xref: /sqlite-3.40.0/src/pcache1.c (revision 3f09beda)
1 /*
2 ** 2008 November 05
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file implements the default page cache implementation (the
14 ** sqlite3_pcache interface). It also contains part of the implementation
15 ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features.
16 ** If the default page cache implementation is overridden, then neither of
17 ** these two features are available.
18 */
19 
20 #include "sqliteInt.h"
21 
22 typedef struct PCache1 PCache1;
23 typedef struct PgHdr1 PgHdr1;
24 typedef struct PgFreeslot PgFreeslot;
25 typedef struct PGroup PGroup;
26 
27 /* Each page cache (or PCache) belongs to a PGroup.  A PGroup is a set
28 ** of one or more PCaches that are able to recycle each other's unpinned
29 ** pages when they are under memory pressure.  A PGroup is an instance of
30 ** the following object.
31 **
32 ** This page cache implementation works in one of two modes:
33 **
34 **   (1)  Every PCache is the sole member of its own PGroup.  There is
35 **        one PGroup per PCache.
36 **
37 **   (2)  There is a single global PGroup that all PCaches are a member
38 **        of.
39 **
40 ** Mode 1 uses more memory (since PCache instances are not able to rob
41 ** unused pages from other PCaches) but it also operates without a mutex,
42 ** and is therefore often faster.  Mode 2 requires a mutex in order to be
43 ** threadsafe, but recycles pages more efficiently.
44 **
45 ** For mode (1), PGroup.mutex is NULL.  For mode (2) there is only a single
46 ** PGroup which is the pcache1.grp global variable and its mutex is
47 ** SQLITE_MUTEX_STATIC_LRU.
48 */
49 struct PGroup {
50   sqlite3_mutex *mutex;          /* MUTEX_STATIC_LRU or NULL */
51   unsigned int nMaxPage;         /* Sum of nMax for purgeable caches */
52   unsigned int nMinPage;         /* Sum of nMin for purgeable caches */
53   unsigned int mxPinned;         /* nMaxpage + 10 - nMinPage */
54   unsigned int nCurrentPage;     /* Number of purgeable pages allocated */
55   PgHdr1 *pLruHead, *pLruTail;   /* LRU list of unpinned pages */
56 };
57 
58 /* Each page cache is an instance of the following object.  Every
59 ** open database file (including each in-memory database and each
60 ** temporary or transient database) has a single page cache which
61 ** is an instance of this object.
62 **
63 ** Pointers to structures of this type are cast and returned as
64 ** opaque sqlite3_pcache* handles.
65 */
66 struct PCache1 {
67   /* Cache configuration parameters. Page size (szPage) and the purgeable
68   ** flag (bPurgeable) are set when the cache is created. nMax may be
69   ** modified at any time by a call to the pcache1Cachesize() method.
70   ** The PGroup mutex must be held when accessing nMax.
71   */
72   PGroup *pGroup;                     /* PGroup this cache belongs to */
73   int szPage;                         /* Size of allocated pages in bytes */
74   int szExtra;                        /* Size of extra space in bytes */
75   int bPurgeable;                     /* True if cache is purgeable */
76   unsigned int nMin;                  /* Minimum number of pages reserved */
77   unsigned int nMax;                  /* Configured "cache_size" value */
78   unsigned int n90pct;                /* nMax*9/10 */
79   unsigned int iMaxKey;               /* Largest key seen since xTruncate() */
80 
81   /* Hash table of all pages. The following variables may only be accessed
82   ** when the accessor is holding the PGroup mutex.
83   */
84   unsigned int nRecyclable;           /* Number of pages in the LRU list */
85   unsigned int nPage;                 /* Total number of pages in apHash */
86   unsigned int nHash;                 /* Number of slots in apHash[] */
87   PgHdr1 **apHash;                    /* Hash table for fast lookup by key */
88 };
89 
90 /*
91 ** Each cache entry is represented by an instance of the following
92 ** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of
93 ** PgHdr1.pCache->szPage bytes is allocated directly before this structure
94 ** in memory.
95 */
96 struct PgHdr1 {
97   sqlite3_pcache_page page;
98   unsigned int iKey;             /* Key value (page number) */
99   u8 isPinned;                   /* Page in use, not on the LRU list */
100   PgHdr1 *pNext;                 /* Next in hash table chain */
101   PCache1 *pCache;               /* Cache that currently owns this page */
102   PgHdr1 *pLruNext;              /* Next in LRU list of unpinned pages */
103   PgHdr1 *pLruPrev;              /* Previous in LRU list of unpinned pages */
104 };
105 
106 /*
107 ** Free slots in the allocator used to divide up the buffer provided using
108 ** the SQLITE_CONFIG_PAGECACHE mechanism.
109 */
110 struct PgFreeslot {
111   PgFreeslot *pNext;  /* Next free slot */
112 };
113 
114 /*
115 ** Global data used by this cache.
116 */
117 static SQLITE_WSD struct PCacheGlobal {
118   PGroup grp;                    /* The global PGroup for mode (2) */
119 
120   /* Variables related to SQLITE_CONFIG_PAGECACHE settings.  The
121   ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all
122   ** fixed at sqlite3_initialize() time and do not require mutex protection.
123   ** The nFreeSlot and pFree values do require mutex protection.
124   */
125   int isInit;                    /* True if initialized */
126   int szSlot;                    /* Size of each free slot */
127   int nSlot;                     /* The number of pcache slots */
128   int nReserve;                  /* Try to keep nFreeSlot above this */
129   void *pStart, *pEnd;           /* Bounds of pagecache malloc range */
130   /* Above requires no mutex.  Use mutex below for variable that follow. */
131   sqlite3_mutex *mutex;          /* Mutex for accessing the following: */
132   PgFreeslot *pFree;             /* Free page blocks */
133   int nFreeSlot;                 /* Number of unused pcache slots */
134   /* The following value requires a mutex to change.  We skip the mutex on
135   ** reading because (1) most platforms read a 32-bit integer atomically and
136   ** (2) even if an incorrect value is read, no great harm is done since this
137   ** is really just an optimization. */
138   int bUnderPressure;            /* True if low on PAGECACHE memory */
139 } pcache1_g;
140 
141 /*
142 ** All code in this file should access the global structure above via the
143 ** alias "pcache1". This ensures that the WSD emulation is used when
144 ** compiling for systems that do not support real WSD.
145 */
146 #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g))
147 
148 /*
149 ** Macros to enter and leave the PCache LRU mutex.
150 */
151 #if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0
152 # define pcache1EnterMutex(X)  assert((X)->mutex==0)
153 # define pcache1LeaveMutex(X)  assert((X)->mutex==0)
154 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 0
155 #else
156 # define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex)
157 # define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex)
158 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 1
159 #endif
160 
161 /******************************************************************************/
162 /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/
163 
164 /*
165 ** This function is called during initialization if a static buffer is
166 ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
167 ** verb to sqlite3_config(). Parameter pBuf points to an allocation large
168 ** enough to contain 'n' buffers of 'sz' bytes each.
169 **
170 ** This routine is called from sqlite3_initialize() and so it is guaranteed
171 ** to be serialized already.  There is no need for further mutexing.
172 */
173 void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
174   if( pcache1.isInit ){
175     PgFreeslot *p;
176     sz = ROUNDDOWN8(sz);
177     pcache1.szSlot = sz;
178     pcache1.nSlot = pcache1.nFreeSlot = n;
179     pcache1.nReserve = n>90 ? 10 : (n/10 + 1);
180     pcache1.pStart = pBuf;
181     pcache1.pFree = 0;
182     pcache1.bUnderPressure = 0;
183     while( n-- ){
184       p = (PgFreeslot*)pBuf;
185       p->pNext = pcache1.pFree;
186       pcache1.pFree = p;
187       pBuf = (void*)&((char*)pBuf)[sz];
188     }
189     pcache1.pEnd = pBuf;
190   }
191 }
192 
193 /*
194 ** Malloc function used within this file to allocate space from the buffer
195 ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no
196 ** such buffer exists or there is no space left in it, this function falls
197 ** back to sqlite3Malloc().
198 **
199 ** Multiple threads can run this routine at the same time.  Global variables
200 ** in pcache1 need to be protected via mutex.
201 */
202 static void *pcache1Alloc(int nByte){
203   void *p = 0;
204   assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
205   if( nByte<=pcache1.szSlot ){
206     sqlite3_mutex_enter(pcache1.mutex);
207     p = (PgHdr1 *)pcache1.pFree;
208     if( p ){
209       pcache1.pFree = pcache1.pFree->pNext;
210       pcache1.nFreeSlot--;
211       pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
212       assert( pcache1.nFreeSlot>=0 );
213       sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
214       sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1);
215     }
216     sqlite3_mutex_leave(pcache1.mutex);
217   }
218   if( p==0 ){
219     /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool.  Get
220     ** it from sqlite3Malloc instead.
221     */
222     p = sqlite3Malloc(nByte);
223 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
224     if( p ){
225       int sz = sqlite3MallocSize(p);
226       sqlite3_mutex_enter(pcache1.mutex);
227       sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
228       sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
229       sqlite3_mutex_leave(pcache1.mutex);
230     }
231 #endif
232     sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
233   }
234   return p;
235 }
236 
237 /*
238 ** Free an allocated buffer obtained from pcache1Alloc().
239 */
240 static int pcache1Free(void *p){
241   int nFreed = 0;
242   if( p==0 ) return 0;
243   if( p>=pcache1.pStart && p<pcache1.pEnd ){
244     PgFreeslot *pSlot;
245     sqlite3_mutex_enter(pcache1.mutex);
246     sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1);
247     pSlot = (PgFreeslot*)p;
248     pSlot->pNext = pcache1.pFree;
249     pcache1.pFree = pSlot;
250     pcache1.nFreeSlot++;
251     pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
252     assert( pcache1.nFreeSlot<=pcache1.nSlot );
253     sqlite3_mutex_leave(pcache1.mutex);
254   }else{
255     assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
256     sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
257     nFreed = sqlite3MallocSize(p);
258 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
259     sqlite3_mutex_enter(pcache1.mutex);
260     sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_OVERFLOW, nFreed);
261     sqlite3_mutex_leave(pcache1.mutex);
262 #endif
263     sqlite3_free(p);
264   }
265   return nFreed;
266 }
267 
268 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
269 /*
270 ** Return the size of a pcache allocation
271 */
272 static int pcache1MemSize(void *p){
273   if( p>=pcache1.pStart && p<pcache1.pEnd ){
274     return pcache1.szSlot;
275   }else{
276     int iSize;
277     assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
278     sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
279     iSize = sqlite3MallocSize(p);
280     sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
281     return iSize;
282   }
283 }
284 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
285 
286 /*
287 ** Allocate a new page object initially associated with cache pCache.
288 */
289 static PgHdr1 *pcache1AllocPage(PCache1 *pCache){
290   PgHdr1 *p = 0;
291   void *pPg;
292 
293   /* The group mutex must be released before pcache1Alloc() is called. This
294   ** is because it may call sqlite3_release_memory(), which assumes that
295   ** this mutex is not held. */
296   assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
297   pcache1LeaveMutex(pCache->pGroup);
298 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
299   pPg = pcache1Alloc(pCache->szPage);
300   p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra);
301   if( !pPg || !p ){
302     pcache1Free(pPg);
303     sqlite3_free(p);
304     pPg = 0;
305   }
306 #else
307   pPg = pcache1Alloc(ROUND8(sizeof(PgHdr1)) + pCache->szPage + pCache->szExtra);
308   p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage];
309 #endif
310   pcache1EnterMutex(pCache->pGroup);
311 
312   if( pPg ){
313     p->page.pBuf = pPg;
314     p->page.pExtra = &p[1];
315     if( pCache->bPurgeable ){
316       pCache->pGroup->nCurrentPage++;
317     }
318     return p;
319   }
320   return 0;
321 }
322 
323 /*
324 ** Free a page object allocated by pcache1AllocPage().
325 **
326 ** The pointer is allowed to be NULL, which is prudent.  But it turns out
327 ** that the current implementation happens to never call this routine
328 ** with a NULL pointer, so we mark the NULL test with ALWAYS().
329 */
330 static void pcache1FreePage(PgHdr1 *p){
331   if( ALWAYS(p) ){
332     PCache1 *pCache = p->pCache;
333     assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) );
334     pcache1Free(p->page.pBuf);
335 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
336     sqlite3_free(p);
337 #endif
338     if( pCache->bPurgeable ){
339       pCache->pGroup->nCurrentPage--;
340     }
341   }
342 }
343 
344 /*
345 ** Malloc function used by SQLite to obtain space from the buffer configured
346 ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer
347 ** exists, this function falls back to sqlite3Malloc().
348 */
349 void *sqlite3PageMalloc(int sz){
350   return pcache1Alloc(sz);
351 }
352 
353 /*
354 ** Free an allocated buffer obtained from sqlite3PageMalloc().
355 */
356 void sqlite3PageFree(void *p){
357   pcache1Free(p);
358 }
359 
360 
361 /*
362 ** Return true if it desirable to avoid allocating a new page cache
363 ** entry.
364 **
365 ** If memory was allocated specifically to the page cache using
366 ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then
367 ** it is desirable to avoid allocating a new page cache entry because
368 ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient
369 ** for all page cache needs and we should not need to spill the
370 ** allocation onto the heap.
371 **
372 ** Or, the heap is used for all page cache memory but the heap is
373 ** under memory pressure, then again it is desirable to avoid
374 ** allocating a new page cache entry in order to avoid stressing
375 ** the heap even further.
376 */
377 static int pcache1UnderMemoryPressure(PCache1 *pCache){
378   if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){
379     return pcache1.bUnderPressure;
380   }else{
381     return sqlite3HeapNearlyFull();
382   }
383 }
384 
385 /******************************************************************************/
386 /******** General Implementation Functions ************************************/
387 
388 /*
389 ** This function is used to resize the hash table used by the cache passed
390 ** as the first argument.
391 **
392 ** The PCache mutex must be held when this function is called.
393 */
394 static void pcache1ResizeHash(PCache1 *p){
395   PgHdr1 **apNew;
396   unsigned int nNew;
397   unsigned int i;
398 
399   assert( sqlite3_mutex_held(p->pGroup->mutex) );
400 
401   nNew = p->nHash*2;
402   if( nNew<256 ){
403     nNew = 256;
404   }
405 
406   pcache1LeaveMutex(p->pGroup);
407   if( p->nHash ){ sqlite3BeginBenignMalloc(); }
408   apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew);
409   if( p->nHash ){ sqlite3EndBenignMalloc(); }
410   pcache1EnterMutex(p->pGroup);
411   if( apNew ){
412     for(i=0; i<p->nHash; i++){
413       PgHdr1 *pPage;
414       PgHdr1 *pNext = p->apHash[i];
415       while( (pPage = pNext)!=0 ){
416         unsigned int h = pPage->iKey % nNew;
417         pNext = pPage->pNext;
418         pPage->pNext = apNew[h];
419         apNew[h] = pPage;
420       }
421     }
422     sqlite3_free(p->apHash);
423     p->apHash = apNew;
424     p->nHash = nNew;
425   }
426 }
427 
428 /*
429 ** This function is used internally to remove the page pPage from the
430 ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup
431 ** LRU list, then this function is a no-op.
432 **
433 ** The PGroup mutex must be held when this function is called.
434 */
435 static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){
436   PCache1 *pCache;
437 
438   assert( pPage!=0 );
439   assert( pPage->isPinned==0 );
440   pCache = pPage->pCache;
441   assert( pPage->pLruNext || pPage==pCache->pGroup->pLruTail );
442   assert( pPage->pLruPrev || pPage==pCache->pGroup->pLruHead );
443   assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
444   if( pPage->pLruPrev ){
445     pPage->pLruPrev->pLruNext = pPage->pLruNext;
446   }else{
447     pCache->pGroup->pLruHead = pPage->pLruNext;
448   }
449   if( pPage->pLruNext ){
450     pPage->pLruNext->pLruPrev = pPage->pLruPrev;
451   }else{
452     pCache->pGroup->pLruTail = pPage->pLruPrev;
453   }
454   pPage->pLruNext = 0;
455   pPage->pLruPrev = 0;
456   pPage->isPinned = 1;
457   pCache->nRecyclable--;
458   return pPage;
459 }
460 
461 
462 /*
463 ** Remove the page supplied as an argument from the hash table
464 ** (PCache1.apHash structure) that it is currently stored in.
465 ** Also free the page if freePage is true.
466 **
467 ** The PGroup mutex must be held when this function is called.
468 */
469 static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){
470   unsigned int h;
471   PCache1 *pCache = pPage->pCache;
472   PgHdr1 **pp;
473 
474   assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
475   h = pPage->iKey % pCache->nHash;
476   for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
477   *pp = (*pp)->pNext;
478 
479   pCache->nPage--;
480   if( freeFlag ) pcache1FreePage(pPage);
481 }
482 
483 /*
484 ** If there are currently more than nMaxPage pages allocated, try
485 ** to recycle pages to reduce the number allocated to nMaxPage.
486 */
487 static void pcache1EnforceMaxPage(PGroup *pGroup){
488   assert( sqlite3_mutex_held(pGroup->mutex) );
489   while( pGroup->nCurrentPage>pGroup->nMaxPage && pGroup->pLruTail ){
490     PgHdr1 *p = pGroup->pLruTail;
491     assert( p->pCache->pGroup==pGroup );
492     assert( p->isPinned==0 );
493     pcache1PinPage(p);
494     pcache1RemoveFromHash(p, 1);
495   }
496 }
497 
498 /*
499 ** Discard all pages from cache pCache with a page number (key value)
500 ** greater than or equal to iLimit. Any pinned pages that meet this
501 ** criteria are unpinned before they are discarded.
502 **
503 ** The PCache mutex must be held when this function is called.
504 */
505 static void pcache1TruncateUnsafe(
506   PCache1 *pCache,             /* The cache to truncate */
507   unsigned int iLimit          /* Drop pages with this pgno or larger */
508 ){
509   TESTONLY( unsigned int nPage = 0; )  /* To assert pCache->nPage is correct */
510   unsigned int h;
511   assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
512   for(h=0; h<pCache->nHash; h++){
513     PgHdr1 **pp = &pCache->apHash[h];
514     PgHdr1 *pPage;
515     while( (pPage = *pp)!=0 ){
516       if( pPage->iKey>=iLimit ){
517         pCache->nPage--;
518         *pp = pPage->pNext;
519         if( !pPage->isPinned ) pcache1PinPage(pPage);
520         pcache1FreePage(pPage);
521       }else{
522         pp = &pPage->pNext;
523         TESTONLY( nPage++; )
524       }
525     }
526   }
527   assert( pCache->nPage==nPage );
528 }
529 
530 /******************************************************************************/
531 /******** sqlite3_pcache Methods **********************************************/
532 
533 /*
534 ** Implementation of the sqlite3_pcache.xInit method.
535 */
536 static int pcache1Init(void *NotUsed){
537   UNUSED_PARAMETER(NotUsed);
538   assert( pcache1.isInit==0 );
539   memset(&pcache1, 0, sizeof(pcache1));
540 #if SQLITE_THREADSAFE
541   if( sqlite3GlobalConfig.bCoreMutex ){
542     pcache1.grp.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU);
543     pcache1.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_PMEM);
544   }
545 #endif
546   pcache1.grp.mxPinned = 10;
547   pcache1.isInit = 1;
548   return SQLITE_OK;
549 }
550 
551 /*
552 ** Implementation of the sqlite3_pcache.xShutdown method.
553 ** Note that the static mutex allocated in xInit does
554 ** not need to be freed.
555 */
556 static void pcache1Shutdown(void *NotUsed){
557   UNUSED_PARAMETER(NotUsed);
558   assert( pcache1.isInit!=0 );
559   memset(&pcache1, 0, sizeof(pcache1));
560 }
561 
562 /* forward declaration */
563 static void pcache1Destroy(sqlite3_pcache *p);
564 
565 /*
566 ** Implementation of the sqlite3_pcache.xCreate method.
567 **
568 ** Allocate a new cache.
569 */
570 static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){
571   PCache1 *pCache;      /* The newly created page cache */
572   PGroup *pGroup;       /* The group the new page cache will belong to */
573   int sz;               /* Bytes of memory required to allocate the new cache */
574 
575   /*
576   ** The separateCache variable is true if each PCache has its own private
577   ** PGroup.  In other words, separateCache is true for mode (1) where no
578   ** mutexing is required.
579   **
580   **   *  Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT
581   **
582   **   *  Always use a unified cache in single-threaded applications
583   **
584   **   *  Otherwise (if multi-threaded and ENABLE_MEMORY_MANAGEMENT is off)
585   **      use separate caches (mode-1)
586   */
587 #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0
588   const int separateCache = 0;
589 #else
590   int separateCache = sqlite3GlobalConfig.bCoreMutex>0;
591 #endif
592 
593   assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 );
594   assert( szExtra < 300 );
595 
596   sz = sizeof(PCache1) + sizeof(PGroup)*separateCache;
597   pCache = (PCache1 *)sqlite3MallocZero(sz);
598   if( pCache ){
599     if( separateCache ){
600       pGroup = (PGroup*)&pCache[1];
601       pGroup->mxPinned = 10;
602     }else{
603       pGroup = &pcache1.grp;
604     }
605     pCache->pGroup = pGroup;
606     pCache->szPage = szPage;
607     pCache->szExtra = szExtra;
608     pCache->bPurgeable = (bPurgeable ? 1 : 0);
609     pcache1EnterMutex(pGroup);
610     pcache1ResizeHash(pCache);
611     if( bPurgeable ){
612       pCache->nMin = 10;
613       pGroup->nMinPage += pCache->nMin;
614       pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
615     }
616     pcache1LeaveMutex(pGroup);
617     if( pCache->nHash==0 ){
618       pcache1Destroy((sqlite3_pcache*)pCache);
619       pCache = 0;
620     }
621   }
622   return (sqlite3_pcache *)pCache;
623 }
624 
625 /*
626 ** Implementation of the sqlite3_pcache.xCachesize method.
627 **
628 ** Configure the cache_size limit for a cache.
629 */
630 static void pcache1Cachesize(sqlite3_pcache *p, int nMax){
631   PCache1 *pCache = (PCache1 *)p;
632   if( pCache->bPurgeable ){
633     PGroup *pGroup = pCache->pGroup;
634     pcache1EnterMutex(pGroup);
635     pGroup->nMaxPage += (nMax - pCache->nMax);
636     pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
637     pCache->nMax = nMax;
638     pCache->n90pct = pCache->nMax*9/10;
639     pcache1EnforceMaxPage(pGroup);
640     pcache1LeaveMutex(pGroup);
641   }
642 }
643 
644 /*
645 ** Implementation of the sqlite3_pcache.xShrink method.
646 **
647 ** Free up as much memory as possible.
648 */
649 static void pcache1Shrink(sqlite3_pcache *p){
650   PCache1 *pCache = (PCache1*)p;
651   if( pCache->bPurgeable ){
652     PGroup *pGroup = pCache->pGroup;
653     int savedMaxPage;
654     pcache1EnterMutex(pGroup);
655     savedMaxPage = pGroup->nMaxPage;
656     pGroup->nMaxPage = 0;
657     pcache1EnforceMaxPage(pGroup);
658     pGroup->nMaxPage = savedMaxPage;
659     pcache1LeaveMutex(pGroup);
660   }
661 }
662 
663 /*
664 ** Implementation of the sqlite3_pcache.xPagecount method.
665 */
666 static int pcache1Pagecount(sqlite3_pcache *p){
667   int n;
668   PCache1 *pCache = (PCache1*)p;
669   pcache1EnterMutex(pCache->pGroup);
670   n = pCache->nPage;
671   pcache1LeaveMutex(pCache->pGroup);
672   return n;
673 }
674 
675 
676 /*
677 ** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described
678 ** in the header of the pcache1Fetch() procedure.
679 **
680 ** This steps are broken out into a separate procedure because they are
681 ** usually not needed, and by avoiding the stack initialization required
682 ** for these steps, the main pcache1Fetch() procedure can run faster.
683 */
684 static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2(
685   PCache1 *pCache,
686   unsigned int iKey,
687   int createFlag
688 ){
689   unsigned int nPinned;
690   PGroup *pGroup = pCache->pGroup;
691   PgHdr1 *pPage = 0;
692 
693   /* Step 3: Abort if createFlag is 1 but the cache is nearly full */
694   assert( pCache->nPage >= pCache->nRecyclable );
695   nPinned = pCache->nPage - pCache->nRecyclable;
696   assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage );
697   assert( pCache->n90pct == pCache->nMax*9/10 );
698   if( createFlag==1 && (
699         nPinned>=pGroup->mxPinned
700      || nPinned>=pCache->n90pct
701      || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned)
702   )){
703     return 0;
704   }
705 
706   if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache);
707   assert( pCache->nHash>0 && pCache->apHash );
708 
709   /* Step 4. Try to recycle a page. */
710   if( pCache->bPurgeable && pGroup->pLruTail && (
711          (pCache->nPage+1>=pCache->nMax)
712       || pGroup->nCurrentPage>=pGroup->nMaxPage
713       || pcache1UnderMemoryPressure(pCache)
714   )){
715     PCache1 *pOther;
716     pPage = pGroup->pLruTail;
717     assert( pPage->isPinned==0 );
718     pcache1RemoveFromHash(pPage, 0);
719     pcache1PinPage(pPage);
720     pOther = pPage->pCache;
721 
722     /* We want to verify that szPage and szExtra are the same for pOther
723     ** and pCache.  Assert that we can verify this by comparing sums. */
724     assert( (pCache->szPage & (pCache->szPage-1))==0 && pCache->szPage>=512 );
725     assert( pCache->szExtra<512 );
726     assert( (pOther->szPage & (pOther->szPage-1))==0 && pOther->szPage>=512 );
727     assert( pOther->szExtra<512 );
728 
729     if( pOther->szPage+pOther->szExtra != pCache->szPage+pCache->szExtra ){
730       pcache1FreePage(pPage);
731       pPage = 0;
732     }else{
733       pGroup->nCurrentPage -= (pOther->bPurgeable - pCache->bPurgeable);
734     }
735   }
736 
737   /* Step 5. If a usable page buffer has still not been found,
738   ** attempt to allocate a new one.
739   */
740   if( !pPage ){
741     if( createFlag==1 ){ sqlite3BeginBenignMalloc(); }
742     pPage = pcache1AllocPage(pCache);
743     if( createFlag==1 ){ sqlite3EndBenignMalloc(); }
744   }
745 
746   if( pPage ){
747     unsigned int h = iKey % pCache->nHash;
748     pCache->nPage++;
749     pPage->iKey = iKey;
750     pPage->pNext = pCache->apHash[h];
751     pPage->pCache = pCache;
752     pPage->pLruPrev = 0;
753     pPage->pLruNext = 0;
754     pPage->isPinned = 1;
755     *(void **)pPage->page.pExtra = 0;
756     pCache->apHash[h] = pPage;
757     if( iKey>pCache->iMaxKey ){
758       pCache->iMaxKey = iKey;
759     }
760   }
761   return pPage;
762 }
763 
764 /*
765 ** Implementation of the sqlite3_pcache.xFetch method.
766 **
767 ** Fetch a page by key value.
768 **
769 ** Whether or not a new page may be allocated by this function depends on
770 ** the value of the createFlag argument.  0 means do not allocate a new
771 ** page.  1 means allocate a new page if space is easily available.  2
772 ** means to try really hard to allocate a new page.
773 **
774 ** For a non-purgeable cache (a cache used as the storage for an in-memory
775 ** database) there is really no difference between createFlag 1 and 2.  So
776 ** the calling function (pcache.c) will never have a createFlag of 1 on
777 ** a non-purgeable cache.
778 **
779 ** There are three different approaches to obtaining space for a page,
780 ** depending on the value of parameter createFlag (which may be 0, 1 or 2).
781 **
782 **   1. Regardless of the value of createFlag, the cache is searched for a
783 **      copy of the requested page. If one is found, it is returned.
784 **
785 **   2. If createFlag==0 and the page is not already in the cache, NULL is
786 **      returned.
787 **
788 **   3. If createFlag is 1, and the page is not already in the cache, then
789 **      return NULL (do not allocate a new page) if any of the following
790 **      conditions are true:
791 **
792 **       (a) the number of pages pinned by the cache is greater than
793 **           PCache1.nMax, or
794 **
795 **       (b) the number of pages pinned by the cache is greater than
796 **           the sum of nMax for all purgeable caches, less the sum of
797 **           nMin for all other purgeable caches, or
798 **
799 **   4. If none of the first three conditions apply and the cache is marked
800 **      as purgeable, and if one of the following is true:
801 **
802 **       (a) The number of pages allocated for the cache is already
803 **           PCache1.nMax, or
804 **
805 **       (b) The number of pages allocated for all purgeable caches is
806 **           already equal to or greater than the sum of nMax for all
807 **           purgeable caches,
808 **
809 **       (c) The system is under memory pressure and wants to avoid
810 **           unnecessary pages cache entry allocations
811 **
812 **      then attempt to recycle a page from the LRU list. If it is the right
813 **      size, return the recycled buffer. Otherwise, free the buffer and
814 **      proceed to step 5.
815 **
816 **   5. Otherwise, allocate and return a new page buffer.
817 **
818 ** There are two versions of this routine.  pcache1FetchWithMutex() is
819 ** the general case.  pcache1FetchNoMutex() is a faster implementation for
820 ** the common case where pGroup->mutex is NULL.  The pcache1Fetch() wrapper
821 ** invokes the appropriate routine.
822 */
823 static PgHdr1 *pcache1FetchNoMutex(
824   sqlite3_pcache *p,
825   unsigned int iKey,
826   int createFlag
827 ){
828   PCache1 *pCache = (PCache1 *)p;
829   PgHdr1 *pPage = 0;
830 
831   /* Step 1: Search the hash table for an existing entry. */
832   pPage = pCache->apHash[iKey % pCache->nHash];
833   while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; }
834 
835   /* Step 2: Abort if no existing page is found and createFlag is 0 */
836   if( pPage ){
837     if( !pPage->isPinned ){
838       return pcache1PinPage(pPage);
839     }else{
840       return pPage;
841     }
842   }else if( createFlag ){
843     /* Steps 3, 4, and 5 implemented by this subroutine */
844     return pcache1FetchStage2(pCache, iKey, createFlag);
845   }else{
846     return 0;
847   }
848 }
849 #if PCACHE1_MIGHT_USE_GROUP_MUTEX
850 static PgHdr1 *pcache1FetchWithMutex(
851   sqlite3_pcache *p,
852   unsigned int iKey,
853   int createFlag
854 ){
855   PCache1 *pCache = (PCache1 *)p;
856   PgHdr1 *pPage;
857 
858   pcache1EnterMutex(pCache->pGroup);
859   pPage = pcache1FetchNoMutex(p, iKey, createFlag);
860   assert( pPage==0 || pCache->iMaxKey>=iKey );
861   pcache1LeaveMutex(pCache->pGroup);
862   return pPage;
863 }
864 #endif
865 static sqlite3_pcache_page *pcache1Fetch(
866   sqlite3_pcache *p,
867   unsigned int iKey,
868   int createFlag
869 ){
870 #if PCACHE1_MIGHT_USE_GROUP_MUTEX || defined(SQLITE_DEBUG)
871   PCache1 *pCache = (PCache1 *)p;
872 #endif
873 
874   assert( offsetof(PgHdr1,page)==0 );
875   assert( pCache->bPurgeable || createFlag!=1 );
876   assert( pCache->bPurgeable || pCache->nMin==0 );
877   assert( pCache->bPurgeable==0 || pCache->nMin==10 );
878   assert( pCache->nMin==0 || pCache->bPurgeable );
879   assert( pCache->nHash>0 );
880 #if PCACHE1_MIGHT_USE_GROUP_MUTEX
881   if( pCache->pGroup->mutex ){
882     return (sqlite3_pcache_page*)pcache1FetchWithMutex(p, iKey, createFlag);
883   }else
884 #endif
885   {
886     return (sqlite3_pcache_page*)pcache1FetchNoMutex(p, iKey, createFlag);
887   }
888 }
889 
890 
891 /*
892 ** Implementation of the sqlite3_pcache.xUnpin method.
893 **
894 ** Mark a page as unpinned (eligible for asynchronous recycling).
895 */
896 static void pcache1Unpin(
897   sqlite3_pcache *p,
898   sqlite3_pcache_page *pPg,
899   int reuseUnlikely
900 ){
901   PCache1 *pCache = (PCache1 *)p;
902   PgHdr1 *pPage = (PgHdr1 *)pPg;
903   PGroup *pGroup = pCache->pGroup;
904 
905   assert( pPage->pCache==pCache );
906   pcache1EnterMutex(pGroup);
907 
908   /* It is an error to call this function if the page is already
909   ** part of the PGroup LRU list.
910   */
911   assert( pPage->pLruPrev==0 && pPage->pLruNext==0 );
912   assert( pGroup->pLruHead!=pPage && pGroup->pLruTail!=pPage );
913   assert( pPage->isPinned==1 );
914 
915   if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){
916     pcache1RemoveFromHash(pPage, 1);
917   }else{
918     /* Add the page to the PGroup LRU list. */
919     if( pGroup->pLruHead ){
920       pGroup->pLruHead->pLruPrev = pPage;
921       pPage->pLruNext = pGroup->pLruHead;
922       pGroup->pLruHead = pPage;
923     }else{
924       pGroup->pLruTail = pPage;
925       pGroup->pLruHead = pPage;
926     }
927     pCache->nRecyclable++;
928     pPage->isPinned = 0;
929   }
930 
931   pcache1LeaveMutex(pCache->pGroup);
932 }
933 
934 /*
935 ** Implementation of the sqlite3_pcache.xRekey method.
936 */
937 static void pcache1Rekey(
938   sqlite3_pcache *p,
939   sqlite3_pcache_page *pPg,
940   unsigned int iOld,
941   unsigned int iNew
942 ){
943   PCache1 *pCache = (PCache1 *)p;
944   PgHdr1 *pPage = (PgHdr1 *)pPg;
945   PgHdr1 **pp;
946   unsigned int h;
947   assert( pPage->iKey==iOld );
948   assert( pPage->pCache==pCache );
949 
950   pcache1EnterMutex(pCache->pGroup);
951 
952   h = iOld%pCache->nHash;
953   pp = &pCache->apHash[h];
954   while( (*pp)!=pPage ){
955     pp = &(*pp)->pNext;
956   }
957   *pp = pPage->pNext;
958 
959   h = iNew%pCache->nHash;
960   pPage->iKey = iNew;
961   pPage->pNext = pCache->apHash[h];
962   pCache->apHash[h] = pPage;
963   if( iNew>pCache->iMaxKey ){
964     pCache->iMaxKey = iNew;
965   }
966 
967   pcache1LeaveMutex(pCache->pGroup);
968 }
969 
970 /*
971 ** Implementation of the sqlite3_pcache.xTruncate method.
972 **
973 ** Discard all unpinned pages in the cache with a page number equal to
974 ** or greater than parameter iLimit. Any pinned pages with a page number
975 ** equal to or greater than iLimit are implicitly unpinned.
976 */
977 static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){
978   PCache1 *pCache = (PCache1 *)p;
979   pcache1EnterMutex(pCache->pGroup);
980   if( iLimit<=pCache->iMaxKey ){
981     pcache1TruncateUnsafe(pCache, iLimit);
982     pCache->iMaxKey = iLimit-1;
983   }
984   pcache1LeaveMutex(pCache->pGroup);
985 }
986 
987 /*
988 ** Implementation of the sqlite3_pcache.xDestroy method.
989 **
990 ** Destroy a cache allocated using pcache1Create().
991 */
992 static void pcache1Destroy(sqlite3_pcache *p){
993   PCache1 *pCache = (PCache1 *)p;
994   PGroup *pGroup = pCache->pGroup;
995   assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) );
996   pcache1EnterMutex(pGroup);
997   pcache1TruncateUnsafe(pCache, 0);
998   assert( pGroup->nMaxPage >= pCache->nMax );
999   pGroup->nMaxPage -= pCache->nMax;
1000   assert( pGroup->nMinPage >= pCache->nMin );
1001   pGroup->nMinPage -= pCache->nMin;
1002   pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
1003   pcache1EnforceMaxPage(pGroup);
1004   pcache1LeaveMutex(pGroup);
1005   sqlite3_free(pCache->apHash);
1006   sqlite3_free(pCache);
1007 }
1008 
1009 /*
1010 ** This function is called during initialization (sqlite3_initialize()) to
1011 ** install the default pluggable cache module, assuming the user has not
1012 ** already provided an alternative.
1013 */
1014 void sqlite3PCacheSetDefault(void){
1015   static const sqlite3_pcache_methods2 defaultMethods = {
1016     1,                       /* iVersion */
1017     0,                       /* pArg */
1018     pcache1Init,             /* xInit */
1019     pcache1Shutdown,         /* xShutdown */
1020     pcache1Create,           /* xCreate */
1021     pcache1Cachesize,        /* xCachesize */
1022     pcache1Pagecount,        /* xPagecount */
1023     pcache1Fetch,            /* xFetch */
1024     pcache1Unpin,            /* xUnpin */
1025     pcache1Rekey,            /* xRekey */
1026     pcache1Truncate,         /* xTruncate */
1027     pcache1Destroy,          /* xDestroy */
1028     pcache1Shrink            /* xShrink */
1029   };
1030   sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods);
1031 }
1032 
1033 /*
1034 ** Return the size of the header on each page of this PCACHE implementation.
1035 */
1036 int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); }
1037 
1038 /*
1039 ** Return the global mutex used by this PCACHE implementation.  The
1040 ** sqlite3_status() routine needs access to this mutex.
1041 */
1042 sqlite3_mutex *sqlite3Pcache1Mutex(void){
1043   return pcache1.mutex;
1044 }
1045 
1046 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
1047 /*
1048 ** This function is called to free superfluous dynamically allocated memory
1049 ** held by the pager system. Memory in use by any SQLite pager allocated
1050 ** by the current thread may be sqlite3_free()ed.
1051 **
1052 ** nReq is the number of bytes of memory required. Once this much has
1053 ** been released, the function returns. The return value is the total number
1054 ** of bytes of memory released.
1055 */
1056 int sqlite3PcacheReleaseMemory(int nReq){
1057   int nFree = 0;
1058   assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
1059   assert( sqlite3_mutex_notheld(pcache1.mutex) );
1060   if( pcache1.pStart==0 ){
1061     PgHdr1 *p;
1062     pcache1EnterMutex(&pcache1.grp);
1063     while( (nReq<0 || nFree<nReq) && ((p=pcache1.grp.pLruTail)!=0) ){
1064       nFree += pcache1MemSize(p->page.pBuf);
1065 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
1066       nFree += sqlite3MemSize(p);
1067 #endif
1068       assert( p->isPinned==0 );
1069       pcache1PinPage(p);
1070       pcache1RemoveFromHash(p, 1);
1071     }
1072     pcache1LeaveMutex(&pcache1.grp);
1073   }
1074   return nFree;
1075 }
1076 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
1077 
1078 #ifdef SQLITE_TEST
1079 /*
1080 ** This function is used by test procedures to inspect the internal state
1081 ** of the global cache.
1082 */
1083 void sqlite3PcacheStats(
1084   int *pnCurrent,      /* OUT: Total number of pages cached */
1085   int *pnMax,          /* OUT: Global maximum cache size */
1086   int *pnMin,          /* OUT: Sum of PCache1.nMin for purgeable caches */
1087   int *pnRecyclable    /* OUT: Total number of pages available for recycling */
1088 ){
1089   PgHdr1 *p;
1090   int nRecyclable = 0;
1091   for(p=pcache1.grp.pLruHead; p; p=p->pLruNext){
1092     assert( p->isPinned==0 );
1093     nRecyclable++;
1094   }
1095   *pnCurrent = pcache1.grp.nCurrentPage;
1096   *pnMax = (int)pcache1.grp.nMaxPage;
1097   *pnMin = (int)pcache1.grp.nMinPage;
1098   *pnRecyclable = nRecyclable;
1099 }
1100 #endif
1101