1 /* 2 ** 2008 November 05 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file implements the default page cache implementation (the 14 ** sqlite3_pcache interface). It also contains part of the implementation 15 ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features. 16 ** If the default page cache implementation is overridden, then neither of 17 ** these two features are available. 18 ** 19 ** A Page cache line looks like this: 20 ** 21 ** ------------------------------------------------------------- 22 ** | database page content | PgHdr1 | MemPage | PgHdr | 23 ** ------------------------------------------------------------- 24 ** 25 ** The database page content is up front (so that buffer overreads tend to 26 ** flow harmlessly into the PgHdr1, MemPage, and PgHdr extensions). MemPage 27 ** is the extension added by the btree.c module containing information such 28 ** as the database page number and how that database page is used. PgHdr 29 ** is added by the pcache.c layer and contains information used to keep track 30 ** of which pages are "dirty". PgHdr1 is an extension added by this 31 ** module (pcache1.c). The PgHdr1 header is a subclass of sqlite3_pcache_page. 32 ** PgHdr1 contains information needed to look up a page by its page number. 33 ** The superclass sqlite3_pcache_page.pBuf points to the start of the 34 ** database page content and sqlite3_pcache_page.pExtra points to PgHdr. 35 ** 36 ** The size of the extension (MemPage+PgHdr+PgHdr1) can be determined at 37 ** runtime using sqlite3_config(SQLITE_CONFIG_PCACHE_HDRSZ, &size). The 38 ** sizes of the extensions sum to 272 bytes on x64 for 3.8.10, but this 39 ** size can vary according to architecture, compile-time options, and 40 ** SQLite library version number. 41 ** 42 ** If SQLITE_PCACHE_SEPARATE_HEADER is defined, then the extension is obtained 43 ** using a separate memory allocation from the database page content. This 44 ** seeks to overcome the "clownshoe" problem (also called "internal 45 ** fragmentation" in academic literature) of allocating a few bytes more 46 ** than a power of two with the memory allocator rounding up to the next 47 ** power of two, and leaving the rounded-up space unused. 48 ** 49 ** This module tracks pointers to PgHdr1 objects. Only pcache.c communicates 50 ** with this module. Information is passed back and forth as PgHdr1 pointers. 51 ** 52 ** The pcache.c and pager.c modules deal pointers to PgHdr objects. 53 ** The btree.c module deals with pointers to MemPage objects. 54 ** 55 ** SOURCE OF PAGE CACHE MEMORY: 56 ** 57 ** Memory for a page might come from any of three sources: 58 ** 59 ** (1) The general-purpose memory allocator - sqlite3Malloc() 60 ** (2) Global page-cache memory provided using sqlite3_config() with 61 ** SQLITE_CONFIG_PAGECACHE. 62 ** (3) PCache-local bulk allocation. 63 ** 64 ** The third case is a chunk of heap memory (defaulting to 100 pages worth) 65 ** that is allocated when the page cache is created. The size of the local 66 ** bulk allocation can be adjusted using 67 ** 68 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, (void*)0, 0, N). 69 ** 70 ** If N is positive, then N pages worth of memory are allocated using a single 71 ** sqlite3Malloc() call and that memory is used for the first N pages allocated. 72 ** Or if N is negative, then -1024*N bytes of memory are allocated and used 73 ** for as many pages as can be accomodated. 74 ** 75 ** Only one of (2) or (3) can be used. Once the memory available to (2) or 76 ** (3) is exhausted, subsequent allocations fail over to the general-purpose 77 ** memory allocator (1). 78 ** 79 ** Earlier versions of SQLite used only methods (1) and (2). But experiments 80 ** show that method (3) with N==100 provides about a 5% performance boost for 81 ** common workloads. 82 */ 83 #include "sqliteInt.h" 84 85 typedef struct PCache1 PCache1; 86 typedef struct PgHdr1 PgHdr1; 87 typedef struct PgFreeslot PgFreeslot; 88 typedef struct PGroup PGroup; 89 90 /* 91 ** Each cache entry is represented by an instance of the following 92 ** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of 93 ** PgHdr1.pCache->szPage bytes is allocated directly before this structure 94 ** in memory. 95 */ 96 struct PgHdr1 { 97 sqlite3_pcache_page page; /* Base class. Must be first. pBuf & pExtra */ 98 unsigned int iKey; /* Key value (page number) */ 99 u8 isPinned; /* Page in use, not on the LRU list */ 100 u8 isBulkLocal; /* This page from bulk local storage */ 101 u8 isAnchor; /* This is the PGroup.lru element */ 102 PgHdr1 *pNext; /* Next in hash table chain */ 103 PCache1 *pCache; /* Cache that currently owns this page */ 104 PgHdr1 *pLruNext; /* Next in LRU list of unpinned pages */ 105 PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */ 106 }; 107 108 /* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set 109 ** of one or more PCaches that are able to recycle each other's unpinned 110 ** pages when they are under memory pressure. A PGroup is an instance of 111 ** the following object. 112 ** 113 ** This page cache implementation works in one of two modes: 114 ** 115 ** (1) Every PCache is the sole member of its own PGroup. There is 116 ** one PGroup per PCache. 117 ** 118 ** (2) There is a single global PGroup that all PCaches are a member 119 ** of. 120 ** 121 ** Mode 1 uses more memory (since PCache instances are not able to rob 122 ** unused pages from other PCaches) but it also operates without a mutex, 123 ** and is therefore often faster. Mode 2 requires a mutex in order to be 124 ** threadsafe, but recycles pages more efficiently. 125 ** 126 ** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single 127 ** PGroup which is the pcache1.grp global variable and its mutex is 128 ** SQLITE_MUTEX_STATIC_LRU. 129 */ 130 struct PGroup { 131 sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */ 132 unsigned int nMaxPage; /* Sum of nMax for purgeable caches */ 133 unsigned int nMinPage; /* Sum of nMin for purgeable caches */ 134 unsigned int mxPinned; /* nMaxpage + 10 - nMinPage */ 135 unsigned int nCurrentPage; /* Number of purgeable pages allocated */ 136 PgHdr1 lru; /* The beginning and end of the LRU list */ 137 }; 138 139 /* Each page cache is an instance of the following object. Every 140 ** open database file (including each in-memory database and each 141 ** temporary or transient database) has a single page cache which 142 ** is an instance of this object. 143 ** 144 ** Pointers to structures of this type are cast and returned as 145 ** opaque sqlite3_pcache* handles. 146 */ 147 struct PCache1 { 148 /* Cache configuration parameters. Page size (szPage) and the purgeable 149 ** flag (bPurgeable) are set when the cache is created. nMax may be 150 ** modified at any time by a call to the pcache1Cachesize() method. 151 ** The PGroup mutex must be held when accessing nMax. 152 */ 153 PGroup *pGroup; /* PGroup this cache belongs to */ 154 int szPage; /* Size of database content section */ 155 int szExtra; /* sizeof(MemPage)+sizeof(PgHdr) */ 156 int szAlloc; /* Total size of one pcache line */ 157 int bPurgeable; /* True if cache is purgeable */ 158 unsigned int nMin; /* Minimum number of pages reserved */ 159 unsigned int nMax; /* Configured "cache_size" value */ 160 unsigned int n90pct; /* nMax*9/10 */ 161 unsigned int iMaxKey; /* Largest key seen since xTruncate() */ 162 163 /* Hash table of all pages. The following variables may only be accessed 164 ** when the accessor is holding the PGroup mutex. 165 */ 166 unsigned int nRecyclable; /* Number of pages in the LRU list */ 167 unsigned int nPage; /* Total number of pages in apHash */ 168 unsigned int nHash; /* Number of slots in apHash[] */ 169 PgHdr1 **apHash; /* Hash table for fast lookup by key */ 170 PgHdr1 *pFree; /* List of unused pcache-local pages */ 171 void *pBulk; /* Bulk memory used by pcache-local */ 172 }; 173 174 /* 175 ** Free slots in the allocator used to divide up the global page cache 176 ** buffer provided using the SQLITE_CONFIG_PAGECACHE mechanism. 177 */ 178 struct PgFreeslot { 179 PgFreeslot *pNext; /* Next free slot */ 180 }; 181 182 /* 183 ** Global data used by this cache. 184 */ 185 static SQLITE_WSD struct PCacheGlobal { 186 PGroup grp; /* The global PGroup for mode (2) */ 187 188 /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The 189 ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all 190 ** fixed at sqlite3_initialize() time and do not require mutex protection. 191 ** The nFreeSlot and pFree values do require mutex protection. 192 */ 193 int isInit; /* True if initialized */ 194 int separateCache; /* Use a new PGroup for each PCache */ 195 int nInitPage; /* Initial bulk allocation size */ 196 int szSlot; /* Size of each free slot */ 197 int nSlot; /* The number of pcache slots */ 198 int nReserve; /* Try to keep nFreeSlot above this */ 199 void *pStart, *pEnd; /* Bounds of global page cache memory */ 200 /* Above requires no mutex. Use mutex below for variable that follow. */ 201 sqlite3_mutex *mutex; /* Mutex for accessing the following: */ 202 PgFreeslot *pFree; /* Free page blocks */ 203 int nFreeSlot; /* Number of unused pcache slots */ 204 /* The following value requires a mutex to change. We skip the mutex on 205 ** reading because (1) most platforms read a 32-bit integer atomically and 206 ** (2) even if an incorrect value is read, no great harm is done since this 207 ** is really just an optimization. */ 208 int bUnderPressure; /* True if low on PAGECACHE memory */ 209 } pcache1_g; 210 211 /* 212 ** All code in this file should access the global structure above via the 213 ** alias "pcache1". This ensures that the WSD emulation is used when 214 ** compiling for systems that do not support real WSD. 215 */ 216 #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g)) 217 218 /* 219 ** Macros to enter and leave the PCache LRU mutex. 220 */ 221 #if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0 222 # define pcache1EnterMutex(X) assert((X)->mutex==0) 223 # define pcache1LeaveMutex(X) assert((X)->mutex==0) 224 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 0 225 #else 226 # define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex) 227 # define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex) 228 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 1 229 #endif 230 231 /******************************************************************************/ 232 /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/ 233 234 235 /* 236 ** This function is called during initialization if a static buffer is 237 ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE 238 ** verb to sqlite3_config(). Parameter pBuf points to an allocation large 239 ** enough to contain 'n' buffers of 'sz' bytes each. 240 ** 241 ** This routine is called from sqlite3_initialize() and so it is guaranteed 242 ** to be serialized already. There is no need for further mutexing. 243 */ 244 void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){ 245 if( pcache1.isInit ){ 246 PgFreeslot *p; 247 if( pBuf==0 ) sz = n = 0; 248 sz = ROUNDDOWN8(sz); 249 pcache1.szSlot = sz; 250 pcache1.nSlot = pcache1.nFreeSlot = n; 251 pcache1.nReserve = n>90 ? 10 : (n/10 + 1); 252 pcache1.pStart = pBuf; 253 pcache1.pFree = 0; 254 pcache1.bUnderPressure = 0; 255 while( n-- ){ 256 p = (PgFreeslot*)pBuf; 257 p->pNext = pcache1.pFree; 258 pcache1.pFree = p; 259 pBuf = (void*)&((char*)pBuf)[sz]; 260 } 261 pcache1.pEnd = pBuf; 262 } 263 } 264 265 /* 266 ** Try to initialize the pCache->pFree and pCache->pBulk fields. Return 267 ** true if pCache->pFree ends up containing one or more free pages. 268 */ 269 static int pcache1InitBulk(PCache1 *pCache){ 270 i64 szBulk; 271 char *zBulk; 272 if( pcache1.nInitPage==0 ) return 0; 273 /* Do not bother with a bulk allocation if the cache size very small */ 274 if( pCache->nMax<3 ) return 0; 275 sqlite3BeginBenignMalloc(); 276 if( pcache1.nInitPage>0 ){ 277 szBulk = pCache->szAlloc * (i64)pcache1.nInitPage; 278 }else{ 279 szBulk = -1024 * (i64)pcache1.nInitPage; 280 } 281 if( szBulk > pCache->szAlloc*(i64)pCache->nMax ){ 282 szBulk = pCache->szAlloc*pCache->nMax; 283 } 284 zBulk = pCache->pBulk = sqlite3Malloc( szBulk ); 285 sqlite3EndBenignMalloc(); 286 if( zBulk ){ 287 int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc; 288 int i; 289 for(i=0; i<nBulk; i++){ 290 PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage]; 291 pX->page.pBuf = zBulk; 292 pX->page.pExtra = &pX[1]; 293 pX->isBulkLocal = 1; 294 pX->isAnchor = 0; 295 pX->pNext = pCache->pFree; 296 pCache->pFree = pX; 297 zBulk += pCache->szAlloc; 298 } 299 } 300 return pCache->pFree!=0; 301 } 302 303 /* 304 ** Malloc function used within this file to allocate space from the buffer 305 ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no 306 ** such buffer exists or there is no space left in it, this function falls 307 ** back to sqlite3Malloc(). 308 ** 309 ** Multiple threads can run this routine at the same time. Global variables 310 ** in pcache1 need to be protected via mutex. 311 */ 312 static void *pcache1Alloc(int nByte){ 313 void *p = 0; 314 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); 315 if( nByte<=pcache1.szSlot ){ 316 sqlite3_mutex_enter(pcache1.mutex); 317 p = (PgHdr1 *)pcache1.pFree; 318 if( p ){ 319 pcache1.pFree = pcache1.pFree->pNext; 320 pcache1.nFreeSlot--; 321 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; 322 assert( pcache1.nFreeSlot>=0 ); 323 sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte); 324 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1); 325 } 326 sqlite3_mutex_leave(pcache1.mutex); 327 } 328 if( p==0 ){ 329 /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get 330 ** it from sqlite3Malloc instead. 331 */ 332 p = sqlite3Malloc(nByte); 333 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS 334 if( p ){ 335 int sz = sqlite3MallocSize(p); 336 sqlite3_mutex_enter(pcache1.mutex); 337 sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte); 338 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz); 339 sqlite3_mutex_leave(pcache1.mutex); 340 } 341 #endif 342 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); 343 } 344 return p; 345 } 346 347 /* 348 ** Free an allocated buffer obtained from pcache1Alloc(). 349 */ 350 static void pcache1Free(void *p){ 351 int nFreed = 0; 352 if( p==0 ) return; 353 if( SQLITE_WITHIN(p, pcache1.pStart, pcache1.pEnd) ){ 354 PgFreeslot *pSlot; 355 sqlite3_mutex_enter(pcache1.mutex); 356 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1); 357 pSlot = (PgFreeslot*)p; 358 pSlot->pNext = pcache1.pFree; 359 pcache1.pFree = pSlot; 360 pcache1.nFreeSlot++; 361 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; 362 assert( pcache1.nFreeSlot<=pcache1.nSlot ); 363 sqlite3_mutex_leave(pcache1.mutex); 364 }else{ 365 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); 366 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 367 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS 368 nFreed = sqlite3MallocSize(p); 369 sqlite3_mutex_enter(pcache1.mutex); 370 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_OVERFLOW, nFreed); 371 sqlite3_mutex_leave(pcache1.mutex); 372 #endif 373 sqlite3_free(p); 374 } 375 } 376 377 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 378 /* 379 ** Return the size of a pcache allocation 380 */ 381 static int pcache1MemSize(void *p){ 382 if( p>=pcache1.pStart && p<pcache1.pEnd ){ 383 return pcache1.szSlot; 384 }else{ 385 int iSize; 386 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); 387 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 388 iSize = sqlite3MallocSize(p); 389 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); 390 return iSize; 391 } 392 } 393 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ 394 395 /* 396 ** Allocate a new page object initially associated with cache pCache. 397 */ 398 static PgHdr1 *pcache1AllocPage(PCache1 *pCache, int benignMalloc){ 399 PgHdr1 *p = 0; 400 void *pPg; 401 402 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 403 if( pCache->pFree || (pCache->nPage==0 && pcache1InitBulk(pCache)) ){ 404 p = pCache->pFree; 405 pCache->pFree = p->pNext; 406 p->pNext = 0; 407 }else{ 408 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 409 /* The group mutex must be released before pcache1Alloc() is called. This 410 ** is because it might call sqlite3_release_memory(), which assumes that 411 ** this mutex is not held. */ 412 assert( pcache1.separateCache==0 ); 413 assert( pCache->pGroup==&pcache1.grp ); 414 pcache1LeaveMutex(pCache->pGroup); 415 #endif 416 if( benignMalloc ){ sqlite3BeginBenignMalloc(); } 417 #ifdef SQLITE_PCACHE_SEPARATE_HEADER 418 pPg = pcache1Alloc(pCache->szPage); 419 p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra); 420 if( !pPg || !p ){ 421 pcache1Free(pPg); 422 sqlite3_free(p); 423 pPg = 0; 424 } 425 #else 426 pPg = pcache1Alloc(pCache->szAlloc); 427 p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage]; 428 #endif 429 if( benignMalloc ){ sqlite3EndBenignMalloc(); } 430 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 431 pcache1EnterMutex(pCache->pGroup); 432 #endif 433 if( pPg==0 ) return 0; 434 p->page.pBuf = pPg; 435 p->page.pExtra = &p[1]; 436 p->isBulkLocal = 0; 437 p->isAnchor = 0; 438 } 439 if( pCache->bPurgeable ){ 440 pCache->pGroup->nCurrentPage++; 441 } 442 return p; 443 } 444 445 /* 446 ** Free a page object allocated by pcache1AllocPage(). 447 */ 448 static void pcache1FreePage(PgHdr1 *p){ 449 PCache1 *pCache; 450 assert( p!=0 ); 451 pCache = p->pCache; 452 assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) ); 453 if( p->isBulkLocal ){ 454 p->pNext = pCache->pFree; 455 pCache->pFree = p; 456 }else{ 457 pcache1Free(p->page.pBuf); 458 #ifdef SQLITE_PCACHE_SEPARATE_HEADER 459 sqlite3_free(p); 460 #endif 461 } 462 if( pCache->bPurgeable ){ 463 pCache->pGroup->nCurrentPage--; 464 } 465 } 466 467 /* 468 ** Malloc function used by SQLite to obtain space from the buffer configured 469 ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer 470 ** exists, this function falls back to sqlite3Malloc(). 471 */ 472 void *sqlite3PageMalloc(int sz){ 473 return pcache1Alloc(sz); 474 } 475 476 /* 477 ** Free an allocated buffer obtained from sqlite3PageMalloc(). 478 */ 479 void sqlite3PageFree(void *p){ 480 pcache1Free(p); 481 } 482 483 484 /* 485 ** Return true if it desirable to avoid allocating a new page cache 486 ** entry. 487 ** 488 ** If memory was allocated specifically to the page cache using 489 ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then 490 ** it is desirable to avoid allocating a new page cache entry because 491 ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient 492 ** for all page cache needs and we should not need to spill the 493 ** allocation onto the heap. 494 ** 495 ** Or, the heap is used for all page cache memory but the heap is 496 ** under memory pressure, then again it is desirable to avoid 497 ** allocating a new page cache entry in order to avoid stressing 498 ** the heap even further. 499 */ 500 static int pcache1UnderMemoryPressure(PCache1 *pCache){ 501 if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){ 502 return pcache1.bUnderPressure; 503 }else{ 504 return sqlite3HeapNearlyFull(); 505 } 506 } 507 508 /******************************************************************************/ 509 /******** General Implementation Functions ************************************/ 510 511 /* 512 ** This function is used to resize the hash table used by the cache passed 513 ** as the first argument. 514 ** 515 ** The PCache mutex must be held when this function is called. 516 */ 517 static void pcache1ResizeHash(PCache1 *p){ 518 PgHdr1 **apNew; 519 unsigned int nNew; 520 unsigned int i; 521 522 assert( sqlite3_mutex_held(p->pGroup->mutex) ); 523 524 nNew = p->nHash*2; 525 if( nNew<256 ){ 526 nNew = 256; 527 } 528 529 pcache1LeaveMutex(p->pGroup); 530 if( p->nHash ){ sqlite3BeginBenignMalloc(); } 531 apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew); 532 if( p->nHash ){ sqlite3EndBenignMalloc(); } 533 pcache1EnterMutex(p->pGroup); 534 if( apNew ){ 535 for(i=0; i<p->nHash; i++){ 536 PgHdr1 *pPage; 537 PgHdr1 *pNext = p->apHash[i]; 538 while( (pPage = pNext)!=0 ){ 539 unsigned int h = pPage->iKey % nNew; 540 pNext = pPage->pNext; 541 pPage->pNext = apNew[h]; 542 apNew[h] = pPage; 543 } 544 } 545 sqlite3_free(p->apHash); 546 p->apHash = apNew; 547 p->nHash = nNew; 548 } 549 } 550 551 /* 552 ** This function is used internally to remove the page pPage from the 553 ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup 554 ** LRU list, then this function is a no-op. 555 ** 556 ** The PGroup mutex must be held when this function is called. 557 */ 558 static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){ 559 PCache1 *pCache; 560 561 assert( pPage!=0 ); 562 assert( pPage->isPinned==0 ); 563 pCache = pPage->pCache; 564 assert( pPage->pLruNext ); 565 assert( pPage->pLruPrev ); 566 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 567 pPage->pLruPrev->pLruNext = pPage->pLruNext; 568 pPage->pLruNext->pLruPrev = pPage->pLruPrev; 569 pPage->pLruNext = 0; 570 pPage->pLruPrev = 0; 571 pPage->isPinned = 1; 572 assert( pPage->isAnchor==0 ); 573 assert( pCache->pGroup->lru.isAnchor==1 ); 574 pCache->nRecyclable--; 575 return pPage; 576 } 577 578 579 /* 580 ** Remove the page supplied as an argument from the hash table 581 ** (PCache1.apHash structure) that it is currently stored in. 582 ** Also free the page if freePage is true. 583 ** 584 ** The PGroup mutex must be held when this function is called. 585 */ 586 static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){ 587 unsigned int h; 588 PCache1 *pCache = pPage->pCache; 589 PgHdr1 **pp; 590 591 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 592 h = pPage->iKey % pCache->nHash; 593 for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext); 594 *pp = (*pp)->pNext; 595 596 pCache->nPage--; 597 if( freeFlag ) pcache1FreePage(pPage); 598 } 599 600 /* 601 ** If there are currently more than nMaxPage pages allocated, try 602 ** to recycle pages to reduce the number allocated to nMaxPage. 603 */ 604 static void pcache1EnforceMaxPage(PCache1 *pCache){ 605 PGroup *pGroup = pCache->pGroup; 606 PgHdr1 *p; 607 assert( sqlite3_mutex_held(pGroup->mutex) ); 608 while( pGroup->nCurrentPage>pGroup->nMaxPage 609 && (p=pGroup->lru.pLruPrev)->isAnchor==0 610 ){ 611 assert( p->pCache->pGroup==pGroup ); 612 assert( p->isPinned==0 ); 613 pcache1PinPage(p); 614 pcache1RemoveFromHash(p, 1); 615 } 616 if( pCache->nPage==0 && pCache->pBulk ){ 617 sqlite3_free(pCache->pBulk); 618 pCache->pBulk = pCache->pFree = 0; 619 } 620 } 621 622 /* 623 ** Discard all pages from cache pCache with a page number (key value) 624 ** greater than or equal to iLimit. Any pinned pages that meet this 625 ** criteria are unpinned before they are discarded. 626 ** 627 ** The PCache mutex must be held when this function is called. 628 */ 629 static void pcache1TruncateUnsafe( 630 PCache1 *pCache, /* The cache to truncate */ 631 unsigned int iLimit /* Drop pages with this pgno or larger */ 632 ){ 633 TESTONLY( unsigned int nPage = 0; ) /* To assert pCache->nPage is correct */ 634 unsigned int h; 635 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 636 for(h=0; h<pCache->nHash; h++){ 637 PgHdr1 **pp = &pCache->apHash[h]; 638 PgHdr1 *pPage; 639 while( (pPage = *pp)!=0 ){ 640 if( pPage->iKey>=iLimit ){ 641 pCache->nPage--; 642 *pp = pPage->pNext; 643 if( !pPage->isPinned ) pcache1PinPage(pPage); 644 pcache1FreePage(pPage); 645 }else{ 646 pp = &pPage->pNext; 647 TESTONLY( nPage++; ) 648 } 649 } 650 } 651 assert( pCache->nPage==nPage ); 652 } 653 654 /******************************************************************************/ 655 /******** sqlite3_pcache Methods **********************************************/ 656 657 /* 658 ** Implementation of the sqlite3_pcache.xInit method. 659 */ 660 static int pcache1Init(void *NotUsed){ 661 UNUSED_PARAMETER(NotUsed); 662 assert( pcache1.isInit==0 ); 663 memset(&pcache1, 0, sizeof(pcache1)); 664 665 666 /* 667 ** The pcache1.separateCache variable is true if each PCache has its own 668 ** private PGroup (mode-1). pcache1.separateCache is false if the single 669 ** PGroup in pcache1.grp is used for all page caches (mode-2). 670 ** 671 ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT 672 ** 673 ** * Use a unified cache in single-threaded applications that have 674 ** configured a start-time buffer for use as page-cache memory using 675 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, pBuf, sz, N) with non-NULL 676 ** pBuf argument. 677 ** 678 ** * Otherwise use separate caches (mode-1) 679 */ 680 #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) 681 pcache1.separateCache = 0; 682 #elif SQLITE_THREADSAFE 683 pcache1.separateCache = sqlite3GlobalConfig.pPage==0 684 || sqlite3GlobalConfig.bCoreMutex>0; 685 #else 686 pcache1.separateCache = sqlite3GlobalConfig.pPage==0; 687 #endif 688 689 #if SQLITE_THREADSAFE 690 if( sqlite3GlobalConfig.bCoreMutex ){ 691 pcache1.grp.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU); 692 pcache1.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_PMEM); 693 } 694 #endif 695 if( pcache1.separateCache 696 && sqlite3GlobalConfig.nPage!=0 697 && sqlite3GlobalConfig.pPage==0 698 ){ 699 pcache1.nInitPage = sqlite3GlobalConfig.nPage; 700 }else{ 701 pcache1.nInitPage = 0; 702 } 703 pcache1.grp.mxPinned = 10; 704 pcache1.isInit = 1; 705 return SQLITE_OK; 706 } 707 708 /* 709 ** Implementation of the sqlite3_pcache.xShutdown method. 710 ** Note that the static mutex allocated in xInit does 711 ** not need to be freed. 712 */ 713 static void pcache1Shutdown(void *NotUsed){ 714 UNUSED_PARAMETER(NotUsed); 715 assert( pcache1.isInit!=0 ); 716 memset(&pcache1, 0, sizeof(pcache1)); 717 } 718 719 /* forward declaration */ 720 static void pcache1Destroy(sqlite3_pcache *p); 721 722 /* 723 ** Implementation of the sqlite3_pcache.xCreate method. 724 ** 725 ** Allocate a new cache. 726 */ 727 static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){ 728 PCache1 *pCache; /* The newly created page cache */ 729 PGroup *pGroup; /* The group the new page cache will belong to */ 730 int sz; /* Bytes of memory required to allocate the new cache */ 731 732 assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 ); 733 assert( szExtra < 300 ); 734 735 sz = sizeof(PCache1) + sizeof(PGroup)*pcache1.separateCache; 736 pCache = (PCache1 *)sqlite3MallocZero(sz); 737 if( pCache ){ 738 if( pcache1.separateCache ){ 739 pGroup = (PGroup*)&pCache[1]; 740 pGroup->mxPinned = 10; 741 }else{ 742 pGroup = &pcache1.grp; 743 } 744 if( pGroup->lru.isAnchor==0 ){ 745 pGroup->lru.isAnchor = 1; 746 pGroup->lru.pLruPrev = pGroup->lru.pLruNext = &pGroup->lru; 747 } 748 pCache->pGroup = pGroup; 749 pCache->szPage = szPage; 750 pCache->szExtra = szExtra; 751 pCache->szAlloc = szPage + szExtra + ROUND8(sizeof(PgHdr1)); 752 pCache->bPurgeable = (bPurgeable ? 1 : 0); 753 pcache1EnterMutex(pGroup); 754 pcache1ResizeHash(pCache); 755 if( bPurgeable ){ 756 pCache->nMin = 10; 757 pGroup->nMinPage += pCache->nMin; 758 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 759 } 760 pcache1LeaveMutex(pGroup); 761 if( pCache->nHash==0 ){ 762 pcache1Destroy((sqlite3_pcache*)pCache); 763 pCache = 0; 764 } 765 } 766 return (sqlite3_pcache *)pCache; 767 } 768 769 /* 770 ** Implementation of the sqlite3_pcache.xCachesize method. 771 ** 772 ** Configure the cache_size limit for a cache. 773 */ 774 static void pcache1Cachesize(sqlite3_pcache *p, int nMax){ 775 PCache1 *pCache = (PCache1 *)p; 776 if( pCache->bPurgeable ){ 777 PGroup *pGroup = pCache->pGroup; 778 pcache1EnterMutex(pGroup); 779 pGroup->nMaxPage += (nMax - pCache->nMax); 780 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 781 pCache->nMax = nMax; 782 pCache->n90pct = pCache->nMax*9/10; 783 pcache1EnforceMaxPage(pCache); 784 pcache1LeaveMutex(pGroup); 785 } 786 } 787 788 /* 789 ** Implementation of the sqlite3_pcache.xShrink method. 790 ** 791 ** Free up as much memory as possible. 792 */ 793 static void pcache1Shrink(sqlite3_pcache *p){ 794 PCache1 *pCache = (PCache1*)p; 795 if( pCache->bPurgeable ){ 796 PGroup *pGroup = pCache->pGroup; 797 int savedMaxPage; 798 pcache1EnterMutex(pGroup); 799 savedMaxPage = pGroup->nMaxPage; 800 pGroup->nMaxPage = 0; 801 pcache1EnforceMaxPage(pCache); 802 pGroup->nMaxPage = savedMaxPage; 803 pcache1LeaveMutex(pGroup); 804 } 805 } 806 807 /* 808 ** Implementation of the sqlite3_pcache.xPagecount method. 809 */ 810 static int pcache1Pagecount(sqlite3_pcache *p){ 811 int n; 812 PCache1 *pCache = (PCache1*)p; 813 pcache1EnterMutex(pCache->pGroup); 814 n = pCache->nPage; 815 pcache1LeaveMutex(pCache->pGroup); 816 return n; 817 } 818 819 820 /* 821 ** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described 822 ** in the header of the pcache1Fetch() procedure. 823 ** 824 ** This steps are broken out into a separate procedure because they are 825 ** usually not needed, and by avoiding the stack initialization required 826 ** for these steps, the main pcache1Fetch() procedure can run faster. 827 */ 828 static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2( 829 PCache1 *pCache, 830 unsigned int iKey, 831 int createFlag 832 ){ 833 unsigned int nPinned; 834 PGroup *pGroup = pCache->pGroup; 835 PgHdr1 *pPage = 0; 836 837 /* Step 3: Abort if createFlag is 1 but the cache is nearly full */ 838 assert( pCache->nPage >= pCache->nRecyclable ); 839 nPinned = pCache->nPage - pCache->nRecyclable; 840 assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage ); 841 assert( pCache->n90pct == pCache->nMax*9/10 ); 842 if( createFlag==1 && ( 843 nPinned>=pGroup->mxPinned 844 || nPinned>=pCache->n90pct 845 || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned) 846 )){ 847 return 0; 848 } 849 850 if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache); 851 assert( pCache->nHash>0 && pCache->apHash ); 852 853 /* Step 4. Try to recycle a page. */ 854 if( pCache->bPurgeable 855 && !pGroup->lru.pLruPrev->isAnchor 856 && ((pCache->nPage+1>=pCache->nMax) || pcache1UnderMemoryPressure(pCache)) 857 ){ 858 PCache1 *pOther; 859 pPage = pGroup->lru.pLruPrev; 860 assert( pPage->isPinned==0 ); 861 pcache1RemoveFromHash(pPage, 0); 862 pcache1PinPage(pPage); 863 pOther = pPage->pCache; 864 if( pOther->szAlloc != pCache->szAlloc ){ 865 pcache1FreePage(pPage); 866 pPage = 0; 867 }else{ 868 pGroup->nCurrentPage -= (pOther->bPurgeable - pCache->bPurgeable); 869 } 870 } 871 872 /* Step 5. If a usable page buffer has still not been found, 873 ** attempt to allocate a new one. 874 */ 875 if( !pPage ){ 876 pPage = pcache1AllocPage(pCache, createFlag==1); 877 } 878 879 if( pPage ){ 880 unsigned int h = iKey % pCache->nHash; 881 pCache->nPage++; 882 pPage->iKey = iKey; 883 pPage->pNext = pCache->apHash[h]; 884 pPage->pCache = pCache; 885 pPage->pLruPrev = 0; 886 pPage->pLruNext = 0; 887 pPage->isPinned = 1; 888 *(void **)pPage->page.pExtra = 0; 889 pCache->apHash[h] = pPage; 890 if( iKey>pCache->iMaxKey ){ 891 pCache->iMaxKey = iKey; 892 } 893 } 894 return pPage; 895 } 896 897 /* 898 ** Implementation of the sqlite3_pcache.xFetch method. 899 ** 900 ** Fetch a page by key value. 901 ** 902 ** Whether or not a new page may be allocated by this function depends on 903 ** the value of the createFlag argument. 0 means do not allocate a new 904 ** page. 1 means allocate a new page if space is easily available. 2 905 ** means to try really hard to allocate a new page. 906 ** 907 ** For a non-purgeable cache (a cache used as the storage for an in-memory 908 ** database) there is really no difference between createFlag 1 and 2. So 909 ** the calling function (pcache.c) will never have a createFlag of 1 on 910 ** a non-purgeable cache. 911 ** 912 ** There are three different approaches to obtaining space for a page, 913 ** depending on the value of parameter createFlag (which may be 0, 1 or 2). 914 ** 915 ** 1. Regardless of the value of createFlag, the cache is searched for a 916 ** copy of the requested page. If one is found, it is returned. 917 ** 918 ** 2. If createFlag==0 and the page is not already in the cache, NULL is 919 ** returned. 920 ** 921 ** 3. If createFlag is 1, and the page is not already in the cache, then 922 ** return NULL (do not allocate a new page) if any of the following 923 ** conditions are true: 924 ** 925 ** (a) the number of pages pinned by the cache is greater than 926 ** PCache1.nMax, or 927 ** 928 ** (b) the number of pages pinned by the cache is greater than 929 ** the sum of nMax for all purgeable caches, less the sum of 930 ** nMin for all other purgeable caches, or 931 ** 932 ** 4. If none of the first three conditions apply and the cache is marked 933 ** as purgeable, and if one of the following is true: 934 ** 935 ** (a) The number of pages allocated for the cache is already 936 ** PCache1.nMax, or 937 ** 938 ** (b) The number of pages allocated for all purgeable caches is 939 ** already equal to or greater than the sum of nMax for all 940 ** purgeable caches, 941 ** 942 ** (c) The system is under memory pressure and wants to avoid 943 ** unnecessary pages cache entry allocations 944 ** 945 ** then attempt to recycle a page from the LRU list. If it is the right 946 ** size, return the recycled buffer. Otherwise, free the buffer and 947 ** proceed to step 5. 948 ** 949 ** 5. Otherwise, allocate and return a new page buffer. 950 ** 951 ** There are two versions of this routine. pcache1FetchWithMutex() is 952 ** the general case. pcache1FetchNoMutex() is a faster implementation for 953 ** the common case where pGroup->mutex is NULL. The pcache1Fetch() wrapper 954 ** invokes the appropriate routine. 955 */ 956 static PgHdr1 *pcache1FetchNoMutex( 957 sqlite3_pcache *p, 958 unsigned int iKey, 959 int createFlag 960 ){ 961 PCache1 *pCache = (PCache1 *)p; 962 PgHdr1 *pPage = 0; 963 964 /* Step 1: Search the hash table for an existing entry. */ 965 pPage = pCache->apHash[iKey % pCache->nHash]; 966 while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; } 967 968 /* Step 2: If the page was found in the hash table, then return it. 969 ** If the page was not in the hash table and createFlag is 0, abort. 970 ** Otherwise (page not in hash and createFlag!=0) continue with 971 ** subsequent steps to try to create the page. */ 972 if( pPage ){ 973 if( !pPage->isPinned ){ 974 return pcache1PinPage(pPage); 975 }else{ 976 return pPage; 977 } 978 }else if( createFlag ){ 979 /* Steps 3, 4, and 5 implemented by this subroutine */ 980 return pcache1FetchStage2(pCache, iKey, createFlag); 981 }else{ 982 return 0; 983 } 984 } 985 #if PCACHE1_MIGHT_USE_GROUP_MUTEX 986 static PgHdr1 *pcache1FetchWithMutex( 987 sqlite3_pcache *p, 988 unsigned int iKey, 989 int createFlag 990 ){ 991 PCache1 *pCache = (PCache1 *)p; 992 PgHdr1 *pPage; 993 994 pcache1EnterMutex(pCache->pGroup); 995 pPage = pcache1FetchNoMutex(p, iKey, createFlag); 996 assert( pPage==0 || pCache->iMaxKey>=iKey ); 997 pcache1LeaveMutex(pCache->pGroup); 998 return pPage; 999 } 1000 #endif 1001 static sqlite3_pcache_page *pcache1Fetch( 1002 sqlite3_pcache *p, 1003 unsigned int iKey, 1004 int createFlag 1005 ){ 1006 #if PCACHE1_MIGHT_USE_GROUP_MUTEX || defined(SQLITE_DEBUG) 1007 PCache1 *pCache = (PCache1 *)p; 1008 #endif 1009 1010 assert( offsetof(PgHdr1,page)==0 ); 1011 assert( pCache->bPurgeable || createFlag!=1 ); 1012 assert( pCache->bPurgeable || pCache->nMin==0 ); 1013 assert( pCache->bPurgeable==0 || pCache->nMin==10 ); 1014 assert( pCache->nMin==0 || pCache->bPurgeable ); 1015 assert( pCache->nHash>0 ); 1016 #if PCACHE1_MIGHT_USE_GROUP_MUTEX 1017 if( pCache->pGroup->mutex ){ 1018 return (sqlite3_pcache_page*)pcache1FetchWithMutex(p, iKey, createFlag); 1019 }else 1020 #endif 1021 { 1022 return (sqlite3_pcache_page*)pcache1FetchNoMutex(p, iKey, createFlag); 1023 } 1024 } 1025 1026 1027 /* 1028 ** Implementation of the sqlite3_pcache.xUnpin method. 1029 ** 1030 ** Mark a page as unpinned (eligible for asynchronous recycling). 1031 */ 1032 static void pcache1Unpin( 1033 sqlite3_pcache *p, 1034 sqlite3_pcache_page *pPg, 1035 int reuseUnlikely 1036 ){ 1037 PCache1 *pCache = (PCache1 *)p; 1038 PgHdr1 *pPage = (PgHdr1 *)pPg; 1039 PGroup *pGroup = pCache->pGroup; 1040 1041 assert( pPage->pCache==pCache ); 1042 pcache1EnterMutex(pGroup); 1043 1044 /* It is an error to call this function if the page is already 1045 ** part of the PGroup LRU list. 1046 */ 1047 assert( pPage->pLruPrev==0 && pPage->pLruNext==0 ); 1048 assert( pPage->isPinned==1 ); 1049 1050 if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){ 1051 pcache1RemoveFromHash(pPage, 1); 1052 }else{ 1053 /* Add the page to the PGroup LRU list. */ 1054 PgHdr1 **ppFirst = &pGroup->lru.pLruNext; 1055 pPage->pLruPrev = &pGroup->lru; 1056 (pPage->pLruNext = *ppFirst)->pLruPrev = pPage; 1057 *ppFirst = pPage; 1058 pCache->nRecyclable++; 1059 pPage->isPinned = 0; 1060 } 1061 1062 pcache1LeaveMutex(pCache->pGroup); 1063 } 1064 1065 /* 1066 ** Implementation of the sqlite3_pcache.xRekey method. 1067 */ 1068 static void pcache1Rekey( 1069 sqlite3_pcache *p, 1070 sqlite3_pcache_page *pPg, 1071 unsigned int iOld, 1072 unsigned int iNew 1073 ){ 1074 PCache1 *pCache = (PCache1 *)p; 1075 PgHdr1 *pPage = (PgHdr1 *)pPg; 1076 PgHdr1 **pp; 1077 unsigned int h; 1078 assert( pPage->iKey==iOld ); 1079 assert( pPage->pCache==pCache ); 1080 1081 pcache1EnterMutex(pCache->pGroup); 1082 1083 h = iOld%pCache->nHash; 1084 pp = &pCache->apHash[h]; 1085 while( (*pp)!=pPage ){ 1086 pp = &(*pp)->pNext; 1087 } 1088 *pp = pPage->pNext; 1089 1090 h = iNew%pCache->nHash; 1091 pPage->iKey = iNew; 1092 pPage->pNext = pCache->apHash[h]; 1093 pCache->apHash[h] = pPage; 1094 if( iNew>pCache->iMaxKey ){ 1095 pCache->iMaxKey = iNew; 1096 } 1097 1098 pcache1LeaveMutex(pCache->pGroup); 1099 } 1100 1101 /* 1102 ** Implementation of the sqlite3_pcache.xTruncate method. 1103 ** 1104 ** Discard all unpinned pages in the cache with a page number equal to 1105 ** or greater than parameter iLimit. Any pinned pages with a page number 1106 ** equal to or greater than iLimit are implicitly unpinned. 1107 */ 1108 static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){ 1109 PCache1 *pCache = (PCache1 *)p; 1110 pcache1EnterMutex(pCache->pGroup); 1111 if( iLimit<=pCache->iMaxKey ){ 1112 pcache1TruncateUnsafe(pCache, iLimit); 1113 pCache->iMaxKey = iLimit-1; 1114 } 1115 pcache1LeaveMutex(pCache->pGroup); 1116 } 1117 1118 /* 1119 ** Implementation of the sqlite3_pcache.xDestroy method. 1120 ** 1121 ** Destroy a cache allocated using pcache1Create(). 1122 */ 1123 static void pcache1Destroy(sqlite3_pcache *p){ 1124 PCache1 *pCache = (PCache1 *)p; 1125 PGroup *pGroup = pCache->pGroup; 1126 assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) ); 1127 pcache1EnterMutex(pGroup); 1128 pcache1TruncateUnsafe(pCache, 0); 1129 assert( pGroup->nMaxPage >= pCache->nMax ); 1130 pGroup->nMaxPage -= pCache->nMax; 1131 assert( pGroup->nMinPage >= pCache->nMin ); 1132 pGroup->nMinPage -= pCache->nMin; 1133 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 1134 pcache1EnforceMaxPage(pCache); 1135 pcache1LeaveMutex(pGroup); 1136 sqlite3_free(pCache->pBulk); 1137 sqlite3_free(pCache->apHash); 1138 sqlite3_free(pCache); 1139 } 1140 1141 /* 1142 ** This function is called during initialization (sqlite3_initialize()) to 1143 ** install the default pluggable cache module, assuming the user has not 1144 ** already provided an alternative. 1145 */ 1146 void sqlite3PCacheSetDefault(void){ 1147 static const sqlite3_pcache_methods2 defaultMethods = { 1148 1, /* iVersion */ 1149 0, /* pArg */ 1150 pcache1Init, /* xInit */ 1151 pcache1Shutdown, /* xShutdown */ 1152 pcache1Create, /* xCreate */ 1153 pcache1Cachesize, /* xCachesize */ 1154 pcache1Pagecount, /* xPagecount */ 1155 pcache1Fetch, /* xFetch */ 1156 pcache1Unpin, /* xUnpin */ 1157 pcache1Rekey, /* xRekey */ 1158 pcache1Truncate, /* xTruncate */ 1159 pcache1Destroy, /* xDestroy */ 1160 pcache1Shrink /* xShrink */ 1161 }; 1162 sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods); 1163 } 1164 1165 /* 1166 ** Return the size of the header on each page of this PCACHE implementation. 1167 */ 1168 int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); } 1169 1170 /* 1171 ** Return the global mutex used by this PCACHE implementation. The 1172 ** sqlite3_status() routine needs access to this mutex. 1173 */ 1174 sqlite3_mutex *sqlite3Pcache1Mutex(void){ 1175 return pcache1.mutex; 1176 } 1177 1178 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 1179 /* 1180 ** This function is called to free superfluous dynamically allocated memory 1181 ** held by the pager system. Memory in use by any SQLite pager allocated 1182 ** by the current thread may be sqlite3_free()ed. 1183 ** 1184 ** nReq is the number of bytes of memory required. Once this much has 1185 ** been released, the function returns. The return value is the total number 1186 ** of bytes of memory released. 1187 */ 1188 int sqlite3PcacheReleaseMemory(int nReq){ 1189 int nFree = 0; 1190 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); 1191 assert( sqlite3_mutex_notheld(pcache1.mutex) ); 1192 if( sqlite3GlobalConfig.nPage==0 ){ 1193 PgHdr1 *p; 1194 pcache1EnterMutex(&pcache1.grp); 1195 while( (nReq<0 || nFree<nReq) 1196 && (p=pcache1.grp.lru.pLruPrev)!=0 1197 && p->isAnchor==0 1198 ){ 1199 nFree += pcache1MemSize(p->page.pBuf); 1200 #ifdef SQLITE_PCACHE_SEPARATE_HEADER 1201 nFree += sqlite3MemSize(p); 1202 #endif 1203 assert( p->isPinned==0 ); 1204 pcache1PinPage(p); 1205 pcache1RemoveFromHash(p, 1); 1206 } 1207 pcache1LeaveMutex(&pcache1.grp); 1208 } 1209 return nFree; 1210 } 1211 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ 1212 1213 #ifdef SQLITE_TEST 1214 /* 1215 ** This function is used by test procedures to inspect the internal state 1216 ** of the global cache. 1217 */ 1218 void sqlite3PcacheStats( 1219 int *pnCurrent, /* OUT: Total number of pages cached */ 1220 int *pnMax, /* OUT: Global maximum cache size */ 1221 int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */ 1222 int *pnRecyclable /* OUT: Total number of pages available for recycling */ 1223 ){ 1224 PgHdr1 *p; 1225 int nRecyclable = 0; 1226 for(p=pcache1.grp.lru.pLruNext; p && !p->isAnchor; p=p->pLruNext){ 1227 assert( p->isPinned==0 ); 1228 nRecyclable++; 1229 } 1230 *pnCurrent = pcache1.grp.nCurrentPage; 1231 *pnMax = (int)pcache1.grp.nMaxPage; 1232 *pnMin = (int)pcache1.grp.nMinPage; 1233 *pnRecyclable = nRecyclable; 1234 } 1235 #endif 1236