1 /* 2 ** 2008 November 05 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file implements the default page cache implementation (the 14 ** sqlite3_pcache interface). It also contains part of the implementation 15 ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features. 16 ** If the default page cache implementation is overridden, then neither of 17 ** these two features are available. 18 ** 19 ** A Page cache line looks like this: 20 ** 21 ** ------------------------------------------------------------- 22 ** | database page content | PgHdr1 | MemPage | PgHdr | 23 ** ------------------------------------------------------------- 24 ** 25 ** The database page content is up front (so that buffer overreads tend to 26 ** flow harmlessly into the PgHdr1, MemPage, and PgHdr extensions). MemPage 27 ** is the extension added by the btree.c module containing information such 28 ** as the database page number and how that database page is used. PgHdr 29 ** is added by the pcache.c layer and contains information used to keep track 30 ** of which pages are "dirty". PgHdr1 is an extension added by this 31 ** module (pcache1.c). The PgHdr1 header is a subclass of sqlite3_pcache_page. 32 ** PgHdr1 contains information needed to look up a page by its page number. 33 ** The superclass sqlite3_pcache_page.pBuf points to the start of the 34 ** database page content and sqlite3_pcache_page.pExtra points to PgHdr. 35 ** 36 ** The size of the extension (MemPage+PgHdr+PgHdr1) can be determined at 37 ** runtime using sqlite3_config(SQLITE_CONFIG_PCACHE_HDRSZ, &size). The 38 ** sizes of the extensions sum to 272 bytes on x64 for 3.8.10, but this 39 ** size can vary according to architecture, compile-time options, and 40 ** SQLite library version number. 41 ** 42 ** If SQLITE_PCACHE_SEPARATE_HEADER is defined, then the extension is obtained 43 ** using a separate memory allocation from the database page content. This 44 ** seeks to overcome the "clownshoe" problem (also called "internal 45 ** fragmentation" in academic literature) of allocating a few bytes more 46 ** than a power of two with the memory allocator rounding up to the next 47 ** power of two, and leaving the rounded-up space unused. 48 ** 49 ** This module tracks pointers to PgHdr1 objects. Only pcache.c communicates 50 ** with this module. Information is passed back and forth as PgHdr1 pointers. 51 ** 52 ** The pcache.c and pager.c modules deal pointers to PgHdr objects. 53 ** The btree.c module deals with pointers to MemPage objects. 54 ** 55 ** SOURCE OF PAGE CACHE MEMORY: 56 ** 57 ** Memory for a page might come from any of three sources: 58 ** 59 ** (1) The general-purpose memory allocator - sqlite3Malloc() 60 ** (2) Global page-cache memory provided using sqlite3_config() with 61 ** SQLITE_CONFIG_PAGECACHE. 62 ** (3) PCache-local bulk allocation. 63 ** 64 ** The third case is a chunk of heap memory (defaulting to 100 pages worth) 65 ** that is allocated when the page cache is created. The size of the local 66 ** bulk allocation can be adjusted using 67 ** 68 ** sqlite3_config(SQLITE_CONFIG_PCACHE, 0, 0, N). 69 ** 70 ** If N is positive, then N pages worth of memory are allocated using a single 71 ** sqlite3Malloc() call and that memory is used for the first N pages allocated. 72 ** Or if N is negative, then -1024*N bytes of memory are allocated and used 73 ** for as many pages as can be accomodated. 74 ** 75 ** Only one of (2) or (3) can be used. Once the memory available to (2) or 76 ** (3) is exhausted, subsequent allocations fail over to the general-purpose 77 ** memory allocator (1). 78 ** 79 ** Earlier versions of SQLite used only methods (1) and (2). But experiments 80 ** show that method (3) with N==100 provides about a 5% performance boost for 81 ** common workloads. 82 */ 83 #include "sqliteInt.h" 84 85 typedef struct PCache1 PCache1; 86 typedef struct PgHdr1 PgHdr1; 87 typedef struct PgFreeslot PgFreeslot; 88 typedef struct PGroup PGroup; 89 90 /* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set 91 ** of one or more PCaches that are able to recycle each other's unpinned 92 ** pages when they are under memory pressure. A PGroup is an instance of 93 ** the following object. 94 ** 95 ** This page cache implementation works in one of two modes: 96 ** 97 ** (1) Every PCache is the sole member of its own PGroup. There is 98 ** one PGroup per PCache. 99 ** 100 ** (2) There is a single global PGroup that all PCaches are a member 101 ** of. 102 ** 103 ** Mode 1 uses more memory (since PCache instances are not able to rob 104 ** unused pages from other PCaches) but it also operates without a mutex, 105 ** and is therefore often faster. Mode 2 requires a mutex in order to be 106 ** threadsafe, but recycles pages more efficiently. 107 ** 108 ** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single 109 ** PGroup which is the pcache1.grp global variable and its mutex is 110 ** SQLITE_MUTEX_STATIC_LRU. 111 */ 112 struct PGroup { 113 sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */ 114 unsigned int nMaxPage; /* Sum of nMax for purgeable caches */ 115 unsigned int nMinPage; /* Sum of nMin for purgeable caches */ 116 unsigned int mxPinned; /* nMaxpage + 10 - nMinPage */ 117 unsigned int nCurrentPage; /* Number of purgeable pages allocated */ 118 PgHdr1 *pLruHead, *pLruTail; /* LRU list of unpinned pages */ 119 }; 120 121 /* Each page cache is an instance of the following object. Every 122 ** open database file (including each in-memory database and each 123 ** temporary or transient database) has a single page cache which 124 ** is an instance of this object. 125 ** 126 ** Pointers to structures of this type are cast and returned as 127 ** opaque sqlite3_pcache* handles. 128 */ 129 struct PCache1 { 130 /* Cache configuration parameters. Page size (szPage) and the purgeable 131 ** flag (bPurgeable) are set when the cache is created. nMax may be 132 ** modified at any time by a call to the pcache1Cachesize() method. 133 ** The PGroup mutex must be held when accessing nMax. 134 */ 135 PGroup *pGroup; /* PGroup this cache belongs to */ 136 int szPage; /* Size of database content section */ 137 int szExtra; /* sizeof(MemPage)+sizeof(PgHdr) */ 138 int szAlloc; /* Total size of one pcache line */ 139 int bPurgeable; /* True if cache is purgeable */ 140 unsigned int nMin; /* Minimum number of pages reserved */ 141 unsigned int nMax; /* Configured "cache_size" value */ 142 unsigned int n90pct; /* nMax*9/10 */ 143 unsigned int iMaxKey; /* Largest key seen since xTruncate() */ 144 145 /* Hash table of all pages. The following variables may only be accessed 146 ** when the accessor is holding the PGroup mutex. 147 */ 148 unsigned int nRecyclable; /* Number of pages in the LRU list */ 149 unsigned int nPage; /* Total number of pages in apHash */ 150 unsigned int nHash; /* Number of slots in apHash[] */ 151 PgHdr1 **apHash; /* Hash table for fast lookup by key */ 152 PgHdr1 *pFree; /* List of unused pcache-local pages */ 153 void *pBulk; /* Bulk memory used by pcache-local */ 154 }; 155 156 /* 157 ** Each cache entry is represented by an instance of the following 158 ** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of 159 ** PgHdr1.pCache->szPage bytes is allocated directly before this structure 160 ** in memory. 161 */ 162 struct PgHdr1 { 163 sqlite3_pcache_page page; 164 unsigned int iKey; /* Key value (page number) */ 165 u8 isPinned; /* Page in use, not on the LRU list */ 166 u8 isBulkLocal; /* This page from bulk local storage */ 167 PgHdr1 *pNext; /* Next in hash table chain */ 168 PCache1 *pCache; /* Cache that currently owns this page */ 169 PgHdr1 *pLruNext; /* Next in LRU list of unpinned pages */ 170 PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */ 171 }; 172 173 /* 174 ** Free slots in the allocator used to divide up the global page cache 175 ** buffer provided using the SQLITE_CONFIG_PAGECACHE mechanism. 176 */ 177 struct PgFreeslot { 178 PgFreeslot *pNext; /* Next free slot */ 179 }; 180 181 /* 182 ** Global data used by this cache. 183 */ 184 static SQLITE_WSD struct PCacheGlobal { 185 PGroup grp; /* The global PGroup for mode (2) */ 186 187 /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The 188 ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all 189 ** fixed at sqlite3_initialize() time and do not require mutex protection. 190 ** The nFreeSlot and pFree values do require mutex protection. 191 */ 192 int isInit; /* True if initialized */ 193 int separateCache; /* Use a new PGroup for each PCache */ 194 int szSlot; /* Size of each free slot */ 195 int nSlot; /* The number of pcache slots */ 196 int nReserve; /* Try to keep nFreeSlot above this */ 197 void *pStart, *pEnd; /* Bounds of global page cache memory */ 198 /* Above requires no mutex. Use mutex below for variable that follow. */ 199 sqlite3_mutex *mutex; /* Mutex for accessing the following: */ 200 PgFreeslot *pFree; /* Free page blocks */ 201 int nFreeSlot; /* Number of unused pcache slots */ 202 /* The following value requires a mutex to change. We skip the mutex on 203 ** reading because (1) most platforms read a 32-bit integer atomically and 204 ** (2) even if an incorrect value is read, no great harm is done since this 205 ** is really just an optimization. */ 206 int bUnderPressure; /* True if low on PAGECACHE memory */ 207 } pcache1_g; 208 209 /* 210 ** All code in this file should access the global structure above via the 211 ** alias "pcache1". This ensures that the WSD emulation is used when 212 ** compiling for systems that do not support real WSD. 213 */ 214 #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g)) 215 216 /* 217 ** Macros to enter and leave the PCache LRU mutex. 218 */ 219 #if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0 220 # define pcache1EnterMutex(X) assert((X)->mutex==0) 221 # define pcache1LeaveMutex(X) assert((X)->mutex==0) 222 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 0 223 #else 224 # define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex) 225 # define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex) 226 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 1 227 #endif 228 229 /******************************************************************************/ 230 /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/ 231 232 /* 233 ** This function is called during initialization if a static buffer is 234 ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE 235 ** verb to sqlite3_config(). Parameter pBuf points to an allocation large 236 ** enough to contain 'n' buffers of 'sz' bytes each. 237 ** 238 ** This routine is called from sqlite3_initialize() and so it is guaranteed 239 ** to be serialized already. There is no need for further mutexing. 240 */ 241 void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){ 242 if( pcache1.isInit ){ 243 PgFreeslot *p; 244 if( pBuf==0 ) sz = n = 0; 245 sz = ROUNDDOWN8(sz); 246 pcache1.szSlot = sz; 247 pcache1.nSlot = pcache1.nFreeSlot = n; 248 pcache1.nReserve = n>90 ? 10 : (n/10 + 1); 249 pcache1.pStart = pBuf; 250 pcache1.pFree = 0; 251 pcache1.bUnderPressure = 0; 252 while( n-- ){ 253 p = (PgFreeslot*)pBuf; 254 p->pNext = pcache1.pFree; 255 pcache1.pFree = p; 256 pBuf = (void*)&((char*)pBuf)[sz]; 257 } 258 pcache1.pEnd = pBuf; 259 } 260 } 261 262 /* 263 ** Malloc function used within this file to allocate space from the buffer 264 ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no 265 ** such buffer exists or there is no space left in it, this function falls 266 ** back to sqlite3Malloc(). 267 ** 268 ** Multiple threads can run this routine at the same time. Global variables 269 ** in pcache1 need to be protected via mutex. 270 */ 271 static void *pcache1Alloc(int nByte){ 272 void *p = 0; 273 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); 274 if( nByte<=pcache1.szSlot ){ 275 sqlite3_mutex_enter(pcache1.mutex); 276 p = (PgHdr1 *)pcache1.pFree; 277 if( p ){ 278 pcache1.pFree = pcache1.pFree->pNext; 279 pcache1.nFreeSlot--; 280 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; 281 assert( pcache1.nFreeSlot>=0 ); 282 sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte); 283 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1); 284 } 285 sqlite3_mutex_leave(pcache1.mutex); 286 } 287 if( p==0 ){ 288 /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get 289 ** it from sqlite3Malloc instead. 290 */ 291 p = sqlite3Malloc(nByte); 292 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS 293 if( p ){ 294 int sz = sqlite3MallocSize(p); 295 sqlite3_mutex_enter(pcache1.mutex); 296 sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte); 297 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz); 298 sqlite3_mutex_leave(pcache1.mutex); 299 } 300 #endif 301 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); 302 } 303 return p; 304 } 305 306 /* 307 ** Free an allocated buffer obtained from pcache1Alloc(). 308 */ 309 static void pcache1Free(void *p){ 310 int nFreed = 0; 311 if( p==0 ) return; 312 if( p>=pcache1.pStart && p<pcache1.pEnd ){ 313 PgFreeslot *pSlot; 314 sqlite3_mutex_enter(pcache1.mutex); 315 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1); 316 pSlot = (PgFreeslot*)p; 317 pSlot->pNext = pcache1.pFree; 318 pcache1.pFree = pSlot; 319 pcache1.nFreeSlot++; 320 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; 321 assert( pcache1.nFreeSlot<=pcache1.nSlot ); 322 sqlite3_mutex_leave(pcache1.mutex); 323 }else{ 324 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); 325 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 326 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS 327 nFreed = sqlite3MallocSize(p); 328 sqlite3_mutex_enter(pcache1.mutex); 329 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_OVERFLOW, nFreed); 330 sqlite3_mutex_leave(pcache1.mutex); 331 #endif 332 sqlite3_free(p); 333 } 334 } 335 336 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 337 /* 338 ** Return the size of a pcache allocation 339 */ 340 static int pcache1MemSize(void *p){ 341 if( p>=pcache1.pStart && p<pcache1.pEnd ){ 342 return pcache1.szSlot; 343 }else{ 344 int iSize; 345 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); 346 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 347 iSize = sqlite3MallocSize(p); 348 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); 349 return iSize; 350 } 351 } 352 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ 353 354 /* 355 ** Allocate a new page object initially associated with cache pCache. 356 */ 357 static PgHdr1 *pcache1AllocPage(PCache1 *pCache){ 358 PgHdr1 *p = 0; 359 void *pPg; 360 361 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 362 if( pCache->pFree ){ 363 p = pCache->pFree; 364 pCache->pFree = p->pNext; 365 p->pNext = 0; 366 }else{ 367 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 368 /* The group mutex must be released before pcache1Alloc() is called. This 369 ** is because it might call sqlite3_release_memory(), which assumes that 370 ** this mutex is not held. */ 371 assert( pcache1.separateCache==0 ); 372 assert( pCache->pGroup==&pcache1.grp ); 373 pcache1LeaveMutex(pCache->pGroup); 374 #endif 375 #ifdef SQLITE_PCACHE_SEPARATE_HEADER 376 pPg = pcache1Alloc(pCache->szPage); 377 p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra); 378 if( !pPg || !p ){ 379 pcache1Free(pPg); 380 sqlite3_free(p); 381 pPg = 0; 382 } 383 #else 384 pPg = pcache1Alloc(pCache->szAlloc); 385 p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage]; 386 #endif 387 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 388 pcache1EnterMutex(pCache->pGroup); 389 #endif 390 if( pPg==0 ) return 0; 391 p->page.pBuf = pPg; 392 p->page.pExtra = &p[1]; 393 p->isBulkLocal = 0; 394 } 395 if( pCache->bPurgeable ){ 396 pCache->pGroup->nCurrentPage++; 397 } 398 return p; 399 } 400 401 /* 402 ** Free a page object allocated by pcache1AllocPage(). 403 */ 404 static void pcache1FreePage(PgHdr1 *p){ 405 PCache1 *pCache; 406 assert( p!=0 ); 407 pCache = p->pCache; 408 assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) ); 409 if( p->isBulkLocal ){ 410 p->pNext = pCache->pFree; 411 pCache->pFree = p; 412 }else{ 413 pcache1Free(p->page.pBuf); 414 #ifdef SQLITE_PCACHE_SEPARATE_HEADER 415 sqlite3_free(p); 416 #endif 417 } 418 if( pCache->bPurgeable ){ 419 pCache->pGroup->nCurrentPage--; 420 } 421 } 422 423 /* 424 ** Malloc function used by SQLite to obtain space from the buffer configured 425 ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer 426 ** exists, this function falls back to sqlite3Malloc(). 427 */ 428 void *sqlite3PageMalloc(int sz){ 429 return pcache1Alloc(sz); 430 } 431 432 /* 433 ** Free an allocated buffer obtained from sqlite3PageMalloc(). 434 */ 435 void sqlite3PageFree(void *p){ 436 pcache1Free(p); 437 } 438 439 440 /* 441 ** Return true if it desirable to avoid allocating a new page cache 442 ** entry. 443 ** 444 ** If memory was allocated specifically to the page cache using 445 ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then 446 ** it is desirable to avoid allocating a new page cache entry because 447 ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient 448 ** for all page cache needs and we should not need to spill the 449 ** allocation onto the heap. 450 ** 451 ** Or, the heap is used for all page cache memory but the heap is 452 ** under memory pressure, then again it is desirable to avoid 453 ** allocating a new page cache entry in order to avoid stressing 454 ** the heap even further. 455 */ 456 static int pcache1UnderMemoryPressure(PCache1 *pCache){ 457 if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){ 458 return pcache1.bUnderPressure; 459 }else{ 460 return sqlite3HeapNearlyFull(); 461 } 462 } 463 464 /******************************************************************************/ 465 /******** General Implementation Functions ************************************/ 466 467 /* 468 ** This function is used to resize the hash table used by the cache passed 469 ** as the first argument. 470 ** 471 ** The PCache mutex must be held when this function is called. 472 */ 473 static void pcache1ResizeHash(PCache1 *p){ 474 PgHdr1 **apNew; 475 unsigned int nNew; 476 unsigned int i; 477 478 assert( sqlite3_mutex_held(p->pGroup->mutex) ); 479 480 nNew = p->nHash*2; 481 if( nNew<256 ){ 482 nNew = 256; 483 } 484 485 pcache1LeaveMutex(p->pGroup); 486 if( p->nHash ){ sqlite3BeginBenignMalloc(); } 487 apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew); 488 if( p->nHash ){ sqlite3EndBenignMalloc(); } 489 pcache1EnterMutex(p->pGroup); 490 if( apNew ){ 491 for(i=0; i<p->nHash; i++){ 492 PgHdr1 *pPage; 493 PgHdr1 *pNext = p->apHash[i]; 494 while( (pPage = pNext)!=0 ){ 495 unsigned int h = pPage->iKey % nNew; 496 pNext = pPage->pNext; 497 pPage->pNext = apNew[h]; 498 apNew[h] = pPage; 499 } 500 } 501 sqlite3_free(p->apHash); 502 p->apHash = apNew; 503 p->nHash = nNew; 504 } 505 } 506 507 /* 508 ** This function is used internally to remove the page pPage from the 509 ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup 510 ** LRU list, then this function is a no-op. 511 ** 512 ** The PGroup mutex must be held when this function is called. 513 */ 514 static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){ 515 PCache1 *pCache; 516 517 assert( pPage!=0 ); 518 assert( pPage->isPinned==0 ); 519 pCache = pPage->pCache; 520 assert( pPage->pLruNext || pPage==pCache->pGroup->pLruTail ); 521 assert( pPage->pLruPrev || pPage==pCache->pGroup->pLruHead ); 522 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 523 if( pPage->pLruPrev ){ 524 pPage->pLruPrev->pLruNext = pPage->pLruNext; 525 }else{ 526 pCache->pGroup->pLruHead = pPage->pLruNext; 527 } 528 if( pPage->pLruNext ){ 529 pPage->pLruNext->pLruPrev = pPage->pLruPrev; 530 }else{ 531 pCache->pGroup->pLruTail = pPage->pLruPrev; 532 } 533 pPage->pLruNext = 0; 534 pPage->pLruPrev = 0; 535 pPage->isPinned = 1; 536 pCache->nRecyclable--; 537 return pPage; 538 } 539 540 541 /* 542 ** Remove the page supplied as an argument from the hash table 543 ** (PCache1.apHash structure) that it is currently stored in. 544 ** Also free the page if freePage is true. 545 ** 546 ** The PGroup mutex must be held when this function is called. 547 */ 548 static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){ 549 unsigned int h; 550 PCache1 *pCache = pPage->pCache; 551 PgHdr1 **pp; 552 553 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 554 h = pPage->iKey % pCache->nHash; 555 for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext); 556 *pp = (*pp)->pNext; 557 558 pCache->nPage--; 559 if( freeFlag ) pcache1FreePage(pPage); 560 } 561 562 /* 563 ** If there are currently more than nMaxPage pages allocated, try 564 ** to recycle pages to reduce the number allocated to nMaxPage. 565 */ 566 static void pcache1EnforceMaxPage(PGroup *pGroup){ 567 assert( sqlite3_mutex_held(pGroup->mutex) ); 568 while( pGroup->nCurrentPage>pGroup->nMaxPage && pGroup->pLruTail ){ 569 PgHdr1 *p = pGroup->pLruTail; 570 assert( p->pCache->pGroup==pGroup ); 571 assert( p->isPinned==0 ); 572 pcache1PinPage(p); 573 pcache1RemoveFromHash(p, 1); 574 } 575 } 576 577 /* 578 ** Discard all pages from cache pCache with a page number (key value) 579 ** greater than or equal to iLimit. Any pinned pages that meet this 580 ** criteria are unpinned before they are discarded. 581 ** 582 ** The PCache mutex must be held when this function is called. 583 */ 584 static void pcache1TruncateUnsafe( 585 PCache1 *pCache, /* The cache to truncate */ 586 unsigned int iLimit /* Drop pages with this pgno or larger */ 587 ){ 588 TESTONLY( unsigned int nPage = 0; ) /* To assert pCache->nPage is correct */ 589 unsigned int h; 590 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 591 for(h=0; h<pCache->nHash; h++){ 592 PgHdr1 **pp = &pCache->apHash[h]; 593 PgHdr1 *pPage; 594 while( (pPage = *pp)!=0 ){ 595 if( pPage->iKey>=iLimit ){ 596 pCache->nPage--; 597 *pp = pPage->pNext; 598 if( !pPage->isPinned ) pcache1PinPage(pPage); 599 pcache1FreePage(pPage); 600 }else{ 601 pp = &pPage->pNext; 602 TESTONLY( nPage++; ) 603 } 604 } 605 } 606 assert( pCache->nPage==nPage ); 607 } 608 609 /******************************************************************************/ 610 /******** sqlite3_pcache Methods **********************************************/ 611 612 /* 613 ** Implementation of the sqlite3_pcache.xInit method. 614 */ 615 static int pcache1Init(void *NotUsed){ 616 UNUSED_PARAMETER(NotUsed); 617 assert( pcache1.isInit==0 ); 618 memset(&pcache1, 0, sizeof(pcache1)); 619 620 621 /* 622 ** The pcache1.separateCache variable is true if each PCache has its own 623 ** private PGroup (mode-1). pcache1.separateCache is false if the single 624 ** PGroup in pcache1.grp is used for all page caches (mode-2). 625 ** 626 ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT 627 ** 628 ** * Use a unified cache in single-threaded applications that have 629 ** configured a start-time buffer for use as page-cache memory using 630 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, pBuf, sz, N) with non-NULL 631 ** pBuf argument. 632 ** 633 ** * Otherwise use separate caches (mode-1) 634 */ 635 #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) 636 pcache1.separateCache = 0; 637 #elif SQLITE_THREADSAFE 638 pcache1.separateCache = sqlite3GlobalConfig.pPage==0 639 || sqlite3GlobalConfig.bCoreMutex>0; 640 #else 641 pcache1.separateCache = sqlite3GlobalConfig.pPage==0; 642 #endif 643 644 #if SQLITE_THREADSAFE 645 if( sqlite3GlobalConfig.bCoreMutex ){ 646 pcache1.grp.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU); 647 pcache1.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_PMEM); 648 } 649 #endif 650 pcache1.grp.mxPinned = 10; 651 pcache1.isInit = 1; 652 return SQLITE_OK; 653 } 654 655 /* 656 ** Implementation of the sqlite3_pcache.xShutdown method. 657 ** Note that the static mutex allocated in xInit does 658 ** not need to be freed. 659 */ 660 static void pcache1Shutdown(void *NotUsed){ 661 UNUSED_PARAMETER(NotUsed); 662 assert( pcache1.isInit!=0 ); 663 memset(&pcache1, 0, sizeof(pcache1)); 664 } 665 666 /* forward declaration */ 667 static void pcache1Destroy(sqlite3_pcache *p); 668 669 /* 670 ** Implementation of the sqlite3_pcache.xCreate method. 671 ** 672 ** Allocate a new cache. 673 */ 674 static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){ 675 PCache1 *pCache; /* The newly created page cache */ 676 PGroup *pGroup; /* The group the new page cache will belong to */ 677 int sz; /* Bytes of memory required to allocate the new cache */ 678 679 assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 ); 680 assert( szExtra < 300 ); 681 682 sz = sizeof(PCache1) + sizeof(PGroup)*pcache1.separateCache; 683 pCache = (PCache1 *)sqlite3MallocZero(sz); 684 if( pCache ){ 685 if( pcache1.separateCache ){ 686 pGroup = (PGroup*)&pCache[1]; 687 pGroup->mxPinned = 10; 688 }else{ 689 pGroup = &pcache1.grp; 690 } 691 pCache->pGroup = pGroup; 692 pCache->szPage = szPage; 693 pCache->szExtra = szExtra; 694 pCache->szAlloc = szPage + szExtra + ROUND8(sizeof(PgHdr1)); 695 pCache->bPurgeable = (bPurgeable ? 1 : 0); 696 pcache1EnterMutex(pGroup); 697 pcache1ResizeHash(pCache); 698 if( bPurgeable ){ 699 pCache->nMin = 10; 700 pGroup->nMinPage += pCache->nMin; 701 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 702 } 703 pcache1LeaveMutex(pGroup); 704 /* Try to initialize the local bulk pagecache line allocation if using 705 ** separate caches and if nPage!=0 */ 706 if( pcache1.separateCache 707 && sqlite3GlobalConfig.nPage!=0 708 && sqlite3GlobalConfig.pPage==0 709 ){ 710 int szBulk; 711 char *zBulk; 712 sqlite3BeginBenignMalloc(); 713 if( sqlite3GlobalConfig.nPage>0 ){ 714 szBulk = pCache->szAlloc * sqlite3GlobalConfig.nPage; 715 }else{ 716 szBulk = -1024*sqlite3GlobalConfig.nPage; 717 } 718 zBulk = pCache->pBulk = sqlite3Malloc( szBulk ); 719 sqlite3EndBenignMalloc(); 720 if( zBulk ){ 721 int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc; 722 int i; 723 for(i=0; i<nBulk; i++){ 724 PgHdr1 *pX = (PgHdr1*)&zBulk[szPage]; 725 pX->page.pBuf = zBulk; 726 pX->page.pExtra = &pX[1]; 727 pX->isBulkLocal = 1; 728 pX->pNext = pCache->pFree; 729 pCache->pFree = pX; 730 zBulk += pCache->szAlloc; 731 } 732 } 733 } 734 if( pCache->nHash==0 ){ 735 pcache1Destroy((sqlite3_pcache*)pCache); 736 pCache = 0; 737 } 738 } 739 return (sqlite3_pcache *)pCache; 740 } 741 742 /* 743 ** Implementation of the sqlite3_pcache.xCachesize method. 744 ** 745 ** Configure the cache_size limit for a cache. 746 */ 747 static void pcache1Cachesize(sqlite3_pcache *p, int nMax){ 748 PCache1 *pCache = (PCache1 *)p; 749 if( pCache->bPurgeable ){ 750 PGroup *pGroup = pCache->pGroup; 751 pcache1EnterMutex(pGroup); 752 pGroup->nMaxPage += (nMax - pCache->nMax); 753 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 754 pCache->nMax = nMax; 755 pCache->n90pct = pCache->nMax*9/10; 756 pcache1EnforceMaxPage(pGroup); 757 pcache1LeaveMutex(pGroup); 758 } 759 } 760 761 /* 762 ** Implementation of the sqlite3_pcache.xShrink method. 763 ** 764 ** Free up as much memory as possible. 765 */ 766 static void pcache1Shrink(sqlite3_pcache *p){ 767 PCache1 *pCache = (PCache1*)p; 768 if( pCache->bPurgeable ){ 769 PGroup *pGroup = pCache->pGroup; 770 int savedMaxPage; 771 pcache1EnterMutex(pGroup); 772 savedMaxPage = pGroup->nMaxPage; 773 pGroup->nMaxPage = 0; 774 pcache1EnforceMaxPage(pGroup); 775 pGroup->nMaxPage = savedMaxPage; 776 pcache1LeaveMutex(pGroup); 777 } 778 } 779 780 /* 781 ** Implementation of the sqlite3_pcache.xPagecount method. 782 */ 783 static int pcache1Pagecount(sqlite3_pcache *p){ 784 int n; 785 PCache1 *pCache = (PCache1*)p; 786 pcache1EnterMutex(pCache->pGroup); 787 n = pCache->nPage; 788 pcache1LeaveMutex(pCache->pGroup); 789 return n; 790 } 791 792 793 /* 794 ** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described 795 ** in the header of the pcache1Fetch() procedure. 796 ** 797 ** This steps are broken out into a separate procedure because they are 798 ** usually not needed, and by avoiding the stack initialization required 799 ** for these steps, the main pcache1Fetch() procedure can run faster. 800 */ 801 static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2( 802 PCache1 *pCache, 803 unsigned int iKey, 804 int createFlag 805 ){ 806 unsigned int nPinned; 807 PGroup *pGroup = pCache->pGroup; 808 PgHdr1 *pPage = 0; 809 810 /* Step 3: Abort if createFlag is 1 but the cache is nearly full */ 811 assert( pCache->nPage >= pCache->nRecyclable ); 812 nPinned = pCache->nPage - pCache->nRecyclable; 813 assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage ); 814 assert( pCache->n90pct == pCache->nMax*9/10 ); 815 if( createFlag==1 && ( 816 nPinned>=pGroup->mxPinned 817 || nPinned>=pCache->n90pct 818 || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned) 819 )){ 820 return 0; 821 } 822 823 if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache); 824 assert( pCache->nHash>0 && pCache->apHash ); 825 826 /* Step 4. Try to recycle a page. */ 827 if( pCache->bPurgeable 828 && pGroup->pLruTail 829 && ((pCache->nPage+1>=pCache->nMax) || pcache1UnderMemoryPressure(pCache)) 830 ){ 831 PCache1 *pOther; 832 pPage = pGroup->pLruTail; 833 assert( pPage->isPinned==0 ); 834 pcache1RemoveFromHash(pPage, 0); 835 pcache1PinPage(pPage); 836 pOther = pPage->pCache; 837 if( pOther->szAlloc != pCache->szAlloc ){ 838 pcache1FreePage(pPage); 839 pPage = 0; 840 }else{ 841 pGroup->nCurrentPage -= (pOther->bPurgeable - pCache->bPurgeable); 842 } 843 } 844 845 /* Step 5. If a usable page buffer has still not been found, 846 ** attempt to allocate a new one. 847 */ 848 if( !pPage ){ 849 if( createFlag==1 ){ sqlite3BeginBenignMalloc(); } 850 pPage = pcache1AllocPage(pCache); 851 if( createFlag==1 ){ sqlite3EndBenignMalloc(); } 852 } 853 854 if( pPage ){ 855 unsigned int h = iKey % pCache->nHash; 856 pCache->nPage++; 857 pPage->iKey = iKey; 858 pPage->pNext = pCache->apHash[h]; 859 pPage->pCache = pCache; 860 pPage->pLruPrev = 0; 861 pPage->pLruNext = 0; 862 pPage->isPinned = 1; 863 *(void **)pPage->page.pExtra = 0; 864 pCache->apHash[h] = pPage; 865 if( iKey>pCache->iMaxKey ){ 866 pCache->iMaxKey = iKey; 867 } 868 } 869 return pPage; 870 } 871 872 /* 873 ** Implementation of the sqlite3_pcache.xFetch method. 874 ** 875 ** Fetch a page by key value. 876 ** 877 ** Whether or not a new page may be allocated by this function depends on 878 ** the value of the createFlag argument. 0 means do not allocate a new 879 ** page. 1 means allocate a new page if space is easily available. 2 880 ** means to try really hard to allocate a new page. 881 ** 882 ** For a non-purgeable cache (a cache used as the storage for an in-memory 883 ** database) there is really no difference between createFlag 1 and 2. So 884 ** the calling function (pcache.c) will never have a createFlag of 1 on 885 ** a non-purgeable cache. 886 ** 887 ** There are three different approaches to obtaining space for a page, 888 ** depending on the value of parameter createFlag (which may be 0, 1 or 2). 889 ** 890 ** 1. Regardless of the value of createFlag, the cache is searched for a 891 ** copy of the requested page. If one is found, it is returned. 892 ** 893 ** 2. If createFlag==0 and the page is not already in the cache, NULL is 894 ** returned. 895 ** 896 ** 3. If createFlag is 1, and the page is not already in the cache, then 897 ** return NULL (do not allocate a new page) if any of the following 898 ** conditions are true: 899 ** 900 ** (a) the number of pages pinned by the cache is greater than 901 ** PCache1.nMax, or 902 ** 903 ** (b) the number of pages pinned by the cache is greater than 904 ** the sum of nMax for all purgeable caches, less the sum of 905 ** nMin for all other purgeable caches, or 906 ** 907 ** 4. If none of the first three conditions apply and the cache is marked 908 ** as purgeable, and if one of the following is true: 909 ** 910 ** (a) The number of pages allocated for the cache is already 911 ** PCache1.nMax, or 912 ** 913 ** (b) The number of pages allocated for all purgeable caches is 914 ** already equal to or greater than the sum of nMax for all 915 ** purgeable caches, 916 ** 917 ** (c) The system is under memory pressure and wants to avoid 918 ** unnecessary pages cache entry allocations 919 ** 920 ** then attempt to recycle a page from the LRU list. If it is the right 921 ** size, return the recycled buffer. Otherwise, free the buffer and 922 ** proceed to step 5. 923 ** 924 ** 5. Otherwise, allocate and return a new page buffer. 925 ** 926 ** There are two versions of this routine. pcache1FetchWithMutex() is 927 ** the general case. pcache1FetchNoMutex() is a faster implementation for 928 ** the common case where pGroup->mutex is NULL. The pcache1Fetch() wrapper 929 ** invokes the appropriate routine. 930 */ 931 static PgHdr1 *pcache1FetchNoMutex( 932 sqlite3_pcache *p, 933 unsigned int iKey, 934 int createFlag 935 ){ 936 PCache1 *pCache = (PCache1 *)p; 937 PgHdr1 *pPage = 0; 938 939 /* Step 1: Search the hash table for an existing entry. */ 940 pPage = pCache->apHash[iKey % pCache->nHash]; 941 while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; } 942 943 /* Step 2: Abort if no existing page is found and createFlag is 0 */ 944 if( pPage ){ 945 if( !pPage->isPinned ){ 946 return pcache1PinPage(pPage); 947 }else{ 948 return pPage; 949 } 950 }else if( createFlag ){ 951 /* Steps 3, 4, and 5 implemented by this subroutine */ 952 return pcache1FetchStage2(pCache, iKey, createFlag); 953 }else{ 954 return 0; 955 } 956 } 957 #if PCACHE1_MIGHT_USE_GROUP_MUTEX 958 static PgHdr1 *pcache1FetchWithMutex( 959 sqlite3_pcache *p, 960 unsigned int iKey, 961 int createFlag 962 ){ 963 PCache1 *pCache = (PCache1 *)p; 964 PgHdr1 *pPage; 965 966 pcache1EnterMutex(pCache->pGroup); 967 pPage = pcache1FetchNoMutex(p, iKey, createFlag); 968 assert( pPage==0 || pCache->iMaxKey>=iKey ); 969 pcache1LeaveMutex(pCache->pGroup); 970 return pPage; 971 } 972 #endif 973 static sqlite3_pcache_page *pcache1Fetch( 974 sqlite3_pcache *p, 975 unsigned int iKey, 976 int createFlag 977 ){ 978 #if PCACHE1_MIGHT_USE_GROUP_MUTEX || defined(SQLITE_DEBUG) 979 PCache1 *pCache = (PCache1 *)p; 980 #endif 981 982 assert( offsetof(PgHdr1,page)==0 ); 983 assert( pCache->bPurgeable || createFlag!=1 ); 984 assert( pCache->bPurgeable || pCache->nMin==0 ); 985 assert( pCache->bPurgeable==0 || pCache->nMin==10 ); 986 assert( pCache->nMin==0 || pCache->bPurgeable ); 987 assert( pCache->nHash>0 ); 988 #if PCACHE1_MIGHT_USE_GROUP_MUTEX 989 if( pCache->pGroup->mutex ){ 990 return (sqlite3_pcache_page*)pcache1FetchWithMutex(p, iKey, createFlag); 991 }else 992 #endif 993 { 994 return (sqlite3_pcache_page*)pcache1FetchNoMutex(p, iKey, createFlag); 995 } 996 } 997 998 999 /* 1000 ** Implementation of the sqlite3_pcache.xUnpin method. 1001 ** 1002 ** Mark a page as unpinned (eligible for asynchronous recycling). 1003 */ 1004 static void pcache1Unpin( 1005 sqlite3_pcache *p, 1006 sqlite3_pcache_page *pPg, 1007 int reuseUnlikely 1008 ){ 1009 PCache1 *pCache = (PCache1 *)p; 1010 PgHdr1 *pPage = (PgHdr1 *)pPg; 1011 PGroup *pGroup = pCache->pGroup; 1012 1013 assert( pPage->pCache==pCache ); 1014 pcache1EnterMutex(pGroup); 1015 1016 /* It is an error to call this function if the page is already 1017 ** part of the PGroup LRU list. 1018 */ 1019 assert( pPage->pLruPrev==0 && pPage->pLruNext==0 ); 1020 assert( pGroup->pLruHead!=pPage && pGroup->pLruTail!=pPage ); 1021 assert( pPage->isPinned==1 ); 1022 1023 if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){ 1024 pcache1RemoveFromHash(pPage, 1); 1025 }else{ 1026 /* Add the page to the PGroup LRU list. */ 1027 if( pGroup->pLruHead ){ 1028 pGroup->pLruHead->pLruPrev = pPage; 1029 pPage->pLruNext = pGroup->pLruHead; 1030 pGroup->pLruHead = pPage; 1031 }else{ 1032 pGroup->pLruTail = pPage; 1033 pGroup->pLruHead = pPage; 1034 } 1035 pCache->nRecyclable++; 1036 pPage->isPinned = 0; 1037 } 1038 1039 pcache1LeaveMutex(pCache->pGroup); 1040 } 1041 1042 /* 1043 ** Implementation of the sqlite3_pcache.xRekey method. 1044 */ 1045 static void pcache1Rekey( 1046 sqlite3_pcache *p, 1047 sqlite3_pcache_page *pPg, 1048 unsigned int iOld, 1049 unsigned int iNew 1050 ){ 1051 PCache1 *pCache = (PCache1 *)p; 1052 PgHdr1 *pPage = (PgHdr1 *)pPg; 1053 PgHdr1 **pp; 1054 unsigned int h; 1055 assert( pPage->iKey==iOld ); 1056 assert( pPage->pCache==pCache ); 1057 1058 pcache1EnterMutex(pCache->pGroup); 1059 1060 h = iOld%pCache->nHash; 1061 pp = &pCache->apHash[h]; 1062 while( (*pp)!=pPage ){ 1063 pp = &(*pp)->pNext; 1064 } 1065 *pp = pPage->pNext; 1066 1067 h = iNew%pCache->nHash; 1068 pPage->iKey = iNew; 1069 pPage->pNext = pCache->apHash[h]; 1070 pCache->apHash[h] = pPage; 1071 if( iNew>pCache->iMaxKey ){ 1072 pCache->iMaxKey = iNew; 1073 } 1074 1075 pcache1LeaveMutex(pCache->pGroup); 1076 } 1077 1078 /* 1079 ** Implementation of the sqlite3_pcache.xTruncate method. 1080 ** 1081 ** Discard all unpinned pages in the cache with a page number equal to 1082 ** or greater than parameter iLimit. Any pinned pages with a page number 1083 ** equal to or greater than iLimit are implicitly unpinned. 1084 */ 1085 static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){ 1086 PCache1 *pCache = (PCache1 *)p; 1087 pcache1EnterMutex(pCache->pGroup); 1088 if( iLimit<=pCache->iMaxKey ){ 1089 pcache1TruncateUnsafe(pCache, iLimit); 1090 pCache->iMaxKey = iLimit-1; 1091 } 1092 pcache1LeaveMutex(pCache->pGroup); 1093 } 1094 1095 /* 1096 ** Implementation of the sqlite3_pcache.xDestroy method. 1097 ** 1098 ** Destroy a cache allocated using pcache1Create(). 1099 */ 1100 static void pcache1Destroy(sqlite3_pcache *p){ 1101 PCache1 *pCache = (PCache1 *)p; 1102 PGroup *pGroup = pCache->pGroup; 1103 assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) ); 1104 pcache1EnterMutex(pGroup); 1105 pcache1TruncateUnsafe(pCache, 0); 1106 assert( pGroup->nMaxPage >= pCache->nMax ); 1107 pGroup->nMaxPage -= pCache->nMax; 1108 assert( pGroup->nMinPage >= pCache->nMin ); 1109 pGroup->nMinPage -= pCache->nMin; 1110 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 1111 pcache1EnforceMaxPage(pGroup); 1112 pcache1LeaveMutex(pGroup); 1113 sqlite3_free(pCache->pBulk); 1114 sqlite3_free(pCache->apHash); 1115 sqlite3_free(pCache); 1116 } 1117 1118 /* 1119 ** This function is called during initialization (sqlite3_initialize()) to 1120 ** install the default pluggable cache module, assuming the user has not 1121 ** already provided an alternative. 1122 */ 1123 void sqlite3PCacheSetDefault(void){ 1124 static const sqlite3_pcache_methods2 defaultMethods = { 1125 1, /* iVersion */ 1126 0, /* pArg */ 1127 pcache1Init, /* xInit */ 1128 pcache1Shutdown, /* xShutdown */ 1129 pcache1Create, /* xCreate */ 1130 pcache1Cachesize, /* xCachesize */ 1131 pcache1Pagecount, /* xPagecount */ 1132 pcache1Fetch, /* xFetch */ 1133 pcache1Unpin, /* xUnpin */ 1134 pcache1Rekey, /* xRekey */ 1135 pcache1Truncate, /* xTruncate */ 1136 pcache1Destroy, /* xDestroy */ 1137 pcache1Shrink /* xShrink */ 1138 }; 1139 sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods); 1140 } 1141 1142 /* 1143 ** Return the size of the header on each page of this PCACHE implementation. 1144 */ 1145 int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); } 1146 1147 /* 1148 ** Return the global mutex used by this PCACHE implementation. The 1149 ** sqlite3_status() routine needs access to this mutex. 1150 */ 1151 sqlite3_mutex *sqlite3Pcache1Mutex(void){ 1152 return pcache1.mutex; 1153 } 1154 1155 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 1156 /* 1157 ** This function is called to free superfluous dynamically allocated memory 1158 ** held by the pager system. Memory in use by any SQLite pager allocated 1159 ** by the current thread may be sqlite3_free()ed. 1160 ** 1161 ** nReq is the number of bytes of memory required. Once this much has 1162 ** been released, the function returns. The return value is the total number 1163 ** of bytes of memory released. 1164 */ 1165 int sqlite3PcacheReleaseMemory(int nReq){ 1166 int nFree = 0; 1167 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); 1168 assert( sqlite3_mutex_notheld(pcache1.mutex) ); 1169 if( sqlite3GlobalConfig.nPage==0 ){ 1170 PgHdr1 *p; 1171 pcache1EnterMutex(&pcache1.grp); 1172 while( (nReq<0 || nFree<nReq) && ((p=pcache1.grp.pLruTail)!=0) ){ 1173 nFree += pcache1MemSize(p->page.pBuf); 1174 #ifdef SQLITE_PCACHE_SEPARATE_HEADER 1175 nFree += sqlite3MemSize(p); 1176 #endif 1177 assert( p->isPinned==0 ); 1178 pcache1PinPage(p); 1179 pcache1RemoveFromHash(p, 1); 1180 } 1181 pcache1LeaveMutex(&pcache1.grp); 1182 } 1183 return nFree; 1184 } 1185 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ 1186 1187 #ifdef SQLITE_TEST 1188 /* 1189 ** This function is used by test procedures to inspect the internal state 1190 ** of the global cache. 1191 */ 1192 void sqlite3PcacheStats( 1193 int *pnCurrent, /* OUT: Total number of pages cached */ 1194 int *pnMax, /* OUT: Global maximum cache size */ 1195 int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */ 1196 int *pnRecyclable /* OUT: Total number of pages available for recycling */ 1197 ){ 1198 PgHdr1 *p; 1199 int nRecyclable = 0; 1200 for(p=pcache1.grp.pLruHead; p; p=p->pLruNext){ 1201 assert( p->isPinned==0 ); 1202 nRecyclable++; 1203 } 1204 *pnCurrent = pcache1.grp.nCurrentPage; 1205 *pnMax = (int)pcache1.grp.nMaxPage; 1206 *pnMin = (int)pcache1.grp.nMinPage; 1207 *pnRecyclable = nRecyclable; 1208 } 1209 #endif 1210