1 /* 2 ** 2008 November 05 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file implements the default page cache implementation (the 14 ** sqlite3_pcache interface). It also contains part of the implementation 15 ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features. 16 ** If the default page cache implementation is overridden, then neither of 17 ** these two features are available. 18 ** 19 ** A Page cache line looks like this: 20 ** 21 ** ------------------------------------------------------------- 22 ** | database page content | PgHdr1 | MemPage | PgHdr | 23 ** ------------------------------------------------------------- 24 ** 25 ** The database page content is up front (so that buffer overreads tend to 26 ** flow harmlessly into the PgHdr1, MemPage, and PgHdr extensions). MemPage 27 ** is the extension added by the btree.c module containing information such 28 ** as the database page number and how that database page is used. PgHdr 29 ** is added by the pcache.c layer and contains information used to keep track 30 ** of which pages are "dirty". PgHdr1 is an extension added by this 31 ** module (pcache1.c). The PgHdr1 header is a subclass of sqlite3_pcache_page. 32 ** PgHdr1 contains information needed to look up a page by its page number. 33 ** The superclass sqlite3_pcache_page.pBuf points to the start of the 34 ** database page content and sqlite3_pcache_page.pExtra points to PgHdr. 35 ** 36 ** The size of the extension (MemPage+PgHdr+PgHdr1) can be determined at 37 ** runtime using sqlite3_config(SQLITE_CONFIG_PCACHE_HDRSZ, &size). The 38 ** sizes of the extensions sum to 272 bytes on x64 for 3.8.10, but this 39 ** size can vary according to architecture, compile-time options, and 40 ** SQLite library version number. 41 ** 42 ** Historical note: It used to be that if the SQLITE_PCACHE_SEPARATE_HEADER 43 ** was defined, then the page content would be held in a separate memory 44 ** allocation from the PgHdr1. This was intended to avoid clownshoe memory 45 ** allocations. However, the btree layer needs a small (16-byte) overrun 46 ** area after the page content buffer. The header serves as that overrun 47 ** area. Therefore SQLITE_PCACHE_SEPARATE_HEADER was discontinued to avoid 48 ** any possibility of a memory error. 49 ** 50 ** This module tracks pointers to PgHdr1 objects. Only pcache.c communicates 51 ** with this module. Information is passed back and forth as PgHdr1 pointers. 52 ** 53 ** The pcache.c and pager.c modules deal pointers to PgHdr objects. 54 ** The btree.c module deals with pointers to MemPage objects. 55 ** 56 ** SOURCE OF PAGE CACHE MEMORY: 57 ** 58 ** Memory for a page might come from any of three sources: 59 ** 60 ** (1) The general-purpose memory allocator - sqlite3Malloc() 61 ** (2) Global page-cache memory provided using sqlite3_config() with 62 ** SQLITE_CONFIG_PAGECACHE. 63 ** (3) PCache-local bulk allocation. 64 ** 65 ** The third case is a chunk of heap memory (defaulting to 100 pages worth) 66 ** that is allocated when the page cache is created. The size of the local 67 ** bulk allocation can be adjusted using 68 ** 69 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, (void*)0, 0, N). 70 ** 71 ** If N is positive, then N pages worth of memory are allocated using a single 72 ** sqlite3Malloc() call and that memory is used for the first N pages allocated. 73 ** Or if N is negative, then -1024*N bytes of memory are allocated and used 74 ** for as many pages as can be accomodated. 75 ** 76 ** Only one of (2) or (3) can be used. Once the memory available to (2) or 77 ** (3) is exhausted, subsequent allocations fail over to the general-purpose 78 ** memory allocator (1). 79 ** 80 ** Earlier versions of SQLite used only methods (1) and (2). But experiments 81 ** show that method (3) with N==100 provides about a 5% performance boost for 82 ** common workloads. 83 */ 84 #include "sqliteInt.h" 85 86 typedef struct PCache1 PCache1; 87 typedef struct PgHdr1 PgHdr1; 88 typedef struct PgFreeslot PgFreeslot; 89 typedef struct PGroup PGroup; 90 91 /* 92 ** Each cache entry is represented by an instance of the following 93 ** structure. A buffer of PgHdr1.pCache->szPage bytes is allocated 94 ** directly before this structure and is used to cache the page content. 95 ** 96 ** When reading a corrupt database file, it is possible that SQLite might 97 ** read a few bytes (no more than 16 bytes) past the end of the page buffer. 98 ** It will only read past the end of the page buffer, never write. This 99 ** object is positioned immediately after the page buffer to serve as an 100 ** overrun area, so that overreads are harmless. 101 ** 102 ** Variables isBulkLocal and isAnchor were once type "u8". That works, 103 ** but causes a 2-byte gap in the structure for most architectures (since 104 ** pointers must be either 4 or 8-byte aligned). As this structure is located 105 ** in memory directly after the associated page data, if the database is 106 ** corrupt, code at the b-tree layer may overread the page buffer and 107 ** read part of this structure before the corruption is detected. This 108 ** can cause a valgrind error if the unitialized gap is accessed. Using u16 109 ** ensures there is no such gap, and therefore no bytes of uninitialized 110 ** memory in the structure. 111 ** 112 ** The pLruNext and pLruPrev pointers form a double-linked circular list 113 ** of all pages that are unpinned. The PGroup.lru element (which should be 114 ** the only element on the list with PgHdr1.isAnchor set to 1) forms the 115 ** beginning and the end of the list. 116 */ 117 struct PgHdr1 { 118 sqlite3_pcache_page page; /* Base class. Must be first. pBuf & pExtra */ 119 unsigned int iKey; /* Key value (page number) */ 120 u16 isBulkLocal; /* This page from bulk local storage */ 121 u16 isAnchor; /* This is the PGroup.lru element */ 122 PgHdr1 *pNext; /* Next in hash table chain */ 123 PCache1 *pCache; /* Cache that currently owns this page */ 124 PgHdr1 *pLruNext; /* Next in circular LRU list of unpinned pages */ 125 PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */ 126 /* NB: pLruPrev is only valid if pLruNext!=0 */ 127 }; 128 129 /* 130 ** A page is pinned if it is not on the LRU list. To be "pinned" means 131 ** that the page is in active use and must not be deallocated. 132 */ 133 #define PAGE_IS_PINNED(p) ((p)->pLruNext==0) 134 #define PAGE_IS_UNPINNED(p) ((p)->pLruNext!=0) 135 136 /* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set 137 ** of one or more PCaches that are able to recycle each other's unpinned 138 ** pages when they are under memory pressure. A PGroup is an instance of 139 ** the following object. 140 ** 141 ** This page cache implementation works in one of two modes: 142 ** 143 ** (1) Every PCache is the sole member of its own PGroup. There is 144 ** one PGroup per PCache. 145 ** 146 ** (2) There is a single global PGroup that all PCaches are a member 147 ** of. 148 ** 149 ** Mode 1 uses more memory (since PCache instances are not able to rob 150 ** unused pages from other PCaches) but it also operates without a mutex, 151 ** and is therefore often faster. Mode 2 requires a mutex in order to be 152 ** threadsafe, but recycles pages more efficiently. 153 ** 154 ** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single 155 ** PGroup which is the pcache1.grp global variable and its mutex is 156 ** SQLITE_MUTEX_STATIC_LRU. 157 */ 158 struct PGroup { 159 sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */ 160 unsigned int nMaxPage; /* Sum of nMax for purgeable caches */ 161 unsigned int nMinPage; /* Sum of nMin for purgeable caches */ 162 unsigned int mxPinned; /* nMaxpage + 10 - nMinPage */ 163 unsigned int nPurgeable; /* Number of purgeable pages allocated */ 164 PgHdr1 lru; /* The beginning and end of the LRU list */ 165 }; 166 167 /* Each page cache is an instance of the following object. Every 168 ** open database file (including each in-memory database and each 169 ** temporary or transient database) has a single page cache which 170 ** is an instance of this object. 171 ** 172 ** Pointers to structures of this type are cast and returned as 173 ** opaque sqlite3_pcache* handles. 174 */ 175 struct PCache1 { 176 /* Cache configuration parameters. Page size (szPage) and the purgeable 177 ** flag (bPurgeable) and the pnPurgeable pointer are all set when the 178 ** cache is created and are never changed thereafter. nMax may be 179 ** modified at any time by a call to the pcache1Cachesize() method. 180 ** The PGroup mutex must be held when accessing nMax. 181 */ 182 PGroup *pGroup; /* PGroup this cache belongs to */ 183 unsigned int *pnPurgeable; /* Pointer to pGroup->nPurgeable */ 184 int szPage; /* Size of database content section */ 185 int szExtra; /* sizeof(MemPage)+sizeof(PgHdr) */ 186 int szAlloc; /* Total size of one pcache line */ 187 int bPurgeable; /* True if cache is purgeable */ 188 unsigned int nMin; /* Minimum number of pages reserved */ 189 unsigned int nMax; /* Configured "cache_size" value */ 190 unsigned int n90pct; /* nMax*9/10 */ 191 unsigned int iMaxKey; /* Largest key seen since xTruncate() */ 192 unsigned int nPurgeableDummy; /* pnPurgeable points here when not used*/ 193 194 /* Hash table of all pages. The following variables may only be accessed 195 ** when the accessor is holding the PGroup mutex. 196 */ 197 unsigned int nRecyclable; /* Number of pages in the LRU list */ 198 unsigned int nPage; /* Total number of pages in apHash */ 199 unsigned int nHash; /* Number of slots in apHash[] */ 200 PgHdr1 **apHash; /* Hash table for fast lookup by key */ 201 PgHdr1 *pFree; /* List of unused pcache-local pages */ 202 void *pBulk; /* Bulk memory used by pcache-local */ 203 }; 204 205 /* 206 ** Free slots in the allocator used to divide up the global page cache 207 ** buffer provided using the SQLITE_CONFIG_PAGECACHE mechanism. 208 */ 209 struct PgFreeslot { 210 PgFreeslot *pNext; /* Next free slot */ 211 }; 212 213 /* 214 ** Global data used by this cache. 215 */ 216 static SQLITE_WSD struct PCacheGlobal { 217 PGroup grp; /* The global PGroup for mode (2) */ 218 219 /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The 220 ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all 221 ** fixed at sqlite3_initialize() time and do not require mutex protection. 222 ** The nFreeSlot and pFree values do require mutex protection. 223 */ 224 int isInit; /* True if initialized */ 225 int separateCache; /* Use a new PGroup for each PCache */ 226 int nInitPage; /* Initial bulk allocation size */ 227 int szSlot; /* Size of each free slot */ 228 int nSlot; /* The number of pcache slots */ 229 int nReserve; /* Try to keep nFreeSlot above this */ 230 void *pStart, *pEnd; /* Bounds of global page cache memory */ 231 /* Above requires no mutex. Use mutex below for variable that follow. */ 232 sqlite3_mutex *mutex; /* Mutex for accessing the following: */ 233 PgFreeslot *pFree; /* Free page blocks */ 234 int nFreeSlot; /* Number of unused pcache slots */ 235 /* The following value requires a mutex to change. We skip the mutex on 236 ** reading because (1) most platforms read a 32-bit integer atomically and 237 ** (2) even if an incorrect value is read, no great harm is done since this 238 ** is really just an optimization. */ 239 int bUnderPressure; /* True if low on PAGECACHE memory */ 240 } pcache1_g; 241 242 /* 243 ** All code in this file should access the global structure above via the 244 ** alias "pcache1". This ensures that the WSD emulation is used when 245 ** compiling for systems that do not support real WSD. 246 */ 247 #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g)) 248 249 /* 250 ** Macros to enter and leave the PCache LRU mutex. 251 */ 252 #if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0 253 # define pcache1EnterMutex(X) assert((X)->mutex==0) 254 # define pcache1LeaveMutex(X) assert((X)->mutex==0) 255 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 0 256 #else 257 # define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex) 258 # define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex) 259 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 1 260 #endif 261 262 /******************************************************************************/ 263 /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/ 264 265 266 /* 267 ** This function is called during initialization if a static buffer is 268 ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE 269 ** verb to sqlite3_config(). Parameter pBuf points to an allocation large 270 ** enough to contain 'n' buffers of 'sz' bytes each. 271 ** 272 ** This routine is called from sqlite3_initialize() and so it is guaranteed 273 ** to be serialized already. There is no need for further mutexing. 274 */ 275 void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){ 276 if( pcache1.isInit ){ 277 PgFreeslot *p; 278 if( pBuf==0 ) sz = n = 0; 279 if( n==0 ) sz = 0; 280 sz = ROUNDDOWN8(sz); 281 pcache1.szSlot = sz; 282 pcache1.nSlot = pcache1.nFreeSlot = n; 283 pcache1.nReserve = n>90 ? 10 : (n/10 + 1); 284 pcache1.pStart = pBuf; 285 pcache1.pFree = 0; 286 pcache1.bUnderPressure = 0; 287 while( n-- ){ 288 p = (PgFreeslot*)pBuf; 289 p->pNext = pcache1.pFree; 290 pcache1.pFree = p; 291 pBuf = (void*)&((char*)pBuf)[sz]; 292 } 293 pcache1.pEnd = pBuf; 294 } 295 } 296 297 /* 298 ** Try to initialize the pCache->pFree and pCache->pBulk fields. Return 299 ** true if pCache->pFree ends up containing one or more free pages. 300 */ 301 static int pcache1InitBulk(PCache1 *pCache){ 302 i64 szBulk; 303 char *zBulk; 304 if( pcache1.nInitPage==0 ) return 0; 305 /* Do not bother with a bulk allocation if the cache size very small */ 306 if( pCache->nMax<3 ) return 0; 307 sqlite3BeginBenignMalloc(); 308 if( pcache1.nInitPage>0 ){ 309 szBulk = pCache->szAlloc * (i64)pcache1.nInitPage; 310 }else{ 311 szBulk = -1024 * (i64)pcache1.nInitPage; 312 } 313 if( szBulk > pCache->szAlloc*(i64)pCache->nMax ){ 314 szBulk = pCache->szAlloc*(i64)pCache->nMax; 315 } 316 zBulk = pCache->pBulk = sqlite3Malloc( szBulk ); 317 sqlite3EndBenignMalloc(); 318 if( zBulk ){ 319 int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc; 320 do{ 321 PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage]; 322 pX->page.pBuf = zBulk; 323 pX->page.pExtra = &pX[1]; 324 pX->isBulkLocal = 1; 325 pX->isAnchor = 0; 326 pX->pNext = pCache->pFree; 327 pX->pLruPrev = 0; /* Initializing this saves a valgrind error */ 328 pCache->pFree = pX; 329 zBulk += pCache->szAlloc; 330 }while( --nBulk ); 331 } 332 return pCache->pFree!=0; 333 } 334 335 /* 336 ** Malloc function used within this file to allocate space from the buffer 337 ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no 338 ** such buffer exists or there is no space left in it, this function falls 339 ** back to sqlite3Malloc(). 340 ** 341 ** Multiple threads can run this routine at the same time. Global variables 342 ** in pcache1 need to be protected via mutex. 343 */ 344 static void *pcache1Alloc(int nByte){ 345 void *p = 0; 346 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); 347 if( nByte<=pcache1.szSlot ){ 348 sqlite3_mutex_enter(pcache1.mutex); 349 p = (PgHdr1 *)pcache1.pFree; 350 if( p ){ 351 pcache1.pFree = pcache1.pFree->pNext; 352 pcache1.nFreeSlot--; 353 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; 354 assert( pcache1.nFreeSlot>=0 ); 355 sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte); 356 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1); 357 } 358 sqlite3_mutex_leave(pcache1.mutex); 359 } 360 if( p==0 ){ 361 /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get 362 ** it from sqlite3Malloc instead. 363 */ 364 p = sqlite3Malloc(nByte); 365 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS 366 if( p ){ 367 int sz = sqlite3MallocSize(p); 368 sqlite3_mutex_enter(pcache1.mutex); 369 sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte); 370 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz); 371 sqlite3_mutex_leave(pcache1.mutex); 372 } 373 #endif 374 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); 375 } 376 return p; 377 } 378 379 /* 380 ** Free an allocated buffer obtained from pcache1Alloc(). 381 */ 382 static void pcache1Free(void *p){ 383 if( p==0 ) return; 384 if( SQLITE_WITHIN(p, pcache1.pStart, pcache1.pEnd) ){ 385 PgFreeslot *pSlot; 386 sqlite3_mutex_enter(pcache1.mutex); 387 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1); 388 pSlot = (PgFreeslot*)p; 389 pSlot->pNext = pcache1.pFree; 390 pcache1.pFree = pSlot; 391 pcache1.nFreeSlot++; 392 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; 393 assert( pcache1.nFreeSlot<=pcache1.nSlot ); 394 sqlite3_mutex_leave(pcache1.mutex); 395 }else{ 396 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); 397 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 398 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS 399 { 400 int nFreed = 0; 401 nFreed = sqlite3MallocSize(p); 402 sqlite3_mutex_enter(pcache1.mutex); 403 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_OVERFLOW, nFreed); 404 sqlite3_mutex_leave(pcache1.mutex); 405 } 406 #endif 407 sqlite3_free(p); 408 } 409 } 410 411 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 412 /* 413 ** Return the size of a pcache allocation 414 */ 415 static int pcache1MemSize(void *p){ 416 if( p>=pcache1.pStart && p<pcache1.pEnd ){ 417 return pcache1.szSlot; 418 }else{ 419 int iSize; 420 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); 421 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 422 iSize = sqlite3MallocSize(p); 423 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); 424 return iSize; 425 } 426 } 427 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ 428 429 /* 430 ** Allocate a new page object initially associated with cache pCache. 431 */ 432 static PgHdr1 *pcache1AllocPage(PCache1 *pCache, int benignMalloc){ 433 PgHdr1 *p = 0; 434 void *pPg; 435 436 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 437 if( pCache->pFree || (pCache->nPage==0 && pcache1InitBulk(pCache)) ){ 438 assert( pCache->pFree!=0 ); 439 p = pCache->pFree; 440 pCache->pFree = p->pNext; 441 p->pNext = 0; 442 }else{ 443 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 444 /* The group mutex must be released before pcache1Alloc() is called. This 445 ** is because it might call sqlite3_release_memory(), which assumes that 446 ** this mutex is not held. */ 447 assert( pcache1.separateCache==0 ); 448 assert( pCache->pGroup==&pcache1.grp ); 449 pcache1LeaveMutex(pCache->pGroup); 450 #endif 451 if( benignMalloc ){ sqlite3BeginBenignMalloc(); } 452 pPg = pcache1Alloc(pCache->szAlloc); 453 if( benignMalloc ){ sqlite3EndBenignMalloc(); } 454 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 455 pcache1EnterMutex(pCache->pGroup); 456 #endif 457 if( pPg==0 ) return 0; 458 p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage]; 459 p->page.pBuf = pPg; 460 p->page.pExtra = &p[1]; 461 p->isBulkLocal = 0; 462 p->isAnchor = 0; 463 p->pLruPrev = 0; /* Initializing this saves a valgrind error */ 464 } 465 (*pCache->pnPurgeable)++; 466 return p; 467 } 468 469 /* 470 ** Free a page object allocated by pcache1AllocPage(). 471 */ 472 static void pcache1FreePage(PgHdr1 *p){ 473 PCache1 *pCache; 474 assert( p!=0 ); 475 pCache = p->pCache; 476 assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) ); 477 if( p->isBulkLocal ){ 478 p->pNext = pCache->pFree; 479 pCache->pFree = p; 480 }else{ 481 pcache1Free(p->page.pBuf); 482 } 483 (*pCache->pnPurgeable)--; 484 } 485 486 /* 487 ** Malloc function used by SQLite to obtain space from the buffer configured 488 ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer 489 ** exists, this function falls back to sqlite3Malloc(). 490 */ 491 void *sqlite3PageMalloc(int sz){ 492 assert( sz<=65536+8 ); /* These allocations are never very large */ 493 return pcache1Alloc(sz); 494 } 495 496 /* 497 ** Free an allocated buffer obtained from sqlite3PageMalloc(). 498 */ 499 void sqlite3PageFree(void *p){ 500 pcache1Free(p); 501 } 502 503 504 /* 505 ** Return true if it desirable to avoid allocating a new page cache 506 ** entry. 507 ** 508 ** If memory was allocated specifically to the page cache using 509 ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then 510 ** it is desirable to avoid allocating a new page cache entry because 511 ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient 512 ** for all page cache needs and we should not need to spill the 513 ** allocation onto the heap. 514 ** 515 ** Or, the heap is used for all page cache memory but the heap is 516 ** under memory pressure, then again it is desirable to avoid 517 ** allocating a new page cache entry in order to avoid stressing 518 ** the heap even further. 519 */ 520 static int pcache1UnderMemoryPressure(PCache1 *pCache){ 521 if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){ 522 return pcache1.bUnderPressure; 523 }else{ 524 return sqlite3HeapNearlyFull(); 525 } 526 } 527 528 /******************************************************************************/ 529 /******** General Implementation Functions ************************************/ 530 531 /* 532 ** This function is used to resize the hash table used by the cache passed 533 ** as the first argument. 534 ** 535 ** The PCache mutex must be held when this function is called. 536 */ 537 static void pcache1ResizeHash(PCache1 *p){ 538 PgHdr1 **apNew; 539 unsigned int nNew; 540 unsigned int i; 541 542 assert( sqlite3_mutex_held(p->pGroup->mutex) ); 543 544 nNew = p->nHash*2; 545 if( nNew<256 ){ 546 nNew = 256; 547 } 548 549 pcache1LeaveMutex(p->pGroup); 550 if( p->nHash ){ sqlite3BeginBenignMalloc(); } 551 apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew); 552 if( p->nHash ){ sqlite3EndBenignMalloc(); } 553 pcache1EnterMutex(p->pGroup); 554 if( apNew ){ 555 for(i=0; i<p->nHash; i++){ 556 PgHdr1 *pPage; 557 PgHdr1 *pNext = p->apHash[i]; 558 while( (pPage = pNext)!=0 ){ 559 unsigned int h = pPage->iKey % nNew; 560 pNext = pPage->pNext; 561 pPage->pNext = apNew[h]; 562 apNew[h] = pPage; 563 } 564 } 565 sqlite3_free(p->apHash); 566 p->apHash = apNew; 567 p->nHash = nNew; 568 } 569 } 570 571 /* 572 ** This function is used internally to remove the page pPage from the 573 ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup 574 ** LRU list, then this function is a no-op. 575 ** 576 ** The PGroup mutex must be held when this function is called. 577 */ 578 static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){ 579 assert( pPage!=0 ); 580 assert( PAGE_IS_UNPINNED(pPage) ); 581 assert( pPage->pLruNext ); 582 assert( pPage->pLruPrev ); 583 assert( sqlite3_mutex_held(pPage->pCache->pGroup->mutex) ); 584 pPage->pLruPrev->pLruNext = pPage->pLruNext; 585 pPage->pLruNext->pLruPrev = pPage->pLruPrev; 586 pPage->pLruNext = 0; 587 /* pPage->pLruPrev = 0; 588 ** No need to clear pLruPrev as it is never accessed if pLruNext is 0 */ 589 assert( pPage->isAnchor==0 ); 590 assert( pPage->pCache->pGroup->lru.isAnchor==1 ); 591 pPage->pCache->nRecyclable--; 592 return pPage; 593 } 594 595 596 /* 597 ** Remove the page supplied as an argument from the hash table 598 ** (PCache1.apHash structure) that it is currently stored in. 599 ** Also free the page if freePage is true. 600 ** 601 ** The PGroup mutex must be held when this function is called. 602 */ 603 static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){ 604 unsigned int h; 605 PCache1 *pCache = pPage->pCache; 606 PgHdr1 **pp; 607 608 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 609 h = pPage->iKey % pCache->nHash; 610 for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext); 611 *pp = (*pp)->pNext; 612 613 pCache->nPage--; 614 if( freeFlag ) pcache1FreePage(pPage); 615 } 616 617 /* 618 ** If there are currently more than nMaxPage pages allocated, try 619 ** to recycle pages to reduce the number allocated to nMaxPage. 620 */ 621 static void pcache1EnforceMaxPage(PCache1 *pCache){ 622 PGroup *pGroup = pCache->pGroup; 623 PgHdr1 *p; 624 assert( sqlite3_mutex_held(pGroup->mutex) ); 625 while( pGroup->nPurgeable>pGroup->nMaxPage 626 && (p=pGroup->lru.pLruPrev)->isAnchor==0 627 ){ 628 assert( p->pCache->pGroup==pGroup ); 629 assert( PAGE_IS_UNPINNED(p) ); 630 pcache1PinPage(p); 631 pcache1RemoveFromHash(p, 1); 632 } 633 if( pCache->nPage==0 && pCache->pBulk ){ 634 sqlite3_free(pCache->pBulk); 635 pCache->pBulk = pCache->pFree = 0; 636 } 637 } 638 639 /* 640 ** Discard all pages from cache pCache with a page number (key value) 641 ** greater than or equal to iLimit. Any pinned pages that meet this 642 ** criteria are unpinned before they are discarded. 643 ** 644 ** The PCache mutex must be held when this function is called. 645 */ 646 static void pcache1TruncateUnsafe( 647 PCache1 *pCache, /* The cache to truncate */ 648 unsigned int iLimit /* Drop pages with this pgno or larger */ 649 ){ 650 TESTONLY( int nPage = 0; ) /* To assert pCache->nPage is correct */ 651 unsigned int h, iStop; 652 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 653 assert( pCache->iMaxKey >= iLimit ); 654 assert( pCache->nHash > 0 ); 655 if( pCache->iMaxKey - iLimit < pCache->nHash ){ 656 /* If we are just shaving the last few pages off the end of the 657 ** cache, then there is no point in scanning the entire hash table. 658 ** Only scan those hash slots that might contain pages that need to 659 ** be removed. */ 660 h = iLimit % pCache->nHash; 661 iStop = pCache->iMaxKey % pCache->nHash; 662 TESTONLY( nPage = -10; ) /* Disable the pCache->nPage validity check */ 663 }else{ 664 /* This is the general case where many pages are being removed. 665 ** It is necessary to scan the entire hash table */ 666 h = pCache->nHash/2; 667 iStop = h - 1; 668 } 669 for(;;){ 670 PgHdr1 **pp; 671 PgHdr1 *pPage; 672 assert( h<pCache->nHash ); 673 pp = &pCache->apHash[h]; 674 while( (pPage = *pp)!=0 ){ 675 if( pPage->iKey>=iLimit ){ 676 pCache->nPage--; 677 *pp = pPage->pNext; 678 if( PAGE_IS_UNPINNED(pPage) ) pcache1PinPage(pPage); 679 pcache1FreePage(pPage); 680 }else{ 681 pp = &pPage->pNext; 682 TESTONLY( if( nPage>=0 ) nPage++; ) 683 } 684 } 685 if( h==iStop ) break; 686 h = (h+1) % pCache->nHash; 687 } 688 assert( nPage<0 || pCache->nPage==(unsigned)nPage ); 689 } 690 691 /******************************************************************************/ 692 /******** sqlite3_pcache Methods **********************************************/ 693 694 /* 695 ** Implementation of the sqlite3_pcache.xInit method. 696 */ 697 static int pcache1Init(void *NotUsed){ 698 UNUSED_PARAMETER(NotUsed); 699 assert( pcache1.isInit==0 ); 700 memset(&pcache1, 0, sizeof(pcache1)); 701 702 703 /* 704 ** The pcache1.separateCache variable is true if each PCache has its own 705 ** private PGroup (mode-1). pcache1.separateCache is false if the single 706 ** PGroup in pcache1.grp is used for all page caches (mode-2). 707 ** 708 ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT 709 ** 710 ** * Use a unified cache in single-threaded applications that have 711 ** configured a start-time buffer for use as page-cache memory using 712 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, pBuf, sz, N) with non-NULL 713 ** pBuf argument. 714 ** 715 ** * Otherwise use separate caches (mode-1) 716 */ 717 #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) 718 pcache1.separateCache = 0; 719 #elif SQLITE_THREADSAFE 720 pcache1.separateCache = sqlite3GlobalConfig.pPage==0 721 || sqlite3GlobalConfig.bCoreMutex>0; 722 #else 723 pcache1.separateCache = sqlite3GlobalConfig.pPage==0; 724 #endif 725 726 #if SQLITE_THREADSAFE 727 if( sqlite3GlobalConfig.bCoreMutex ){ 728 pcache1.grp.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU); 729 pcache1.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PMEM); 730 } 731 #endif 732 if( pcache1.separateCache 733 && sqlite3GlobalConfig.nPage!=0 734 && sqlite3GlobalConfig.pPage==0 735 ){ 736 pcache1.nInitPage = sqlite3GlobalConfig.nPage; 737 }else{ 738 pcache1.nInitPage = 0; 739 } 740 pcache1.grp.mxPinned = 10; 741 pcache1.isInit = 1; 742 return SQLITE_OK; 743 } 744 745 /* 746 ** Implementation of the sqlite3_pcache.xShutdown method. 747 ** Note that the static mutex allocated in xInit does 748 ** not need to be freed. 749 */ 750 static void pcache1Shutdown(void *NotUsed){ 751 UNUSED_PARAMETER(NotUsed); 752 assert( pcache1.isInit!=0 ); 753 memset(&pcache1, 0, sizeof(pcache1)); 754 } 755 756 /* forward declaration */ 757 static void pcache1Destroy(sqlite3_pcache *p); 758 759 /* 760 ** Implementation of the sqlite3_pcache.xCreate method. 761 ** 762 ** Allocate a new cache. 763 */ 764 static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){ 765 PCache1 *pCache; /* The newly created page cache */ 766 PGroup *pGroup; /* The group the new page cache will belong to */ 767 int sz; /* Bytes of memory required to allocate the new cache */ 768 769 assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 ); 770 assert( szExtra < 300 ); 771 772 sz = sizeof(PCache1) + sizeof(PGroup)*pcache1.separateCache; 773 pCache = (PCache1 *)sqlite3MallocZero(sz); 774 if( pCache ){ 775 if( pcache1.separateCache ){ 776 pGroup = (PGroup*)&pCache[1]; 777 pGroup->mxPinned = 10; 778 }else{ 779 pGroup = &pcache1.grp; 780 } 781 pcache1EnterMutex(pGroup); 782 if( pGroup->lru.isAnchor==0 ){ 783 pGroup->lru.isAnchor = 1; 784 pGroup->lru.pLruPrev = pGroup->lru.pLruNext = &pGroup->lru; 785 } 786 pCache->pGroup = pGroup; 787 pCache->szPage = szPage; 788 pCache->szExtra = szExtra; 789 pCache->szAlloc = szPage + szExtra + ROUND8(sizeof(PgHdr1)); 790 pCache->bPurgeable = (bPurgeable ? 1 : 0); 791 pcache1ResizeHash(pCache); 792 if( bPurgeable ){ 793 pCache->nMin = 10; 794 pGroup->nMinPage += pCache->nMin; 795 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 796 pCache->pnPurgeable = &pGroup->nPurgeable; 797 }else{ 798 pCache->pnPurgeable = &pCache->nPurgeableDummy; 799 } 800 pcache1LeaveMutex(pGroup); 801 if( pCache->nHash==0 ){ 802 pcache1Destroy((sqlite3_pcache*)pCache); 803 pCache = 0; 804 } 805 } 806 return (sqlite3_pcache *)pCache; 807 } 808 809 /* 810 ** Implementation of the sqlite3_pcache.xCachesize method. 811 ** 812 ** Configure the cache_size limit for a cache. 813 */ 814 static void pcache1Cachesize(sqlite3_pcache *p, int nMax){ 815 PCache1 *pCache = (PCache1 *)p; 816 u32 n; 817 assert( nMax>=0 ); 818 if( pCache->bPurgeable ){ 819 PGroup *pGroup = pCache->pGroup; 820 pcache1EnterMutex(pGroup); 821 n = (u32)nMax; 822 if( n > 0x7fff0000 - pGroup->nMaxPage + pCache->nMax ){ 823 n = 0x7fff0000 - pGroup->nMaxPage + pCache->nMax; 824 } 825 pGroup->nMaxPage += (n - pCache->nMax); 826 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 827 pCache->nMax = n; 828 pCache->n90pct = pCache->nMax*9/10; 829 pcache1EnforceMaxPage(pCache); 830 pcache1LeaveMutex(pGroup); 831 } 832 } 833 834 /* 835 ** Implementation of the sqlite3_pcache.xShrink method. 836 ** 837 ** Free up as much memory as possible. 838 */ 839 static void pcache1Shrink(sqlite3_pcache *p){ 840 PCache1 *pCache = (PCache1*)p; 841 if( pCache->bPurgeable ){ 842 PGroup *pGroup = pCache->pGroup; 843 unsigned int savedMaxPage; 844 pcache1EnterMutex(pGroup); 845 savedMaxPage = pGroup->nMaxPage; 846 pGroup->nMaxPage = 0; 847 pcache1EnforceMaxPage(pCache); 848 pGroup->nMaxPage = savedMaxPage; 849 pcache1LeaveMutex(pGroup); 850 } 851 } 852 853 /* 854 ** Implementation of the sqlite3_pcache.xPagecount method. 855 */ 856 static int pcache1Pagecount(sqlite3_pcache *p){ 857 int n; 858 PCache1 *pCache = (PCache1*)p; 859 pcache1EnterMutex(pCache->pGroup); 860 n = pCache->nPage; 861 pcache1LeaveMutex(pCache->pGroup); 862 return n; 863 } 864 865 866 /* 867 ** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described 868 ** in the header of the pcache1Fetch() procedure. 869 ** 870 ** This steps are broken out into a separate procedure because they are 871 ** usually not needed, and by avoiding the stack initialization required 872 ** for these steps, the main pcache1Fetch() procedure can run faster. 873 */ 874 static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2( 875 PCache1 *pCache, 876 unsigned int iKey, 877 int createFlag 878 ){ 879 unsigned int nPinned; 880 PGroup *pGroup = pCache->pGroup; 881 PgHdr1 *pPage = 0; 882 883 /* Step 3: Abort if createFlag is 1 but the cache is nearly full */ 884 assert( pCache->nPage >= pCache->nRecyclable ); 885 nPinned = pCache->nPage - pCache->nRecyclable; 886 assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage ); 887 assert( pCache->n90pct == pCache->nMax*9/10 ); 888 if( createFlag==1 && ( 889 nPinned>=pGroup->mxPinned 890 || nPinned>=pCache->n90pct 891 || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned) 892 )){ 893 return 0; 894 } 895 896 if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache); 897 assert( pCache->nHash>0 && pCache->apHash ); 898 899 /* Step 4. Try to recycle a page. */ 900 if( pCache->bPurgeable 901 && !pGroup->lru.pLruPrev->isAnchor 902 && ((pCache->nPage+1>=pCache->nMax) || pcache1UnderMemoryPressure(pCache)) 903 ){ 904 PCache1 *pOther; 905 pPage = pGroup->lru.pLruPrev; 906 assert( PAGE_IS_UNPINNED(pPage) ); 907 pcache1RemoveFromHash(pPage, 0); 908 pcache1PinPage(pPage); 909 pOther = pPage->pCache; 910 if( pOther->szAlloc != pCache->szAlloc ){ 911 pcache1FreePage(pPage); 912 pPage = 0; 913 }else{ 914 pGroup->nPurgeable -= (pOther->bPurgeable - pCache->bPurgeable); 915 } 916 } 917 918 /* Step 5. If a usable page buffer has still not been found, 919 ** attempt to allocate a new one. 920 */ 921 if( !pPage ){ 922 pPage = pcache1AllocPage(pCache, createFlag==1); 923 } 924 925 if( pPage ){ 926 unsigned int h = iKey % pCache->nHash; 927 pCache->nPage++; 928 pPage->iKey = iKey; 929 pPage->pNext = pCache->apHash[h]; 930 pPage->pCache = pCache; 931 pPage->pLruNext = 0; 932 /* pPage->pLruPrev = 0; 933 ** No need to clear pLruPrev since it is not accessed when pLruNext==0 */ 934 *(void **)pPage->page.pExtra = 0; 935 pCache->apHash[h] = pPage; 936 if( iKey>pCache->iMaxKey ){ 937 pCache->iMaxKey = iKey; 938 } 939 } 940 return pPage; 941 } 942 943 /* 944 ** Implementation of the sqlite3_pcache.xFetch method. 945 ** 946 ** Fetch a page by key value. 947 ** 948 ** Whether or not a new page may be allocated by this function depends on 949 ** the value of the createFlag argument. 0 means do not allocate a new 950 ** page. 1 means allocate a new page if space is easily available. 2 951 ** means to try really hard to allocate a new page. 952 ** 953 ** For a non-purgeable cache (a cache used as the storage for an in-memory 954 ** database) there is really no difference between createFlag 1 and 2. So 955 ** the calling function (pcache.c) will never have a createFlag of 1 on 956 ** a non-purgeable cache. 957 ** 958 ** There are three different approaches to obtaining space for a page, 959 ** depending on the value of parameter createFlag (which may be 0, 1 or 2). 960 ** 961 ** 1. Regardless of the value of createFlag, the cache is searched for a 962 ** copy of the requested page. If one is found, it is returned. 963 ** 964 ** 2. If createFlag==0 and the page is not already in the cache, NULL is 965 ** returned. 966 ** 967 ** 3. If createFlag is 1, and the page is not already in the cache, then 968 ** return NULL (do not allocate a new page) if any of the following 969 ** conditions are true: 970 ** 971 ** (a) the number of pages pinned by the cache is greater than 972 ** PCache1.nMax, or 973 ** 974 ** (b) the number of pages pinned by the cache is greater than 975 ** the sum of nMax for all purgeable caches, less the sum of 976 ** nMin for all other purgeable caches, or 977 ** 978 ** 4. If none of the first three conditions apply and the cache is marked 979 ** as purgeable, and if one of the following is true: 980 ** 981 ** (a) The number of pages allocated for the cache is already 982 ** PCache1.nMax, or 983 ** 984 ** (b) The number of pages allocated for all purgeable caches is 985 ** already equal to or greater than the sum of nMax for all 986 ** purgeable caches, 987 ** 988 ** (c) The system is under memory pressure and wants to avoid 989 ** unnecessary pages cache entry allocations 990 ** 991 ** then attempt to recycle a page from the LRU list. If it is the right 992 ** size, return the recycled buffer. Otherwise, free the buffer and 993 ** proceed to step 5. 994 ** 995 ** 5. Otherwise, allocate and return a new page buffer. 996 ** 997 ** There are two versions of this routine. pcache1FetchWithMutex() is 998 ** the general case. pcache1FetchNoMutex() is a faster implementation for 999 ** the common case where pGroup->mutex is NULL. The pcache1Fetch() wrapper 1000 ** invokes the appropriate routine. 1001 */ 1002 static PgHdr1 *pcache1FetchNoMutex( 1003 sqlite3_pcache *p, 1004 unsigned int iKey, 1005 int createFlag 1006 ){ 1007 PCache1 *pCache = (PCache1 *)p; 1008 PgHdr1 *pPage = 0; 1009 1010 /* Step 1: Search the hash table for an existing entry. */ 1011 pPage = pCache->apHash[iKey % pCache->nHash]; 1012 while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; } 1013 1014 /* Step 2: If the page was found in the hash table, then return it. 1015 ** If the page was not in the hash table and createFlag is 0, abort. 1016 ** Otherwise (page not in hash and createFlag!=0) continue with 1017 ** subsequent steps to try to create the page. */ 1018 if( pPage ){ 1019 if( PAGE_IS_UNPINNED(pPage) ){ 1020 return pcache1PinPage(pPage); 1021 }else{ 1022 return pPage; 1023 } 1024 }else if( createFlag ){ 1025 /* Steps 3, 4, and 5 implemented by this subroutine */ 1026 return pcache1FetchStage2(pCache, iKey, createFlag); 1027 }else{ 1028 return 0; 1029 } 1030 } 1031 #if PCACHE1_MIGHT_USE_GROUP_MUTEX 1032 static PgHdr1 *pcache1FetchWithMutex( 1033 sqlite3_pcache *p, 1034 unsigned int iKey, 1035 int createFlag 1036 ){ 1037 PCache1 *pCache = (PCache1 *)p; 1038 PgHdr1 *pPage; 1039 1040 pcache1EnterMutex(pCache->pGroup); 1041 pPage = pcache1FetchNoMutex(p, iKey, createFlag); 1042 assert( pPage==0 || pCache->iMaxKey>=iKey ); 1043 pcache1LeaveMutex(pCache->pGroup); 1044 return pPage; 1045 } 1046 #endif 1047 static sqlite3_pcache_page *pcache1Fetch( 1048 sqlite3_pcache *p, 1049 unsigned int iKey, 1050 int createFlag 1051 ){ 1052 #if PCACHE1_MIGHT_USE_GROUP_MUTEX || defined(SQLITE_DEBUG) 1053 PCache1 *pCache = (PCache1 *)p; 1054 #endif 1055 1056 assert( offsetof(PgHdr1,page)==0 ); 1057 assert( pCache->bPurgeable || createFlag!=1 ); 1058 assert( pCache->bPurgeable || pCache->nMin==0 ); 1059 assert( pCache->bPurgeable==0 || pCache->nMin==10 ); 1060 assert( pCache->nMin==0 || pCache->bPurgeable ); 1061 assert( pCache->nHash>0 ); 1062 #if PCACHE1_MIGHT_USE_GROUP_MUTEX 1063 if( pCache->pGroup->mutex ){ 1064 return (sqlite3_pcache_page*)pcache1FetchWithMutex(p, iKey, createFlag); 1065 }else 1066 #endif 1067 { 1068 return (sqlite3_pcache_page*)pcache1FetchNoMutex(p, iKey, createFlag); 1069 } 1070 } 1071 1072 1073 /* 1074 ** Implementation of the sqlite3_pcache.xUnpin method. 1075 ** 1076 ** Mark a page as unpinned (eligible for asynchronous recycling). 1077 */ 1078 static void pcache1Unpin( 1079 sqlite3_pcache *p, 1080 sqlite3_pcache_page *pPg, 1081 int reuseUnlikely 1082 ){ 1083 PCache1 *pCache = (PCache1 *)p; 1084 PgHdr1 *pPage = (PgHdr1 *)pPg; 1085 PGroup *pGroup = pCache->pGroup; 1086 1087 assert( pPage->pCache==pCache ); 1088 pcache1EnterMutex(pGroup); 1089 1090 /* It is an error to call this function if the page is already 1091 ** part of the PGroup LRU list. 1092 */ 1093 assert( pPage->pLruNext==0 ); 1094 assert( PAGE_IS_PINNED(pPage) ); 1095 1096 if( reuseUnlikely || pGroup->nPurgeable>pGroup->nMaxPage ){ 1097 pcache1RemoveFromHash(pPage, 1); 1098 }else{ 1099 /* Add the page to the PGroup LRU list. */ 1100 PgHdr1 **ppFirst = &pGroup->lru.pLruNext; 1101 pPage->pLruPrev = &pGroup->lru; 1102 (pPage->pLruNext = *ppFirst)->pLruPrev = pPage; 1103 *ppFirst = pPage; 1104 pCache->nRecyclable++; 1105 } 1106 1107 pcache1LeaveMutex(pCache->pGroup); 1108 } 1109 1110 /* 1111 ** Implementation of the sqlite3_pcache.xRekey method. 1112 */ 1113 static void pcache1Rekey( 1114 sqlite3_pcache *p, 1115 sqlite3_pcache_page *pPg, 1116 unsigned int iOld, 1117 unsigned int iNew 1118 ){ 1119 PCache1 *pCache = (PCache1 *)p; 1120 PgHdr1 *pPage = (PgHdr1 *)pPg; 1121 PgHdr1 **pp; 1122 unsigned int hOld, hNew; 1123 assert( pPage->iKey==iOld ); 1124 assert( pPage->pCache==pCache ); 1125 assert( iOld!=iNew ); /* The page number really is changing */ 1126 1127 pcache1EnterMutex(pCache->pGroup); 1128 1129 assert( pcache1FetchNoMutex(p, iOld, 0)==pPage ); /* pPg really is iOld */ 1130 hOld = iOld%pCache->nHash; 1131 pp = &pCache->apHash[hOld]; 1132 while( (*pp)!=pPage ){ 1133 pp = &(*pp)->pNext; 1134 } 1135 *pp = pPage->pNext; 1136 1137 assert( pcache1FetchNoMutex(p, iNew, 0)==0 ); /* iNew not in cache */ 1138 hNew = iNew%pCache->nHash; 1139 pPage->iKey = iNew; 1140 pPage->pNext = pCache->apHash[hNew]; 1141 pCache->apHash[hNew] = pPage; 1142 if( iNew>pCache->iMaxKey ){ 1143 pCache->iMaxKey = iNew; 1144 } 1145 1146 pcache1LeaveMutex(pCache->pGroup); 1147 } 1148 1149 /* 1150 ** Implementation of the sqlite3_pcache.xTruncate method. 1151 ** 1152 ** Discard all unpinned pages in the cache with a page number equal to 1153 ** or greater than parameter iLimit. Any pinned pages with a page number 1154 ** equal to or greater than iLimit are implicitly unpinned. 1155 */ 1156 static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){ 1157 PCache1 *pCache = (PCache1 *)p; 1158 pcache1EnterMutex(pCache->pGroup); 1159 if( iLimit<=pCache->iMaxKey ){ 1160 pcache1TruncateUnsafe(pCache, iLimit); 1161 pCache->iMaxKey = iLimit-1; 1162 } 1163 pcache1LeaveMutex(pCache->pGroup); 1164 } 1165 1166 /* 1167 ** Implementation of the sqlite3_pcache.xDestroy method. 1168 ** 1169 ** Destroy a cache allocated using pcache1Create(). 1170 */ 1171 static void pcache1Destroy(sqlite3_pcache *p){ 1172 PCache1 *pCache = (PCache1 *)p; 1173 PGroup *pGroup = pCache->pGroup; 1174 assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) ); 1175 pcache1EnterMutex(pGroup); 1176 if( pCache->nPage ) pcache1TruncateUnsafe(pCache, 0); 1177 assert( pGroup->nMaxPage >= pCache->nMax ); 1178 pGroup->nMaxPage -= pCache->nMax; 1179 assert( pGroup->nMinPage >= pCache->nMin ); 1180 pGroup->nMinPage -= pCache->nMin; 1181 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 1182 pcache1EnforceMaxPage(pCache); 1183 pcache1LeaveMutex(pGroup); 1184 sqlite3_free(pCache->pBulk); 1185 sqlite3_free(pCache->apHash); 1186 sqlite3_free(pCache); 1187 } 1188 1189 /* 1190 ** This function is called during initialization (sqlite3_initialize()) to 1191 ** install the default pluggable cache module, assuming the user has not 1192 ** already provided an alternative. 1193 */ 1194 void sqlite3PCacheSetDefault(void){ 1195 static const sqlite3_pcache_methods2 defaultMethods = { 1196 1, /* iVersion */ 1197 0, /* pArg */ 1198 pcache1Init, /* xInit */ 1199 pcache1Shutdown, /* xShutdown */ 1200 pcache1Create, /* xCreate */ 1201 pcache1Cachesize, /* xCachesize */ 1202 pcache1Pagecount, /* xPagecount */ 1203 pcache1Fetch, /* xFetch */ 1204 pcache1Unpin, /* xUnpin */ 1205 pcache1Rekey, /* xRekey */ 1206 pcache1Truncate, /* xTruncate */ 1207 pcache1Destroy, /* xDestroy */ 1208 pcache1Shrink /* xShrink */ 1209 }; 1210 sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods); 1211 } 1212 1213 /* 1214 ** Return the size of the header on each page of this PCACHE implementation. 1215 */ 1216 int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); } 1217 1218 /* 1219 ** Return the global mutex used by this PCACHE implementation. The 1220 ** sqlite3_status() routine needs access to this mutex. 1221 */ 1222 sqlite3_mutex *sqlite3Pcache1Mutex(void){ 1223 return pcache1.mutex; 1224 } 1225 1226 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 1227 /* 1228 ** This function is called to free superfluous dynamically allocated memory 1229 ** held by the pager system. Memory in use by any SQLite pager allocated 1230 ** by the current thread may be sqlite3_free()ed. 1231 ** 1232 ** nReq is the number of bytes of memory required. Once this much has 1233 ** been released, the function returns. The return value is the total number 1234 ** of bytes of memory released. 1235 */ 1236 int sqlite3PcacheReleaseMemory(int nReq){ 1237 int nFree = 0; 1238 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); 1239 assert( sqlite3_mutex_notheld(pcache1.mutex) ); 1240 if( sqlite3GlobalConfig.pPage==0 ){ 1241 PgHdr1 *p; 1242 pcache1EnterMutex(&pcache1.grp); 1243 while( (nReq<0 || nFree<nReq) 1244 && (p=pcache1.grp.lru.pLruPrev)!=0 1245 && p->isAnchor==0 1246 ){ 1247 nFree += pcache1MemSize(p->page.pBuf); 1248 assert( PAGE_IS_UNPINNED(p) ); 1249 pcache1PinPage(p); 1250 pcache1RemoveFromHash(p, 1); 1251 } 1252 pcache1LeaveMutex(&pcache1.grp); 1253 } 1254 return nFree; 1255 } 1256 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ 1257 1258 #ifdef SQLITE_TEST 1259 /* 1260 ** This function is used by test procedures to inspect the internal state 1261 ** of the global cache. 1262 */ 1263 void sqlite3PcacheStats( 1264 int *pnCurrent, /* OUT: Total number of pages cached */ 1265 int *pnMax, /* OUT: Global maximum cache size */ 1266 int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */ 1267 int *pnRecyclable /* OUT: Total number of pages available for recycling */ 1268 ){ 1269 PgHdr1 *p; 1270 int nRecyclable = 0; 1271 for(p=pcache1.grp.lru.pLruNext; p && !p->isAnchor; p=p->pLruNext){ 1272 assert( PAGE_IS_UNPINNED(p) ); 1273 nRecyclable++; 1274 } 1275 *pnCurrent = pcache1.grp.nPurgeable; 1276 *pnMax = (int)pcache1.grp.nMaxPage; 1277 *pnMin = (int)pcache1.grp.nMinPage; 1278 *pnRecyclable = nRecyclable; 1279 } 1280 #endif 1281