xref: /sqlite-3.40.0/src/pcache1.c (revision 2e27d28f)
1 /*
2 ** 2008 November 05
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file implements the default page cache implementation (the
14 ** sqlite3_pcache interface). It also contains part of the implementation
15 ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features.
16 ** If the default page cache implementation is overridden, then neither of
17 ** these two features are available.
18 **
19 ** A Page cache line looks like this:
20 **
21 **  -------------------------------------------------------------
22 **  |  database page content   |  PgHdr1  |  MemPage  |  PgHdr  |
23 **  -------------------------------------------------------------
24 **
25 ** The database page content is up front (so that buffer overreads tend to
26 ** flow harmlessly into the PgHdr1, MemPage, and PgHdr extensions).   MemPage
27 ** is the extension added by the btree.c module containing information such
28 ** as the database page number and how that database page is used.  PgHdr
29 ** is added by the pcache.c layer and contains information used to keep track
30 ** of which pages are "dirty".  PgHdr1 is an extension added by this
31 ** module (pcache1.c).  The PgHdr1 header is a subclass of sqlite3_pcache_page.
32 ** PgHdr1 contains information needed to look up a page by its page number.
33 ** The superclass sqlite3_pcache_page.pBuf points to the start of the
34 ** database page content and sqlite3_pcache_page.pExtra points to PgHdr.
35 **
36 ** The size of the extension (MemPage+PgHdr+PgHdr1) can be determined at
37 ** runtime using sqlite3_config(SQLITE_CONFIG_PCACHE_HDRSZ, &size).  The
38 ** sizes of the extensions sum to 272 bytes on x64 for 3.8.10, but this
39 ** size can vary according to architecture, compile-time options, and
40 ** SQLite library version number.
41 **
42 ** If SQLITE_PCACHE_SEPARATE_HEADER is defined, then the extension is obtained
43 ** using a separate memory allocation from the database page content.  This
44 ** seeks to overcome the "clownshoe" problem (also called "internal
45 ** fragmentation" in academic literature) of allocating a few bytes more
46 ** than a power of two with the memory allocator rounding up to the next
47 ** power of two, and leaving the rounded-up space unused.
48 **
49 ** This module tracks pointers to PgHdr1 objects.  Only pcache.c communicates
50 ** with this module.  Information is passed back and forth as PgHdr1 pointers.
51 **
52 ** The pcache.c and pager.c modules deal pointers to PgHdr objects.
53 ** The btree.c module deals with pointers to MemPage objects.
54 **
55 ** SOURCE OF PAGE CACHE MEMORY:
56 **
57 ** Memory for a page might come from any of three sources:
58 **
59 **    (1)  The general-purpose memory allocator - sqlite3Malloc()
60 **    (2)  Global page-cache memory provided using sqlite3_config() with
61 **         SQLITE_CONFIG_PAGECACHE.
62 **    (3)  PCache-local bulk allocation.
63 **
64 ** The third case is a chunk of heap memory (defaulting to 100 pages worth)
65 ** that is allocated when the page cache is created.  The size of the local
66 ** bulk allocation can be adjusted using
67 **
68 **     sqlite3_config(SQLITE_CONFIG_PAGECACHE, (void*)0, 0, N).
69 **
70 ** If N is positive, then N pages worth of memory are allocated using a single
71 ** sqlite3Malloc() call and that memory is used for the first N pages allocated.
72 ** Or if N is negative, then -1024*N bytes of memory are allocated and used
73 ** for as many pages as can be accomodated.
74 **
75 ** Only one of (2) or (3) can be used.  Once the memory available to (2) or
76 ** (3) is exhausted, subsequent allocations fail over to the general-purpose
77 ** memory allocator (1).
78 **
79 ** Earlier versions of SQLite used only methods (1) and (2).  But experiments
80 ** show that method (3) with N==100 provides about a 5% performance boost for
81 ** common workloads.
82 */
83 #include "sqliteInt.h"
84 
85 typedef struct PCache1 PCache1;
86 typedef struct PgHdr1 PgHdr1;
87 typedef struct PgFreeslot PgFreeslot;
88 typedef struct PGroup PGroup;
89 
90 /*
91 ** Each cache entry is represented by an instance of the following
92 ** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of
93 ** PgHdr1.pCache->szPage bytes is allocated directly before this structure
94 ** in memory.
95 */
96 struct PgHdr1 {
97   sqlite3_pcache_page page;      /* Base class. Must be first. pBuf & pExtra */
98   unsigned int iKey;             /* Key value (page number) */
99   u8 isBulkLocal;                /* This page from bulk local storage */
100   u8 isAnchor;                   /* This is the PGroup.lru element */
101   PgHdr1 *pNext;                 /* Next in hash table chain */
102   PCache1 *pCache;               /* Cache that currently owns this page */
103   PgHdr1 *pLruNext;              /* Next in LRU list of unpinned pages */
104   PgHdr1 *pLruPrev;              /* Previous in LRU list of unpinned pages */
105 };
106 
107 /*
108 ** A page is pinned if it is no on the LRU list
109 */
110 #define PAGE_IS_PINNED(p)    ((p)->pLruNext==0)
111 #define PAGE_IS_UNPINNED(p)  ((p)->pLruNext!=0)
112 
113 /* Each page cache (or PCache) belongs to a PGroup.  A PGroup is a set
114 ** of one or more PCaches that are able to recycle each other's unpinned
115 ** pages when they are under memory pressure.  A PGroup is an instance of
116 ** the following object.
117 **
118 ** This page cache implementation works in one of two modes:
119 **
120 **   (1)  Every PCache is the sole member of its own PGroup.  There is
121 **        one PGroup per PCache.
122 **
123 **   (2)  There is a single global PGroup that all PCaches are a member
124 **        of.
125 **
126 ** Mode 1 uses more memory (since PCache instances are not able to rob
127 ** unused pages from other PCaches) but it also operates without a mutex,
128 ** and is therefore often faster.  Mode 2 requires a mutex in order to be
129 ** threadsafe, but recycles pages more efficiently.
130 **
131 ** For mode (1), PGroup.mutex is NULL.  For mode (2) there is only a single
132 ** PGroup which is the pcache1.grp global variable and its mutex is
133 ** SQLITE_MUTEX_STATIC_LRU.
134 */
135 struct PGroup {
136   sqlite3_mutex *mutex;          /* MUTEX_STATIC_LRU or NULL */
137   unsigned int nMaxPage;         /* Sum of nMax for purgeable caches */
138   unsigned int nMinPage;         /* Sum of nMin for purgeable caches */
139   unsigned int mxPinned;         /* nMaxpage + 10 - nMinPage */
140   unsigned int nCurrentPage;     /* Number of purgeable pages allocated */
141   PgHdr1 lru;                    /* The beginning and end of the LRU list */
142 };
143 
144 /* Each page cache is an instance of the following object.  Every
145 ** open database file (including each in-memory database and each
146 ** temporary or transient database) has a single page cache which
147 ** is an instance of this object.
148 **
149 ** Pointers to structures of this type are cast and returned as
150 ** opaque sqlite3_pcache* handles.
151 */
152 struct PCache1 {
153   /* Cache configuration parameters. Page size (szPage) and the purgeable
154   ** flag (bPurgeable) are set when the cache is created. nMax may be
155   ** modified at any time by a call to the pcache1Cachesize() method.
156   ** The PGroup mutex must be held when accessing nMax.
157   */
158   PGroup *pGroup;                     /* PGroup this cache belongs to */
159   int szPage;                         /* Size of database content section */
160   int szExtra;                        /* sizeof(MemPage)+sizeof(PgHdr) */
161   int szAlloc;                        /* Total size of one pcache line */
162   int bPurgeable;                     /* True if cache is purgeable */
163   unsigned int nMin;                  /* Minimum number of pages reserved */
164   unsigned int nMax;                  /* Configured "cache_size" value */
165   unsigned int n90pct;                /* nMax*9/10 */
166   unsigned int iMaxKey;               /* Largest key seen since xTruncate() */
167 
168   /* Hash table of all pages. The following variables may only be accessed
169   ** when the accessor is holding the PGroup mutex.
170   */
171   unsigned int nRecyclable;           /* Number of pages in the LRU list */
172   unsigned int nPage;                 /* Total number of pages in apHash */
173   unsigned int nHash;                 /* Number of slots in apHash[] */
174   PgHdr1 **apHash;                    /* Hash table for fast lookup by key */
175   PgHdr1 *pFree;                      /* List of unused pcache-local pages */
176   void *pBulk;                        /* Bulk memory used by pcache-local */
177 };
178 
179 /*
180 ** Free slots in the allocator used to divide up the global page cache
181 ** buffer provided using the SQLITE_CONFIG_PAGECACHE mechanism.
182 */
183 struct PgFreeslot {
184   PgFreeslot *pNext;  /* Next free slot */
185 };
186 
187 /*
188 ** Global data used by this cache.
189 */
190 static SQLITE_WSD struct PCacheGlobal {
191   PGroup grp;                    /* The global PGroup for mode (2) */
192 
193   /* Variables related to SQLITE_CONFIG_PAGECACHE settings.  The
194   ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all
195   ** fixed at sqlite3_initialize() time and do not require mutex protection.
196   ** The nFreeSlot and pFree values do require mutex protection.
197   */
198   int isInit;                    /* True if initialized */
199   int separateCache;             /* Use a new PGroup for each PCache */
200   int nInitPage;                 /* Initial bulk allocation size */
201   int szSlot;                    /* Size of each free slot */
202   int nSlot;                     /* The number of pcache slots */
203   int nReserve;                  /* Try to keep nFreeSlot above this */
204   void *pStart, *pEnd;           /* Bounds of global page cache memory */
205   /* Above requires no mutex.  Use mutex below for variable that follow. */
206   sqlite3_mutex *mutex;          /* Mutex for accessing the following: */
207   PgFreeslot *pFree;             /* Free page blocks */
208   int nFreeSlot;                 /* Number of unused pcache slots */
209   /* The following value requires a mutex to change.  We skip the mutex on
210   ** reading because (1) most platforms read a 32-bit integer atomically and
211   ** (2) even if an incorrect value is read, no great harm is done since this
212   ** is really just an optimization. */
213   int bUnderPressure;            /* True if low on PAGECACHE memory */
214 } pcache1_g;
215 
216 /*
217 ** All code in this file should access the global structure above via the
218 ** alias "pcache1". This ensures that the WSD emulation is used when
219 ** compiling for systems that do not support real WSD.
220 */
221 #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g))
222 
223 /*
224 ** Macros to enter and leave the PCache LRU mutex.
225 */
226 #if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0
227 # define pcache1EnterMutex(X)  assert((X)->mutex==0)
228 # define pcache1LeaveMutex(X)  assert((X)->mutex==0)
229 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 0
230 #else
231 # define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex)
232 # define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex)
233 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 1
234 #endif
235 
236 /******************************************************************************/
237 /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/
238 
239 
240 /*
241 ** This function is called during initialization if a static buffer is
242 ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
243 ** verb to sqlite3_config(). Parameter pBuf points to an allocation large
244 ** enough to contain 'n' buffers of 'sz' bytes each.
245 **
246 ** This routine is called from sqlite3_initialize() and so it is guaranteed
247 ** to be serialized already.  There is no need for further mutexing.
248 */
249 void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
250   if( pcache1.isInit ){
251     PgFreeslot *p;
252     if( pBuf==0 ) sz = n = 0;
253     sz = ROUNDDOWN8(sz);
254     pcache1.szSlot = sz;
255     pcache1.nSlot = pcache1.nFreeSlot = n;
256     pcache1.nReserve = n>90 ? 10 : (n/10 + 1);
257     pcache1.pStart = pBuf;
258     pcache1.pFree = 0;
259     pcache1.bUnderPressure = 0;
260     while( n-- ){
261       p = (PgFreeslot*)pBuf;
262       p->pNext = pcache1.pFree;
263       pcache1.pFree = p;
264       pBuf = (void*)&((char*)pBuf)[sz];
265     }
266     pcache1.pEnd = pBuf;
267   }
268 }
269 
270 /*
271 ** Try to initialize the pCache->pFree and pCache->pBulk fields.  Return
272 ** true if pCache->pFree ends up containing one or more free pages.
273 */
274 static int pcache1InitBulk(PCache1 *pCache){
275   i64 szBulk;
276   char *zBulk;
277   if( pcache1.nInitPage==0 ) return 0;
278   /* Do not bother with a bulk allocation if the cache size very small */
279   if( pCache->nMax<3 ) return 0;
280   sqlite3BeginBenignMalloc();
281   if( pcache1.nInitPage>0 ){
282     szBulk = pCache->szAlloc * (i64)pcache1.nInitPage;
283   }else{
284     szBulk = -1024 * (i64)pcache1.nInitPage;
285   }
286   if( szBulk > pCache->szAlloc*(i64)pCache->nMax ){
287     szBulk = pCache->szAlloc*(i64)pCache->nMax;
288   }
289   zBulk = pCache->pBulk = sqlite3Malloc( szBulk );
290   sqlite3EndBenignMalloc();
291   if( zBulk ){
292     int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc;
293     do{
294       PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage];
295       pX->page.pBuf = zBulk;
296       pX->page.pExtra = &pX[1];
297       pX->isBulkLocal = 1;
298       pX->isAnchor = 0;
299       pX->pNext = pCache->pFree;
300       pCache->pFree = pX;
301       zBulk += pCache->szAlloc;
302     }while( --nBulk );
303   }
304   return pCache->pFree!=0;
305 }
306 
307 /*
308 ** Malloc function used within this file to allocate space from the buffer
309 ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no
310 ** such buffer exists or there is no space left in it, this function falls
311 ** back to sqlite3Malloc().
312 **
313 ** Multiple threads can run this routine at the same time.  Global variables
314 ** in pcache1 need to be protected via mutex.
315 */
316 static void *pcache1Alloc(int nByte){
317   void *p = 0;
318   assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
319   if( nByte<=pcache1.szSlot ){
320     sqlite3_mutex_enter(pcache1.mutex);
321     p = (PgHdr1 *)pcache1.pFree;
322     if( p ){
323       pcache1.pFree = pcache1.pFree->pNext;
324       pcache1.nFreeSlot--;
325       pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
326       assert( pcache1.nFreeSlot>=0 );
327       sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
328       sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1);
329     }
330     sqlite3_mutex_leave(pcache1.mutex);
331   }
332   if( p==0 ){
333     /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool.  Get
334     ** it from sqlite3Malloc instead.
335     */
336     p = sqlite3Malloc(nByte);
337 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
338     if( p ){
339       int sz = sqlite3MallocSize(p);
340       sqlite3_mutex_enter(pcache1.mutex);
341       sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
342       sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
343       sqlite3_mutex_leave(pcache1.mutex);
344     }
345 #endif
346     sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
347   }
348   return p;
349 }
350 
351 /*
352 ** Free an allocated buffer obtained from pcache1Alloc().
353 */
354 static void pcache1Free(void *p){
355   if( p==0 ) return;
356   if( SQLITE_WITHIN(p, pcache1.pStart, pcache1.pEnd) ){
357     PgFreeslot *pSlot;
358     sqlite3_mutex_enter(pcache1.mutex);
359     sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1);
360     pSlot = (PgFreeslot*)p;
361     pSlot->pNext = pcache1.pFree;
362     pcache1.pFree = pSlot;
363     pcache1.nFreeSlot++;
364     pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
365     assert( pcache1.nFreeSlot<=pcache1.nSlot );
366     sqlite3_mutex_leave(pcache1.mutex);
367   }else{
368     assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
369     sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
370 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
371     {
372       int nFreed = 0;
373       nFreed = sqlite3MallocSize(p);
374       sqlite3_mutex_enter(pcache1.mutex);
375       sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_OVERFLOW, nFreed);
376       sqlite3_mutex_leave(pcache1.mutex);
377     }
378 #endif
379     sqlite3_free(p);
380   }
381 }
382 
383 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
384 /*
385 ** Return the size of a pcache allocation
386 */
387 static int pcache1MemSize(void *p){
388   if( p>=pcache1.pStart && p<pcache1.pEnd ){
389     return pcache1.szSlot;
390   }else{
391     int iSize;
392     assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
393     sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
394     iSize = sqlite3MallocSize(p);
395     sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
396     return iSize;
397   }
398 }
399 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
400 
401 /*
402 ** Allocate a new page object initially associated with cache pCache.
403 */
404 static PgHdr1 *pcache1AllocPage(PCache1 *pCache, int benignMalloc){
405   PgHdr1 *p = 0;
406   void *pPg;
407 
408   assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
409   if( pCache->pFree || (pCache->nPage==0 && pcache1InitBulk(pCache)) ){
410     p = pCache->pFree;
411     pCache->pFree = p->pNext;
412     p->pNext = 0;
413   }else{
414 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
415     /* The group mutex must be released before pcache1Alloc() is called. This
416     ** is because it might call sqlite3_release_memory(), which assumes that
417     ** this mutex is not held. */
418     assert( pcache1.separateCache==0 );
419     assert( pCache->pGroup==&pcache1.grp );
420     pcache1LeaveMutex(pCache->pGroup);
421 #endif
422     if( benignMalloc ){ sqlite3BeginBenignMalloc(); }
423 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
424     pPg = pcache1Alloc(pCache->szPage);
425     p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra);
426     if( !pPg || !p ){
427       pcache1Free(pPg);
428       sqlite3_free(p);
429       pPg = 0;
430     }
431 #else
432     pPg = pcache1Alloc(pCache->szAlloc);
433     p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage];
434 #endif
435     if( benignMalloc ){ sqlite3EndBenignMalloc(); }
436 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
437     pcache1EnterMutex(pCache->pGroup);
438 #endif
439     if( pPg==0 ) return 0;
440     p->page.pBuf = pPg;
441     p->page.pExtra = &p[1];
442     p->isBulkLocal = 0;
443     p->isAnchor = 0;
444   }
445   if( pCache->bPurgeable ){
446     pCache->pGroup->nCurrentPage++;
447   }
448   return p;
449 }
450 
451 /*
452 ** Free a page object allocated by pcache1AllocPage().
453 */
454 static void pcache1FreePage(PgHdr1 *p){
455   PCache1 *pCache;
456   assert( p!=0 );
457   pCache = p->pCache;
458   assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) );
459   if( p->isBulkLocal ){
460     p->pNext = pCache->pFree;
461     pCache->pFree = p;
462   }else{
463     pcache1Free(p->page.pBuf);
464 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
465     sqlite3_free(p);
466 #endif
467   }
468   if( pCache->bPurgeable ){
469     pCache->pGroup->nCurrentPage--;
470   }
471 }
472 
473 /*
474 ** Malloc function used by SQLite to obtain space from the buffer configured
475 ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer
476 ** exists, this function falls back to sqlite3Malloc().
477 */
478 void *sqlite3PageMalloc(int sz){
479   return pcache1Alloc(sz);
480 }
481 
482 /*
483 ** Free an allocated buffer obtained from sqlite3PageMalloc().
484 */
485 void sqlite3PageFree(void *p){
486   pcache1Free(p);
487 }
488 
489 
490 /*
491 ** Return true if it desirable to avoid allocating a new page cache
492 ** entry.
493 **
494 ** If memory was allocated specifically to the page cache using
495 ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then
496 ** it is desirable to avoid allocating a new page cache entry because
497 ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient
498 ** for all page cache needs and we should not need to spill the
499 ** allocation onto the heap.
500 **
501 ** Or, the heap is used for all page cache memory but the heap is
502 ** under memory pressure, then again it is desirable to avoid
503 ** allocating a new page cache entry in order to avoid stressing
504 ** the heap even further.
505 */
506 static int pcache1UnderMemoryPressure(PCache1 *pCache){
507   if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){
508     return pcache1.bUnderPressure;
509   }else{
510     return sqlite3HeapNearlyFull();
511   }
512 }
513 
514 /******************************************************************************/
515 /******** General Implementation Functions ************************************/
516 
517 /*
518 ** This function is used to resize the hash table used by the cache passed
519 ** as the first argument.
520 **
521 ** The PCache mutex must be held when this function is called.
522 */
523 static void pcache1ResizeHash(PCache1 *p){
524   PgHdr1 **apNew;
525   unsigned int nNew;
526   unsigned int i;
527 
528   assert( sqlite3_mutex_held(p->pGroup->mutex) );
529 
530   nNew = p->nHash*2;
531   if( nNew<256 ){
532     nNew = 256;
533   }
534 
535   pcache1LeaveMutex(p->pGroup);
536   if( p->nHash ){ sqlite3BeginBenignMalloc(); }
537   apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew);
538   if( p->nHash ){ sqlite3EndBenignMalloc(); }
539   pcache1EnterMutex(p->pGroup);
540   if( apNew ){
541     for(i=0; i<p->nHash; i++){
542       PgHdr1 *pPage;
543       PgHdr1 *pNext = p->apHash[i];
544       while( (pPage = pNext)!=0 ){
545         unsigned int h = pPage->iKey % nNew;
546         pNext = pPage->pNext;
547         pPage->pNext = apNew[h];
548         apNew[h] = pPage;
549       }
550     }
551     sqlite3_free(p->apHash);
552     p->apHash = apNew;
553     p->nHash = nNew;
554   }
555 }
556 
557 /*
558 ** This function is used internally to remove the page pPage from the
559 ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup
560 ** LRU list, then this function is a no-op.
561 **
562 ** The PGroup mutex must be held when this function is called.
563 */
564 static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){
565   assert( pPage!=0 );
566   assert( PAGE_IS_UNPINNED(pPage) );
567   assert( pPage->pLruNext );
568   assert( pPage->pLruPrev );
569   assert( sqlite3_mutex_held(pPage->pCache->pGroup->mutex) );
570   pPage->pLruPrev->pLruNext = pPage->pLruNext;
571   pPage->pLruNext->pLruPrev = pPage->pLruPrev;
572   pPage->pLruNext = 0;
573   pPage->pLruPrev = 0;
574   assert( pPage->isAnchor==0 );
575   assert( pPage->pCache->pGroup->lru.isAnchor==1 );
576   pPage->pCache->nRecyclable--;
577   return pPage;
578 }
579 
580 
581 /*
582 ** Remove the page supplied as an argument from the hash table
583 ** (PCache1.apHash structure) that it is currently stored in.
584 ** Also free the page if freePage is true.
585 **
586 ** The PGroup mutex must be held when this function is called.
587 */
588 static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){
589   unsigned int h;
590   PCache1 *pCache = pPage->pCache;
591   PgHdr1 **pp;
592 
593   assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
594   h = pPage->iKey % pCache->nHash;
595   for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
596   *pp = (*pp)->pNext;
597 
598   pCache->nPage--;
599   if( freeFlag ) pcache1FreePage(pPage);
600 }
601 
602 /*
603 ** If there are currently more than nMaxPage pages allocated, try
604 ** to recycle pages to reduce the number allocated to nMaxPage.
605 */
606 static void pcache1EnforceMaxPage(PCache1 *pCache){
607   PGroup *pGroup = pCache->pGroup;
608   PgHdr1 *p;
609   assert( sqlite3_mutex_held(pGroup->mutex) );
610   while( pGroup->nCurrentPage>pGroup->nMaxPage
611       && (p=pGroup->lru.pLruPrev)->isAnchor==0
612   ){
613     assert( p->pCache->pGroup==pGroup );
614     assert( PAGE_IS_UNPINNED(p) );
615     pcache1PinPage(p);
616     pcache1RemoveFromHash(p, 1);
617   }
618   if( pCache->nPage==0 && pCache->pBulk ){
619     sqlite3_free(pCache->pBulk);
620     pCache->pBulk = pCache->pFree = 0;
621   }
622 }
623 
624 /*
625 ** Discard all pages from cache pCache with a page number (key value)
626 ** greater than or equal to iLimit. Any pinned pages that meet this
627 ** criteria are unpinned before they are discarded.
628 **
629 ** The PCache mutex must be held when this function is called.
630 */
631 static void pcache1TruncateUnsafe(
632   PCache1 *pCache,             /* The cache to truncate */
633   unsigned int iLimit          /* Drop pages with this pgno or larger */
634 ){
635   TESTONLY( int nPage = 0; )  /* To assert pCache->nPage is correct */
636   unsigned int h, iStop;
637   assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
638   assert( pCache->iMaxKey >= iLimit );
639   assert( pCache->nHash > 0 );
640   if( pCache->iMaxKey - iLimit < pCache->nHash ){
641     /* If we are just shaving the last few pages off the end of the
642     ** cache, then there is no point in scanning the entire hash table.
643     ** Only scan those hash slots that might contain pages that need to
644     ** be removed. */
645     h = iLimit % pCache->nHash;
646     iStop = pCache->iMaxKey % pCache->nHash;
647     TESTONLY( nPage = -10; )  /* Disable the pCache->nPage validity check */
648   }else{
649     /* This is the general case where many pages are being removed.
650     ** It is necessary to scan the entire hash table */
651     h = pCache->nHash/2;
652     iStop = h - 1;
653   }
654   for(;;){
655     PgHdr1 **pp;
656     PgHdr1 *pPage;
657     assert( h<pCache->nHash );
658     pp = &pCache->apHash[h];
659     while( (pPage = *pp)!=0 ){
660       if( pPage->iKey>=iLimit ){
661         pCache->nPage--;
662         *pp = pPage->pNext;
663         if( PAGE_IS_UNPINNED(pPage) ) pcache1PinPage(pPage);
664         pcache1FreePage(pPage);
665       }else{
666         pp = &pPage->pNext;
667         TESTONLY( if( nPage>=0 ) nPage++; )
668       }
669     }
670     if( h==iStop ) break;
671     h = (h+1) % pCache->nHash;
672   }
673   assert( nPage<0 || pCache->nPage==(unsigned)nPage );
674 }
675 
676 /******************************************************************************/
677 /******** sqlite3_pcache Methods **********************************************/
678 
679 /*
680 ** Implementation of the sqlite3_pcache.xInit method.
681 */
682 static int pcache1Init(void *NotUsed){
683   UNUSED_PARAMETER(NotUsed);
684   assert( pcache1.isInit==0 );
685   memset(&pcache1, 0, sizeof(pcache1));
686 
687 
688   /*
689   ** The pcache1.separateCache variable is true if each PCache has its own
690   ** private PGroup (mode-1).  pcache1.separateCache is false if the single
691   ** PGroup in pcache1.grp is used for all page caches (mode-2).
692   **
693   **   *  Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT
694   **
695   **   *  Use a unified cache in single-threaded applications that have
696   **      configured a start-time buffer for use as page-cache memory using
697   **      sqlite3_config(SQLITE_CONFIG_PAGECACHE, pBuf, sz, N) with non-NULL
698   **      pBuf argument.
699   **
700   **   *  Otherwise use separate caches (mode-1)
701   */
702 #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT)
703   pcache1.separateCache = 0;
704 #elif SQLITE_THREADSAFE
705   pcache1.separateCache = sqlite3GlobalConfig.pPage==0
706                           || sqlite3GlobalConfig.bCoreMutex>0;
707 #else
708   pcache1.separateCache = sqlite3GlobalConfig.pPage==0;
709 #endif
710 
711 #if SQLITE_THREADSAFE
712   if( sqlite3GlobalConfig.bCoreMutex ){
713     pcache1.grp.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU);
714     pcache1.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PMEM);
715   }
716 #endif
717   if( pcache1.separateCache
718    && sqlite3GlobalConfig.nPage!=0
719    && sqlite3GlobalConfig.pPage==0
720   ){
721     pcache1.nInitPage = sqlite3GlobalConfig.nPage;
722   }else{
723     pcache1.nInitPage = 0;
724   }
725   pcache1.grp.mxPinned = 10;
726   pcache1.isInit = 1;
727   return SQLITE_OK;
728 }
729 
730 /*
731 ** Implementation of the sqlite3_pcache.xShutdown method.
732 ** Note that the static mutex allocated in xInit does
733 ** not need to be freed.
734 */
735 static void pcache1Shutdown(void *NotUsed){
736   UNUSED_PARAMETER(NotUsed);
737   assert( pcache1.isInit!=0 );
738   memset(&pcache1, 0, sizeof(pcache1));
739 }
740 
741 /* forward declaration */
742 static void pcache1Destroy(sqlite3_pcache *p);
743 
744 /*
745 ** Implementation of the sqlite3_pcache.xCreate method.
746 **
747 ** Allocate a new cache.
748 */
749 static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){
750   PCache1 *pCache;      /* The newly created page cache */
751   PGroup *pGroup;       /* The group the new page cache will belong to */
752   int sz;               /* Bytes of memory required to allocate the new cache */
753 
754   assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 );
755   assert( szExtra < 300 );
756 
757   sz = sizeof(PCache1) + sizeof(PGroup)*pcache1.separateCache;
758   pCache = (PCache1 *)sqlite3MallocZero(sz);
759   if( pCache ){
760     if( pcache1.separateCache ){
761       pGroup = (PGroup*)&pCache[1];
762       pGroup->mxPinned = 10;
763     }else{
764       pGroup = &pcache1.grp;
765     }
766     if( pGroup->lru.isAnchor==0 ){
767       pGroup->lru.isAnchor = 1;
768       pGroup->lru.pLruPrev = pGroup->lru.pLruNext = &pGroup->lru;
769     }
770     pCache->pGroup = pGroup;
771     pCache->szPage = szPage;
772     pCache->szExtra = szExtra;
773     pCache->szAlloc = szPage + szExtra + ROUND8(sizeof(PgHdr1));
774     pCache->bPurgeable = (bPurgeable ? 1 : 0);
775     pcache1EnterMutex(pGroup);
776     pcache1ResizeHash(pCache);
777     if( bPurgeable ){
778       pCache->nMin = 10;
779       pGroup->nMinPage += pCache->nMin;
780       pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
781     }
782     pcache1LeaveMutex(pGroup);
783     if( pCache->nHash==0 ){
784       pcache1Destroy((sqlite3_pcache*)pCache);
785       pCache = 0;
786     }
787   }
788   return (sqlite3_pcache *)pCache;
789 }
790 
791 /*
792 ** Implementation of the sqlite3_pcache.xCachesize method.
793 **
794 ** Configure the cache_size limit for a cache.
795 */
796 static void pcache1Cachesize(sqlite3_pcache *p, int nMax){
797   PCache1 *pCache = (PCache1 *)p;
798   if( pCache->bPurgeable ){
799     PGroup *pGroup = pCache->pGroup;
800     pcache1EnterMutex(pGroup);
801     pGroup->nMaxPage += (nMax - pCache->nMax);
802     pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
803     pCache->nMax = nMax;
804     pCache->n90pct = pCache->nMax*9/10;
805     pcache1EnforceMaxPage(pCache);
806     pcache1LeaveMutex(pGroup);
807   }
808 }
809 
810 /*
811 ** Implementation of the sqlite3_pcache.xShrink method.
812 **
813 ** Free up as much memory as possible.
814 */
815 static void pcache1Shrink(sqlite3_pcache *p){
816   PCache1 *pCache = (PCache1*)p;
817   if( pCache->bPurgeable ){
818     PGroup *pGroup = pCache->pGroup;
819     int savedMaxPage;
820     pcache1EnterMutex(pGroup);
821     savedMaxPage = pGroup->nMaxPage;
822     pGroup->nMaxPage = 0;
823     pcache1EnforceMaxPage(pCache);
824     pGroup->nMaxPage = savedMaxPage;
825     pcache1LeaveMutex(pGroup);
826   }
827 }
828 
829 /*
830 ** Implementation of the sqlite3_pcache.xPagecount method.
831 */
832 static int pcache1Pagecount(sqlite3_pcache *p){
833   int n;
834   PCache1 *pCache = (PCache1*)p;
835   pcache1EnterMutex(pCache->pGroup);
836   n = pCache->nPage;
837   pcache1LeaveMutex(pCache->pGroup);
838   return n;
839 }
840 
841 
842 /*
843 ** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described
844 ** in the header of the pcache1Fetch() procedure.
845 **
846 ** This steps are broken out into a separate procedure because they are
847 ** usually not needed, and by avoiding the stack initialization required
848 ** for these steps, the main pcache1Fetch() procedure can run faster.
849 */
850 static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2(
851   PCache1 *pCache,
852   unsigned int iKey,
853   int createFlag
854 ){
855   unsigned int nPinned;
856   PGroup *pGroup = pCache->pGroup;
857   PgHdr1 *pPage = 0;
858 
859   /* Step 3: Abort if createFlag is 1 but the cache is nearly full */
860   assert( pCache->nPage >= pCache->nRecyclable );
861   nPinned = pCache->nPage - pCache->nRecyclable;
862   assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage );
863   assert( pCache->n90pct == pCache->nMax*9/10 );
864   if( createFlag==1 && (
865         nPinned>=pGroup->mxPinned
866      || nPinned>=pCache->n90pct
867      || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned)
868   )){
869     return 0;
870   }
871 
872   if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache);
873   assert( pCache->nHash>0 && pCache->apHash );
874 
875   /* Step 4. Try to recycle a page. */
876   if( pCache->bPurgeable
877    && !pGroup->lru.pLruPrev->isAnchor
878    && ((pCache->nPage+1>=pCache->nMax) || pcache1UnderMemoryPressure(pCache))
879   ){
880     PCache1 *pOther;
881     pPage = pGroup->lru.pLruPrev;
882     assert( PAGE_IS_UNPINNED(pPage) );
883     pcache1RemoveFromHash(pPage, 0);
884     pcache1PinPage(pPage);
885     pOther = pPage->pCache;
886     if( pOther->szAlloc != pCache->szAlloc ){
887       pcache1FreePage(pPage);
888       pPage = 0;
889     }else{
890       pGroup->nCurrentPage -= (pOther->bPurgeable - pCache->bPurgeable);
891     }
892   }
893 
894   /* Step 5. If a usable page buffer has still not been found,
895   ** attempt to allocate a new one.
896   */
897   if( !pPage ){
898     pPage = pcache1AllocPage(pCache, createFlag==1);
899   }
900 
901   if( pPage ){
902     unsigned int h = iKey % pCache->nHash;
903     pCache->nPage++;
904     pPage->iKey = iKey;
905     pPage->pNext = pCache->apHash[h];
906     pPage->pCache = pCache;
907     pPage->pLruPrev = 0;
908     pPage->pLruNext = 0;
909     *(void **)pPage->page.pExtra = 0;
910     pCache->apHash[h] = pPage;
911     if( iKey>pCache->iMaxKey ){
912       pCache->iMaxKey = iKey;
913     }
914   }
915   return pPage;
916 }
917 
918 /*
919 ** Implementation of the sqlite3_pcache.xFetch method.
920 **
921 ** Fetch a page by key value.
922 **
923 ** Whether or not a new page may be allocated by this function depends on
924 ** the value of the createFlag argument.  0 means do not allocate a new
925 ** page.  1 means allocate a new page if space is easily available.  2
926 ** means to try really hard to allocate a new page.
927 **
928 ** For a non-purgeable cache (a cache used as the storage for an in-memory
929 ** database) there is really no difference between createFlag 1 and 2.  So
930 ** the calling function (pcache.c) will never have a createFlag of 1 on
931 ** a non-purgeable cache.
932 **
933 ** There are three different approaches to obtaining space for a page,
934 ** depending on the value of parameter createFlag (which may be 0, 1 or 2).
935 **
936 **   1. Regardless of the value of createFlag, the cache is searched for a
937 **      copy of the requested page. If one is found, it is returned.
938 **
939 **   2. If createFlag==0 and the page is not already in the cache, NULL is
940 **      returned.
941 **
942 **   3. If createFlag is 1, and the page is not already in the cache, then
943 **      return NULL (do not allocate a new page) if any of the following
944 **      conditions are true:
945 **
946 **       (a) the number of pages pinned by the cache is greater than
947 **           PCache1.nMax, or
948 **
949 **       (b) the number of pages pinned by the cache is greater than
950 **           the sum of nMax for all purgeable caches, less the sum of
951 **           nMin for all other purgeable caches, or
952 **
953 **   4. If none of the first three conditions apply and the cache is marked
954 **      as purgeable, and if one of the following is true:
955 **
956 **       (a) The number of pages allocated for the cache is already
957 **           PCache1.nMax, or
958 **
959 **       (b) The number of pages allocated for all purgeable caches is
960 **           already equal to or greater than the sum of nMax for all
961 **           purgeable caches,
962 **
963 **       (c) The system is under memory pressure and wants to avoid
964 **           unnecessary pages cache entry allocations
965 **
966 **      then attempt to recycle a page from the LRU list. If it is the right
967 **      size, return the recycled buffer. Otherwise, free the buffer and
968 **      proceed to step 5.
969 **
970 **   5. Otherwise, allocate and return a new page buffer.
971 **
972 ** There are two versions of this routine.  pcache1FetchWithMutex() is
973 ** the general case.  pcache1FetchNoMutex() is a faster implementation for
974 ** the common case where pGroup->mutex is NULL.  The pcache1Fetch() wrapper
975 ** invokes the appropriate routine.
976 */
977 static PgHdr1 *pcache1FetchNoMutex(
978   sqlite3_pcache *p,
979   unsigned int iKey,
980   int createFlag
981 ){
982   PCache1 *pCache = (PCache1 *)p;
983   PgHdr1 *pPage = 0;
984 
985   /* Step 1: Search the hash table for an existing entry. */
986   pPage = pCache->apHash[iKey % pCache->nHash];
987   while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; }
988 
989   /* Step 2: If the page was found in the hash table, then return it.
990   ** If the page was not in the hash table and createFlag is 0, abort.
991   ** Otherwise (page not in hash and createFlag!=0) continue with
992   ** subsequent steps to try to create the page. */
993   if( pPage ){
994     if( PAGE_IS_UNPINNED(pPage) ){
995       return pcache1PinPage(pPage);
996     }else{
997       return pPage;
998     }
999   }else if( createFlag ){
1000     /* Steps 3, 4, and 5 implemented by this subroutine */
1001     return pcache1FetchStage2(pCache, iKey, createFlag);
1002   }else{
1003     return 0;
1004   }
1005 }
1006 #if PCACHE1_MIGHT_USE_GROUP_MUTEX
1007 static PgHdr1 *pcache1FetchWithMutex(
1008   sqlite3_pcache *p,
1009   unsigned int iKey,
1010   int createFlag
1011 ){
1012   PCache1 *pCache = (PCache1 *)p;
1013   PgHdr1 *pPage;
1014 
1015   pcache1EnterMutex(pCache->pGroup);
1016   pPage = pcache1FetchNoMutex(p, iKey, createFlag);
1017   assert( pPage==0 || pCache->iMaxKey>=iKey );
1018   pcache1LeaveMutex(pCache->pGroup);
1019   return pPage;
1020 }
1021 #endif
1022 static sqlite3_pcache_page *pcache1Fetch(
1023   sqlite3_pcache *p,
1024   unsigned int iKey,
1025   int createFlag
1026 ){
1027 #if PCACHE1_MIGHT_USE_GROUP_MUTEX || defined(SQLITE_DEBUG)
1028   PCache1 *pCache = (PCache1 *)p;
1029 #endif
1030 
1031   assert( offsetof(PgHdr1,page)==0 );
1032   assert( pCache->bPurgeable || createFlag!=1 );
1033   assert( pCache->bPurgeable || pCache->nMin==0 );
1034   assert( pCache->bPurgeable==0 || pCache->nMin==10 );
1035   assert( pCache->nMin==0 || pCache->bPurgeable );
1036   assert( pCache->nHash>0 );
1037 #if PCACHE1_MIGHT_USE_GROUP_MUTEX
1038   if( pCache->pGroup->mutex ){
1039     return (sqlite3_pcache_page*)pcache1FetchWithMutex(p, iKey, createFlag);
1040   }else
1041 #endif
1042   {
1043     return (sqlite3_pcache_page*)pcache1FetchNoMutex(p, iKey, createFlag);
1044   }
1045 }
1046 
1047 
1048 /*
1049 ** Implementation of the sqlite3_pcache.xUnpin method.
1050 **
1051 ** Mark a page as unpinned (eligible for asynchronous recycling).
1052 */
1053 static void pcache1Unpin(
1054   sqlite3_pcache *p,
1055   sqlite3_pcache_page *pPg,
1056   int reuseUnlikely
1057 ){
1058   PCache1 *pCache = (PCache1 *)p;
1059   PgHdr1 *pPage = (PgHdr1 *)pPg;
1060   PGroup *pGroup = pCache->pGroup;
1061 
1062   assert( pPage->pCache==pCache );
1063   pcache1EnterMutex(pGroup);
1064 
1065   /* It is an error to call this function if the page is already
1066   ** part of the PGroup LRU list.
1067   */
1068   assert( pPage->pLruPrev==0 && pPage->pLruNext==0 );
1069   assert( PAGE_IS_PINNED(pPage) );
1070 
1071   if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){
1072     pcache1RemoveFromHash(pPage, 1);
1073   }else{
1074     /* Add the page to the PGroup LRU list. */
1075     PgHdr1 **ppFirst = &pGroup->lru.pLruNext;
1076     pPage->pLruPrev = &pGroup->lru;
1077     (pPage->pLruNext = *ppFirst)->pLruPrev = pPage;
1078     *ppFirst = pPage;
1079     pCache->nRecyclable++;
1080   }
1081 
1082   pcache1LeaveMutex(pCache->pGroup);
1083 }
1084 
1085 /*
1086 ** Implementation of the sqlite3_pcache.xRekey method.
1087 */
1088 static void pcache1Rekey(
1089   sqlite3_pcache *p,
1090   sqlite3_pcache_page *pPg,
1091   unsigned int iOld,
1092   unsigned int iNew
1093 ){
1094   PCache1 *pCache = (PCache1 *)p;
1095   PgHdr1 *pPage = (PgHdr1 *)pPg;
1096   PgHdr1 **pp;
1097   unsigned int h;
1098   assert( pPage->iKey==iOld );
1099   assert( pPage->pCache==pCache );
1100 
1101   pcache1EnterMutex(pCache->pGroup);
1102 
1103   h = iOld%pCache->nHash;
1104   pp = &pCache->apHash[h];
1105   while( (*pp)!=pPage ){
1106     pp = &(*pp)->pNext;
1107   }
1108   *pp = pPage->pNext;
1109 
1110   h = iNew%pCache->nHash;
1111   pPage->iKey = iNew;
1112   pPage->pNext = pCache->apHash[h];
1113   pCache->apHash[h] = pPage;
1114   if( iNew>pCache->iMaxKey ){
1115     pCache->iMaxKey = iNew;
1116   }
1117 
1118   pcache1LeaveMutex(pCache->pGroup);
1119 }
1120 
1121 /*
1122 ** Implementation of the sqlite3_pcache.xTruncate method.
1123 **
1124 ** Discard all unpinned pages in the cache with a page number equal to
1125 ** or greater than parameter iLimit. Any pinned pages with a page number
1126 ** equal to or greater than iLimit are implicitly unpinned.
1127 */
1128 static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){
1129   PCache1 *pCache = (PCache1 *)p;
1130   pcache1EnterMutex(pCache->pGroup);
1131   if( iLimit<=pCache->iMaxKey ){
1132     pcache1TruncateUnsafe(pCache, iLimit);
1133     pCache->iMaxKey = iLimit-1;
1134   }
1135   pcache1LeaveMutex(pCache->pGroup);
1136 }
1137 
1138 /*
1139 ** Implementation of the sqlite3_pcache.xDestroy method.
1140 **
1141 ** Destroy a cache allocated using pcache1Create().
1142 */
1143 static void pcache1Destroy(sqlite3_pcache *p){
1144   PCache1 *pCache = (PCache1 *)p;
1145   PGroup *pGroup = pCache->pGroup;
1146   assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) );
1147   pcache1EnterMutex(pGroup);
1148   if( pCache->nPage ) pcache1TruncateUnsafe(pCache, 0);
1149   assert( pGroup->nMaxPage >= pCache->nMax );
1150   pGroup->nMaxPage -= pCache->nMax;
1151   assert( pGroup->nMinPage >= pCache->nMin );
1152   pGroup->nMinPage -= pCache->nMin;
1153   pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
1154   pcache1EnforceMaxPage(pCache);
1155   pcache1LeaveMutex(pGroup);
1156   sqlite3_free(pCache->pBulk);
1157   sqlite3_free(pCache->apHash);
1158   sqlite3_free(pCache);
1159 }
1160 
1161 /*
1162 ** This function is called during initialization (sqlite3_initialize()) to
1163 ** install the default pluggable cache module, assuming the user has not
1164 ** already provided an alternative.
1165 */
1166 void sqlite3PCacheSetDefault(void){
1167   static const sqlite3_pcache_methods2 defaultMethods = {
1168     1,                       /* iVersion */
1169     0,                       /* pArg */
1170     pcache1Init,             /* xInit */
1171     pcache1Shutdown,         /* xShutdown */
1172     pcache1Create,           /* xCreate */
1173     pcache1Cachesize,        /* xCachesize */
1174     pcache1Pagecount,        /* xPagecount */
1175     pcache1Fetch,            /* xFetch */
1176     pcache1Unpin,            /* xUnpin */
1177     pcache1Rekey,            /* xRekey */
1178     pcache1Truncate,         /* xTruncate */
1179     pcache1Destroy,          /* xDestroy */
1180     pcache1Shrink            /* xShrink */
1181   };
1182   sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods);
1183 }
1184 
1185 /*
1186 ** Return the size of the header on each page of this PCACHE implementation.
1187 */
1188 int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); }
1189 
1190 /*
1191 ** Return the global mutex used by this PCACHE implementation.  The
1192 ** sqlite3_status() routine needs access to this mutex.
1193 */
1194 sqlite3_mutex *sqlite3Pcache1Mutex(void){
1195   return pcache1.mutex;
1196 }
1197 
1198 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
1199 /*
1200 ** This function is called to free superfluous dynamically allocated memory
1201 ** held by the pager system. Memory in use by any SQLite pager allocated
1202 ** by the current thread may be sqlite3_free()ed.
1203 **
1204 ** nReq is the number of bytes of memory required. Once this much has
1205 ** been released, the function returns. The return value is the total number
1206 ** of bytes of memory released.
1207 */
1208 int sqlite3PcacheReleaseMemory(int nReq){
1209   int nFree = 0;
1210   assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
1211   assert( sqlite3_mutex_notheld(pcache1.mutex) );
1212   if( sqlite3GlobalConfig.pPage==0 ){
1213     PgHdr1 *p;
1214     pcache1EnterMutex(&pcache1.grp);
1215     while( (nReq<0 || nFree<nReq)
1216        &&  (p=pcache1.grp.lru.pLruPrev)!=0
1217        &&  p->isAnchor==0
1218     ){
1219       nFree += pcache1MemSize(p->page.pBuf);
1220 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
1221       nFree += sqlite3MemSize(p);
1222 #endif
1223       assert( PAGE_IS_UNPINNED(p) );
1224       pcache1PinPage(p);
1225       pcache1RemoveFromHash(p, 1);
1226     }
1227     pcache1LeaveMutex(&pcache1.grp);
1228   }
1229   return nFree;
1230 }
1231 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
1232 
1233 #ifdef SQLITE_TEST
1234 /*
1235 ** This function is used by test procedures to inspect the internal state
1236 ** of the global cache.
1237 */
1238 void sqlite3PcacheStats(
1239   int *pnCurrent,      /* OUT: Total number of pages cached */
1240   int *pnMax,          /* OUT: Global maximum cache size */
1241   int *pnMin,          /* OUT: Sum of PCache1.nMin for purgeable caches */
1242   int *pnRecyclable    /* OUT: Total number of pages available for recycling */
1243 ){
1244   PgHdr1 *p;
1245   int nRecyclable = 0;
1246   for(p=pcache1.grp.lru.pLruNext; p && !p->isAnchor; p=p->pLruNext){
1247     assert( PAGE_IS_UNPINNED(p) );
1248     nRecyclable++;
1249   }
1250   *pnCurrent = pcache1.grp.nCurrentPage;
1251   *pnMax = (int)pcache1.grp.nMaxPage;
1252   *pnMin = (int)pcache1.grp.nMinPage;
1253   *pnRecyclable = nRecyclable;
1254 }
1255 #endif
1256