1 /* 2 ** 2008 November 05 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file implements the default page cache implementation (the 14 ** sqlite3_pcache interface). It also contains part of the implementation 15 ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features. 16 ** If the default page cache implementation is overriden, then neither of 17 ** these two features are available. 18 */ 19 20 #include "sqliteInt.h" 21 22 typedef struct PCache1 PCache1; 23 typedef struct PgHdr1 PgHdr1; 24 typedef struct PgFreeslot PgFreeslot; 25 typedef struct PGroup PGroup; 26 27 /* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set 28 ** of one or more PCaches that are able to recycle each others unpinned 29 ** pages when they are under memory pressure. A PGroup is an instance of 30 ** the following object. 31 ** 32 ** This page cache implementation works in one of two modes: 33 ** 34 ** (1) Every PCache is the sole member of its own PGroup. There is 35 ** one PGroup per PCache. 36 ** 37 ** (2) There is a single global PGroup that all PCaches are a member 38 ** of. 39 ** 40 ** Mode 1 uses more memory (since PCache instances are not able to rob 41 ** unused pages from other PCaches) but it also operates without a mutex, 42 ** and is therefore often faster. Mode 2 requires a mutex in order to be 43 ** threadsafe, but recycles pages more efficiently. 44 ** 45 ** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single 46 ** PGroup which is the pcache1.grp global variable and its mutex is 47 ** SQLITE_MUTEX_STATIC_LRU. 48 */ 49 struct PGroup { 50 sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */ 51 unsigned int nMaxPage; /* Sum of nMax for purgeable caches */ 52 unsigned int nMinPage; /* Sum of nMin for purgeable caches */ 53 unsigned int mxPinned; /* nMaxpage + 10 - nMinPage */ 54 unsigned int nCurrentPage; /* Number of purgeable pages allocated */ 55 PgHdr1 *pLruHead, *pLruTail; /* LRU list of unpinned pages */ 56 }; 57 58 /* Each page cache is an instance of the following object. Every 59 ** open database file (including each in-memory database and each 60 ** temporary or transient database) has a single page cache which 61 ** is an instance of this object. 62 ** 63 ** Pointers to structures of this type are cast and returned as 64 ** opaque sqlite3_pcache* handles. 65 */ 66 struct PCache1 { 67 /* Cache configuration parameters. Page size (szPage) and the purgeable 68 ** flag (bPurgeable) are set when the cache is created. nMax may be 69 ** modified at any time by a call to the pcache1Cachesize() method. 70 ** The PGroup mutex must be held when accessing nMax. 71 */ 72 PGroup *pGroup; /* PGroup this cache belongs to */ 73 int szPage; /* Size of allocated pages in bytes */ 74 int szExtra; /* Size of extra space in bytes */ 75 int bPurgeable; /* True if cache is purgeable */ 76 unsigned int nMin; /* Minimum number of pages reserved */ 77 unsigned int nMax; /* Configured "cache_size" value */ 78 unsigned int n90pct; /* nMax*9/10 */ 79 unsigned int iMaxKey; /* Largest key seen since xTruncate() */ 80 81 /* Hash table of all pages. The following variables may only be accessed 82 ** when the accessor is holding the PGroup mutex. 83 */ 84 unsigned int nRecyclable; /* Number of pages in the LRU list */ 85 unsigned int nPage; /* Total number of pages in apHash */ 86 unsigned int nHash; /* Number of slots in apHash[] */ 87 PgHdr1 **apHash; /* Hash table for fast lookup by key */ 88 }; 89 90 /* 91 ** Each cache entry is represented by an instance of the following 92 ** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of 93 ** PgHdr1.pCache->szPage bytes is allocated directly before this structure 94 ** in memory. 95 */ 96 struct PgHdr1 { 97 sqlite3_pcache_page page; 98 unsigned int iKey; /* Key value (page number) */ 99 PgHdr1 *pNext; /* Next in hash table chain */ 100 PCache1 *pCache; /* Cache that currently owns this page */ 101 PgHdr1 *pLruNext; /* Next in LRU list of unpinned pages */ 102 PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */ 103 }; 104 105 /* 106 ** Free slots in the allocator used to divide up the buffer provided using 107 ** the SQLITE_CONFIG_PAGECACHE mechanism. 108 */ 109 struct PgFreeslot { 110 PgFreeslot *pNext; /* Next free slot */ 111 }; 112 113 /* 114 ** Global data used by this cache. 115 */ 116 static SQLITE_WSD struct PCacheGlobal { 117 PGroup grp; /* The global PGroup for mode (2) */ 118 119 /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The 120 ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all 121 ** fixed at sqlite3_initialize() time and do not require mutex protection. 122 ** The nFreeSlot and pFree values do require mutex protection. 123 */ 124 int isInit; /* True if initialized */ 125 int szSlot; /* Size of each free slot */ 126 int nSlot; /* The number of pcache slots */ 127 int nReserve; /* Try to keep nFreeSlot above this */ 128 void *pStart, *pEnd; /* Bounds of pagecache malloc range */ 129 /* Above requires no mutex. Use mutex below for variable that follow. */ 130 sqlite3_mutex *mutex; /* Mutex for accessing the following: */ 131 PgFreeslot *pFree; /* Free page blocks */ 132 int nFreeSlot; /* Number of unused pcache slots */ 133 /* The following value requires a mutex to change. We skip the mutex on 134 ** reading because (1) most platforms read a 32-bit integer atomically and 135 ** (2) even if an incorrect value is read, no great harm is done since this 136 ** is really just an optimization. */ 137 int bUnderPressure; /* True if low on PAGECACHE memory */ 138 } pcache1_g; 139 140 /* 141 ** All code in this file should access the global structure above via the 142 ** alias "pcache1". This ensures that the WSD emulation is used when 143 ** compiling for systems that do not support real WSD. 144 */ 145 #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g)) 146 147 /* 148 ** Macros to enter and leave the PCache LRU mutex. 149 */ 150 #define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex) 151 #define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex) 152 153 /******************************************************************************/ 154 /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/ 155 156 /* 157 ** This function is called during initialization if a static buffer is 158 ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE 159 ** verb to sqlite3_config(). Parameter pBuf points to an allocation large 160 ** enough to contain 'n' buffers of 'sz' bytes each. 161 ** 162 ** This routine is called from sqlite3_initialize() and so it is guaranteed 163 ** to be serialized already. There is no need for further mutexing. 164 */ 165 void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){ 166 if( pcache1.isInit ){ 167 PgFreeslot *p; 168 sz = ROUNDDOWN8(sz); 169 pcache1.szSlot = sz; 170 pcache1.nSlot = pcache1.nFreeSlot = n; 171 pcache1.nReserve = n>90 ? 10 : (n/10 + 1); 172 pcache1.pStart = pBuf; 173 pcache1.pFree = 0; 174 pcache1.bUnderPressure = 0; 175 while( n-- ){ 176 p = (PgFreeslot*)pBuf; 177 p->pNext = pcache1.pFree; 178 pcache1.pFree = p; 179 pBuf = (void*)&((char*)pBuf)[sz]; 180 } 181 pcache1.pEnd = pBuf; 182 } 183 } 184 185 /* 186 ** Malloc function used within this file to allocate space from the buffer 187 ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no 188 ** such buffer exists or there is no space left in it, this function falls 189 ** back to sqlite3Malloc(). 190 ** 191 ** Multiple threads can run this routine at the same time. Global variables 192 ** in pcache1 need to be protected via mutex. 193 */ 194 static void *pcache1Alloc(int nByte){ 195 void *p = 0; 196 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); 197 sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte); 198 if( nByte<=pcache1.szSlot ){ 199 sqlite3_mutex_enter(pcache1.mutex); 200 p = (PgHdr1 *)pcache1.pFree; 201 if( p ){ 202 pcache1.pFree = pcache1.pFree->pNext; 203 pcache1.nFreeSlot--; 204 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; 205 assert( pcache1.nFreeSlot>=0 ); 206 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1); 207 } 208 sqlite3_mutex_leave(pcache1.mutex); 209 } 210 if( p==0 ){ 211 /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get 212 ** it from sqlite3Malloc instead. 213 */ 214 p = sqlite3Malloc(nByte); 215 if( p ){ 216 int sz = sqlite3MallocSize(p); 217 sqlite3_mutex_enter(pcache1.mutex); 218 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz); 219 sqlite3_mutex_leave(pcache1.mutex); 220 } 221 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); 222 } 223 return p; 224 } 225 226 /* 227 ** Free an allocated buffer obtained from pcache1Alloc(). 228 */ 229 static int pcache1Free(void *p){ 230 int nFreed = 0; 231 if( p==0 ) return 0; 232 if( p>=pcache1.pStart && p<pcache1.pEnd ){ 233 PgFreeslot *pSlot; 234 sqlite3_mutex_enter(pcache1.mutex); 235 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, -1); 236 pSlot = (PgFreeslot*)p; 237 pSlot->pNext = pcache1.pFree; 238 pcache1.pFree = pSlot; 239 pcache1.nFreeSlot++; 240 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; 241 assert( pcache1.nFreeSlot<=pcache1.nSlot ); 242 sqlite3_mutex_leave(pcache1.mutex); 243 }else{ 244 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); 245 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 246 nFreed = sqlite3MallocSize(p); 247 sqlite3_mutex_enter(pcache1.mutex); 248 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -nFreed); 249 sqlite3_mutex_leave(pcache1.mutex); 250 sqlite3_free(p); 251 } 252 return nFreed; 253 } 254 255 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 256 /* 257 ** Return the size of a pcache allocation 258 */ 259 static int pcache1MemSize(void *p){ 260 if( p>=pcache1.pStart && p<pcache1.pEnd ){ 261 return pcache1.szSlot; 262 }else{ 263 int iSize; 264 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); 265 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 266 iSize = sqlite3MallocSize(p); 267 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); 268 return iSize; 269 } 270 } 271 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ 272 273 /* 274 ** Allocate a new page object initially associated with cache pCache. 275 */ 276 static PgHdr1 *pcache1AllocPage(PCache1 *pCache){ 277 PgHdr1 *p = 0; 278 void *pPg; 279 280 /* The group mutex must be released before pcache1Alloc() is called. This 281 ** is because it may call sqlite3_release_memory(), which assumes that 282 ** this mutex is not held. */ 283 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 284 pcache1LeaveMutex(pCache->pGroup); 285 #ifdef SQLITE_PCACHE_SEPARATE_HEADER 286 pPg = pcache1Alloc(pCache->szPage); 287 p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra); 288 if( !pPg || !p ){ 289 pcache1Free(pPg); 290 sqlite3_free(p); 291 pPg = 0; 292 } 293 #else 294 pPg = pcache1Alloc(sizeof(PgHdr1) + pCache->szPage + pCache->szExtra); 295 p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage]; 296 #endif 297 pcache1EnterMutex(pCache->pGroup); 298 299 if( pPg ){ 300 p->page.pBuf = pPg; 301 p->page.pExtra = &p[1]; 302 if( pCache->bPurgeable ){ 303 pCache->pGroup->nCurrentPage++; 304 } 305 return p; 306 } 307 return 0; 308 } 309 310 /* 311 ** Free a page object allocated by pcache1AllocPage(). 312 ** 313 ** The pointer is allowed to be NULL, which is prudent. But it turns out 314 ** that the current implementation happens to never call this routine 315 ** with a NULL pointer, so we mark the NULL test with ALWAYS(). 316 */ 317 static void pcache1FreePage(PgHdr1 *p){ 318 if( ALWAYS(p) ){ 319 PCache1 *pCache = p->pCache; 320 assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) ); 321 pcache1Free(p->page.pBuf); 322 #ifdef SQLITE_PCACHE_SEPARATE_HEADER 323 sqlite3_free(p); 324 #endif 325 if( pCache->bPurgeable ){ 326 pCache->pGroup->nCurrentPage--; 327 } 328 } 329 } 330 331 /* 332 ** Malloc function used by SQLite to obtain space from the buffer configured 333 ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer 334 ** exists, this function falls back to sqlite3Malloc(). 335 */ 336 void *sqlite3PageMalloc(int sz){ 337 return pcache1Alloc(sz); 338 } 339 340 /* 341 ** Free an allocated buffer obtained from sqlite3PageMalloc(). 342 */ 343 void sqlite3PageFree(void *p){ 344 pcache1Free(p); 345 } 346 347 348 /* 349 ** Return true if it desirable to avoid allocating a new page cache 350 ** entry. 351 ** 352 ** If memory was allocated specifically to the page cache using 353 ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then 354 ** it is desirable to avoid allocating a new page cache entry because 355 ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient 356 ** for all page cache needs and we should not need to spill the 357 ** allocation onto the heap. 358 ** 359 ** Or, the heap is used for all page cache memory but the heap is 360 ** under memory pressure, then again it is desirable to avoid 361 ** allocating a new page cache entry in order to avoid stressing 362 ** the heap even further. 363 */ 364 static int pcache1UnderMemoryPressure(PCache1 *pCache){ 365 if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){ 366 return pcache1.bUnderPressure; 367 }else{ 368 return sqlite3HeapNearlyFull(); 369 } 370 } 371 372 /******************************************************************************/ 373 /******** General Implementation Functions ************************************/ 374 375 /* 376 ** This function is used to resize the hash table used by the cache passed 377 ** as the first argument. 378 ** 379 ** The PCache mutex must be held when this function is called. 380 */ 381 static int pcache1ResizeHash(PCache1 *p){ 382 PgHdr1 **apNew; 383 unsigned int nNew; 384 unsigned int i; 385 386 assert( sqlite3_mutex_held(p->pGroup->mutex) ); 387 388 nNew = p->nHash*2; 389 if( nNew<256 ){ 390 nNew = 256; 391 } 392 393 pcache1LeaveMutex(p->pGroup); 394 if( p->nHash ){ sqlite3BeginBenignMalloc(); } 395 apNew = (PgHdr1 **)sqlite3_malloc(sizeof(PgHdr1 *)*nNew); 396 if( p->nHash ){ sqlite3EndBenignMalloc(); } 397 pcache1EnterMutex(p->pGroup); 398 if( apNew ){ 399 memset(apNew, 0, sizeof(PgHdr1 *)*nNew); 400 for(i=0; i<p->nHash; i++){ 401 PgHdr1 *pPage; 402 PgHdr1 *pNext = p->apHash[i]; 403 while( (pPage = pNext)!=0 ){ 404 unsigned int h = pPage->iKey % nNew; 405 pNext = pPage->pNext; 406 pPage->pNext = apNew[h]; 407 apNew[h] = pPage; 408 } 409 } 410 sqlite3_free(p->apHash); 411 p->apHash = apNew; 412 p->nHash = nNew; 413 } 414 415 return (p->apHash ? SQLITE_OK : SQLITE_NOMEM); 416 } 417 418 /* 419 ** This function is used internally to remove the page pPage from the 420 ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup 421 ** LRU list, then this function is a no-op. 422 ** 423 ** The PGroup mutex must be held when this function is called. 424 ** 425 ** If pPage is NULL then this routine is a no-op. 426 */ 427 static void pcache1PinPage(PgHdr1 *pPage){ 428 PCache1 *pCache; 429 PGroup *pGroup; 430 431 if( pPage==0 ) return; 432 pCache = pPage->pCache; 433 pGroup = pCache->pGroup; 434 assert( sqlite3_mutex_held(pGroup->mutex) ); 435 if( pPage->pLruNext || pPage==pGroup->pLruTail ){ 436 if( pPage->pLruPrev ){ 437 pPage->pLruPrev->pLruNext = pPage->pLruNext; 438 } 439 if( pPage->pLruNext ){ 440 pPage->pLruNext->pLruPrev = pPage->pLruPrev; 441 } 442 if( pGroup->pLruHead==pPage ){ 443 pGroup->pLruHead = pPage->pLruNext; 444 } 445 if( pGroup->pLruTail==pPage ){ 446 pGroup->pLruTail = pPage->pLruPrev; 447 } 448 pPage->pLruNext = 0; 449 pPage->pLruPrev = 0; 450 pPage->pCache->nRecyclable--; 451 } 452 } 453 454 455 /* 456 ** Remove the page supplied as an argument from the hash table 457 ** (PCache1.apHash structure) that it is currently stored in. 458 ** 459 ** The PGroup mutex must be held when this function is called. 460 */ 461 static void pcache1RemoveFromHash(PgHdr1 *pPage){ 462 unsigned int h; 463 PCache1 *pCache = pPage->pCache; 464 PgHdr1 **pp; 465 466 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 467 h = pPage->iKey % pCache->nHash; 468 for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext); 469 *pp = (*pp)->pNext; 470 471 pCache->nPage--; 472 } 473 474 /* 475 ** If there are currently more than nMaxPage pages allocated, try 476 ** to recycle pages to reduce the number allocated to nMaxPage. 477 */ 478 static void pcache1EnforceMaxPage(PGroup *pGroup){ 479 assert( sqlite3_mutex_held(pGroup->mutex) ); 480 while( pGroup->nCurrentPage>pGroup->nMaxPage && pGroup->pLruTail ){ 481 PgHdr1 *p = pGroup->pLruTail; 482 assert( p->pCache->pGroup==pGroup ); 483 pcache1PinPage(p); 484 pcache1RemoveFromHash(p); 485 pcache1FreePage(p); 486 } 487 } 488 489 /* 490 ** Discard all pages from cache pCache with a page number (key value) 491 ** greater than or equal to iLimit. Any pinned pages that meet this 492 ** criteria are unpinned before they are discarded. 493 ** 494 ** The PCache mutex must be held when this function is called. 495 */ 496 static void pcache1TruncateUnsafe( 497 PCache1 *pCache, /* The cache to truncate */ 498 unsigned int iLimit /* Drop pages with this pgno or larger */ 499 ){ 500 TESTONLY( unsigned int nPage = 0; ) /* To assert pCache->nPage is correct */ 501 unsigned int h; 502 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 503 for(h=0; h<pCache->nHash; h++){ 504 PgHdr1 **pp = &pCache->apHash[h]; 505 PgHdr1 *pPage; 506 while( (pPage = *pp)!=0 ){ 507 if( pPage->iKey>=iLimit ){ 508 pCache->nPage--; 509 *pp = pPage->pNext; 510 pcache1PinPage(pPage); 511 pcache1FreePage(pPage); 512 }else{ 513 pp = &pPage->pNext; 514 TESTONLY( nPage++; ) 515 } 516 } 517 } 518 assert( pCache->nPage==nPage ); 519 } 520 521 /******************************************************************************/ 522 /******** sqlite3_pcache Methods **********************************************/ 523 524 /* 525 ** Implementation of the sqlite3_pcache.xInit method. 526 */ 527 static int pcache1Init(void *NotUsed){ 528 UNUSED_PARAMETER(NotUsed); 529 assert( pcache1.isInit==0 ); 530 memset(&pcache1, 0, sizeof(pcache1)); 531 if( sqlite3GlobalConfig.bCoreMutex ){ 532 pcache1.grp.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU); 533 pcache1.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_PMEM); 534 } 535 pcache1.grp.mxPinned = 10; 536 pcache1.isInit = 1; 537 return SQLITE_OK; 538 } 539 540 /* 541 ** Implementation of the sqlite3_pcache.xShutdown method. 542 ** Note that the static mutex allocated in xInit does 543 ** not need to be freed. 544 */ 545 static void pcache1Shutdown(void *NotUsed){ 546 UNUSED_PARAMETER(NotUsed); 547 assert( pcache1.isInit!=0 ); 548 memset(&pcache1, 0, sizeof(pcache1)); 549 } 550 551 /* 552 ** Implementation of the sqlite3_pcache.xCreate method. 553 ** 554 ** Allocate a new cache. 555 */ 556 static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){ 557 PCache1 *pCache; /* The newly created page cache */ 558 PGroup *pGroup; /* The group the new page cache will belong to */ 559 int sz; /* Bytes of memory required to allocate the new cache */ 560 561 /* 562 ** The seperateCache variable is true if each PCache has its own private 563 ** PGroup. In other words, separateCache is true for mode (1) where no 564 ** mutexing is required. 565 ** 566 ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT 567 ** 568 ** * Always use a unified cache in single-threaded applications 569 ** 570 ** * Otherwise (if multi-threaded and ENABLE_MEMORY_MANAGEMENT is off) 571 ** use separate caches (mode-1) 572 */ 573 #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0 574 const int separateCache = 0; 575 #else 576 int separateCache = sqlite3GlobalConfig.bCoreMutex>0; 577 #endif 578 579 assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 ); 580 assert( szExtra < 300 ); 581 582 sz = sizeof(PCache1) + sizeof(PGroup)*separateCache; 583 pCache = (PCache1 *)sqlite3_malloc(sz); 584 if( pCache ){ 585 memset(pCache, 0, sz); 586 if( separateCache ){ 587 pGroup = (PGroup*)&pCache[1]; 588 pGroup->mxPinned = 10; 589 }else{ 590 pGroup = &pcache1.grp; 591 } 592 pCache->pGroup = pGroup; 593 pCache->szPage = szPage; 594 pCache->szExtra = szExtra; 595 pCache->bPurgeable = (bPurgeable ? 1 : 0); 596 if( bPurgeable ){ 597 pCache->nMin = 10; 598 pcache1EnterMutex(pGroup); 599 pGroup->nMinPage += pCache->nMin; 600 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 601 pcache1LeaveMutex(pGroup); 602 } 603 } 604 return (sqlite3_pcache *)pCache; 605 } 606 607 /* 608 ** Implementation of the sqlite3_pcache.xCachesize method. 609 ** 610 ** Configure the cache_size limit for a cache. 611 */ 612 static void pcache1Cachesize(sqlite3_pcache *p, int nMax){ 613 PCache1 *pCache = (PCache1 *)p; 614 if( pCache->bPurgeable ){ 615 PGroup *pGroup = pCache->pGroup; 616 pcache1EnterMutex(pGroup); 617 pGroup->nMaxPage += (nMax - pCache->nMax); 618 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 619 pCache->nMax = nMax; 620 pCache->n90pct = pCache->nMax*9/10; 621 pcache1EnforceMaxPage(pGroup); 622 pcache1LeaveMutex(pGroup); 623 } 624 } 625 626 /* 627 ** Implementation of the sqlite3_pcache.xShrink method. 628 ** 629 ** Free up as much memory as possible. 630 */ 631 static void pcache1Shrink(sqlite3_pcache *p){ 632 PCache1 *pCache = (PCache1*)p; 633 if( pCache->bPurgeable ){ 634 PGroup *pGroup = pCache->pGroup; 635 int savedMaxPage; 636 pcache1EnterMutex(pGroup); 637 savedMaxPage = pGroup->nMaxPage; 638 pGroup->nMaxPage = 0; 639 pcache1EnforceMaxPage(pGroup); 640 pGroup->nMaxPage = savedMaxPage; 641 pcache1LeaveMutex(pGroup); 642 } 643 } 644 645 /* 646 ** Implementation of the sqlite3_pcache.xPagecount method. 647 */ 648 static int pcache1Pagecount(sqlite3_pcache *p){ 649 int n; 650 PCache1 *pCache = (PCache1*)p; 651 pcache1EnterMutex(pCache->pGroup); 652 n = pCache->nPage; 653 pcache1LeaveMutex(pCache->pGroup); 654 return n; 655 } 656 657 /* 658 ** Implementation of the sqlite3_pcache.xFetch method. 659 ** 660 ** Fetch a page by key value. 661 ** 662 ** Whether or not a new page may be allocated by this function depends on 663 ** the value of the createFlag argument. 0 means do not allocate a new 664 ** page. 1 means allocate a new page if space is easily available. 2 665 ** means to try really hard to allocate a new page. 666 ** 667 ** For a non-purgeable cache (a cache used as the storage for an in-memory 668 ** database) there is really no difference between createFlag 1 and 2. So 669 ** the calling function (pcache.c) will never have a createFlag of 1 on 670 ** a non-purgeable cache. 671 ** 672 ** There are three different approaches to obtaining space for a page, 673 ** depending on the value of parameter createFlag (which may be 0, 1 or 2). 674 ** 675 ** 1. Regardless of the value of createFlag, the cache is searched for a 676 ** copy of the requested page. If one is found, it is returned. 677 ** 678 ** 2. If createFlag==0 and the page is not already in the cache, NULL is 679 ** returned. 680 ** 681 ** 3. If createFlag is 1, and the page is not already in the cache, then 682 ** return NULL (do not allocate a new page) if any of the following 683 ** conditions are true: 684 ** 685 ** (a) the number of pages pinned by the cache is greater than 686 ** PCache1.nMax, or 687 ** 688 ** (b) the number of pages pinned by the cache is greater than 689 ** the sum of nMax for all purgeable caches, less the sum of 690 ** nMin for all other purgeable caches, or 691 ** 692 ** 4. If none of the first three conditions apply and the cache is marked 693 ** as purgeable, and if one of the following is true: 694 ** 695 ** (a) The number of pages allocated for the cache is already 696 ** PCache1.nMax, or 697 ** 698 ** (b) The number of pages allocated for all purgeable caches is 699 ** already equal to or greater than the sum of nMax for all 700 ** purgeable caches, 701 ** 702 ** (c) The system is under memory pressure and wants to avoid 703 ** unnecessary pages cache entry allocations 704 ** 705 ** then attempt to recycle a page from the LRU list. If it is the right 706 ** size, return the recycled buffer. Otherwise, free the buffer and 707 ** proceed to step 5. 708 ** 709 ** 5. Otherwise, allocate and return a new page buffer. 710 */ 711 static sqlite3_pcache_page *pcache1Fetch( 712 sqlite3_pcache *p, 713 unsigned int iKey, 714 int createFlag 715 ){ 716 unsigned int nPinned; 717 PCache1 *pCache = (PCache1 *)p; 718 PGroup *pGroup; 719 PgHdr1 *pPage = 0; 720 721 assert( pCache->bPurgeable || createFlag!=1 ); 722 assert( pCache->bPurgeable || pCache->nMin==0 ); 723 assert( pCache->bPurgeable==0 || pCache->nMin==10 ); 724 assert( pCache->nMin==0 || pCache->bPurgeable ); 725 pcache1EnterMutex(pGroup = pCache->pGroup); 726 727 /* Step 1: Search the hash table for an existing entry. */ 728 if( pCache->nHash>0 ){ 729 unsigned int h = iKey % pCache->nHash; 730 for(pPage=pCache->apHash[h]; pPage&&pPage->iKey!=iKey; pPage=pPage->pNext); 731 } 732 733 /* Step 2: Abort if no existing page is found and createFlag is 0 */ 734 if( pPage || createFlag==0 ){ 735 pcache1PinPage(pPage); 736 goto fetch_out; 737 } 738 739 /* The pGroup local variable will normally be initialized by the 740 ** pcache1EnterMutex() macro above. But if SQLITE_MUTEX_OMIT is defined, 741 ** then pcache1EnterMutex() is a no-op, so we have to initialize the 742 ** local variable here. Delaying the initialization of pGroup is an 743 ** optimization: The common case is to exit the module before reaching 744 ** this point. 745 */ 746 #ifdef SQLITE_MUTEX_OMIT 747 pGroup = pCache->pGroup; 748 #endif 749 750 /* Step 3: Abort if createFlag is 1 but the cache is nearly full */ 751 assert( pCache->nPage >= pCache->nRecyclable ); 752 nPinned = pCache->nPage - pCache->nRecyclable; 753 assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage ); 754 assert( pCache->n90pct == pCache->nMax*9/10 ); 755 if( createFlag==1 && ( 756 nPinned>=pGroup->mxPinned 757 || nPinned>=pCache->n90pct 758 || pcache1UnderMemoryPressure(pCache) 759 )){ 760 goto fetch_out; 761 } 762 763 if( pCache->nPage>=pCache->nHash && pcache1ResizeHash(pCache) ){ 764 goto fetch_out; 765 } 766 767 /* Step 4. Try to recycle a page. */ 768 if( pCache->bPurgeable && pGroup->pLruTail && ( 769 (pCache->nPage+1>=pCache->nMax) 770 || pGroup->nCurrentPage>=pGroup->nMaxPage 771 || pcache1UnderMemoryPressure(pCache) 772 )){ 773 PCache1 *pOther; 774 pPage = pGroup->pLruTail; 775 pcache1RemoveFromHash(pPage); 776 pcache1PinPage(pPage); 777 pOther = pPage->pCache; 778 779 /* We want to verify that szPage and szExtra are the same for pOther 780 ** and pCache. Assert that we can verify this by comparing sums. */ 781 assert( (pCache->szPage & (pCache->szPage-1))==0 && pCache->szPage>=512 ); 782 assert( pCache->szExtra<512 ); 783 assert( (pOther->szPage & (pOther->szPage-1))==0 && pOther->szPage>=512 ); 784 assert( pOther->szExtra<512 ); 785 786 if( pOther->szPage+pOther->szExtra != pCache->szPage+pCache->szExtra ){ 787 pcache1FreePage(pPage); 788 pPage = 0; 789 }else{ 790 pGroup->nCurrentPage -= (pOther->bPurgeable - pCache->bPurgeable); 791 } 792 } 793 794 /* Step 5. If a usable page buffer has still not been found, 795 ** attempt to allocate a new one. 796 */ 797 if( !pPage ){ 798 if( createFlag==1 ) sqlite3BeginBenignMalloc(); 799 pPage = pcache1AllocPage(pCache); 800 if( createFlag==1 ) sqlite3EndBenignMalloc(); 801 } 802 803 if( pPage ){ 804 unsigned int h = iKey % pCache->nHash; 805 pCache->nPage++; 806 pPage->iKey = iKey; 807 pPage->pNext = pCache->apHash[h]; 808 pPage->pCache = pCache; 809 pPage->pLruPrev = 0; 810 pPage->pLruNext = 0; 811 *(void **)pPage->page.pExtra = 0; 812 pCache->apHash[h] = pPage; 813 } 814 815 fetch_out: 816 if( pPage && iKey>pCache->iMaxKey ){ 817 pCache->iMaxKey = iKey; 818 } 819 pcache1LeaveMutex(pGroup); 820 return &pPage->page; 821 } 822 823 824 /* 825 ** Implementation of the sqlite3_pcache.xUnpin method. 826 ** 827 ** Mark a page as unpinned (eligible for asynchronous recycling). 828 */ 829 static void pcache1Unpin( 830 sqlite3_pcache *p, 831 sqlite3_pcache_page *pPg, 832 int reuseUnlikely 833 ){ 834 PCache1 *pCache = (PCache1 *)p; 835 PgHdr1 *pPage = (PgHdr1 *)pPg; 836 PGroup *pGroup = pCache->pGroup; 837 838 assert( pPage->pCache==pCache ); 839 pcache1EnterMutex(pGroup); 840 841 /* It is an error to call this function if the page is already 842 ** part of the PGroup LRU list. 843 */ 844 assert( pPage->pLruPrev==0 && pPage->pLruNext==0 ); 845 assert( pGroup->pLruHead!=pPage && pGroup->pLruTail!=pPage ); 846 847 if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){ 848 pcache1RemoveFromHash(pPage); 849 pcache1FreePage(pPage); 850 }else{ 851 /* Add the page to the PGroup LRU list. */ 852 if( pGroup->pLruHead ){ 853 pGroup->pLruHead->pLruPrev = pPage; 854 pPage->pLruNext = pGroup->pLruHead; 855 pGroup->pLruHead = pPage; 856 }else{ 857 pGroup->pLruTail = pPage; 858 pGroup->pLruHead = pPage; 859 } 860 pCache->nRecyclable++; 861 } 862 863 pcache1LeaveMutex(pCache->pGroup); 864 } 865 866 /* 867 ** Implementation of the sqlite3_pcache.xRekey method. 868 */ 869 static void pcache1Rekey( 870 sqlite3_pcache *p, 871 sqlite3_pcache_page *pPg, 872 unsigned int iOld, 873 unsigned int iNew 874 ){ 875 PCache1 *pCache = (PCache1 *)p; 876 PgHdr1 *pPage = (PgHdr1 *)pPg; 877 PgHdr1 **pp; 878 unsigned int h; 879 assert( pPage->iKey==iOld ); 880 assert( pPage->pCache==pCache ); 881 882 pcache1EnterMutex(pCache->pGroup); 883 884 h = iOld%pCache->nHash; 885 pp = &pCache->apHash[h]; 886 while( (*pp)!=pPage ){ 887 pp = &(*pp)->pNext; 888 } 889 *pp = pPage->pNext; 890 891 h = iNew%pCache->nHash; 892 pPage->iKey = iNew; 893 pPage->pNext = pCache->apHash[h]; 894 pCache->apHash[h] = pPage; 895 if( iNew>pCache->iMaxKey ){ 896 pCache->iMaxKey = iNew; 897 } 898 899 pcache1LeaveMutex(pCache->pGroup); 900 } 901 902 /* 903 ** Implementation of the sqlite3_pcache.xTruncate method. 904 ** 905 ** Discard all unpinned pages in the cache with a page number equal to 906 ** or greater than parameter iLimit. Any pinned pages with a page number 907 ** equal to or greater than iLimit are implicitly unpinned. 908 */ 909 static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){ 910 PCache1 *pCache = (PCache1 *)p; 911 pcache1EnterMutex(pCache->pGroup); 912 if( iLimit<=pCache->iMaxKey ){ 913 pcache1TruncateUnsafe(pCache, iLimit); 914 pCache->iMaxKey = iLimit-1; 915 } 916 pcache1LeaveMutex(pCache->pGroup); 917 } 918 919 /* 920 ** Implementation of the sqlite3_pcache.xDestroy method. 921 ** 922 ** Destroy a cache allocated using pcache1Create(). 923 */ 924 static void pcache1Destroy(sqlite3_pcache *p){ 925 PCache1 *pCache = (PCache1 *)p; 926 PGroup *pGroup = pCache->pGroup; 927 assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) ); 928 pcache1EnterMutex(pGroup); 929 pcache1TruncateUnsafe(pCache, 0); 930 assert( pGroup->nMaxPage >= pCache->nMax ); 931 pGroup->nMaxPage -= pCache->nMax; 932 assert( pGroup->nMinPage >= pCache->nMin ); 933 pGroup->nMinPage -= pCache->nMin; 934 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 935 pcache1EnforceMaxPage(pGroup); 936 pcache1LeaveMutex(pGroup); 937 sqlite3_free(pCache->apHash); 938 sqlite3_free(pCache); 939 } 940 941 /* 942 ** This function is called during initialization (sqlite3_initialize()) to 943 ** install the default pluggable cache module, assuming the user has not 944 ** already provided an alternative. 945 */ 946 void sqlite3PCacheSetDefault(void){ 947 static const sqlite3_pcache_methods2 defaultMethods = { 948 1, /* iVersion */ 949 0, /* pArg */ 950 pcache1Init, /* xInit */ 951 pcache1Shutdown, /* xShutdown */ 952 pcache1Create, /* xCreate */ 953 pcache1Cachesize, /* xCachesize */ 954 pcache1Pagecount, /* xPagecount */ 955 pcache1Fetch, /* xFetch */ 956 pcache1Unpin, /* xUnpin */ 957 pcache1Rekey, /* xRekey */ 958 pcache1Truncate, /* xTruncate */ 959 pcache1Destroy, /* xDestroy */ 960 pcache1Shrink /* xShrink */ 961 }; 962 sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods); 963 } 964 965 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 966 /* 967 ** This function is called to free superfluous dynamically allocated memory 968 ** held by the pager system. Memory in use by any SQLite pager allocated 969 ** by the current thread may be sqlite3_free()ed. 970 ** 971 ** nReq is the number of bytes of memory required. Once this much has 972 ** been released, the function returns. The return value is the total number 973 ** of bytes of memory released. 974 */ 975 int sqlite3PcacheReleaseMemory(int nReq){ 976 int nFree = 0; 977 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); 978 assert( sqlite3_mutex_notheld(pcache1.mutex) ); 979 if( pcache1.pStart==0 ){ 980 PgHdr1 *p; 981 pcache1EnterMutex(&pcache1.grp); 982 while( (nReq<0 || nFree<nReq) && ((p=pcache1.grp.pLruTail)!=0) ){ 983 nFree += pcache1MemSize(p->page.pBuf); 984 #ifdef SQLITE_PCACHE_SEPARATE_HEADER 985 nFree += sqlite3MemSize(p); 986 #endif 987 pcache1PinPage(p); 988 pcache1RemoveFromHash(p); 989 pcache1FreePage(p); 990 } 991 pcache1LeaveMutex(&pcache1.grp); 992 } 993 return nFree; 994 } 995 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ 996 997 #ifdef SQLITE_TEST 998 /* 999 ** This function is used by test procedures to inspect the internal state 1000 ** of the global cache. 1001 */ 1002 void sqlite3PcacheStats( 1003 int *pnCurrent, /* OUT: Total number of pages cached */ 1004 int *pnMax, /* OUT: Global maximum cache size */ 1005 int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */ 1006 int *pnRecyclable /* OUT: Total number of pages available for recycling */ 1007 ){ 1008 PgHdr1 *p; 1009 int nRecyclable = 0; 1010 for(p=pcache1.grp.pLruHead; p; p=p->pLruNext){ 1011 nRecyclable++; 1012 } 1013 *pnCurrent = pcache1.grp.nCurrentPage; 1014 *pnMax = (int)pcache1.grp.nMaxPage; 1015 *pnMin = (int)pcache1.grp.nMinPage; 1016 *pnRecyclable = nRecyclable; 1017 } 1018 #endif 1019