1 /* 2 ** 2008 November 05 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file implements the default page cache implementation (the 14 ** sqlite3_pcache interface). It also contains part of the implementation 15 ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features. 16 ** If the default page cache implementation is overridden, then neither of 17 ** these two features are available. 18 ** 19 ** A Page cache line looks like this: 20 ** 21 ** ------------------------------------------------------------- 22 ** | database page content | PgHdr1 | MemPage | PgHdr | 23 ** ------------------------------------------------------------- 24 ** 25 ** The database page content is up front (so that buffer overreads tend to 26 ** flow harmlessly into the PgHdr1, MemPage, and PgHdr extensions). MemPage 27 ** is the extension added by the btree.c module containing information such 28 ** as the database page number and how that database page is used. PgHdr 29 ** is added by the pcache.c layer and contains information used to keep track 30 ** of which pages are "dirty". PgHdr1 is an extension added by this 31 ** module (pcache1.c). The PgHdr1 header is a subclass of sqlite3_pcache_page. 32 ** PgHdr1 contains information needed to look up a page by its page number. 33 ** The superclass sqlite3_pcache_page.pBuf points to the start of the 34 ** database page content and sqlite3_pcache_page.pExtra points to PgHdr. 35 ** 36 ** The size of the extension (MemPage+PgHdr+PgHdr1) can be determined at 37 ** runtime using sqlite3_config(SQLITE_CONFIG_PCACHE_HDRSZ, &size). The 38 ** sizes of the extensions sum to 272 bytes on x64 for 3.8.10, but this 39 ** size can vary according to architecture, compile-time options, and 40 ** SQLite library version number. 41 ** 42 ** If SQLITE_PCACHE_SEPARATE_HEADER is defined, then the extension is obtained 43 ** using a separate memory allocation from the database page content. This 44 ** seeks to overcome the "clownshoe" problem (also called "internal 45 ** fragmentation" in academic literature) of allocating a few bytes more 46 ** than a power of two with the memory allocator rounding up to the next 47 ** power of two, and leaving the rounded-up space unused. 48 ** 49 ** This module tracks pointers to PgHdr1 objects. Only pcache.c communicates 50 ** with this module. Information is passed back and forth as PgHdr1 pointers. 51 ** 52 ** The pcache.c and pager.c modules deal pointers to PgHdr objects. 53 ** The btree.c module deals with pointers to MemPage objects. 54 ** 55 ** SOURCE OF PAGE CACHE MEMORY: 56 ** 57 ** Memory for a page might come from any of three sources: 58 ** 59 ** (1) The general-purpose memory allocator - sqlite3Malloc() 60 ** (2) Global page-cache memory provided using sqlite3_config() with 61 ** SQLITE_CONFIG_PAGECACHE. 62 ** (3) PCache-local bulk allocation. 63 ** 64 ** The third case is a chunk of heap memory (defaulting to 100 pages worth) 65 ** that is allocated when the page cache is created. The size of the local 66 ** bulk allocation can be adjusted using 67 ** 68 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, (void*)0, 0, N). 69 ** 70 ** If N is positive, then N pages worth of memory are allocated using a single 71 ** sqlite3Malloc() call and that memory is used for the first N pages allocated. 72 ** Or if N is negative, then -1024*N bytes of memory are allocated and used 73 ** for as many pages as can be accomodated. 74 ** 75 ** Only one of (2) or (3) can be used. Once the memory available to (2) or 76 ** (3) is exhausted, subsequent allocations fail over to the general-purpose 77 ** memory allocator (1). 78 ** 79 ** Earlier versions of SQLite used only methods (1) and (2). But experiments 80 ** show that method (3) with N==100 provides about a 5% performance boost for 81 ** common workloads. 82 */ 83 #include "sqliteInt.h" 84 85 typedef struct PCache1 PCache1; 86 typedef struct PgHdr1 PgHdr1; 87 typedef struct PgFreeslot PgFreeslot; 88 typedef struct PGroup PGroup; 89 90 /* 91 ** Each cache entry is represented by an instance of the following 92 ** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of 93 ** PgHdr1.pCache->szPage bytes is allocated directly before this structure 94 ** in memory. 95 */ 96 struct PgHdr1 { 97 sqlite3_pcache_page page; /* Base class. Must be first. pBuf & pExtra */ 98 unsigned int iKey; /* Key value (page number) */ 99 u8 isBulkLocal; /* This page from bulk local storage */ 100 u8 isAnchor; /* This is the PGroup.lru element */ 101 PgHdr1 *pNext; /* Next in hash table chain */ 102 PCache1 *pCache; /* Cache that currently owns this page */ 103 PgHdr1 *pLruNext; /* Next in LRU list of unpinned pages */ 104 PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */ 105 }; 106 107 /* 108 ** A page is pinned if it is no on the LRU list 109 */ 110 #define PAGE_IS_PINNED(p) ((p)->pLruNext==0) 111 #define PAGE_IS_UNPINNED(p) ((p)->pLruNext!=0) 112 113 /* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set 114 ** of one or more PCaches that are able to recycle each other's unpinned 115 ** pages when they are under memory pressure. A PGroup is an instance of 116 ** the following object. 117 ** 118 ** This page cache implementation works in one of two modes: 119 ** 120 ** (1) Every PCache is the sole member of its own PGroup. There is 121 ** one PGroup per PCache. 122 ** 123 ** (2) There is a single global PGroup that all PCaches are a member 124 ** of. 125 ** 126 ** Mode 1 uses more memory (since PCache instances are not able to rob 127 ** unused pages from other PCaches) but it also operates without a mutex, 128 ** and is therefore often faster. Mode 2 requires a mutex in order to be 129 ** threadsafe, but recycles pages more efficiently. 130 ** 131 ** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single 132 ** PGroup which is the pcache1.grp global variable and its mutex is 133 ** SQLITE_MUTEX_STATIC_LRU. 134 */ 135 struct PGroup { 136 sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */ 137 unsigned int nMaxPage; /* Sum of nMax for purgeable caches */ 138 unsigned int nMinPage; /* Sum of nMin for purgeable caches */ 139 unsigned int mxPinned; /* nMaxpage + 10 - nMinPage */ 140 unsigned int nCurrentPage; /* Number of purgeable pages allocated */ 141 PgHdr1 lru; /* The beginning and end of the LRU list */ 142 }; 143 144 /* Each page cache is an instance of the following object. Every 145 ** open database file (including each in-memory database and each 146 ** temporary or transient database) has a single page cache which 147 ** is an instance of this object. 148 ** 149 ** Pointers to structures of this type are cast and returned as 150 ** opaque sqlite3_pcache* handles. 151 */ 152 struct PCache1 { 153 /* Cache configuration parameters. Page size (szPage) and the purgeable 154 ** flag (bPurgeable) are set when the cache is created. nMax may be 155 ** modified at any time by a call to the pcache1Cachesize() method. 156 ** The PGroup mutex must be held when accessing nMax. 157 */ 158 PGroup *pGroup; /* PGroup this cache belongs to */ 159 int szPage; /* Size of database content section */ 160 int szExtra; /* sizeof(MemPage)+sizeof(PgHdr) */ 161 int szAlloc; /* Total size of one pcache line */ 162 int bPurgeable; /* True if cache is purgeable */ 163 unsigned int nMin; /* Minimum number of pages reserved */ 164 unsigned int nMax; /* Configured "cache_size" value */ 165 unsigned int n90pct; /* nMax*9/10 */ 166 unsigned int iMaxKey; /* Largest key seen since xTruncate() */ 167 168 /* Hash table of all pages. The following variables may only be accessed 169 ** when the accessor is holding the PGroup mutex. 170 */ 171 unsigned int nRecyclable; /* Number of pages in the LRU list */ 172 unsigned int nPage; /* Total number of pages in apHash */ 173 unsigned int nHash; /* Number of slots in apHash[] */ 174 PgHdr1 **apHash; /* Hash table for fast lookup by key */ 175 PgHdr1 *pFree; /* List of unused pcache-local pages */ 176 void *pBulk; /* Bulk memory used by pcache-local */ 177 }; 178 179 /* 180 ** Free slots in the allocator used to divide up the global page cache 181 ** buffer provided using the SQLITE_CONFIG_PAGECACHE mechanism. 182 */ 183 struct PgFreeslot { 184 PgFreeslot *pNext; /* Next free slot */ 185 }; 186 187 /* 188 ** Global data used by this cache. 189 */ 190 static SQLITE_WSD struct PCacheGlobal { 191 PGroup grp; /* The global PGroup for mode (2) */ 192 193 /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The 194 ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all 195 ** fixed at sqlite3_initialize() time and do not require mutex protection. 196 ** The nFreeSlot and pFree values do require mutex protection. 197 */ 198 int isInit; /* True if initialized */ 199 int separateCache; /* Use a new PGroup for each PCache */ 200 int nInitPage; /* Initial bulk allocation size */ 201 int szSlot; /* Size of each free slot */ 202 int nSlot; /* The number of pcache slots */ 203 int nReserve; /* Try to keep nFreeSlot above this */ 204 void *pStart, *pEnd; /* Bounds of global page cache memory */ 205 /* Above requires no mutex. Use mutex below for variable that follow. */ 206 sqlite3_mutex *mutex; /* Mutex for accessing the following: */ 207 PgFreeslot *pFree; /* Free page blocks */ 208 int nFreeSlot; /* Number of unused pcache slots */ 209 /* The following value requires a mutex to change. We skip the mutex on 210 ** reading because (1) most platforms read a 32-bit integer atomically and 211 ** (2) even if an incorrect value is read, no great harm is done since this 212 ** is really just an optimization. */ 213 int bUnderPressure; /* True if low on PAGECACHE memory */ 214 } pcache1_g; 215 216 /* 217 ** All code in this file should access the global structure above via the 218 ** alias "pcache1". This ensures that the WSD emulation is used when 219 ** compiling for systems that do not support real WSD. 220 */ 221 #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g)) 222 223 /* 224 ** Macros to enter and leave the PCache LRU mutex. 225 */ 226 #if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0 227 # define pcache1EnterMutex(X) assert((X)->mutex==0) 228 # define pcache1LeaveMutex(X) assert((X)->mutex==0) 229 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 0 230 #else 231 # define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex) 232 # define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex) 233 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 1 234 #endif 235 236 /******************************************************************************/ 237 /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/ 238 239 240 /* 241 ** This function is called during initialization if a static buffer is 242 ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE 243 ** verb to sqlite3_config(). Parameter pBuf points to an allocation large 244 ** enough to contain 'n' buffers of 'sz' bytes each. 245 ** 246 ** This routine is called from sqlite3_initialize() and so it is guaranteed 247 ** to be serialized already. There is no need for further mutexing. 248 */ 249 void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){ 250 if( pcache1.isInit ){ 251 PgFreeslot *p; 252 if( pBuf==0 ) sz = n = 0; 253 sz = ROUNDDOWN8(sz); 254 pcache1.szSlot = sz; 255 pcache1.nSlot = pcache1.nFreeSlot = n; 256 pcache1.nReserve = n>90 ? 10 : (n/10 + 1); 257 pcache1.pStart = pBuf; 258 pcache1.pFree = 0; 259 pcache1.bUnderPressure = 0; 260 while( n-- ){ 261 p = (PgFreeslot*)pBuf; 262 p->pNext = pcache1.pFree; 263 pcache1.pFree = p; 264 pBuf = (void*)&((char*)pBuf)[sz]; 265 } 266 pcache1.pEnd = pBuf; 267 } 268 } 269 270 /* 271 ** Try to initialize the pCache->pFree and pCache->pBulk fields. Return 272 ** true if pCache->pFree ends up containing one or more free pages. 273 */ 274 static int pcache1InitBulk(PCache1 *pCache){ 275 i64 szBulk; 276 char *zBulk; 277 if( pcache1.nInitPage==0 ) return 0; 278 /* Do not bother with a bulk allocation if the cache size very small */ 279 if( pCache->nMax<3 ) return 0; 280 sqlite3BeginBenignMalloc(); 281 if( pcache1.nInitPage>0 ){ 282 szBulk = pCache->szAlloc * (i64)pcache1.nInitPage; 283 }else{ 284 szBulk = -1024 * (i64)pcache1.nInitPage; 285 } 286 if( szBulk > pCache->szAlloc*(i64)pCache->nMax ){ 287 szBulk = pCache->szAlloc*(i64)pCache->nMax; 288 } 289 zBulk = pCache->pBulk = sqlite3Malloc( szBulk ); 290 sqlite3EndBenignMalloc(); 291 if( zBulk ){ 292 int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc; 293 do{ 294 PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage]; 295 pX->page.pBuf = zBulk; 296 pX->page.pExtra = &pX[1]; 297 pX->isBulkLocal = 1; 298 pX->isAnchor = 0; 299 pX->pNext = pCache->pFree; 300 pCache->pFree = pX; 301 zBulk += pCache->szAlloc; 302 }while( --nBulk ); 303 } 304 return pCache->pFree!=0; 305 } 306 307 /* 308 ** Malloc function used within this file to allocate space from the buffer 309 ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no 310 ** such buffer exists or there is no space left in it, this function falls 311 ** back to sqlite3Malloc(). 312 ** 313 ** Multiple threads can run this routine at the same time. Global variables 314 ** in pcache1 need to be protected via mutex. 315 */ 316 static void *pcache1Alloc(int nByte){ 317 void *p = 0; 318 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); 319 if( nByte<=pcache1.szSlot ){ 320 sqlite3_mutex_enter(pcache1.mutex); 321 p = (PgHdr1 *)pcache1.pFree; 322 if( p ){ 323 pcache1.pFree = pcache1.pFree->pNext; 324 pcache1.nFreeSlot--; 325 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; 326 assert( pcache1.nFreeSlot>=0 ); 327 sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte); 328 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1); 329 } 330 sqlite3_mutex_leave(pcache1.mutex); 331 } 332 if( p==0 ){ 333 /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get 334 ** it from sqlite3Malloc instead. 335 */ 336 p = sqlite3Malloc(nByte); 337 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS 338 if( p ){ 339 int sz = sqlite3MallocSize(p); 340 sqlite3_mutex_enter(pcache1.mutex); 341 sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte); 342 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz); 343 sqlite3_mutex_leave(pcache1.mutex); 344 } 345 #endif 346 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); 347 } 348 return p; 349 } 350 351 /* 352 ** Free an allocated buffer obtained from pcache1Alloc(). 353 */ 354 static void pcache1Free(void *p){ 355 if( p==0 ) return; 356 if( SQLITE_WITHIN(p, pcache1.pStart, pcache1.pEnd) ){ 357 PgFreeslot *pSlot; 358 sqlite3_mutex_enter(pcache1.mutex); 359 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1); 360 pSlot = (PgFreeslot*)p; 361 pSlot->pNext = pcache1.pFree; 362 pcache1.pFree = pSlot; 363 pcache1.nFreeSlot++; 364 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; 365 assert( pcache1.nFreeSlot<=pcache1.nSlot ); 366 sqlite3_mutex_leave(pcache1.mutex); 367 }else{ 368 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); 369 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 370 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS 371 { 372 int nFreed = 0; 373 nFreed = sqlite3MallocSize(p); 374 sqlite3_mutex_enter(pcache1.mutex); 375 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_OVERFLOW, nFreed); 376 sqlite3_mutex_leave(pcache1.mutex); 377 } 378 #endif 379 sqlite3_free(p); 380 } 381 } 382 383 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 384 /* 385 ** Return the size of a pcache allocation 386 */ 387 static int pcache1MemSize(void *p){ 388 if( p>=pcache1.pStart && p<pcache1.pEnd ){ 389 return pcache1.szSlot; 390 }else{ 391 int iSize; 392 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); 393 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 394 iSize = sqlite3MallocSize(p); 395 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); 396 return iSize; 397 } 398 } 399 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ 400 401 /* 402 ** Allocate a new page object initially associated with cache pCache. 403 */ 404 static PgHdr1 *pcache1AllocPage(PCache1 *pCache, int benignMalloc){ 405 PgHdr1 *p = 0; 406 void *pPg; 407 408 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 409 if( pCache->pFree || (pCache->nPage==0 && pcache1InitBulk(pCache)) ){ 410 p = pCache->pFree; 411 pCache->pFree = p->pNext; 412 p->pNext = 0; 413 }else{ 414 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 415 /* The group mutex must be released before pcache1Alloc() is called. This 416 ** is because it might call sqlite3_release_memory(), which assumes that 417 ** this mutex is not held. */ 418 assert( pcache1.separateCache==0 ); 419 assert( pCache->pGroup==&pcache1.grp ); 420 pcache1LeaveMutex(pCache->pGroup); 421 #endif 422 if( benignMalloc ){ sqlite3BeginBenignMalloc(); } 423 #ifdef SQLITE_PCACHE_SEPARATE_HEADER 424 pPg = pcache1Alloc(pCache->szPage); 425 p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra); 426 if( !pPg || !p ){ 427 pcache1Free(pPg); 428 sqlite3_free(p); 429 pPg = 0; 430 } 431 #else 432 pPg = pcache1Alloc(pCache->szAlloc); 433 p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage]; 434 #endif 435 if( benignMalloc ){ sqlite3EndBenignMalloc(); } 436 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 437 pcache1EnterMutex(pCache->pGroup); 438 #endif 439 if( pPg==0 ) return 0; 440 p->page.pBuf = pPg; 441 p->page.pExtra = &p[1]; 442 p->isBulkLocal = 0; 443 p->isAnchor = 0; 444 } 445 if( pCache->bPurgeable ){ 446 pCache->pGroup->nCurrentPage++; 447 } 448 return p; 449 } 450 451 /* 452 ** Free a page object allocated by pcache1AllocPage(). 453 */ 454 static void pcache1FreePage(PgHdr1 *p){ 455 PCache1 *pCache; 456 assert( p!=0 ); 457 pCache = p->pCache; 458 assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) ); 459 if( p->isBulkLocal ){ 460 p->pNext = pCache->pFree; 461 pCache->pFree = p; 462 }else{ 463 pcache1Free(p->page.pBuf); 464 #ifdef SQLITE_PCACHE_SEPARATE_HEADER 465 sqlite3_free(p); 466 #endif 467 } 468 if( pCache->bPurgeable ){ 469 pCache->pGroup->nCurrentPage--; 470 } 471 } 472 473 /* 474 ** Malloc function used by SQLite to obtain space from the buffer configured 475 ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer 476 ** exists, this function falls back to sqlite3Malloc(). 477 */ 478 void *sqlite3PageMalloc(int sz){ 479 return pcache1Alloc(sz); 480 } 481 482 /* 483 ** Free an allocated buffer obtained from sqlite3PageMalloc(). 484 */ 485 void sqlite3PageFree(void *p){ 486 pcache1Free(p); 487 } 488 489 490 /* 491 ** Return true if it desirable to avoid allocating a new page cache 492 ** entry. 493 ** 494 ** If memory was allocated specifically to the page cache using 495 ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then 496 ** it is desirable to avoid allocating a new page cache entry because 497 ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient 498 ** for all page cache needs and we should not need to spill the 499 ** allocation onto the heap. 500 ** 501 ** Or, the heap is used for all page cache memory but the heap is 502 ** under memory pressure, then again it is desirable to avoid 503 ** allocating a new page cache entry in order to avoid stressing 504 ** the heap even further. 505 */ 506 static int pcache1UnderMemoryPressure(PCache1 *pCache){ 507 if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){ 508 return pcache1.bUnderPressure; 509 }else{ 510 return sqlite3HeapNearlyFull(); 511 } 512 } 513 514 /******************************************************************************/ 515 /******** General Implementation Functions ************************************/ 516 517 /* 518 ** This function is used to resize the hash table used by the cache passed 519 ** as the first argument. 520 ** 521 ** The PCache mutex must be held when this function is called. 522 */ 523 static void pcache1ResizeHash(PCache1 *p){ 524 PgHdr1 **apNew; 525 unsigned int nNew; 526 unsigned int i; 527 528 assert( sqlite3_mutex_held(p->pGroup->mutex) ); 529 530 nNew = p->nHash*2; 531 if( nNew<256 ){ 532 nNew = 256; 533 } 534 535 pcache1LeaveMutex(p->pGroup); 536 if( p->nHash ){ sqlite3BeginBenignMalloc(); } 537 apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew); 538 if( p->nHash ){ sqlite3EndBenignMalloc(); } 539 pcache1EnterMutex(p->pGroup); 540 if( apNew ){ 541 for(i=0; i<p->nHash; i++){ 542 PgHdr1 *pPage; 543 PgHdr1 *pNext = p->apHash[i]; 544 while( (pPage = pNext)!=0 ){ 545 unsigned int h = pPage->iKey % nNew; 546 pNext = pPage->pNext; 547 pPage->pNext = apNew[h]; 548 apNew[h] = pPage; 549 } 550 } 551 sqlite3_free(p->apHash); 552 p->apHash = apNew; 553 p->nHash = nNew; 554 } 555 } 556 557 /* 558 ** This function is used internally to remove the page pPage from the 559 ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup 560 ** LRU list, then this function is a no-op. 561 ** 562 ** The PGroup mutex must be held when this function is called. 563 */ 564 static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){ 565 assert( pPage!=0 ); 566 assert( PAGE_IS_UNPINNED(pPage) ); 567 assert( pPage->pLruNext ); 568 assert( pPage->pLruPrev ); 569 assert( sqlite3_mutex_held(pPage->pCache->pGroup->mutex) ); 570 pPage->pLruPrev->pLruNext = pPage->pLruNext; 571 pPage->pLruNext->pLruPrev = pPage->pLruPrev; 572 pPage->pLruNext = 0; 573 pPage->pLruPrev = 0; 574 assert( pPage->isAnchor==0 ); 575 assert( pPage->pCache->pGroup->lru.isAnchor==1 ); 576 pPage->pCache->nRecyclable--; 577 return pPage; 578 } 579 580 581 /* 582 ** Remove the page supplied as an argument from the hash table 583 ** (PCache1.apHash structure) that it is currently stored in. 584 ** Also free the page if freePage is true. 585 ** 586 ** The PGroup mutex must be held when this function is called. 587 */ 588 static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){ 589 unsigned int h; 590 PCache1 *pCache = pPage->pCache; 591 PgHdr1 **pp; 592 593 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 594 h = pPage->iKey % pCache->nHash; 595 for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext); 596 *pp = (*pp)->pNext; 597 598 pCache->nPage--; 599 if( freeFlag ) pcache1FreePage(pPage); 600 } 601 602 /* 603 ** If there are currently more than nMaxPage pages allocated, try 604 ** to recycle pages to reduce the number allocated to nMaxPage. 605 */ 606 static void pcache1EnforceMaxPage(PCache1 *pCache){ 607 PGroup *pGroup = pCache->pGroup; 608 PgHdr1 *p; 609 assert( sqlite3_mutex_held(pGroup->mutex) ); 610 while( pGroup->nCurrentPage>pGroup->nMaxPage 611 && (p=pGroup->lru.pLruPrev)->isAnchor==0 612 ){ 613 assert( p->pCache->pGroup==pGroup ); 614 assert( PAGE_IS_UNPINNED(p) ); 615 pcache1PinPage(p); 616 pcache1RemoveFromHash(p, 1); 617 } 618 if( pCache->nPage==0 && pCache->pBulk ){ 619 sqlite3_free(pCache->pBulk); 620 pCache->pBulk = pCache->pFree = 0; 621 } 622 } 623 624 /* 625 ** Discard all pages from cache pCache with a page number (key value) 626 ** greater than or equal to iLimit. Any pinned pages that meet this 627 ** criteria are unpinned before they are discarded. 628 ** 629 ** The PCache mutex must be held when this function is called. 630 */ 631 static void pcache1TruncateUnsafe( 632 PCache1 *pCache, /* The cache to truncate */ 633 unsigned int iLimit /* Drop pages with this pgno or larger */ 634 ){ 635 TESTONLY( int nPage = 0; ) /* To assert pCache->nPage is correct */ 636 unsigned int h, iStop; 637 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); 638 assert( pCache->iMaxKey >= iLimit ); 639 assert( pCache->nHash > 0 ); 640 if( pCache->iMaxKey - iLimit < pCache->nHash ){ 641 /* If we are just shaving the last few pages off the end of the 642 ** cache, then there is no point in scanning the entire hash table. 643 ** Only scan those hash slots that might contain pages that need to 644 ** be removed. */ 645 h = iLimit % pCache->nHash; 646 iStop = pCache->iMaxKey % pCache->nHash; 647 TESTONLY( nPage = -10; ) /* Disable the pCache->nPage validity check */ 648 }else{ 649 /* This is the general case where many pages are being removed. 650 ** It is necessary to scan the entire hash table */ 651 h = pCache->nHash/2; 652 iStop = h - 1; 653 } 654 for(;;){ 655 PgHdr1 **pp; 656 PgHdr1 *pPage; 657 assert( h<pCache->nHash ); 658 pp = &pCache->apHash[h]; 659 while( (pPage = *pp)!=0 ){ 660 if( pPage->iKey>=iLimit ){ 661 pCache->nPage--; 662 *pp = pPage->pNext; 663 if( PAGE_IS_UNPINNED(pPage) ) pcache1PinPage(pPage); 664 pcache1FreePage(pPage); 665 }else{ 666 pp = &pPage->pNext; 667 TESTONLY( if( nPage>=0 ) nPage++; ) 668 } 669 } 670 if( h==iStop ) break; 671 h = (h+1) % pCache->nHash; 672 } 673 assert( nPage<0 || pCache->nPage==(unsigned)nPage ); 674 } 675 676 /******************************************************************************/ 677 /******** sqlite3_pcache Methods **********************************************/ 678 679 /* 680 ** Implementation of the sqlite3_pcache.xInit method. 681 */ 682 static int pcache1Init(void *NotUsed){ 683 UNUSED_PARAMETER(NotUsed); 684 assert( pcache1.isInit==0 ); 685 memset(&pcache1, 0, sizeof(pcache1)); 686 687 688 /* 689 ** The pcache1.separateCache variable is true if each PCache has its own 690 ** private PGroup (mode-1). pcache1.separateCache is false if the single 691 ** PGroup in pcache1.grp is used for all page caches (mode-2). 692 ** 693 ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT 694 ** 695 ** * Use a unified cache in single-threaded applications that have 696 ** configured a start-time buffer for use as page-cache memory using 697 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, pBuf, sz, N) with non-NULL 698 ** pBuf argument. 699 ** 700 ** * Otherwise use separate caches (mode-1) 701 */ 702 #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) 703 pcache1.separateCache = 0; 704 #elif SQLITE_THREADSAFE 705 pcache1.separateCache = sqlite3GlobalConfig.pPage==0 706 || sqlite3GlobalConfig.bCoreMutex>0; 707 #else 708 pcache1.separateCache = sqlite3GlobalConfig.pPage==0; 709 #endif 710 711 #if SQLITE_THREADSAFE 712 if( sqlite3GlobalConfig.bCoreMutex ){ 713 pcache1.grp.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU); 714 pcache1.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PMEM); 715 } 716 #endif 717 if( pcache1.separateCache 718 && sqlite3GlobalConfig.nPage!=0 719 && sqlite3GlobalConfig.pPage==0 720 ){ 721 pcache1.nInitPage = sqlite3GlobalConfig.nPage; 722 }else{ 723 pcache1.nInitPage = 0; 724 } 725 pcache1.grp.mxPinned = 10; 726 pcache1.isInit = 1; 727 return SQLITE_OK; 728 } 729 730 /* 731 ** Implementation of the sqlite3_pcache.xShutdown method. 732 ** Note that the static mutex allocated in xInit does 733 ** not need to be freed. 734 */ 735 static void pcache1Shutdown(void *NotUsed){ 736 UNUSED_PARAMETER(NotUsed); 737 assert( pcache1.isInit!=0 ); 738 memset(&pcache1, 0, sizeof(pcache1)); 739 } 740 741 /* forward declaration */ 742 static void pcache1Destroy(sqlite3_pcache *p); 743 744 /* 745 ** Implementation of the sqlite3_pcache.xCreate method. 746 ** 747 ** Allocate a new cache. 748 */ 749 static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){ 750 PCache1 *pCache; /* The newly created page cache */ 751 PGroup *pGroup; /* The group the new page cache will belong to */ 752 int sz; /* Bytes of memory required to allocate the new cache */ 753 754 assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 ); 755 assert( szExtra < 300 ); 756 757 sz = sizeof(PCache1) + sizeof(PGroup)*pcache1.separateCache; 758 pCache = (PCache1 *)sqlite3MallocZero(sz); 759 if( pCache ){ 760 if( pcache1.separateCache ){ 761 pGroup = (PGroup*)&pCache[1]; 762 pGroup->mxPinned = 10; 763 }else{ 764 pGroup = &pcache1.grp; 765 } 766 if( pGroup->lru.isAnchor==0 ){ 767 pGroup->lru.isAnchor = 1; 768 pGroup->lru.pLruPrev = pGroup->lru.pLruNext = &pGroup->lru; 769 } 770 pCache->pGroup = pGroup; 771 pCache->szPage = szPage; 772 pCache->szExtra = szExtra; 773 pCache->szAlloc = szPage + szExtra + ROUND8(sizeof(PgHdr1)); 774 pCache->bPurgeable = (bPurgeable ? 1 : 0); 775 pcache1EnterMutex(pGroup); 776 pcache1ResizeHash(pCache); 777 if( bPurgeable ){ 778 pCache->nMin = 10; 779 pGroup->nMinPage += pCache->nMin; 780 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 781 } 782 pcache1LeaveMutex(pGroup); 783 if( pCache->nHash==0 ){ 784 pcache1Destroy((sqlite3_pcache*)pCache); 785 pCache = 0; 786 } 787 } 788 return (sqlite3_pcache *)pCache; 789 } 790 791 /* 792 ** Implementation of the sqlite3_pcache.xCachesize method. 793 ** 794 ** Configure the cache_size limit for a cache. 795 */ 796 static void pcache1Cachesize(sqlite3_pcache *p, int nMax){ 797 PCache1 *pCache = (PCache1 *)p; 798 if( pCache->bPurgeable ){ 799 PGroup *pGroup = pCache->pGroup; 800 pcache1EnterMutex(pGroup); 801 pGroup->nMaxPage += (nMax - pCache->nMax); 802 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 803 pCache->nMax = nMax; 804 pCache->n90pct = pCache->nMax*9/10; 805 pcache1EnforceMaxPage(pCache); 806 pcache1LeaveMutex(pGroup); 807 } 808 } 809 810 /* 811 ** Implementation of the sqlite3_pcache.xShrink method. 812 ** 813 ** Free up as much memory as possible. 814 */ 815 static void pcache1Shrink(sqlite3_pcache *p){ 816 PCache1 *pCache = (PCache1*)p; 817 if( pCache->bPurgeable ){ 818 PGroup *pGroup = pCache->pGroup; 819 int savedMaxPage; 820 pcache1EnterMutex(pGroup); 821 savedMaxPage = pGroup->nMaxPage; 822 pGroup->nMaxPage = 0; 823 pcache1EnforceMaxPage(pCache); 824 pGroup->nMaxPage = savedMaxPage; 825 pcache1LeaveMutex(pGroup); 826 } 827 } 828 829 /* 830 ** Implementation of the sqlite3_pcache.xPagecount method. 831 */ 832 static int pcache1Pagecount(sqlite3_pcache *p){ 833 int n; 834 PCache1 *pCache = (PCache1*)p; 835 pcache1EnterMutex(pCache->pGroup); 836 n = pCache->nPage; 837 pcache1LeaveMutex(pCache->pGroup); 838 return n; 839 } 840 841 842 /* 843 ** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described 844 ** in the header of the pcache1Fetch() procedure. 845 ** 846 ** This steps are broken out into a separate procedure because they are 847 ** usually not needed, and by avoiding the stack initialization required 848 ** for these steps, the main pcache1Fetch() procedure can run faster. 849 */ 850 static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2( 851 PCache1 *pCache, 852 unsigned int iKey, 853 int createFlag 854 ){ 855 unsigned int nPinned; 856 PGroup *pGroup = pCache->pGroup; 857 PgHdr1 *pPage = 0; 858 859 /* Step 3: Abort if createFlag is 1 but the cache is nearly full */ 860 assert( pCache->nPage >= pCache->nRecyclable ); 861 nPinned = pCache->nPage - pCache->nRecyclable; 862 assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage ); 863 assert( pCache->n90pct == pCache->nMax*9/10 ); 864 if( createFlag==1 && ( 865 nPinned>=pGroup->mxPinned 866 || nPinned>=pCache->n90pct 867 || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned) 868 )){ 869 return 0; 870 } 871 872 if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache); 873 assert( pCache->nHash>0 && pCache->apHash ); 874 875 /* Step 4. Try to recycle a page. */ 876 if( pCache->bPurgeable 877 && !pGroup->lru.pLruPrev->isAnchor 878 && ((pCache->nPage+1>=pCache->nMax) || pcache1UnderMemoryPressure(pCache)) 879 ){ 880 PCache1 *pOther; 881 pPage = pGroup->lru.pLruPrev; 882 assert( PAGE_IS_UNPINNED(pPage) ); 883 pcache1RemoveFromHash(pPage, 0); 884 pcache1PinPage(pPage); 885 pOther = pPage->pCache; 886 if( pOther->szAlloc != pCache->szAlloc ){ 887 pcache1FreePage(pPage); 888 pPage = 0; 889 }else{ 890 pGroup->nCurrentPage -= (pOther->bPurgeable - pCache->bPurgeable); 891 } 892 } 893 894 /* Step 5. If a usable page buffer has still not been found, 895 ** attempt to allocate a new one. 896 */ 897 if( !pPage ){ 898 pPage = pcache1AllocPage(pCache, createFlag==1); 899 } 900 901 if( pPage ){ 902 unsigned int h = iKey % pCache->nHash; 903 pCache->nPage++; 904 pPage->iKey = iKey; 905 pPage->pNext = pCache->apHash[h]; 906 pPage->pCache = pCache; 907 pPage->pLruPrev = 0; 908 pPage->pLruNext = 0; 909 *(void **)pPage->page.pExtra = 0; 910 pCache->apHash[h] = pPage; 911 if( iKey>pCache->iMaxKey ){ 912 pCache->iMaxKey = iKey; 913 } 914 } 915 return pPage; 916 } 917 918 /* 919 ** Implementation of the sqlite3_pcache.xFetch method. 920 ** 921 ** Fetch a page by key value. 922 ** 923 ** Whether or not a new page may be allocated by this function depends on 924 ** the value of the createFlag argument. 0 means do not allocate a new 925 ** page. 1 means allocate a new page if space is easily available. 2 926 ** means to try really hard to allocate a new page. 927 ** 928 ** For a non-purgeable cache (a cache used as the storage for an in-memory 929 ** database) there is really no difference between createFlag 1 and 2. So 930 ** the calling function (pcache.c) will never have a createFlag of 1 on 931 ** a non-purgeable cache. 932 ** 933 ** There are three different approaches to obtaining space for a page, 934 ** depending on the value of parameter createFlag (which may be 0, 1 or 2). 935 ** 936 ** 1. Regardless of the value of createFlag, the cache is searched for a 937 ** copy of the requested page. If one is found, it is returned. 938 ** 939 ** 2. If createFlag==0 and the page is not already in the cache, NULL is 940 ** returned. 941 ** 942 ** 3. If createFlag is 1, and the page is not already in the cache, then 943 ** return NULL (do not allocate a new page) if any of the following 944 ** conditions are true: 945 ** 946 ** (a) the number of pages pinned by the cache is greater than 947 ** PCache1.nMax, or 948 ** 949 ** (b) the number of pages pinned by the cache is greater than 950 ** the sum of nMax for all purgeable caches, less the sum of 951 ** nMin for all other purgeable caches, or 952 ** 953 ** 4. If none of the first three conditions apply and the cache is marked 954 ** as purgeable, and if one of the following is true: 955 ** 956 ** (a) The number of pages allocated for the cache is already 957 ** PCache1.nMax, or 958 ** 959 ** (b) The number of pages allocated for all purgeable caches is 960 ** already equal to or greater than the sum of nMax for all 961 ** purgeable caches, 962 ** 963 ** (c) The system is under memory pressure and wants to avoid 964 ** unnecessary pages cache entry allocations 965 ** 966 ** then attempt to recycle a page from the LRU list. If it is the right 967 ** size, return the recycled buffer. Otherwise, free the buffer and 968 ** proceed to step 5. 969 ** 970 ** 5. Otherwise, allocate and return a new page buffer. 971 ** 972 ** There are two versions of this routine. pcache1FetchWithMutex() is 973 ** the general case. pcache1FetchNoMutex() is a faster implementation for 974 ** the common case where pGroup->mutex is NULL. The pcache1Fetch() wrapper 975 ** invokes the appropriate routine. 976 */ 977 static PgHdr1 *pcache1FetchNoMutex( 978 sqlite3_pcache *p, 979 unsigned int iKey, 980 int createFlag 981 ){ 982 PCache1 *pCache = (PCache1 *)p; 983 PgHdr1 *pPage = 0; 984 985 /* Step 1: Search the hash table for an existing entry. */ 986 pPage = pCache->apHash[iKey % pCache->nHash]; 987 while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; } 988 989 /* Step 2: If the page was found in the hash table, then return it. 990 ** If the page was not in the hash table and createFlag is 0, abort. 991 ** Otherwise (page not in hash and createFlag!=0) continue with 992 ** subsequent steps to try to create the page. */ 993 if( pPage ){ 994 if( PAGE_IS_UNPINNED(pPage) ){ 995 return pcache1PinPage(pPage); 996 }else{ 997 return pPage; 998 } 999 }else if( createFlag ){ 1000 /* Steps 3, 4, and 5 implemented by this subroutine */ 1001 return pcache1FetchStage2(pCache, iKey, createFlag); 1002 }else{ 1003 return 0; 1004 } 1005 } 1006 #if PCACHE1_MIGHT_USE_GROUP_MUTEX 1007 static PgHdr1 *pcache1FetchWithMutex( 1008 sqlite3_pcache *p, 1009 unsigned int iKey, 1010 int createFlag 1011 ){ 1012 PCache1 *pCache = (PCache1 *)p; 1013 PgHdr1 *pPage; 1014 1015 pcache1EnterMutex(pCache->pGroup); 1016 pPage = pcache1FetchNoMutex(p, iKey, createFlag); 1017 assert( pPage==0 || pCache->iMaxKey>=iKey ); 1018 pcache1LeaveMutex(pCache->pGroup); 1019 return pPage; 1020 } 1021 #endif 1022 static sqlite3_pcache_page *pcache1Fetch( 1023 sqlite3_pcache *p, 1024 unsigned int iKey, 1025 int createFlag 1026 ){ 1027 #if PCACHE1_MIGHT_USE_GROUP_MUTEX || defined(SQLITE_DEBUG) 1028 PCache1 *pCache = (PCache1 *)p; 1029 #endif 1030 1031 assert( offsetof(PgHdr1,page)==0 ); 1032 assert( pCache->bPurgeable || createFlag!=1 ); 1033 assert( pCache->bPurgeable || pCache->nMin==0 ); 1034 assert( pCache->bPurgeable==0 || pCache->nMin==10 ); 1035 assert( pCache->nMin==0 || pCache->bPurgeable ); 1036 assert( pCache->nHash>0 ); 1037 #if PCACHE1_MIGHT_USE_GROUP_MUTEX 1038 if( pCache->pGroup->mutex ){ 1039 return (sqlite3_pcache_page*)pcache1FetchWithMutex(p, iKey, createFlag); 1040 }else 1041 #endif 1042 { 1043 return (sqlite3_pcache_page*)pcache1FetchNoMutex(p, iKey, createFlag); 1044 } 1045 } 1046 1047 1048 /* 1049 ** Implementation of the sqlite3_pcache.xUnpin method. 1050 ** 1051 ** Mark a page as unpinned (eligible for asynchronous recycling). 1052 */ 1053 static void pcache1Unpin( 1054 sqlite3_pcache *p, 1055 sqlite3_pcache_page *pPg, 1056 int reuseUnlikely 1057 ){ 1058 PCache1 *pCache = (PCache1 *)p; 1059 PgHdr1 *pPage = (PgHdr1 *)pPg; 1060 PGroup *pGroup = pCache->pGroup; 1061 1062 assert( pPage->pCache==pCache ); 1063 pcache1EnterMutex(pGroup); 1064 1065 /* It is an error to call this function if the page is already 1066 ** part of the PGroup LRU list. 1067 */ 1068 assert( pPage->pLruPrev==0 && pPage->pLruNext==0 ); 1069 assert( PAGE_IS_PINNED(pPage) ); 1070 1071 if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){ 1072 pcache1RemoveFromHash(pPage, 1); 1073 }else{ 1074 /* Add the page to the PGroup LRU list. */ 1075 PgHdr1 **ppFirst = &pGroup->lru.pLruNext; 1076 pPage->pLruPrev = &pGroup->lru; 1077 (pPage->pLruNext = *ppFirst)->pLruPrev = pPage; 1078 *ppFirst = pPage; 1079 pCache->nRecyclable++; 1080 } 1081 1082 pcache1LeaveMutex(pCache->pGroup); 1083 } 1084 1085 /* 1086 ** Implementation of the sqlite3_pcache.xRekey method. 1087 */ 1088 static void pcache1Rekey( 1089 sqlite3_pcache *p, 1090 sqlite3_pcache_page *pPg, 1091 unsigned int iOld, 1092 unsigned int iNew 1093 ){ 1094 PCache1 *pCache = (PCache1 *)p; 1095 PgHdr1 *pPage = (PgHdr1 *)pPg; 1096 PgHdr1 **pp; 1097 unsigned int h; 1098 assert( pPage->iKey==iOld ); 1099 assert( pPage->pCache==pCache ); 1100 1101 pcache1EnterMutex(pCache->pGroup); 1102 1103 h = iOld%pCache->nHash; 1104 pp = &pCache->apHash[h]; 1105 while( (*pp)!=pPage ){ 1106 pp = &(*pp)->pNext; 1107 } 1108 *pp = pPage->pNext; 1109 1110 h = iNew%pCache->nHash; 1111 pPage->iKey = iNew; 1112 pPage->pNext = pCache->apHash[h]; 1113 pCache->apHash[h] = pPage; 1114 if( iNew>pCache->iMaxKey ){ 1115 pCache->iMaxKey = iNew; 1116 } 1117 1118 pcache1LeaveMutex(pCache->pGroup); 1119 } 1120 1121 /* 1122 ** Implementation of the sqlite3_pcache.xTruncate method. 1123 ** 1124 ** Discard all unpinned pages in the cache with a page number equal to 1125 ** or greater than parameter iLimit. Any pinned pages with a page number 1126 ** equal to or greater than iLimit are implicitly unpinned. 1127 */ 1128 static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){ 1129 PCache1 *pCache = (PCache1 *)p; 1130 pcache1EnterMutex(pCache->pGroup); 1131 if( iLimit<=pCache->iMaxKey ){ 1132 pcache1TruncateUnsafe(pCache, iLimit); 1133 pCache->iMaxKey = iLimit-1; 1134 } 1135 pcache1LeaveMutex(pCache->pGroup); 1136 } 1137 1138 /* 1139 ** Implementation of the sqlite3_pcache.xDestroy method. 1140 ** 1141 ** Destroy a cache allocated using pcache1Create(). 1142 */ 1143 static void pcache1Destroy(sqlite3_pcache *p){ 1144 PCache1 *pCache = (PCache1 *)p; 1145 PGroup *pGroup = pCache->pGroup; 1146 assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) ); 1147 pcache1EnterMutex(pGroup); 1148 if( pCache->nPage ) pcache1TruncateUnsafe(pCache, 0); 1149 assert( pGroup->nMaxPage >= pCache->nMax ); 1150 pGroup->nMaxPage -= pCache->nMax; 1151 assert( pGroup->nMinPage >= pCache->nMin ); 1152 pGroup->nMinPage -= pCache->nMin; 1153 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; 1154 pcache1EnforceMaxPage(pCache); 1155 pcache1LeaveMutex(pGroup); 1156 sqlite3_free(pCache->pBulk); 1157 sqlite3_free(pCache->apHash); 1158 sqlite3_free(pCache); 1159 } 1160 1161 /* 1162 ** This function is called during initialization (sqlite3_initialize()) to 1163 ** install the default pluggable cache module, assuming the user has not 1164 ** already provided an alternative. 1165 */ 1166 void sqlite3PCacheSetDefault(void){ 1167 static const sqlite3_pcache_methods2 defaultMethods = { 1168 1, /* iVersion */ 1169 0, /* pArg */ 1170 pcache1Init, /* xInit */ 1171 pcache1Shutdown, /* xShutdown */ 1172 pcache1Create, /* xCreate */ 1173 pcache1Cachesize, /* xCachesize */ 1174 pcache1Pagecount, /* xPagecount */ 1175 pcache1Fetch, /* xFetch */ 1176 pcache1Unpin, /* xUnpin */ 1177 pcache1Rekey, /* xRekey */ 1178 pcache1Truncate, /* xTruncate */ 1179 pcache1Destroy, /* xDestroy */ 1180 pcache1Shrink /* xShrink */ 1181 }; 1182 sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods); 1183 } 1184 1185 /* 1186 ** Return the size of the header on each page of this PCACHE implementation. 1187 */ 1188 int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); } 1189 1190 /* 1191 ** Return the global mutex used by this PCACHE implementation. The 1192 ** sqlite3_status() routine needs access to this mutex. 1193 */ 1194 sqlite3_mutex *sqlite3Pcache1Mutex(void){ 1195 return pcache1.mutex; 1196 } 1197 1198 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 1199 /* 1200 ** This function is called to free superfluous dynamically allocated memory 1201 ** held by the pager system. Memory in use by any SQLite pager allocated 1202 ** by the current thread may be sqlite3_free()ed. 1203 ** 1204 ** nReq is the number of bytes of memory required. Once this much has 1205 ** been released, the function returns. The return value is the total number 1206 ** of bytes of memory released. 1207 */ 1208 int sqlite3PcacheReleaseMemory(int nReq){ 1209 int nFree = 0; 1210 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); 1211 assert( sqlite3_mutex_notheld(pcache1.mutex) ); 1212 if( sqlite3GlobalConfig.pPage==0 ){ 1213 PgHdr1 *p; 1214 pcache1EnterMutex(&pcache1.grp); 1215 while( (nReq<0 || nFree<nReq) 1216 && (p=pcache1.grp.lru.pLruPrev)!=0 1217 && p->isAnchor==0 1218 ){ 1219 nFree += pcache1MemSize(p->page.pBuf); 1220 #ifdef SQLITE_PCACHE_SEPARATE_HEADER 1221 nFree += sqlite3MemSize(p); 1222 #endif 1223 assert( PAGE_IS_UNPINNED(p) ); 1224 pcache1PinPage(p); 1225 pcache1RemoveFromHash(p, 1); 1226 } 1227 pcache1LeaveMutex(&pcache1.grp); 1228 } 1229 return nFree; 1230 } 1231 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ 1232 1233 #ifdef SQLITE_TEST 1234 /* 1235 ** This function is used by test procedures to inspect the internal state 1236 ** of the global cache. 1237 */ 1238 void sqlite3PcacheStats( 1239 int *pnCurrent, /* OUT: Total number of pages cached */ 1240 int *pnMax, /* OUT: Global maximum cache size */ 1241 int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */ 1242 int *pnRecyclable /* OUT: Total number of pages available for recycling */ 1243 ){ 1244 PgHdr1 *p; 1245 int nRecyclable = 0; 1246 for(p=pcache1.grp.lru.pLruNext; p && !p->isAnchor; p=p->pLruNext){ 1247 assert( PAGE_IS_UNPINNED(p) ); 1248 nRecyclable++; 1249 } 1250 *pnCurrent = pcache1.grp.nCurrentPage; 1251 *pnMax = (int)pcache1.grp.nMaxPage; 1252 *pnMin = (int)pcache1.grp.nMinPage; 1253 *pnRecyclable = nRecyclable; 1254 } 1255 #endif 1256