xref: /sqlite-3.40.0/src/pcache1.c (revision 3e4e697d)
1 /*
2 ** 2008 November 05
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file implements the default page cache implementation (the
14 ** sqlite3_pcache interface). It also contains part of the implementation
15 ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features.
16 ** If the default page cache implementation is overridden, then neither of
17 ** these two features are available.
18 **
19 ** A Page cache line looks like this:
20 **
21 **  -------------------------------------------------------------
22 **  |  database page content   |  PgHdr1  |  MemPage  |  PgHdr  |
23 **  -------------------------------------------------------------
24 **
25 ** The database page content is up front (so that buffer overreads tend to
26 ** flow harmlessly into the PgHdr1, MemPage, and PgHdr extensions).   MemPage
27 ** is the extension added by the btree.c module containing information such
28 ** as the database page number and how that database page is used.  PgHdr
29 ** is added by the pcache.c layer and contains information used to keep track
30 ** of which pages are "dirty".  PgHdr1 is an extension added by this
31 ** module (pcache1.c).  The PgHdr1 header is a subclass of sqlite3_pcache_page.
32 ** PgHdr1 contains information needed to look up a page by its page number.
33 ** The superclass sqlite3_pcache_page.pBuf points to the start of the
34 ** database page content and sqlite3_pcache_page.pExtra points to PgHdr.
35 **
36 ** The size of the extension (MemPage+PgHdr+PgHdr1) can be determined at
37 ** runtime using sqlite3_config(SQLITE_CONFIG_PCACHE_HDRSZ, &size).  The
38 ** sizes of the extensions sum to 272 bytes on x64 for 3.8.10, but this
39 ** size can vary according to architecture, compile-time options, and
40 ** SQLite library version number.
41 **
42 ** Historical note:  It used to be that if the SQLITE_PCACHE_SEPARATE_HEADER
43 ** was defined, then the page content would be held in a separate memory
44 ** allocation from the PgHdr1.  This was intended to avoid clownshoe memory
45 ** allocations.  However, the btree layer needs a small (16-byte) overrun
46 ** area after the page content buffer.  The header serves as that overrun
47 ** area.  Therefore SQLITE_PCACHE_SEPARATE_HEADER was discontinued to avoid
48 ** any possibility of a memory error.
49 **
50 ** This module tracks pointers to PgHdr1 objects.  Only pcache.c communicates
51 ** with this module.  Information is passed back and forth as PgHdr1 pointers.
52 **
53 ** The pcache.c and pager.c modules deal pointers to PgHdr objects.
54 ** The btree.c module deals with pointers to MemPage objects.
55 **
56 ** SOURCE OF PAGE CACHE MEMORY:
57 **
58 ** Memory for a page might come from any of three sources:
59 **
60 **    (1)  The general-purpose memory allocator - sqlite3Malloc()
61 **    (2)  Global page-cache memory provided using sqlite3_config() with
62 **         SQLITE_CONFIG_PAGECACHE.
63 **    (3)  PCache-local bulk allocation.
64 **
65 ** The third case is a chunk of heap memory (defaulting to 100 pages worth)
66 ** that is allocated when the page cache is created.  The size of the local
67 ** bulk allocation can be adjusted using
68 **
69 **     sqlite3_config(SQLITE_CONFIG_PAGECACHE, (void*)0, 0, N).
70 **
71 ** If N is positive, then N pages worth of memory are allocated using a single
72 ** sqlite3Malloc() call and that memory is used for the first N pages allocated.
73 ** Or if N is negative, then -1024*N bytes of memory are allocated and used
74 ** for as many pages as can be accomodated.
75 **
76 ** Only one of (2) or (3) can be used.  Once the memory available to (2) or
77 ** (3) is exhausted, subsequent allocations fail over to the general-purpose
78 ** memory allocator (1).
79 **
80 ** Earlier versions of SQLite used only methods (1) and (2).  But experiments
81 ** show that method (3) with N==100 provides about a 5% performance boost for
82 ** common workloads.
83 */
84 #include "sqliteInt.h"
85 
86 typedef struct PCache1 PCache1;
87 typedef struct PgHdr1 PgHdr1;
88 typedef struct PgFreeslot PgFreeslot;
89 typedef struct PGroup PGroup;
90 
91 /*
92 ** Each cache entry is represented by an instance of the following
93 ** structure. A buffer of PgHdr1.pCache->szPage bytes is allocated
94 ** directly before this structure and is used to cache the page content.
95 **
96 ** When reading a corrupt database file, it is possible that SQLite might
97 ** read a few bytes (no more than 16 bytes) past the end of the page buffer.
98 ** It will only read past the end of the page buffer, never write.  This
99 ** object is positioned immediately after the page buffer to serve as an
100 ** overrun area, so that overreads are harmless.
101 **
102 ** Variables isBulkLocal and isAnchor were once type "u8". That works,
103 ** but causes a 2-byte gap in the structure for most architectures (since
104 ** pointers must be either 4 or 8-byte aligned). As this structure is located
105 ** in memory directly after the associated page data, if the database is
106 ** corrupt, code at the b-tree layer may overread the page buffer and
107 ** read part of this structure before the corruption is detected. This
108 ** can cause a valgrind error if the unitialized gap is accessed. Using u16
109 ** ensures there is no such gap, and therefore no bytes of uninitialized
110 ** memory in the structure.
111 **
112 ** The pLruNext and pLruPrev pointers form a double-linked circular list
113 ** of all pages that are unpinned.  The PGroup.lru element (which should be
114 ** the only element on the list with PgHdr1.isAnchor set to 1) forms the
115 ** beginning and the end of the list.
116 */
117 struct PgHdr1 {
118   sqlite3_pcache_page page; /* Base class. Must be first. pBuf & pExtra */
119   unsigned int iKey;        /* Key value (page number) */
120   u16 isBulkLocal;          /* This page from bulk local storage */
121   u16 isAnchor;             /* This is the PGroup.lru element */
122   PgHdr1 *pNext;            /* Next in hash table chain */
123   PCache1 *pCache;          /* Cache that currently owns this page */
124   PgHdr1 *pLruNext;         /* Next in circular LRU list of unpinned pages */
125   PgHdr1 *pLruPrev;         /* Previous in LRU list of unpinned pages */
126                             /* NB: pLruPrev is only valid if pLruNext!=0 */
127 };
128 
129 /*
130 ** A page is pinned if it is not on the LRU list.  To be "pinned" means
131 ** that the page is in active use and must not be deallocated.
132 */
133 #define PAGE_IS_PINNED(p)    ((p)->pLruNext==0)
134 #define PAGE_IS_UNPINNED(p)  ((p)->pLruNext!=0)
135 
136 /* Each page cache (or PCache) belongs to a PGroup.  A PGroup is a set
137 ** of one or more PCaches that are able to recycle each other's unpinned
138 ** pages when they are under memory pressure.  A PGroup is an instance of
139 ** the following object.
140 **
141 ** This page cache implementation works in one of two modes:
142 **
143 **   (1)  Every PCache is the sole member of its own PGroup.  There is
144 **        one PGroup per PCache.
145 **
146 **   (2)  There is a single global PGroup that all PCaches are a member
147 **        of.
148 **
149 ** Mode 1 uses more memory (since PCache instances are not able to rob
150 ** unused pages from other PCaches) but it also operates without a mutex,
151 ** and is therefore often faster.  Mode 2 requires a mutex in order to be
152 ** threadsafe, but recycles pages more efficiently.
153 **
154 ** For mode (1), PGroup.mutex is NULL.  For mode (2) there is only a single
155 ** PGroup which is the pcache1.grp global variable and its mutex is
156 ** SQLITE_MUTEX_STATIC_LRU.
157 */
158 struct PGroup {
159   sqlite3_mutex *mutex;          /* MUTEX_STATIC_LRU or NULL */
160   unsigned int nMaxPage;         /* Sum of nMax for purgeable caches */
161   unsigned int nMinPage;         /* Sum of nMin for purgeable caches */
162   unsigned int mxPinned;         /* nMaxpage + 10 - nMinPage */
163   unsigned int nPurgeable;       /* Number of purgeable pages allocated */
164   PgHdr1 lru;                    /* The beginning and end of the LRU list */
165 };
166 
167 /* Each page cache is an instance of the following object.  Every
168 ** open database file (including each in-memory database and each
169 ** temporary or transient database) has a single page cache which
170 ** is an instance of this object.
171 **
172 ** Pointers to structures of this type are cast and returned as
173 ** opaque sqlite3_pcache* handles.
174 */
175 struct PCache1 {
176   /* Cache configuration parameters. Page size (szPage) and the purgeable
177   ** flag (bPurgeable) and the pnPurgeable pointer are all set when the
178   ** cache is created and are never changed thereafter. nMax may be
179   ** modified at any time by a call to the pcache1Cachesize() method.
180   ** The PGroup mutex must be held when accessing nMax.
181   */
182   PGroup *pGroup;                     /* PGroup this cache belongs to */
183   unsigned int *pnPurgeable;          /* Pointer to pGroup->nPurgeable */
184   int szPage;                         /* Size of database content section */
185   int szExtra;                        /* sizeof(MemPage)+sizeof(PgHdr) */
186   int szAlloc;                        /* Total size of one pcache line */
187   int bPurgeable;                     /* True if cache is purgeable */
188   unsigned int nMin;                  /* Minimum number of pages reserved */
189   unsigned int nMax;                  /* Configured "cache_size" value */
190   unsigned int n90pct;                /* nMax*9/10 */
191   unsigned int iMaxKey;               /* Largest key seen since xTruncate() */
192   unsigned int nPurgeableDummy;       /* pnPurgeable points here when not used*/
193 
194   /* Hash table of all pages. The following variables may only be accessed
195   ** when the accessor is holding the PGroup mutex.
196   */
197   unsigned int nRecyclable;           /* Number of pages in the LRU list */
198   unsigned int nPage;                 /* Total number of pages in apHash */
199   unsigned int nHash;                 /* Number of slots in apHash[] */
200   PgHdr1 **apHash;                    /* Hash table for fast lookup by key */
201   PgHdr1 *pFree;                      /* List of unused pcache-local pages */
202   void *pBulk;                        /* Bulk memory used by pcache-local */
203 };
204 
205 /*
206 ** Free slots in the allocator used to divide up the global page cache
207 ** buffer provided using the SQLITE_CONFIG_PAGECACHE mechanism.
208 */
209 struct PgFreeslot {
210   PgFreeslot *pNext;  /* Next free slot */
211 };
212 
213 /*
214 ** Global data used by this cache.
215 */
216 static SQLITE_WSD struct PCacheGlobal {
217   PGroup grp;                    /* The global PGroup for mode (2) */
218 
219   /* Variables related to SQLITE_CONFIG_PAGECACHE settings.  The
220   ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all
221   ** fixed at sqlite3_initialize() time and do not require mutex protection.
222   ** The nFreeSlot and pFree values do require mutex protection.
223   */
224   int isInit;                    /* True if initialized */
225   int separateCache;             /* Use a new PGroup for each PCache */
226   int nInitPage;                 /* Initial bulk allocation size */
227   int szSlot;                    /* Size of each free slot */
228   int nSlot;                     /* The number of pcache slots */
229   int nReserve;                  /* Try to keep nFreeSlot above this */
230   void *pStart, *pEnd;           /* Bounds of global page cache memory */
231   /* Above requires no mutex.  Use mutex below for variable that follow. */
232   sqlite3_mutex *mutex;          /* Mutex for accessing the following: */
233   PgFreeslot *pFree;             /* Free page blocks */
234   int nFreeSlot;                 /* Number of unused pcache slots */
235   /* The following value requires a mutex to change.  We skip the mutex on
236   ** reading because (1) most platforms read a 32-bit integer atomically and
237   ** (2) even if an incorrect value is read, no great harm is done since this
238   ** is really just an optimization. */
239   int bUnderPressure;            /* True if low on PAGECACHE memory */
240 } pcache1_g;
241 
242 /*
243 ** All code in this file should access the global structure above via the
244 ** alias "pcache1". This ensures that the WSD emulation is used when
245 ** compiling for systems that do not support real WSD.
246 */
247 #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g))
248 
249 /*
250 ** Macros to enter and leave the PCache LRU mutex.
251 */
252 #if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0
253 # define pcache1EnterMutex(X)  assert((X)->mutex==0)
254 # define pcache1LeaveMutex(X)  assert((X)->mutex==0)
255 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 0
256 #else
257 # define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex)
258 # define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex)
259 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 1
260 #endif
261 
262 /******************************************************************************/
263 /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/
264 
265 
266 /*
267 ** This function is called during initialization if a static buffer is
268 ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
269 ** verb to sqlite3_config(). Parameter pBuf points to an allocation large
270 ** enough to contain 'n' buffers of 'sz' bytes each.
271 **
272 ** This routine is called from sqlite3_initialize() and so it is guaranteed
273 ** to be serialized already.  There is no need for further mutexing.
274 */
275 void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
276   if( pcache1.isInit ){
277     PgFreeslot *p;
278     if( pBuf==0 ) sz = n = 0;
279     if( n==0 ) sz = 0;
280     sz = ROUNDDOWN8(sz);
281     pcache1.szSlot = sz;
282     pcache1.nSlot = pcache1.nFreeSlot = n;
283     pcache1.nReserve = n>90 ? 10 : (n/10 + 1);
284     pcache1.pStart = pBuf;
285     pcache1.pFree = 0;
286     pcache1.bUnderPressure = 0;
287     while( n-- ){
288       p = (PgFreeslot*)pBuf;
289       p->pNext = pcache1.pFree;
290       pcache1.pFree = p;
291       pBuf = (void*)&((char*)pBuf)[sz];
292     }
293     pcache1.pEnd = pBuf;
294   }
295 }
296 
297 /*
298 ** Try to initialize the pCache->pFree and pCache->pBulk fields.  Return
299 ** true if pCache->pFree ends up containing one or more free pages.
300 */
301 static int pcache1InitBulk(PCache1 *pCache){
302   i64 szBulk;
303   char *zBulk;
304   if( pcache1.nInitPage==0 ) return 0;
305   /* Do not bother with a bulk allocation if the cache size very small */
306   if( pCache->nMax<3 ) return 0;
307   sqlite3BeginBenignMalloc();
308   if( pcache1.nInitPage>0 ){
309     szBulk = pCache->szAlloc * (i64)pcache1.nInitPage;
310   }else{
311     szBulk = -1024 * (i64)pcache1.nInitPage;
312   }
313   if( szBulk > pCache->szAlloc*(i64)pCache->nMax ){
314     szBulk = pCache->szAlloc*(i64)pCache->nMax;
315   }
316   zBulk = pCache->pBulk = sqlite3Malloc( szBulk );
317   sqlite3EndBenignMalloc();
318   if( zBulk ){
319     int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc;
320     do{
321       PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage];
322       pX->page.pBuf = zBulk;
323       pX->page.pExtra = &pX[1];
324       pX->isBulkLocal = 1;
325       pX->isAnchor = 0;
326       pX->pNext = pCache->pFree;
327       pX->pLruPrev = 0;           /* Initializing this saves a valgrind error */
328       pCache->pFree = pX;
329       zBulk += pCache->szAlloc;
330     }while( --nBulk );
331   }
332   return pCache->pFree!=0;
333 }
334 
335 /*
336 ** Malloc function used within this file to allocate space from the buffer
337 ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no
338 ** such buffer exists or there is no space left in it, this function falls
339 ** back to sqlite3Malloc().
340 **
341 ** Multiple threads can run this routine at the same time.  Global variables
342 ** in pcache1 need to be protected via mutex.
343 */
344 static void *pcache1Alloc(int nByte){
345   void *p = 0;
346   assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
347   if( nByte<=pcache1.szSlot ){
348     sqlite3_mutex_enter(pcache1.mutex);
349     p = (PgHdr1 *)pcache1.pFree;
350     if( p ){
351       pcache1.pFree = pcache1.pFree->pNext;
352       pcache1.nFreeSlot--;
353       pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
354       assert( pcache1.nFreeSlot>=0 );
355       sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
356       sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1);
357     }
358     sqlite3_mutex_leave(pcache1.mutex);
359   }
360   if( p==0 ){
361     /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool.  Get
362     ** it from sqlite3Malloc instead.
363     */
364     p = sqlite3Malloc(nByte);
365 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
366     if( p ){
367       int sz = sqlite3MallocSize(p);
368       sqlite3_mutex_enter(pcache1.mutex);
369       sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
370       sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
371       sqlite3_mutex_leave(pcache1.mutex);
372     }
373 #endif
374     sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
375   }
376   return p;
377 }
378 
379 /*
380 ** Free an allocated buffer obtained from pcache1Alloc().
381 */
382 static void pcache1Free(void *p){
383   if( p==0 ) return;
384   if( SQLITE_WITHIN(p, pcache1.pStart, pcache1.pEnd) ){
385     PgFreeslot *pSlot;
386     sqlite3_mutex_enter(pcache1.mutex);
387     sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1);
388     pSlot = (PgFreeslot*)p;
389     pSlot->pNext = pcache1.pFree;
390     pcache1.pFree = pSlot;
391     pcache1.nFreeSlot++;
392     pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
393     assert( pcache1.nFreeSlot<=pcache1.nSlot );
394     sqlite3_mutex_leave(pcache1.mutex);
395   }else{
396     assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
397     sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
398 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
399     {
400       int nFreed = 0;
401       nFreed = sqlite3MallocSize(p);
402       sqlite3_mutex_enter(pcache1.mutex);
403       sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_OVERFLOW, nFreed);
404       sqlite3_mutex_leave(pcache1.mutex);
405     }
406 #endif
407     sqlite3_free(p);
408   }
409 }
410 
411 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
412 /*
413 ** Return the size of a pcache allocation
414 */
415 static int pcache1MemSize(void *p){
416   if( p>=pcache1.pStart && p<pcache1.pEnd ){
417     return pcache1.szSlot;
418   }else{
419     int iSize;
420     assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
421     sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
422     iSize = sqlite3MallocSize(p);
423     sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
424     return iSize;
425   }
426 }
427 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
428 
429 /*
430 ** Allocate a new page object initially associated with cache pCache.
431 */
432 static PgHdr1 *pcache1AllocPage(PCache1 *pCache, int benignMalloc){
433   PgHdr1 *p = 0;
434   void *pPg;
435 
436   assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
437   if( pCache->pFree || (pCache->nPage==0 && pcache1InitBulk(pCache)) ){
438     assert( pCache->pFree!=0 );
439     p = pCache->pFree;
440     pCache->pFree = p->pNext;
441     p->pNext = 0;
442   }else{
443 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
444     /* The group mutex must be released before pcache1Alloc() is called. This
445     ** is because it might call sqlite3_release_memory(), which assumes that
446     ** this mutex is not held. */
447     assert( pcache1.separateCache==0 );
448     assert( pCache->pGroup==&pcache1.grp );
449     pcache1LeaveMutex(pCache->pGroup);
450 #endif
451     if( benignMalloc ){ sqlite3BeginBenignMalloc(); }
452     pPg = pcache1Alloc(pCache->szAlloc);
453     if( benignMalloc ){ sqlite3EndBenignMalloc(); }
454 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
455     pcache1EnterMutex(pCache->pGroup);
456 #endif
457     if( pPg==0 ) return 0;
458     p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage];
459     p->page.pBuf = pPg;
460     p->page.pExtra = &p[1];
461     p->isBulkLocal = 0;
462     p->isAnchor = 0;
463     p->pLruPrev = 0;           /* Initializing this saves a valgrind error */
464   }
465   (*pCache->pnPurgeable)++;
466   return p;
467 }
468 
469 /*
470 ** Free a page object allocated by pcache1AllocPage().
471 */
472 static void pcache1FreePage(PgHdr1 *p){
473   PCache1 *pCache;
474   assert( p!=0 );
475   pCache = p->pCache;
476   assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) );
477   if( p->isBulkLocal ){
478     p->pNext = pCache->pFree;
479     pCache->pFree = p;
480   }else{
481     pcache1Free(p->page.pBuf);
482   }
483   (*pCache->pnPurgeable)--;
484 }
485 
486 /*
487 ** Malloc function used by SQLite to obtain space from the buffer configured
488 ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer
489 ** exists, this function falls back to sqlite3Malloc().
490 */
491 void *sqlite3PageMalloc(int sz){
492   assert( sz<=65536+8 ); /* These allocations are never very large */
493   return pcache1Alloc(sz);
494 }
495 
496 /*
497 ** Free an allocated buffer obtained from sqlite3PageMalloc().
498 */
499 void sqlite3PageFree(void *p){
500   pcache1Free(p);
501 }
502 
503 
504 /*
505 ** Return true if it desirable to avoid allocating a new page cache
506 ** entry.
507 **
508 ** If memory was allocated specifically to the page cache using
509 ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then
510 ** it is desirable to avoid allocating a new page cache entry because
511 ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient
512 ** for all page cache needs and we should not need to spill the
513 ** allocation onto the heap.
514 **
515 ** Or, the heap is used for all page cache memory but the heap is
516 ** under memory pressure, then again it is desirable to avoid
517 ** allocating a new page cache entry in order to avoid stressing
518 ** the heap even further.
519 */
520 static int pcache1UnderMemoryPressure(PCache1 *pCache){
521   if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){
522     return pcache1.bUnderPressure;
523   }else{
524     return sqlite3HeapNearlyFull();
525   }
526 }
527 
528 /******************************************************************************/
529 /******** General Implementation Functions ************************************/
530 
531 /*
532 ** This function is used to resize the hash table used by the cache passed
533 ** as the first argument.
534 **
535 ** The PCache mutex must be held when this function is called.
536 */
537 static void pcache1ResizeHash(PCache1 *p){
538   PgHdr1 **apNew;
539   unsigned int nNew;
540   unsigned int i;
541 
542   assert( sqlite3_mutex_held(p->pGroup->mutex) );
543 
544   nNew = p->nHash*2;
545   if( nNew<256 ){
546     nNew = 256;
547   }
548 
549   pcache1LeaveMutex(p->pGroup);
550   if( p->nHash ){ sqlite3BeginBenignMalloc(); }
551   apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew);
552   if( p->nHash ){ sqlite3EndBenignMalloc(); }
553   pcache1EnterMutex(p->pGroup);
554   if( apNew ){
555     for(i=0; i<p->nHash; i++){
556       PgHdr1 *pPage;
557       PgHdr1 *pNext = p->apHash[i];
558       while( (pPage = pNext)!=0 ){
559         unsigned int h = pPage->iKey % nNew;
560         pNext = pPage->pNext;
561         pPage->pNext = apNew[h];
562         apNew[h] = pPage;
563       }
564     }
565     sqlite3_free(p->apHash);
566     p->apHash = apNew;
567     p->nHash = nNew;
568   }
569 }
570 
571 /*
572 ** This function is used internally to remove the page pPage from the
573 ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup
574 ** LRU list, then this function is a no-op.
575 **
576 ** The PGroup mutex must be held when this function is called.
577 */
578 static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){
579   assert( pPage!=0 );
580   assert( PAGE_IS_UNPINNED(pPage) );
581   assert( pPage->pLruNext );
582   assert( pPage->pLruPrev );
583   assert( sqlite3_mutex_held(pPage->pCache->pGroup->mutex) );
584   pPage->pLruPrev->pLruNext = pPage->pLruNext;
585   pPage->pLruNext->pLruPrev = pPage->pLruPrev;
586   pPage->pLruNext = 0;
587   /* pPage->pLruPrev = 0;
588   ** No need to clear pLruPrev as it is never accessed if pLruNext is 0 */
589   assert( pPage->isAnchor==0 );
590   assert( pPage->pCache->pGroup->lru.isAnchor==1 );
591   pPage->pCache->nRecyclable--;
592   return pPage;
593 }
594 
595 
596 /*
597 ** Remove the page supplied as an argument from the hash table
598 ** (PCache1.apHash structure) that it is currently stored in.
599 ** Also free the page if freePage is true.
600 **
601 ** The PGroup mutex must be held when this function is called.
602 */
603 static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){
604   unsigned int h;
605   PCache1 *pCache = pPage->pCache;
606   PgHdr1 **pp;
607 
608   assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
609   h = pPage->iKey % pCache->nHash;
610   for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
611   *pp = (*pp)->pNext;
612 
613   pCache->nPage--;
614   if( freeFlag ) pcache1FreePage(pPage);
615 }
616 
617 /*
618 ** If there are currently more than nMaxPage pages allocated, try
619 ** to recycle pages to reduce the number allocated to nMaxPage.
620 */
621 static void pcache1EnforceMaxPage(PCache1 *pCache){
622   PGroup *pGroup = pCache->pGroup;
623   PgHdr1 *p;
624   assert( sqlite3_mutex_held(pGroup->mutex) );
625   while( pGroup->nPurgeable>pGroup->nMaxPage
626       && (p=pGroup->lru.pLruPrev)->isAnchor==0
627   ){
628     assert( p->pCache->pGroup==pGroup );
629     assert( PAGE_IS_UNPINNED(p) );
630     pcache1PinPage(p);
631     pcache1RemoveFromHash(p, 1);
632   }
633   if( pCache->nPage==0 && pCache->pBulk ){
634     sqlite3_free(pCache->pBulk);
635     pCache->pBulk = pCache->pFree = 0;
636   }
637 }
638 
639 /*
640 ** Discard all pages from cache pCache with a page number (key value)
641 ** greater than or equal to iLimit. Any pinned pages that meet this
642 ** criteria are unpinned before they are discarded.
643 **
644 ** The PCache mutex must be held when this function is called.
645 */
646 static void pcache1TruncateUnsafe(
647   PCache1 *pCache,             /* The cache to truncate */
648   unsigned int iLimit          /* Drop pages with this pgno or larger */
649 ){
650   TESTONLY( int nPage = 0; )  /* To assert pCache->nPage is correct */
651   unsigned int h, iStop;
652   assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
653   assert( pCache->iMaxKey >= iLimit );
654   assert( pCache->nHash > 0 );
655   if( pCache->iMaxKey - iLimit < pCache->nHash ){
656     /* If we are just shaving the last few pages off the end of the
657     ** cache, then there is no point in scanning the entire hash table.
658     ** Only scan those hash slots that might contain pages that need to
659     ** be removed. */
660     h = iLimit % pCache->nHash;
661     iStop = pCache->iMaxKey % pCache->nHash;
662     TESTONLY( nPage = -10; )  /* Disable the pCache->nPage validity check */
663   }else{
664     /* This is the general case where many pages are being removed.
665     ** It is necessary to scan the entire hash table */
666     h = pCache->nHash/2;
667     iStop = h - 1;
668   }
669   for(;;){
670     PgHdr1 **pp;
671     PgHdr1 *pPage;
672     assert( h<pCache->nHash );
673     pp = &pCache->apHash[h];
674     while( (pPage = *pp)!=0 ){
675       if( pPage->iKey>=iLimit ){
676         pCache->nPage--;
677         *pp = pPage->pNext;
678         if( PAGE_IS_UNPINNED(pPage) ) pcache1PinPage(pPage);
679         pcache1FreePage(pPage);
680       }else{
681         pp = &pPage->pNext;
682         TESTONLY( if( nPage>=0 ) nPage++; )
683       }
684     }
685     if( h==iStop ) break;
686     h = (h+1) % pCache->nHash;
687   }
688   assert( nPage<0 || pCache->nPage==(unsigned)nPage );
689 }
690 
691 /******************************************************************************/
692 /******** sqlite3_pcache Methods **********************************************/
693 
694 /*
695 ** Implementation of the sqlite3_pcache.xInit method.
696 */
697 static int pcache1Init(void *NotUsed){
698   UNUSED_PARAMETER(NotUsed);
699   assert( pcache1.isInit==0 );
700   memset(&pcache1, 0, sizeof(pcache1));
701 
702 
703   /*
704   ** The pcache1.separateCache variable is true if each PCache has its own
705   ** private PGroup (mode-1).  pcache1.separateCache is false if the single
706   ** PGroup in pcache1.grp is used for all page caches (mode-2).
707   **
708   **   *  Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT
709   **
710   **   *  Use a unified cache in single-threaded applications that have
711   **      configured a start-time buffer for use as page-cache memory using
712   **      sqlite3_config(SQLITE_CONFIG_PAGECACHE, pBuf, sz, N) with non-NULL
713   **      pBuf argument.
714   **
715   **   *  Otherwise use separate caches (mode-1)
716   */
717 #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT)
718   pcache1.separateCache = 0;
719 #elif SQLITE_THREADSAFE
720   pcache1.separateCache = sqlite3GlobalConfig.pPage==0
721                           || sqlite3GlobalConfig.bCoreMutex>0;
722 #else
723   pcache1.separateCache = sqlite3GlobalConfig.pPage==0;
724 #endif
725 
726 #if SQLITE_THREADSAFE
727   if( sqlite3GlobalConfig.bCoreMutex ){
728     pcache1.grp.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU);
729     pcache1.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PMEM);
730   }
731 #endif
732   if( pcache1.separateCache
733    && sqlite3GlobalConfig.nPage!=0
734    && sqlite3GlobalConfig.pPage==0
735   ){
736     pcache1.nInitPage = sqlite3GlobalConfig.nPage;
737   }else{
738     pcache1.nInitPage = 0;
739   }
740   pcache1.grp.mxPinned = 10;
741   pcache1.isInit = 1;
742   return SQLITE_OK;
743 }
744 
745 /*
746 ** Implementation of the sqlite3_pcache.xShutdown method.
747 ** Note that the static mutex allocated in xInit does
748 ** not need to be freed.
749 */
750 static void pcache1Shutdown(void *NotUsed){
751   UNUSED_PARAMETER(NotUsed);
752   assert( pcache1.isInit!=0 );
753   memset(&pcache1, 0, sizeof(pcache1));
754 }
755 
756 /* forward declaration */
757 static void pcache1Destroy(sqlite3_pcache *p);
758 
759 /*
760 ** Implementation of the sqlite3_pcache.xCreate method.
761 **
762 ** Allocate a new cache.
763 */
764 static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){
765   PCache1 *pCache;      /* The newly created page cache */
766   PGroup *pGroup;       /* The group the new page cache will belong to */
767   int sz;               /* Bytes of memory required to allocate the new cache */
768 
769   assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 );
770   assert( szExtra < 300 );
771 
772   sz = sizeof(PCache1) + sizeof(PGroup)*pcache1.separateCache;
773   pCache = (PCache1 *)sqlite3MallocZero(sz);
774   if( pCache ){
775     if( pcache1.separateCache ){
776       pGroup = (PGroup*)&pCache[1];
777       pGroup->mxPinned = 10;
778     }else{
779       pGroup = &pcache1.grp;
780     }
781     pcache1EnterMutex(pGroup);
782     if( pGroup->lru.isAnchor==0 ){
783       pGroup->lru.isAnchor = 1;
784       pGroup->lru.pLruPrev = pGroup->lru.pLruNext = &pGroup->lru;
785     }
786     pCache->pGroup = pGroup;
787     pCache->szPage = szPage;
788     pCache->szExtra = szExtra;
789     pCache->szAlloc = szPage + szExtra + ROUND8(sizeof(PgHdr1));
790     pCache->bPurgeable = (bPurgeable ? 1 : 0);
791     pcache1ResizeHash(pCache);
792     if( bPurgeable ){
793       pCache->nMin = 10;
794       pGroup->nMinPage += pCache->nMin;
795       pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
796       pCache->pnPurgeable = &pGroup->nPurgeable;
797     }else{
798       pCache->pnPurgeable = &pCache->nPurgeableDummy;
799     }
800     pcache1LeaveMutex(pGroup);
801     if( pCache->nHash==0 ){
802       pcache1Destroy((sqlite3_pcache*)pCache);
803       pCache = 0;
804     }
805   }
806   return (sqlite3_pcache *)pCache;
807 }
808 
809 /*
810 ** Implementation of the sqlite3_pcache.xCachesize method.
811 **
812 ** Configure the cache_size limit for a cache.
813 */
814 static void pcache1Cachesize(sqlite3_pcache *p, int nMax){
815   PCache1 *pCache = (PCache1 *)p;
816   u32 n;
817   assert( nMax>=0 );
818   if( pCache->bPurgeable ){
819     PGroup *pGroup = pCache->pGroup;
820     pcache1EnterMutex(pGroup);
821     n = (u32)nMax;
822     if( n > 0x7fff0000 - pGroup->nMaxPage + pCache->nMax ){
823       n = 0x7fff0000 - pGroup->nMaxPage + pCache->nMax;
824     }
825     pGroup->nMaxPage += (n - pCache->nMax);
826     pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
827     pCache->nMax = n;
828     pCache->n90pct = pCache->nMax*9/10;
829     pcache1EnforceMaxPage(pCache);
830     pcache1LeaveMutex(pGroup);
831   }
832 }
833 
834 /*
835 ** Implementation of the sqlite3_pcache.xShrink method.
836 **
837 ** Free up as much memory as possible.
838 */
839 static void pcache1Shrink(sqlite3_pcache *p){
840   PCache1 *pCache = (PCache1*)p;
841   if( pCache->bPurgeable ){
842     PGroup *pGroup = pCache->pGroup;
843     unsigned int savedMaxPage;
844     pcache1EnterMutex(pGroup);
845     savedMaxPage = pGroup->nMaxPage;
846     pGroup->nMaxPage = 0;
847     pcache1EnforceMaxPage(pCache);
848     pGroup->nMaxPage = savedMaxPage;
849     pcache1LeaveMutex(pGroup);
850   }
851 }
852 
853 /*
854 ** Implementation of the sqlite3_pcache.xPagecount method.
855 */
856 static int pcache1Pagecount(sqlite3_pcache *p){
857   int n;
858   PCache1 *pCache = (PCache1*)p;
859   pcache1EnterMutex(pCache->pGroup);
860   n = pCache->nPage;
861   pcache1LeaveMutex(pCache->pGroup);
862   return n;
863 }
864 
865 
866 /*
867 ** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described
868 ** in the header of the pcache1Fetch() procedure.
869 **
870 ** This steps are broken out into a separate procedure because they are
871 ** usually not needed, and by avoiding the stack initialization required
872 ** for these steps, the main pcache1Fetch() procedure can run faster.
873 */
874 static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2(
875   PCache1 *pCache,
876   unsigned int iKey,
877   int createFlag
878 ){
879   unsigned int nPinned;
880   PGroup *pGroup = pCache->pGroup;
881   PgHdr1 *pPage = 0;
882 
883   /* Step 3: Abort if createFlag is 1 but the cache is nearly full */
884   assert( pCache->nPage >= pCache->nRecyclable );
885   nPinned = pCache->nPage - pCache->nRecyclable;
886   assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage );
887   assert( pCache->n90pct == pCache->nMax*9/10 );
888   if( createFlag==1 && (
889         nPinned>=pGroup->mxPinned
890      || nPinned>=pCache->n90pct
891      || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned)
892   )){
893     return 0;
894   }
895 
896   if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache);
897   assert( pCache->nHash>0 && pCache->apHash );
898 
899   /* Step 4. Try to recycle a page. */
900   if( pCache->bPurgeable
901    && !pGroup->lru.pLruPrev->isAnchor
902    && ((pCache->nPage+1>=pCache->nMax) || pcache1UnderMemoryPressure(pCache))
903   ){
904     PCache1 *pOther;
905     pPage = pGroup->lru.pLruPrev;
906     assert( PAGE_IS_UNPINNED(pPage) );
907     pcache1RemoveFromHash(pPage, 0);
908     pcache1PinPage(pPage);
909     pOther = pPage->pCache;
910     if( pOther->szAlloc != pCache->szAlloc ){
911       pcache1FreePage(pPage);
912       pPage = 0;
913     }else{
914       pGroup->nPurgeable -= (pOther->bPurgeable - pCache->bPurgeable);
915     }
916   }
917 
918   /* Step 5. If a usable page buffer has still not been found,
919   ** attempt to allocate a new one.
920   */
921   if( !pPage ){
922     pPage = pcache1AllocPage(pCache, createFlag==1);
923   }
924 
925   if( pPage ){
926     unsigned int h = iKey % pCache->nHash;
927     pCache->nPage++;
928     pPage->iKey = iKey;
929     pPage->pNext = pCache->apHash[h];
930     pPage->pCache = pCache;
931     pPage->pLruNext = 0;
932     /* pPage->pLruPrev = 0;
933     ** No need to clear pLruPrev since it is not accessed when pLruNext==0 */
934     *(void **)pPage->page.pExtra = 0;
935     pCache->apHash[h] = pPage;
936     if( iKey>pCache->iMaxKey ){
937       pCache->iMaxKey = iKey;
938     }
939   }
940   return pPage;
941 }
942 
943 /*
944 ** Implementation of the sqlite3_pcache.xFetch method.
945 **
946 ** Fetch a page by key value.
947 **
948 ** Whether or not a new page may be allocated by this function depends on
949 ** the value of the createFlag argument.  0 means do not allocate a new
950 ** page.  1 means allocate a new page if space is easily available.  2
951 ** means to try really hard to allocate a new page.
952 **
953 ** For a non-purgeable cache (a cache used as the storage for an in-memory
954 ** database) there is really no difference between createFlag 1 and 2.  So
955 ** the calling function (pcache.c) will never have a createFlag of 1 on
956 ** a non-purgeable cache.
957 **
958 ** There are three different approaches to obtaining space for a page,
959 ** depending on the value of parameter createFlag (which may be 0, 1 or 2).
960 **
961 **   1. Regardless of the value of createFlag, the cache is searched for a
962 **      copy of the requested page. If one is found, it is returned.
963 **
964 **   2. If createFlag==0 and the page is not already in the cache, NULL is
965 **      returned.
966 **
967 **   3. If createFlag is 1, and the page is not already in the cache, then
968 **      return NULL (do not allocate a new page) if any of the following
969 **      conditions are true:
970 **
971 **       (a) the number of pages pinned by the cache is greater than
972 **           PCache1.nMax, or
973 **
974 **       (b) the number of pages pinned by the cache is greater than
975 **           the sum of nMax for all purgeable caches, less the sum of
976 **           nMin for all other purgeable caches, or
977 **
978 **   4. If none of the first three conditions apply and the cache is marked
979 **      as purgeable, and if one of the following is true:
980 **
981 **       (a) The number of pages allocated for the cache is already
982 **           PCache1.nMax, or
983 **
984 **       (b) The number of pages allocated for all purgeable caches is
985 **           already equal to or greater than the sum of nMax for all
986 **           purgeable caches,
987 **
988 **       (c) The system is under memory pressure and wants to avoid
989 **           unnecessary pages cache entry allocations
990 **
991 **      then attempt to recycle a page from the LRU list. If it is the right
992 **      size, return the recycled buffer. Otherwise, free the buffer and
993 **      proceed to step 5.
994 **
995 **   5. Otherwise, allocate and return a new page buffer.
996 **
997 ** There are two versions of this routine.  pcache1FetchWithMutex() is
998 ** the general case.  pcache1FetchNoMutex() is a faster implementation for
999 ** the common case where pGroup->mutex is NULL.  The pcache1Fetch() wrapper
1000 ** invokes the appropriate routine.
1001 */
1002 static PgHdr1 *pcache1FetchNoMutex(
1003   sqlite3_pcache *p,
1004   unsigned int iKey,
1005   int createFlag
1006 ){
1007   PCache1 *pCache = (PCache1 *)p;
1008   PgHdr1 *pPage = 0;
1009 
1010   /* Step 1: Search the hash table for an existing entry. */
1011   pPage = pCache->apHash[iKey % pCache->nHash];
1012   while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; }
1013 
1014   /* Step 2: If the page was found in the hash table, then return it.
1015   ** If the page was not in the hash table and createFlag is 0, abort.
1016   ** Otherwise (page not in hash and createFlag!=0) continue with
1017   ** subsequent steps to try to create the page. */
1018   if( pPage ){
1019     if( PAGE_IS_UNPINNED(pPage) ){
1020       return pcache1PinPage(pPage);
1021     }else{
1022       return pPage;
1023     }
1024   }else if( createFlag ){
1025     /* Steps 3, 4, and 5 implemented by this subroutine */
1026     return pcache1FetchStage2(pCache, iKey, createFlag);
1027   }else{
1028     return 0;
1029   }
1030 }
1031 #if PCACHE1_MIGHT_USE_GROUP_MUTEX
1032 static PgHdr1 *pcache1FetchWithMutex(
1033   sqlite3_pcache *p,
1034   unsigned int iKey,
1035   int createFlag
1036 ){
1037   PCache1 *pCache = (PCache1 *)p;
1038   PgHdr1 *pPage;
1039 
1040   pcache1EnterMutex(pCache->pGroup);
1041   pPage = pcache1FetchNoMutex(p, iKey, createFlag);
1042   assert( pPage==0 || pCache->iMaxKey>=iKey );
1043   pcache1LeaveMutex(pCache->pGroup);
1044   return pPage;
1045 }
1046 #endif
1047 static sqlite3_pcache_page *pcache1Fetch(
1048   sqlite3_pcache *p,
1049   unsigned int iKey,
1050   int createFlag
1051 ){
1052 #if PCACHE1_MIGHT_USE_GROUP_MUTEX || defined(SQLITE_DEBUG)
1053   PCache1 *pCache = (PCache1 *)p;
1054 #endif
1055 
1056   assert( offsetof(PgHdr1,page)==0 );
1057   assert( pCache->bPurgeable || createFlag!=1 );
1058   assert( pCache->bPurgeable || pCache->nMin==0 );
1059   assert( pCache->bPurgeable==0 || pCache->nMin==10 );
1060   assert( pCache->nMin==0 || pCache->bPurgeable );
1061   assert( pCache->nHash>0 );
1062 #if PCACHE1_MIGHT_USE_GROUP_MUTEX
1063   if( pCache->pGroup->mutex ){
1064     return (sqlite3_pcache_page*)pcache1FetchWithMutex(p, iKey, createFlag);
1065   }else
1066 #endif
1067   {
1068     return (sqlite3_pcache_page*)pcache1FetchNoMutex(p, iKey, createFlag);
1069   }
1070 }
1071 
1072 
1073 /*
1074 ** Implementation of the sqlite3_pcache.xUnpin method.
1075 **
1076 ** Mark a page as unpinned (eligible for asynchronous recycling).
1077 */
1078 static void pcache1Unpin(
1079   sqlite3_pcache *p,
1080   sqlite3_pcache_page *pPg,
1081   int reuseUnlikely
1082 ){
1083   PCache1 *pCache = (PCache1 *)p;
1084   PgHdr1 *pPage = (PgHdr1 *)pPg;
1085   PGroup *pGroup = pCache->pGroup;
1086 
1087   assert( pPage->pCache==pCache );
1088   pcache1EnterMutex(pGroup);
1089 
1090   /* It is an error to call this function if the page is already
1091   ** part of the PGroup LRU list.
1092   */
1093   assert( pPage->pLruNext==0 );
1094   assert( PAGE_IS_PINNED(pPage) );
1095 
1096   if( reuseUnlikely || pGroup->nPurgeable>pGroup->nMaxPage ){
1097     pcache1RemoveFromHash(pPage, 1);
1098   }else{
1099     /* Add the page to the PGroup LRU list. */
1100     PgHdr1 **ppFirst = &pGroup->lru.pLruNext;
1101     pPage->pLruPrev = &pGroup->lru;
1102     (pPage->pLruNext = *ppFirst)->pLruPrev = pPage;
1103     *ppFirst = pPage;
1104     pCache->nRecyclable++;
1105   }
1106 
1107   pcache1LeaveMutex(pCache->pGroup);
1108 }
1109 
1110 /*
1111 ** Implementation of the sqlite3_pcache.xRekey method.
1112 */
1113 static void pcache1Rekey(
1114   sqlite3_pcache *p,
1115   sqlite3_pcache_page *pPg,
1116   unsigned int iOld,
1117   unsigned int iNew
1118 ){
1119   PCache1 *pCache = (PCache1 *)p;
1120   PgHdr1 *pPage = (PgHdr1 *)pPg;
1121   PgHdr1 **pp;
1122   unsigned int hOld, hNew;
1123   assert( pPage->iKey==iOld );
1124   assert( pPage->pCache==pCache );
1125   assert( iOld!=iNew );               /* The page number really is changing */
1126 
1127   pcache1EnterMutex(pCache->pGroup);
1128 
1129   assert( pcache1FetchNoMutex(p, iOld, 0)==pPage ); /* pPg really is iOld */
1130   hOld = iOld%pCache->nHash;
1131   pp = &pCache->apHash[hOld];
1132   while( (*pp)!=pPage ){
1133     pp = &(*pp)->pNext;
1134   }
1135   *pp = pPage->pNext;
1136 
1137   assert( pcache1FetchNoMutex(p, iNew, 0)==0 ); /* iNew not in cache */
1138   hNew = iNew%pCache->nHash;
1139   pPage->iKey = iNew;
1140   pPage->pNext = pCache->apHash[hNew];
1141   pCache->apHash[hNew] = pPage;
1142   if( iNew>pCache->iMaxKey ){
1143     pCache->iMaxKey = iNew;
1144   }
1145 
1146   pcache1LeaveMutex(pCache->pGroup);
1147 }
1148 
1149 /*
1150 ** Implementation of the sqlite3_pcache.xTruncate method.
1151 **
1152 ** Discard all unpinned pages in the cache with a page number equal to
1153 ** or greater than parameter iLimit. Any pinned pages with a page number
1154 ** equal to or greater than iLimit are implicitly unpinned.
1155 */
1156 static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){
1157   PCache1 *pCache = (PCache1 *)p;
1158   pcache1EnterMutex(pCache->pGroup);
1159   if( iLimit<=pCache->iMaxKey ){
1160     pcache1TruncateUnsafe(pCache, iLimit);
1161     pCache->iMaxKey = iLimit-1;
1162   }
1163   pcache1LeaveMutex(pCache->pGroup);
1164 }
1165 
1166 /*
1167 ** Implementation of the sqlite3_pcache.xDestroy method.
1168 **
1169 ** Destroy a cache allocated using pcache1Create().
1170 */
1171 static void pcache1Destroy(sqlite3_pcache *p){
1172   PCache1 *pCache = (PCache1 *)p;
1173   PGroup *pGroup = pCache->pGroup;
1174   assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) );
1175   pcache1EnterMutex(pGroup);
1176   if( pCache->nPage ) pcache1TruncateUnsafe(pCache, 0);
1177   assert( pGroup->nMaxPage >= pCache->nMax );
1178   pGroup->nMaxPage -= pCache->nMax;
1179   assert( pGroup->nMinPage >= pCache->nMin );
1180   pGroup->nMinPage -= pCache->nMin;
1181   pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
1182   pcache1EnforceMaxPage(pCache);
1183   pcache1LeaveMutex(pGroup);
1184   sqlite3_free(pCache->pBulk);
1185   sqlite3_free(pCache->apHash);
1186   sqlite3_free(pCache);
1187 }
1188 
1189 /*
1190 ** This function is called during initialization (sqlite3_initialize()) to
1191 ** install the default pluggable cache module, assuming the user has not
1192 ** already provided an alternative.
1193 */
1194 void sqlite3PCacheSetDefault(void){
1195   static const sqlite3_pcache_methods2 defaultMethods = {
1196     1,                       /* iVersion */
1197     0,                       /* pArg */
1198     pcache1Init,             /* xInit */
1199     pcache1Shutdown,         /* xShutdown */
1200     pcache1Create,           /* xCreate */
1201     pcache1Cachesize,        /* xCachesize */
1202     pcache1Pagecount,        /* xPagecount */
1203     pcache1Fetch,            /* xFetch */
1204     pcache1Unpin,            /* xUnpin */
1205     pcache1Rekey,            /* xRekey */
1206     pcache1Truncate,         /* xTruncate */
1207     pcache1Destroy,          /* xDestroy */
1208     pcache1Shrink            /* xShrink */
1209   };
1210   sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods);
1211 }
1212 
1213 /*
1214 ** Return the size of the header on each page of this PCACHE implementation.
1215 */
1216 int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); }
1217 
1218 /*
1219 ** Return the global mutex used by this PCACHE implementation.  The
1220 ** sqlite3_status() routine needs access to this mutex.
1221 */
1222 sqlite3_mutex *sqlite3Pcache1Mutex(void){
1223   return pcache1.mutex;
1224 }
1225 
1226 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
1227 /*
1228 ** This function is called to free superfluous dynamically allocated memory
1229 ** held by the pager system. Memory in use by any SQLite pager allocated
1230 ** by the current thread may be sqlite3_free()ed.
1231 **
1232 ** nReq is the number of bytes of memory required. Once this much has
1233 ** been released, the function returns. The return value is the total number
1234 ** of bytes of memory released.
1235 */
1236 int sqlite3PcacheReleaseMemory(int nReq){
1237   int nFree = 0;
1238   assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
1239   assert( sqlite3_mutex_notheld(pcache1.mutex) );
1240   if( sqlite3GlobalConfig.pPage==0 ){
1241     PgHdr1 *p;
1242     pcache1EnterMutex(&pcache1.grp);
1243     while( (nReq<0 || nFree<nReq)
1244        &&  (p=pcache1.grp.lru.pLruPrev)!=0
1245        &&  p->isAnchor==0
1246     ){
1247       nFree += pcache1MemSize(p->page.pBuf);
1248       assert( PAGE_IS_UNPINNED(p) );
1249       pcache1PinPage(p);
1250       pcache1RemoveFromHash(p, 1);
1251     }
1252     pcache1LeaveMutex(&pcache1.grp);
1253   }
1254   return nFree;
1255 }
1256 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
1257 
1258 #ifdef SQLITE_TEST
1259 /*
1260 ** This function is used by test procedures to inspect the internal state
1261 ** of the global cache.
1262 */
1263 void sqlite3PcacheStats(
1264   int *pnCurrent,      /* OUT: Total number of pages cached */
1265   int *pnMax,          /* OUT: Global maximum cache size */
1266   int *pnMin,          /* OUT: Sum of PCache1.nMin for purgeable caches */
1267   int *pnRecyclable    /* OUT: Total number of pages available for recycling */
1268 ){
1269   PgHdr1 *p;
1270   int nRecyclable = 0;
1271   for(p=pcache1.grp.lru.pLruNext; p && !p->isAnchor; p=p->pLruNext){
1272     assert( PAGE_IS_UNPINNED(p) );
1273     nRecyclable++;
1274   }
1275   *pnCurrent = pcache1.grp.nPurgeable;
1276   *pnMax = (int)pcache1.grp.nMaxPage;
1277   *pnMin = (int)pcache1.grp.nMinPage;
1278   *pnRecyclable = nRecyclable;
1279 }
1280 #endif
1281