xref: /sqlite-3.40.0/src/pcache1.c (revision 45f31be8)
1 /*
2 ** 2008 November 05
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file implements the default page cache implementation (the
14 ** sqlite3_pcache interface). It also contains part of the implementation
15 ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features.
16 ** If the default page cache implementation is overridden, then neither of
17 ** these two features are available.
18 **
19 ** A Page cache line looks like this:
20 **
21 **  -------------------------------------------------------------
22 **  |  database page content   |  PgHdr1  |  MemPage  |  PgHdr  |
23 **  -------------------------------------------------------------
24 **
25 ** The database page content is up front (so that buffer overreads tend to
26 ** flow harmlessly into the PgHdr1, MemPage, and PgHdr extensions).   MemPage
27 ** is the extension added by the btree.c module containing information such
28 ** as the database page number and how that database page is used.  PgHdr
29 ** is added by the pcache.c layer and contains information used to keep track
30 ** of which pages are "dirty".  PgHdr1 is an extension added by this
31 ** module (pcache1.c).  The PgHdr1 header is a subclass of sqlite3_pcache_page.
32 ** PgHdr1 contains information needed to look up a page by its page number.
33 ** The superclass sqlite3_pcache_page.pBuf points to the start of the
34 ** database page content and sqlite3_pcache_page.pExtra points to PgHdr.
35 **
36 ** The size of the extension (MemPage+PgHdr+PgHdr1) can be determined at
37 ** runtime using sqlite3_config(SQLITE_CONFIG_PCACHE_HDRSZ, &size).  The
38 ** sizes of the extensions sum to 272 bytes on x64 for 3.8.10, but this
39 ** size can vary according to architecture, compile-time options, and
40 ** SQLite library version number.
41 **
42 ** If SQLITE_PCACHE_SEPARATE_HEADER is defined, then the extension is obtained
43 ** using a separate memory allocation from the database page content.  This
44 ** seeks to overcome the "clownshoe" problem (also called "internal
45 ** fragmentation" in academic literature) of allocating a few bytes more
46 ** than a power of two with the memory allocator rounding up to the next
47 ** power of two, and leaving the rounded-up space unused.
48 **
49 ** This module tracks pointers to PgHdr1 objects.  Only pcache.c communicates
50 ** with this module.  Information is passed back and forth as PgHdr1 pointers.
51 **
52 ** The pcache.c and pager.c modules deal pointers to PgHdr objects.
53 ** The btree.c module deals with pointers to MemPage objects.
54 **
55 ** SOURCE OF PAGE CACHE MEMORY:
56 **
57 ** Memory for a page might come from any of three sources:
58 **
59 **    (1)  The general-purpose memory allocator - sqlite3Malloc()
60 **    (2)  Global page-cache memory provided using sqlite3_config() with
61 **         SQLITE_CONFIG_PAGECACHE.
62 **    (3)  PCache-local bulk allocation.
63 **
64 ** The third case is a chunk of heap memory (defaulting to 100 pages worth)
65 ** that is allocated when the page cache is created.  The size of the local
66 ** bulk allocation can be adjusted using
67 **
68 **     sqlite3_config(SQLITE_CONFIG_PAGECACHE, (void*)0, 0, N).
69 **
70 ** If N is positive, then N pages worth of memory are allocated using a single
71 ** sqlite3Malloc() call and that memory is used for the first N pages allocated.
72 ** Or if N is negative, then -1024*N bytes of memory are allocated and used
73 ** for as many pages as can be accomodated.
74 **
75 ** Only one of (2) or (3) can be used.  Once the memory available to (2) or
76 ** (3) is exhausted, subsequent allocations fail over to the general-purpose
77 ** memory allocator (1).
78 **
79 ** Earlier versions of SQLite used only methods (1) and (2).  But experiments
80 ** show that method (3) with N==100 provides about a 5% performance boost for
81 ** common workloads.
82 */
83 #include "sqliteInt.h"
84 
85 typedef struct PCache1 PCache1;
86 typedef struct PgHdr1 PgHdr1;
87 typedef struct PgFreeslot PgFreeslot;
88 typedef struct PGroup PGroup;
89 
90 /*
91 ** Each cache entry is represented by an instance of the following
92 ** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of
93 ** PgHdr1.pCache->szPage bytes is allocated directly before this structure
94 ** in memory.
95 */
96 struct PgHdr1 {
97   sqlite3_pcache_page page;      /* Base class. Must be first. pBuf & pExtra */
98   unsigned int iKey;             /* Key value (page number) */
99   u8 isPinned;                   /* Page in use, not on the LRU list */
100   u8 isBulkLocal;                /* This page from bulk local storage */
101   u8 isAnchor;                   /* This is the PGroup.lru element */
102   PgHdr1 *pNext;                 /* Next in hash table chain */
103   PCache1 *pCache;               /* Cache that currently owns this page */
104   PgHdr1 *pLruNext;              /* Next in LRU list of unpinned pages */
105   PgHdr1 *pLruPrev;              /* Previous in LRU list of unpinned pages */
106 };
107 
108 /* Each page cache (or PCache) belongs to a PGroup.  A PGroup is a set
109 ** of one or more PCaches that are able to recycle each other's unpinned
110 ** pages when they are under memory pressure.  A PGroup is an instance of
111 ** the following object.
112 **
113 ** This page cache implementation works in one of two modes:
114 **
115 **   (1)  Every PCache is the sole member of its own PGroup.  There is
116 **        one PGroup per PCache.
117 **
118 **   (2)  There is a single global PGroup that all PCaches are a member
119 **        of.
120 **
121 ** Mode 1 uses more memory (since PCache instances are not able to rob
122 ** unused pages from other PCaches) but it also operates without a mutex,
123 ** and is therefore often faster.  Mode 2 requires a mutex in order to be
124 ** threadsafe, but recycles pages more efficiently.
125 **
126 ** For mode (1), PGroup.mutex is NULL.  For mode (2) there is only a single
127 ** PGroup which is the pcache1.grp global variable and its mutex is
128 ** SQLITE_MUTEX_STATIC_LRU.
129 */
130 struct PGroup {
131   sqlite3_mutex *mutex;          /* MUTEX_STATIC_LRU or NULL */
132   unsigned int nMaxPage;         /* Sum of nMax for purgeable caches */
133   unsigned int nMinPage;         /* Sum of nMin for purgeable caches */
134   unsigned int mxPinned;         /* nMaxpage + 10 - nMinPage */
135   unsigned int nCurrentPage;     /* Number of purgeable pages allocated */
136   PgHdr1 lru;                    /* The beginning and end of the LRU list */
137 };
138 
139 /* Each page cache is an instance of the following object.  Every
140 ** open database file (including each in-memory database and each
141 ** temporary or transient database) has a single page cache which
142 ** is an instance of this object.
143 **
144 ** Pointers to structures of this type are cast and returned as
145 ** opaque sqlite3_pcache* handles.
146 */
147 struct PCache1 {
148   /* Cache configuration parameters. Page size (szPage) and the purgeable
149   ** flag (bPurgeable) are set when the cache is created. nMax may be
150   ** modified at any time by a call to the pcache1Cachesize() method.
151   ** The PGroup mutex must be held when accessing nMax.
152   */
153   PGroup *pGroup;                     /* PGroup this cache belongs to */
154   int szPage;                         /* Size of database content section */
155   int szExtra;                        /* sizeof(MemPage)+sizeof(PgHdr) */
156   int szAlloc;                        /* Total size of one pcache line */
157   int bPurgeable;                     /* True if cache is purgeable */
158   unsigned int nMin;                  /* Minimum number of pages reserved */
159   unsigned int nMax;                  /* Configured "cache_size" value */
160   unsigned int n90pct;                /* nMax*9/10 */
161   unsigned int iMaxKey;               /* Largest key seen since xTruncate() */
162 
163   /* Hash table of all pages. The following variables may only be accessed
164   ** when the accessor is holding the PGroup mutex.
165   */
166   unsigned int nRecyclable;           /* Number of pages in the LRU list */
167   unsigned int nPage;                 /* Total number of pages in apHash */
168   unsigned int nHash;                 /* Number of slots in apHash[] */
169   PgHdr1 **apHash;                    /* Hash table for fast lookup by key */
170   PgHdr1 *pFree;                      /* List of unused pcache-local pages */
171   void *pBulk;                        /* Bulk memory used by pcache-local */
172 };
173 
174 /*
175 ** Free slots in the allocator used to divide up the global page cache
176 ** buffer provided using the SQLITE_CONFIG_PAGECACHE mechanism.
177 */
178 struct PgFreeslot {
179   PgFreeslot *pNext;  /* Next free slot */
180 };
181 
182 /*
183 ** Global data used by this cache.
184 */
185 static SQLITE_WSD struct PCacheGlobal {
186   PGroup grp;                    /* The global PGroup for mode (2) */
187 
188   /* Variables related to SQLITE_CONFIG_PAGECACHE settings.  The
189   ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all
190   ** fixed at sqlite3_initialize() time and do not require mutex protection.
191   ** The nFreeSlot and pFree values do require mutex protection.
192   */
193   int isInit;                    /* True if initialized */
194   int separateCache;             /* Use a new PGroup for each PCache */
195   int nInitPage;                 /* Initial bulk allocation size */
196   int szSlot;                    /* Size of each free slot */
197   int nSlot;                     /* The number of pcache slots */
198   int nReserve;                  /* Try to keep nFreeSlot above this */
199   void *pStart, *pEnd;           /* Bounds of global page cache memory */
200   /* Above requires no mutex.  Use mutex below for variable that follow. */
201   sqlite3_mutex *mutex;          /* Mutex for accessing the following: */
202   PgFreeslot *pFree;             /* Free page blocks */
203   int nFreeSlot;                 /* Number of unused pcache slots */
204   /* The following value requires a mutex to change.  We skip the mutex on
205   ** reading because (1) most platforms read a 32-bit integer atomically and
206   ** (2) even if an incorrect value is read, no great harm is done since this
207   ** is really just an optimization. */
208   int bUnderPressure;            /* True if low on PAGECACHE memory */
209 } pcache1_g;
210 
211 /*
212 ** All code in this file should access the global structure above via the
213 ** alias "pcache1". This ensures that the WSD emulation is used when
214 ** compiling for systems that do not support real WSD.
215 */
216 #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g))
217 
218 /*
219 ** Macros to enter and leave the PCache LRU mutex.
220 */
221 #if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0
222 # define pcache1EnterMutex(X)  assert((X)->mutex==0)
223 # define pcache1LeaveMutex(X)  assert((X)->mutex==0)
224 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 0
225 #else
226 # define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex)
227 # define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex)
228 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 1
229 #endif
230 
231 /******************************************************************************/
232 /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/
233 
234 
235 /*
236 ** This function is called during initialization if a static buffer is
237 ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
238 ** verb to sqlite3_config(). Parameter pBuf points to an allocation large
239 ** enough to contain 'n' buffers of 'sz' bytes each.
240 **
241 ** This routine is called from sqlite3_initialize() and so it is guaranteed
242 ** to be serialized already.  There is no need for further mutexing.
243 */
244 void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
245   if( pcache1.isInit ){
246     PgFreeslot *p;
247     if( pBuf==0 ) sz = n = 0;
248     sz = ROUNDDOWN8(sz);
249     pcache1.szSlot = sz;
250     pcache1.nSlot = pcache1.nFreeSlot = n;
251     pcache1.nReserve = n>90 ? 10 : (n/10 + 1);
252     pcache1.pStart = pBuf;
253     pcache1.pFree = 0;
254     pcache1.bUnderPressure = 0;
255     while( n-- ){
256       p = (PgFreeslot*)pBuf;
257       p->pNext = pcache1.pFree;
258       pcache1.pFree = p;
259       pBuf = (void*)&((char*)pBuf)[sz];
260     }
261     pcache1.pEnd = pBuf;
262   }
263 }
264 
265 /*
266 ** Try to initialize the pCache->pFree and pCache->pBulk fields.  Return
267 ** true if pCache->pFree ends up containing one or more free pages.
268 */
269 static int pcache1InitBulk(PCache1 *pCache){
270   i64 szBulk;
271   char *zBulk;
272   if( pcache1.nInitPage==0 ) return 0;
273   /* Do not bother with a bulk allocation if the cache size very small */
274   if( pCache->nMax<3 ) return 0;
275   sqlite3BeginBenignMalloc();
276   if( pcache1.nInitPage>0 ){
277     szBulk = pCache->szAlloc * (i64)pcache1.nInitPage;
278   }else{
279     szBulk = -1024 * (i64)pcache1.nInitPage;
280   }
281   if( szBulk > pCache->szAlloc*(i64)pCache->nMax ){
282     szBulk = pCache->szAlloc*pCache->nMax;
283   }
284   zBulk = pCache->pBulk = sqlite3Malloc( szBulk );
285   sqlite3EndBenignMalloc();
286   if( zBulk ){
287     int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc;
288     int i;
289     for(i=0; i<nBulk; i++){
290       PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage];
291       pX->page.pBuf = zBulk;
292       pX->page.pExtra = &pX[1];
293       pX->isBulkLocal = 1;
294       pX->isAnchor = 0;
295       pX->pNext = pCache->pFree;
296       pCache->pFree = pX;
297       zBulk += pCache->szAlloc;
298     }
299   }
300   return pCache->pFree!=0;
301 }
302 
303 /*
304 ** Malloc function used within this file to allocate space from the buffer
305 ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no
306 ** such buffer exists or there is no space left in it, this function falls
307 ** back to sqlite3Malloc().
308 **
309 ** Multiple threads can run this routine at the same time.  Global variables
310 ** in pcache1 need to be protected via mutex.
311 */
312 static void *pcache1Alloc(int nByte){
313   void *p = 0;
314   assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
315   if( nByte<=pcache1.szSlot ){
316     sqlite3_mutex_enter(pcache1.mutex);
317     p = (PgHdr1 *)pcache1.pFree;
318     if( p ){
319       pcache1.pFree = pcache1.pFree->pNext;
320       pcache1.nFreeSlot--;
321       pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
322       assert( pcache1.nFreeSlot>=0 );
323       sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
324       sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1);
325     }
326     sqlite3_mutex_leave(pcache1.mutex);
327   }
328   if( p==0 ){
329     /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool.  Get
330     ** it from sqlite3Malloc instead.
331     */
332     p = sqlite3Malloc(nByte);
333 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
334     if( p ){
335       int sz = sqlite3MallocSize(p);
336       sqlite3_mutex_enter(pcache1.mutex);
337       sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
338       sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
339       sqlite3_mutex_leave(pcache1.mutex);
340     }
341 #endif
342     sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
343   }
344   return p;
345 }
346 
347 /*
348 ** Free an allocated buffer obtained from pcache1Alloc().
349 */
350 static void pcache1Free(void *p){
351   int nFreed = 0;
352   if( p==0 ) return;
353   if( SQLITE_WITHIN(p, pcache1.pStart, pcache1.pEnd) ){
354     PgFreeslot *pSlot;
355     sqlite3_mutex_enter(pcache1.mutex);
356     sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1);
357     pSlot = (PgFreeslot*)p;
358     pSlot->pNext = pcache1.pFree;
359     pcache1.pFree = pSlot;
360     pcache1.nFreeSlot++;
361     pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
362     assert( pcache1.nFreeSlot<=pcache1.nSlot );
363     sqlite3_mutex_leave(pcache1.mutex);
364   }else{
365     assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
366     sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
367 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
368     nFreed = sqlite3MallocSize(p);
369     sqlite3_mutex_enter(pcache1.mutex);
370     sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_OVERFLOW, nFreed);
371     sqlite3_mutex_leave(pcache1.mutex);
372 #endif
373     sqlite3_free(p);
374   }
375 }
376 
377 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
378 /*
379 ** Return the size of a pcache allocation
380 */
381 static int pcache1MemSize(void *p){
382   if( p>=pcache1.pStart && p<pcache1.pEnd ){
383     return pcache1.szSlot;
384   }else{
385     int iSize;
386     assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
387     sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
388     iSize = sqlite3MallocSize(p);
389     sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
390     return iSize;
391   }
392 }
393 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
394 
395 /*
396 ** Allocate a new page object initially associated with cache pCache.
397 */
398 static PgHdr1 *pcache1AllocPage(PCache1 *pCache, int benignMalloc){
399   PgHdr1 *p = 0;
400   void *pPg;
401 
402   assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
403   if( pCache->pFree || (pCache->nPage==0 && pcache1InitBulk(pCache)) ){
404     p = pCache->pFree;
405     pCache->pFree = p->pNext;
406     p->pNext = 0;
407   }else{
408 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
409     /* The group mutex must be released before pcache1Alloc() is called. This
410     ** is because it might call sqlite3_release_memory(), which assumes that
411     ** this mutex is not held. */
412     assert( pcache1.separateCache==0 );
413     assert( pCache->pGroup==&pcache1.grp );
414     pcache1LeaveMutex(pCache->pGroup);
415 #endif
416     if( benignMalloc ){ sqlite3BeginBenignMalloc(); }
417 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
418     pPg = pcache1Alloc(pCache->szPage);
419     p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra);
420     if( !pPg || !p ){
421       pcache1Free(pPg);
422       sqlite3_free(p);
423       pPg = 0;
424     }
425 #else
426     pPg = pcache1Alloc(pCache->szAlloc);
427     p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage];
428 #endif
429     if( benignMalloc ){ sqlite3EndBenignMalloc(); }
430 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
431     pcache1EnterMutex(pCache->pGroup);
432 #endif
433     if( pPg==0 ) return 0;
434     p->page.pBuf = pPg;
435     p->page.pExtra = &p[1];
436     p->isBulkLocal = 0;
437     p->isAnchor = 0;
438   }
439   if( pCache->bPurgeable ){
440     pCache->pGroup->nCurrentPage++;
441   }
442   return p;
443 }
444 
445 /*
446 ** Free a page object allocated by pcache1AllocPage().
447 */
448 static void pcache1FreePage(PgHdr1 *p){
449   PCache1 *pCache;
450   assert( p!=0 );
451   pCache = p->pCache;
452   assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) );
453   if( p->isBulkLocal ){
454     p->pNext = pCache->pFree;
455     pCache->pFree = p;
456   }else{
457     pcache1Free(p->page.pBuf);
458 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
459     sqlite3_free(p);
460 #endif
461   }
462   if( pCache->bPurgeable ){
463     pCache->pGroup->nCurrentPage--;
464   }
465 }
466 
467 /*
468 ** Malloc function used by SQLite to obtain space from the buffer configured
469 ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer
470 ** exists, this function falls back to sqlite3Malloc().
471 */
472 void *sqlite3PageMalloc(int sz){
473   return pcache1Alloc(sz);
474 }
475 
476 /*
477 ** Free an allocated buffer obtained from sqlite3PageMalloc().
478 */
479 void sqlite3PageFree(void *p){
480   pcache1Free(p);
481 }
482 
483 
484 /*
485 ** Return true if it desirable to avoid allocating a new page cache
486 ** entry.
487 **
488 ** If memory was allocated specifically to the page cache using
489 ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then
490 ** it is desirable to avoid allocating a new page cache entry because
491 ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient
492 ** for all page cache needs and we should not need to spill the
493 ** allocation onto the heap.
494 **
495 ** Or, the heap is used for all page cache memory but the heap is
496 ** under memory pressure, then again it is desirable to avoid
497 ** allocating a new page cache entry in order to avoid stressing
498 ** the heap even further.
499 */
500 static int pcache1UnderMemoryPressure(PCache1 *pCache){
501   if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){
502     return pcache1.bUnderPressure;
503   }else{
504     return sqlite3HeapNearlyFull();
505   }
506 }
507 
508 /******************************************************************************/
509 /******** General Implementation Functions ************************************/
510 
511 /*
512 ** This function is used to resize the hash table used by the cache passed
513 ** as the first argument.
514 **
515 ** The PCache mutex must be held when this function is called.
516 */
517 static void pcache1ResizeHash(PCache1 *p){
518   PgHdr1 **apNew;
519   unsigned int nNew;
520   unsigned int i;
521 
522   assert( sqlite3_mutex_held(p->pGroup->mutex) );
523 
524   nNew = p->nHash*2;
525   if( nNew<256 ){
526     nNew = 256;
527   }
528 
529   pcache1LeaveMutex(p->pGroup);
530   if( p->nHash ){ sqlite3BeginBenignMalloc(); }
531   apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew);
532   if( p->nHash ){ sqlite3EndBenignMalloc(); }
533   pcache1EnterMutex(p->pGroup);
534   if( apNew ){
535     for(i=0; i<p->nHash; i++){
536       PgHdr1 *pPage;
537       PgHdr1 *pNext = p->apHash[i];
538       while( (pPage = pNext)!=0 ){
539         unsigned int h = pPage->iKey % nNew;
540         pNext = pPage->pNext;
541         pPage->pNext = apNew[h];
542         apNew[h] = pPage;
543       }
544     }
545     sqlite3_free(p->apHash);
546     p->apHash = apNew;
547     p->nHash = nNew;
548   }
549 }
550 
551 /*
552 ** This function is used internally to remove the page pPage from the
553 ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup
554 ** LRU list, then this function is a no-op.
555 **
556 ** The PGroup mutex must be held when this function is called.
557 */
558 static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){
559   PCache1 *pCache;
560 
561   assert( pPage!=0 );
562   assert( pPage->isPinned==0 );
563   pCache = pPage->pCache;
564   assert( pPage->pLruNext );
565   assert( pPage->pLruPrev );
566   assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
567   pPage->pLruPrev->pLruNext = pPage->pLruNext;
568   pPage->pLruNext->pLruPrev = pPage->pLruPrev;
569   pPage->pLruNext = 0;
570   pPage->pLruPrev = 0;
571   pPage->isPinned = 1;
572   assert( pPage->isAnchor==0 );
573   assert( pCache->pGroup->lru.isAnchor==1 );
574   pCache->nRecyclable--;
575   return pPage;
576 }
577 
578 
579 /*
580 ** Remove the page supplied as an argument from the hash table
581 ** (PCache1.apHash structure) that it is currently stored in.
582 ** Also free the page if freePage is true.
583 **
584 ** The PGroup mutex must be held when this function is called.
585 */
586 static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){
587   unsigned int h;
588   PCache1 *pCache = pPage->pCache;
589   PgHdr1 **pp;
590 
591   assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
592   h = pPage->iKey % pCache->nHash;
593   for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
594   *pp = (*pp)->pNext;
595 
596   pCache->nPage--;
597   if( freeFlag ) pcache1FreePage(pPage);
598 }
599 
600 /*
601 ** If there are currently more than nMaxPage pages allocated, try
602 ** to recycle pages to reduce the number allocated to nMaxPage.
603 */
604 static void pcache1EnforceMaxPage(PCache1 *pCache){
605   PGroup *pGroup = pCache->pGroup;
606   PgHdr1 *p;
607   assert( sqlite3_mutex_held(pGroup->mutex) );
608   while( pGroup->nCurrentPage>pGroup->nMaxPage
609       && (p=pGroup->lru.pLruPrev)->isAnchor==0
610   ){
611     assert( p->pCache->pGroup==pGroup );
612     assert( p->isPinned==0 );
613     pcache1PinPage(p);
614     pcache1RemoveFromHash(p, 1);
615   }
616   if( pCache->nPage==0 && pCache->pBulk ){
617     sqlite3_free(pCache->pBulk);
618     pCache->pBulk = pCache->pFree = 0;
619   }
620 }
621 
622 /*
623 ** Discard all pages from cache pCache with a page number (key value)
624 ** greater than or equal to iLimit. Any pinned pages that meet this
625 ** criteria are unpinned before they are discarded.
626 **
627 ** The PCache mutex must be held when this function is called.
628 */
629 static void pcache1TruncateUnsafe(
630   PCache1 *pCache,             /* The cache to truncate */
631   unsigned int iLimit          /* Drop pages with this pgno or larger */
632 ){
633   TESTONLY( unsigned int nPage = 0; )  /* To assert pCache->nPage is correct */
634   unsigned int h;
635   assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
636   for(h=0; h<pCache->nHash; h++){
637     PgHdr1 **pp = &pCache->apHash[h];
638     PgHdr1 *pPage;
639     while( (pPage = *pp)!=0 ){
640       if( pPage->iKey>=iLimit ){
641         pCache->nPage--;
642         *pp = pPage->pNext;
643         if( !pPage->isPinned ) pcache1PinPage(pPage);
644         pcache1FreePage(pPage);
645       }else{
646         pp = &pPage->pNext;
647         TESTONLY( nPage++; )
648       }
649     }
650   }
651   assert( pCache->nPage==nPage );
652 }
653 
654 /******************************************************************************/
655 /******** sqlite3_pcache Methods **********************************************/
656 
657 /*
658 ** Implementation of the sqlite3_pcache.xInit method.
659 */
660 static int pcache1Init(void *NotUsed){
661   UNUSED_PARAMETER(NotUsed);
662   assert( pcache1.isInit==0 );
663   memset(&pcache1, 0, sizeof(pcache1));
664 
665 
666   /*
667   ** The pcache1.separateCache variable is true if each PCache has its own
668   ** private PGroup (mode-1).  pcache1.separateCache is false if the single
669   ** PGroup in pcache1.grp is used for all page caches (mode-2).
670   **
671   **   *  Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT
672   **
673   **   *  Use a unified cache in single-threaded applications that have
674   **      configured a start-time buffer for use as page-cache memory using
675   **      sqlite3_config(SQLITE_CONFIG_PAGECACHE, pBuf, sz, N) with non-NULL
676   **      pBuf argument.
677   **
678   **   *  Otherwise use separate caches (mode-1)
679   */
680 #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT)
681   pcache1.separateCache = 0;
682 #elif SQLITE_THREADSAFE
683   pcache1.separateCache = sqlite3GlobalConfig.pPage==0
684                           || sqlite3GlobalConfig.bCoreMutex>0;
685 #else
686   pcache1.separateCache = sqlite3GlobalConfig.pPage==0;
687 #endif
688 
689 #if SQLITE_THREADSAFE
690   if( sqlite3GlobalConfig.bCoreMutex ){
691     pcache1.grp.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU);
692     pcache1.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_PMEM);
693   }
694 #endif
695   if( pcache1.separateCache
696    && sqlite3GlobalConfig.nPage!=0
697    && sqlite3GlobalConfig.pPage==0
698   ){
699     pcache1.nInitPage = sqlite3GlobalConfig.nPage;
700   }else{
701     pcache1.nInitPage = 0;
702   }
703   pcache1.grp.mxPinned = 10;
704   pcache1.isInit = 1;
705   return SQLITE_OK;
706 }
707 
708 /*
709 ** Implementation of the sqlite3_pcache.xShutdown method.
710 ** Note that the static mutex allocated in xInit does
711 ** not need to be freed.
712 */
713 static void pcache1Shutdown(void *NotUsed){
714   UNUSED_PARAMETER(NotUsed);
715   assert( pcache1.isInit!=0 );
716   memset(&pcache1, 0, sizeof(pcache1));
717 }
718 
719 /* forward declaration */
720 static void pcache1Destroy(sqlite3_pcache *p);
721 
722 /*
723 ** Implementation of the sqlite3_pcache.xCreate method.
724 **
725 ** Allocate a new cache.
726 */
727 static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){
728   PCache1 *pCache;      /* The newly created page cache */
729   PGroup *pGroup;       /* The group the new page cache will belong to */
730   int sz;               /* Bytes of memory required to allocate the new cache */
731 
732   assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 );
733   assert( szExtra < 300 );
734 
735   sz = sizeof(PCache1) + sizeof(PGroup)*pcache1.separateCache;
736   pCache = (PCache1 *)sqlite3MallocZero(sz);
737   if( pCache ){
738     if( pcache1.separateCache ){
739       pGroup = (PGroup*)&pCache[1];
740       pGroup->mxPinned = 10;
741     }else{
742       pGroup = &pcache1.grp;
743     }
744     if( pGroup->lru.isAnchor==0 ){
745       pGroup->lru.isAnchor = 1;
746       pGroup->lru.pLruPrev = pGroup->lru.pLruNext = &pGroup->lru;
747     }
748     pCache->pGroup = pGroup;
749     pCache->szPage = szPage;
750     pCache->szExtra = szExtra;
751     pCache->szAlloc = szPage + szExtra + ROUND8(sizeof(PgHdr1));
752     pCache->bPurgeable = (bPurgeable ? 1 : 0);
753     pcache1EnterMutex(pGroup);
754     pcache1ResizeHash(pCache);
755     if( bPurgeable ){
756       pCache->nMin = 10;
757       pGroup->nMinPage += pCache->nMin;
758       pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
759     }
760     pcache1LeaveMutex(pGroup);
761     if( pCache->nHash==0 ){
762       pcache1Destroy((sqlite3_pcache*)pCache);
763       pCache = 0;
764     }
765   }
766   return (sqlite3_pcache *)pCache;
767 }
768 
769 /*
770 ** Implementation of the sqlite3_pcache.xCachesize method.
771 **
772 ** Configure the cache_size limit for a cache.
773 */
774 static void pcache1Cachesize(sqlite3_pcache *p, int nMax){
775   PCache1 *pCache = (PCache1 *)p;
776   if( pCache->bPurgeable ){
777     PGroup *pGroup = pCache->pGroup;
778     pcache1EnterMutex(pGroup);
779     pGroup->nMaxPage += (nMax - pCache->nMax);
780     pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
781     pCache->nMax = nMax;
782     pCache->n90pct = pCache->nMax*9/10;
783     pcache1EnforceMaxPage(pCache);
784     pcache1LeaveMutex(pGroup);
785   }
786 }
787 
788 /*
789 ** Implementation of the sqlite3_pcache.xShrink method.
790 **
791 ** Free up as much memory as possible.
792 */
793 static void pcache1Shrink(sqlite3_pcache *p){
794   PCache1 *pCache = (PCache1*)p;
795   if( pCache->bPurgeable ){
796     PGroup *pGroup = pCache->pGroup;
797     int savedMaxPage;
798     pcache1EnterMutex(pGroup);
799     savedMaxPage = pGroup->nMaxPage;
800     pGroup->nMaxPage = 0;
801     pcache1EnforceMaxPage(pCache);
802     pGroup->nMaxPage = savedMaxPage;
803     pcache1LeaveMutex(pGroup);
804   }
805 }
806 
807 /*
808 ** Implementation of the sqlite3_pcache.xPagecount method.
809 */
810 static int pcache1Pagecount(sqlite3_pcache *p){
811   int n;
812   PCache1 *pCache = (PCache1*)p;
813   pcache1EnterMutex(pCache->pGroup);
814   n = pCache->nPage;
815   pcache1LeaveMutex(pCache->pGroup);
816   return n;
817 }
818 
819 
820 /*
821 ** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described
822 ** in the header of the pcache1Fetch() procedure.
823 **
824 ** This steps are broken out into a separate procedure because they are
825 ** usually not needed, and by avoiding the stack initialization required
826 ** for these steps, the main pcache1Fetch() procedure can run faster.
827 */
828 static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2(
829   PCache1 *pCache,
830   unsigned int iKey,
831   int createFlag
832 ){
833   unsigned int nPinned;
834   PGroup *pGroup = pCache->pGroup;
835   PgHdr1 *pPage = 0;
836 
837   /* Step 3: Abort if createFlag is 1 but the cache is nearly full */
838   assert( pCache->nPage >= pCache->nRecyclable );
839   nPinned = pCache->nPage - pCache->nRecyclable;
840   assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage );
841   assert( pCache->n90pct == pCache->nMax*9/10 );
842   if( createFlag==1 && (
843         nPinned>=pGroup->mxPinned
844      || nPinned>=pCache->n90pct
845      || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned)
846   )){
847     return 0;
848   }
849 
850   if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache);
851   assert( pCache->nHash>0 && pCache->apHash );
852 
853   /* Step 4. Try to recycle a page. */
854   if( pCache->bPurgeable
855    && !pGroup->lru.pLruPrev->isAnchor
856    && ((pCache->nPage+1>=pCache->nMax) || pcache1UnderMemoryPressure(pCache))
857   ){
858     PCache1 *pOther;
859     pPage = pGroup->lru.pLruPrev;
860     assert( pPage->isPinned==0 );
861     pcache1RemoveFromHash(pPage, 0);
862     pcache1PinPage(pPage);
863     pOther = pPage->pCache;
864     if( pOther->szAlloc != pCache->szAlloc ){
865       pcache1FreePage(pPage);
866       pPage = 0;
867     }else{
868       pGroup->nCurrentPage -= (pOther->bPurgeable - pCache->bPurgeable);
869     }
870   }
871 
872   /* Step 5. If a usable page buffer has still not been found,
873   ** attempt to allocate a new one.
874   */
875   if( !pPage ){
876     pPage = pcache1AllocPage(pCache, createFlag==1);
877   }
878 
879   if( pPage ){
880     unsigned int h = iKey % pCache->nHash;
881     pCache->nPage++;
882     pPage->iKey = iKey;
883     pPage->pNext = pCache->apHash[h];
884     pPage->pCache = pCache;
885     pPage->pLruPrev = 0;
886     pPage->pLruNext = 0;
887     pPage->isPinned = 1;
888     *(void **)pPage->page.pExtra = 0;
889     pCache->apHash[h] = pPage;
890     if( iKey>pCache->iMaxKey ){
891       pCache->iMaxKey = iKey;
892     }
893   }
894   return pPage;
895 }
896 
897 /*
898 ** Implementation of the sqlite3_pcache.xFetch method.
899 **
900 ** Fetch a page by key value.
901 **
902 ** Whether or not a new page may be allocated by this function depends on
903 ** the value of the createFlag argument.  0 means do not allocate a new
904 ** page.  1 means allocate a new page if space is easily available.  2
905 ** means to try really hard to allocate a new page.
906 **
907 ** For a non-purgeable cache (a cache used as the storage for an in-memory
908 ** database) there is really no difference between createFlag 1 and 2.  So
909 ** the calling function (pcache.c) will never have a createFlag of 1 on
910 ** a non-purgeable cache.
911 **
912 ** There are three different approaches to obtaining space for a page,
913 ** depending on the value of parameter createFlag (which may be 0, 1 or 2).
914 **
915 **   1. Regardless of the value of createFlag, the cache is searched for a
916 **      copy of the requested page. If one is found, it is returned.
917 **
918 **   2. If createFlag==0 and the page is not already in the cache, NULL is
919 **      returned.
920 **
921 **   3. If createFlag is 1, and the page is not already in the cache, then
922 **      return NULL (do not allocate a new page) if any of the following
923 **      conditions are true:
924 **
925 **       (a) the number of pages pinned by the cache is greater than
926 **           PCache1.nMax, or
927 **
928 **       (b) the number of pages pinned by the cache is greater than
929 **           the sum of nMax for all purgeable caches, less the sum of
930 **           nMin for all other purgeable caches, or
931 **
932 **   4. If none of the first three conditions apply and the cache is marked
933 **      as purgeable, and if one of the following is true:
934 **
935 **       (a) The number of pages allocated for the cache is already
936 **           PCache1.nMax, or
937 **
938 **       (b) The number of pages allocated for all purgeable caches is
939 **           already equal to or greater than the sum of nMax for all
940 **           purgeable caches,
941 **
942 **       (c) The system is under memory pressure and wants to avoid
943 **           unnecessary pages cache entry allocations
944 **
945 **      then attempt to recycle a page from the LRU list. If it is the right
946 **      size, return the recycled buffer. Otherwise, free the buffer and
947 **      proceed to step 5.
948 **
949 **   5. Otherwise, allocate and return a new page buffer.
950 **
951 ** There are two versions of this routine.  pcache1FetchWithMutex() is
952 ** the general case.  pcache1FetchNoMutex() is a faster implementation for
953 ** the common case where pGroup->mutex is NULL.  The pcache1Fetch() wrapper
954 ** invokes the appropriate routine.
955 */
956 static PgHdr1 *pcache1FetchNoMutex(
957   sqlite3_pcache *p,
958   unsigned int iKey,
959   int createFlag
960 ){
961   PCache1 *pCache = (PCache1 *)p;
962   PgHdr1 *pPage = 0;
963 
964   /* Step 1: Search the hash table for an existing entry. */
965   pPage = pCache->apHash[iKey % pCache->nHash];
966   while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; }
967 
968   /* Step 2: If the page was found in the hash table, then return it.
969   ** If the page was not in the hash table and createFlag is 0, abort.
970   ** Otherwise (page not in hash and createFlag!=0) continue with
971   ** subsequent steps to try to create the page. */
972   if( pPage ){
973     if( !pPage->isPinned ){
974       return pcache1PinPage(pPage);
975     }else{
976       return pPage;
977     }
978   }else if( createFlag ){
979     /* Steps 3, 4, and 5 implemented by this subroutine */
980     return pcache1FetchStage2(pCache, iKey, createFlag);
981   }else{
982     return 0;
983   }
984 }
985 #if PCACHE1_MIGHT_USE_GROUP_MUTEX
986 static PgHdr1 *pcache1FetchWithMutex(
987   sqlite3_pcache *p,
988   unsigned int iKey,
989   int createFlag
990 ){
991   PCache1 *pCache = (PCache1 *)p;
992   PgHdr1 *pPage;
993 
994   pcache1EnterMutex(pCache->pGroup);
995   pPage = pcache1FetchNoMutex(p, iKey, createFlag);
996   assert( pPage==0 || pCache->iMaxKey>=iKey );
997   pcache1LeaveMutex(pCache->pGroup);
998   return pPage;
999 }
1000 #endif
1001 static sqlite3_pcache_page *pcache1Fetch(
1002   sqlite3_pcache *p,
1003   unsigned int iKey,
1004   int createFlag
1005 ){
1006 #if PCACHE1_MIGHT_USE_GROUP_MUTEX || defined(SQLITE_DEBUG)
1007   PCache1 *pCache = (PCache1 *)p;
1008 #endif
1009 
1010   assert( offsetof(PgHdr1,page)==0 );
1011   assert( pCache->bPurgeable || createFlag!=1 );
1012   assert( pCache->bPurgeable || pCache->nMin==0 );
1013   assert( pCache->bPurgeable==0 || pCache->nMin==10 );
1014   assert( pCache->nMin==0 || pCache->bPurgeable );
1015   assert( pCache->nHash>0 );
1016 #if PCACHE1_MIGHT_USE_GROUP_MUTEX
1017   if( pCache->pGroup->mutex ){
1018     return (sqlite3_pcache_page*)pcache1FetchWithMutex(p, iKey, createFlag);
1019   }else
1020 #endif
1021   {
1022     return (sqlite3_pcache_page*)pcache1FetchNoMutex(p, iKey, createFlag);
1023   }
1024 }
1025 
1026 
1027 /*
1028 ** Implementation of the sqlite3_pcache.xUnpin method.
1029 **
1030 ** Mark a page as unpinned (eligible for asynchronous recycling).
1031 */
1032 static void pcache1Unpin(
1033   sqlite3_pcache *p,
1034   sqlite3_pcache_page *pPg,
1035   int reuseUnlikely
1036 ){
1037   PCache1 *pCache = (PCache1 *)p;
1038   PgHdr1 *pPage = (PgHdr1 *)pPg;
1039   PGroup *pGroup = pCache->pGroup;
1040 
1041   assert( pPage->pCache==pCache );
1042   pcache1EnterMutex(pGroup);
1043 
1044   /* It is an error to call this function if the page is already
1045   ** part of the PGroup LRU list.
1046   */
1047   assert( pPage->pLruPrev==0 && pPage->pLruNext==0 );
1048   assert( pPage->isPinned==1 );
1049 
1050   if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){
1051     pcache1RemoveFromHash(pPage, 1);
1052   }else{
1053     /* Add the page to the PGroup LRU list. */
1054     PgHdr1 **ppFirst = &pGroup->lru.pLruNext;
1055     pPage->pLruPrev = &pGroup->lru;
1056     (pPage->pLruNext = *ppFirst)->pLruPrev = pPage;
1057     *ppFirst = pPage;
1058     pCache->nRecyclable++;
1059     pPage->isPinned = 0;
1060   }
1061 
1062   pcache1LeaveMutex(pCache->pGroup);
1063 }
1064 
1065 /*
1066 ** Implementation of the sqlite3_pcache.xRekey method.
1067 */
1068 static void pcache1Rekey(
1069   sqlite3_pcache *p,
1070   sqlite3_pcache_page *pPg,
1071   unsigned int iOld,
1072   unsigned int iNew
1073 ){
1074   PCache1 *pCache = (PCache1 *)p;
1075   PgHdr1 *pPage = (PgHdr1 *)pPg;
1076   PgHdr1 **pp;
1077   unsigned int h;
1078   assert( pPage->iKey==iOld );
1079   assert( pPage->pCache==pCache );
1080 
1081   pcache1EnterMutex(pCache->pGroup);
1082 
1083   h = iOld%pCache->nHash;
1084   pp = &pCache->apHash[h];
1085   while( (*pp)!=pPage ){
1086     pp = &(*pp)->pNext;
1087   }
1088   *pp = pPage->pNext;
1089 
1090   h = iNew%pCache->nHash;
1091   pPage->iKey = iNew;
1092   pPage->pNext = pCache->apHash[h];
1093   pCache->apHash[h] = pPage;
1094   if( iNew>pCache->iMaxKey ){
1095     pCache->iMaxKey = iNew;
1096   }
1097 
1098   pcache1LeaveMutex(pCache->pGroup);
1099 }
1100 
1101 /*
1102 ** Implementation of the sqlite3_pcache.xTruncate method.
1103 **
1104 ** Discard all unpinned pages in the cache with a page number equal to
1105 ** or greater than parameter iLimit. Any pinned pages with a page number
1106 ** equal to or greater than iLimit are implicitly unpinned.
1107 */
1108 static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){
1109   PCache1 *pCache = (PCache1 *)p;
1110   pcache1EnterMutex(pCache->pGroup);
1111   if( iLimit<=pCache->iMaxKey ){
1112     pcache1TruncateUnsafe(pCache, iLimit);
1113     pCache->iMaxKey = iLimit-1;
1114   }
1115   pcache1LeaveMutex(pCache->pGroup);
1116 }
1117 
1118 /*
1119 ** Implementation of the sqlite3_pcache.xDestroy method.
1120 **
1121 ** Destroy a cache allocated using pcache1Create().
1122 */
1123 static void pcache1Destroy(sqlite3_pcache *p){
1124   PCache1 *pCache = (PCache1 *)p;
1125   PGroup *pGroup = pCache->pGroup;
1126   assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) );
1127   pcache1EnterMutex(pGroup);
1128   pcache1TruncateUnsafe(pCache, 0);
1129   assert( pGroup->nMaxPage >= pCache->nMax );
1130   pGroup->nMaxPage -= pCache->nMax;
1131   assert( pGroup->nMinPage >= pCache->nMin );
1132   pGroup->nMinPage -= pCache->nMin;
1133   pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
1134   pcache1EnforceMaxPage(pCache);
1135   pcache1LeaveMutex(pGroup);
1136   sqlite3_free(pCache->pBulk);
1137   sqlite3_free(pCache->apHash);
1138   sqlite3_free(pCache);
1139 }
1140 
1141 /*
1142 ** This function is called during initialization (sqlite3_initialize()) to
1143 ** install the default pluggable cache module, assuming the user has not
1144 ** already provided an alternative.
1145 */
1146 void sqlite3PCacheSetDefault(void){
1147   static const sqlite3_pcache_methods2 defaultMethods = {
1148     1,                       /* iVersion */
1149     0,                       /* pArg */
1150     pcache1Init,             /* xInit */
1151     pcache1Shutdown,         /* xShutdown */
1152     pcache1Create,           /* xCreate */
1153     pcache1Cachesize,        /* xCachesize */
1154     pcache1Pagecount,        /* xPagecount */
1155     pcache1Fetch,            /* xFetch */
1156     pcache1Unpin,            /* xUnpin */
1157     pcache1Rekey,            /* xRekey */
1158     pcache1Truncate,         /* xTruncate */
1159     pcache1Destroy,          /* xDestroy */
1160     pcache1Shrink            /* xShrink */
1161   };
1162   sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods);
1163 }
1164 
1165 /*
1166 ** Return the size of the header on each page of this PCACHE implementation.
1167 */
1168 int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); }
1169 
1170 /*
1171 ** Return the global mutex used by this PCACHE implementation.  The
1172 ** sqlite3_status() routine needs access to this mutex.
1173 */
1174 sqlite3_mutex *sqlite3Pcache1Mutex(void){
1175   return pcache1.mutex;
1176 }
1177 
1178 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
1179 /*
1180 ** This function is called to free superfluous dynamically allocated memory
1181 ** held by the pager system. Memory in use by any SQLite pager allocated
1182 ** by the current thread may be sqlite3_free()ed.
1183 **
1184 ** nReq is the number of bytes of memory required. Once this much has
1185 ** been released, the function returns. The return value is the total number
1186 ** of bytes of memory released.
1187 */
1188 int sqlite3PcacheReleaseMemory(int nReq){
1189   int nFree = 0;
1190   assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
1191   assert( sqlite3_mutex_notheld(pcache1.mutex) );
1192   if( sqlite3GlobalConfig.nPage==0 ){
1193     PgHdr1 *p;
1194     pcache1EnterMutex(&pcache1.grp);
1195     while( (nReq<0 || nFree<nReq)
1196        &&  (p=pcache1.grp.lru.pLruPrev)!=0
1197        &&  p->isAnchor==0
1198     ){
1199       nFree += pcache1MemSize(p->page.pBuf);
1200 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
1201       nFree += sqlite3MemSize(p);
1202 #endif
1203       assert( p->isPinned==0 );
1204       pcache1PinPage(p);
1205       pcache1RemoveFromHash(p, 1);
1206     }
1207     pcache1LeaveMutex(&pcache1.grp);
1208   }
1209   return nFree;
1210 }
1211 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
1212 
1213 #ifdef SQLITE_TEST
1214 /*
1215 ** This function is used by test procedures to inspect the internal state
1216 ** of the global cache.
1217 */
1218 void sqlite3PcacheStats(
1219   int *pnCurrent,      /* OUT: Total number of pages cached */
1220   int *pnMax,          /* OUT: Global maximum cache size */
1221   int *pnMin,          /* OUT: Sum of PCache1.nMin for purgeable caches */
1222   int *pnRecyclable    /* OUT: Total number of pages available for recycling */
1223 ){
1224   PgHdr1 *p;
1225   int nRecyclable = 0;
1226   for(p=pcache1.grp.lru.pLruNext; p && !p->isAnchor; p=p->pLruNext){
1227     assert( p->isPinned==0 );
1228     nRecyclable++;
1229   }
1230   *pnCurrent = pcache1.grp.nCurrentPage;
1231   *pnMax = (int)pcache1.grp.nMaxPage;
1232   *pnMin = (int)pcache1.grp.nMinPage;
1233   *pnRecyclable = nRecyclable;
1234 }
1235 #endif
1236