1150   assert( pGroup->nMaxPage >= pCache->nMax );
1151   pGroup->nMaxPage -= pCache->nMax;
1152   assert( pGroup->nMinPage >= pCache->nMin );
1153   pGroup->nMinPage -= pCache->nMin;
1154   pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
1155   pcache1EnforceMaxPage(pCache);
1156   pcache1LeaveMutex(pGroup);
1157   sqlite3_free(pCache->pBulk);
1158   sqlite3_free(pCache->apHash);
1159   sqlite3_free(pCache);
1160 }
1161 
1162 /*
1163 ** This function is called during initialization (sqlite3_initialize()) to
1164 ** install the default pluggable cache module, assuming the user has not
1165 ** already provided an alternative.
1166 */
1167 void sqlite3PCacheSetDefault(void){
1168   static const sqlite3_pcache_methods2 defaultMethods = {
1169     1,                       /* iVersion */
1170     0,                       /* pArg */
1171     pcache1Init,             /* xInit */
1172     pcache1Shutdown,         /* xShutdown */
1173     pcache1Create,           /* xCreate */
1174     pcache1Cachesize,        /* xCachesize */
1175     pcache1Pagecount,        /* xPagecount */
1176     pcache1Fetch,            /* xFetch */
1177     pcache1Unpin,            /* xUnpin */
1178     pcache1Rekey,            /* xRekey */
1179     pcache1Truncate,         /* xTruncate */
1180     pcache1Destroy,          /* xDestroy */
1181     pcache1Shrink            /* xShrink */
1182   };
1183   sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods);
1184 }
1185 
1186 /*
1187 ** Return the size of the header on each page of this PCACHE implementation.
1188 */
1189 int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); }
1190 
1191 /*
1192 ** Return the global mutex used by this PCACHE implementation.  The
1193 ** sqlite3_status() routine needs access to this mutex.
1194 */
1195 sqlite3_mutex *sqlite3Pcache1Mutex(void){
1196   return pcache1.mutex;
1197 }
1198 
1199 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
1200 /*
1201 ** This function is called to free superfluous dynamically allocated memory
1202 ** held by the pager system. Memory in use by any SQLite pager allocated
1203 ** by the current thread may be sqlite3_free()ed.
1204 **
1205 ** nReq is the number of bytes of memory required. Once this much has
1206 ** been released, the function returns. The return value is the total number
1207 ** of bytes of memory released.
1208 */
1209 int sqlite3PcacheReleaseMemory(int nReq){
1210   int nFree = 0;
1211   assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
1212   assert( sqlite3_mutex_notheld(pcache1.mutex) );
1213   if( sqlite3GlobalConfig.pPage==0 ){
1214     PgHdr1 *p;
1215     pcache1EnterMutex(&pcache1.grp);
1216     while( (nReq<0 || nFree<nReq)
1217        &&  (p=pcache1.grp.lru.pLruPrev)!=0
1218        &&  p->isAnchor==0
1219     ){
1220       nFree += pcache1MemSize(p->page.pBuf);
1221 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
1222       nFree += sqlite3MemSize(p);
1223 #endif
1224       assert( p->isPinned==0 );
1225       pcache1PinPage(p);
1226       pcache1RemoveFromHash(p, 1);
1227     }
1228     pcache1LeaveMutex(&pcache1.grp);
1229   }
1230   return nFree;
1231 }
1232 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
1233 
1234 #ifdef SQLITE_TEST
1235 /*
1236 ** This function is used by test procedures to inspect the internal state
1237 ** of the global cache.
1238 */
1239 void sqlite3PcacheStats(
1240   int *pnCurrent,      /* OUT: Total number of pages cached */
1241   int *pnMax,          /* OUT: Global maximum cache size */
1242   int *pnMin,          /* OUT: Sum of PCache1.nMin for purgeable caches */
1243   int *pnRecyclable    /* OUT: Total number of pages available for recycling */
1244 ){
1245   PgHdr1 *p;
1246   int nRecyclable = 0;
1247   for(p=pcache1.grp.lru.pLruNext; p && !p->isAnchor; p=p->pLruNext){
1248     assert( p->isPinned==0 );
1249     nRecyclable++;
1250   }
1251   *pnCurrent = pcache1.grp.nCurrentPage;
1252   *pnMax = (int)pcache1.grp.nMaxPage;
1253   *pnMin = (int)pcache1.grp.nMinPage;
1254   *pnRecyclable = nRecyclable;
1255 }
1256 #endif
1257