xref: /sqlite-3.40.0/src/pcache.c (revision f71a243a)
1 /*
2 ** 2008 August 05
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file implements that page cache.
13 */
14 #include "sqliteInt.h"
15 
16 /*
17 ** A complete page cache is an instance of this structure.  Every
18 ** entry in the cache holds a single page of the database file.  The
19 ** btree layer only operates on the cached copy of the database pages.
20 **
21 ** A page cache entry is "clean" if it exactly matches what is currently
22 ** on disk.  A page is "dirty" if it has been modified and needs to be
23 ** persisted to disk.
24 **
25 ** pDirty, pDirtyTail, pSynced:
26 **   All dirty pages are linked into the doubly linked list using
27 **   PgHdr.pDirtyNext and pDirtyPrev. The list is maintained in LRU order
28 **   such that p was added to the list more recently than p->pDirtyNext.
29 **   PCache.pDirty points to the first (newest) element in the list and
30 **   pDirtyTail to the last (oldest).
31 **
32 **   The PCache.pSynced variable is used to optimize searching for a dirty
33 **   page to eject from the cache mid-transaction. It is better to eject
34 **   a page that does not require a journal sync than one that does.
35 **   Therefore, pSynced is maintained so that it *almost* always points
36 **   to either the oldest page in the pDirty/pDirtyTail list that has a
37 **   clear PGHDR_NEED_SYNC flag or to a page that is older than this one
38 **   (so that the right page to eject can be found by following pDirtyPrev
39 **   pointers).
40 */
41 struct PCache {
42   PgHdr *pDirty, *pDirtyTail;         /* List of dirty pages in LRU order */
43   PgHdr *pSynced;                     /* Last synced page in dirty page list */
44   int nRefSum;                        /* Sum of ref counts over all pages */
45   int szCache;                        /* Configured cache size */
46   int szSpill;                        /* Size before spilling occurs */
47   int szPage;                         /* Size of every page in this cache */
48   int szExtra;                        /* Size of extra space for each page */
49   u8 bPurgeable;                      /* True if pages are on backing store */
50   u8 eCreate;                         /* eCreate value for for xFetch() */
51   int (*xStress)(void*,PgHdr*);       /* Call to try make a page clean */
52   void *pStress;                      /* Argument to xStress */
53   sqlite3_pcache *pCache;             /* Pluggable cache module */
54 };
55 
56 /********************************** Test and Debug Logic **********************/
57 /*
58 ** Debug tracing macros.  Enable by by changing the "0" to "1" and
59 ** recompiling.
60 **
61 ** When sqlite3PcacheTrace is 1, single line trace messages are issued.
62 ** When sqlite3PcacheTrace is 2, a dump of the pcache showing all cache entries
63 ** is displayed for many operations, resulting in a lot of output.
64 */
65 #if defined(SQLITE_DEBUG) && 0
66   int sqlite3PcacheTrace = 2;       /* 0: off  1: simple  2: cache dumps */
67   int sqlite3PcacheMxDump = 9999;   /* Max cache entries for pcacheDump() */
68 # define pcacheTrace(X) if(sqlite3PcacheTrace){sqlite3DebugPrintf X;}
69   void pcacheDump(PCache *pCache){
70     int N;
71     int i, j;
72     sqlite3_pcache_page *pLower;
73     PgHdr *pPg;
74     unsigned char *a;
75 
76     if( sqlite3PcacheTrace<2 ) return;
77     if( pCache->pCache==0 ) return;
78     N = sqlite3PcachePagecount(pCache);
79     if( N>sqlite3PcacheMxDump ) N = sqlite3PcacheMxDump;
80     for(i=1; i<=N; i++){
81        pLower = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, i, 0);
82        if( pLower==0 ) continue;
83        pPg = (PgHdr*)pLower->pExtra;
84        printf("%3d: nRef %2d flgs %02x data ", i, pPg->nRef, pPg->flags);
85        a = (unsigned char *)pLower->pBuf;
86        for(j=0; j<12; j++) printf("%02x", a[j]);
87        printf("\n");
88        if( pPg->pPage==0 ){
89          sqlite3GlobalConfig.pcache2.xUnpin(pCache->pCache, pLower, 0);
90        }
91     }
92   }
93   #else
94 # define pcacheTrace(X)
95 # define pcacheDump(X)
96 #endif
97 
98 /*
99 ** Check invariants on a PgHdr entry.  Return true if everything is OK.
100 ** Return false if any invariant is violated.
101 **
102 ** This routine is for use inside of assert() statements only.  For
103 ** example:
104 **
105 **          assert( sqlite3PcachePageSanity(pPg) );
106 */
107 #ifdef SQLITE_DEBUG
108 int sqlite3PcachePageSanity(PgHdr *pPg){
109   PCache *pCache;
110   assert( pPg!=0 );
111   assert( pPg->pgno>0 || pPg->pPager==0 );    /* Page number is 1 or more */
112   pCache = pPg->pCache;
113   assert( pCache!=0 );      /* Every page has an associated PCache */
114   if( pPg->flags & PGHDR_CLEAN ){
115     assert( (pPg->flags & PGHDR_DIRTY)==0 );/* Cannot be both CLEAN and DIRTY */
116     assert( pCache->pDirty!=pPg );          /* CLEAN pages not on dirty list */
117     assert( pCache->pDirtyTail!=pPg );
118   }
119   /* WRITEABLE pages must also be DIRTY */
120   if( pPg->flags & PGHDR_WRITEABLE ){
121     assert( pPg->flags & PGHDR_DIRTY );     /* WRITEABLE implies DIRTY */
122   }
123   /* NEED_SYNC can be set independently of WRITEABLE.  This can happen,
124   ** for example, when using the sqlite3PagerDontWrite() optimization:
125   **    (1)  Page X is journalled, and gets WRITEABLE and NEED_SEEK.
126   **    (2)  Page X moved to freelist, WRITEABLE is cleared
127   **    (3)  Page X reused, WRITEABLE is set again
128   ** If NEED_SYNC had been cleared in step 2, then it would not be reset
129   ** in step 3, and page might be written into the database without first
130   ** syncing the rollback journal, which might cause corruption on a power
131   ** loss.
132   **
133   ** Another example is when the database page size is smaller than the
134   ** disk sector size.  When any page of a sector is journalled, all pages
135   ** in that sector are marked NEED_SYNC even if they are still CLEAN, just
136   ** in case they are later modified, since all pages in the same sector
137   ** must be journalled and synced before any of those pages can be safely
138   ** written.
139   */
140   return 1;
141 }
142 #endif /* SQLITE_DEBUG */
143 
144 
145 /********************************** Linked List Management ********************/
146 
147 /* Allowed values for second argument to pcacheManageDirtyList() */
148 #define PCACHE_DIRTYLIST_REMOVE   1    /* Remove pPage from dirty list */
149 #define PCACHE_DIRTYLIST_ADD      2    /* Add pPage to the dirty list */
150 #define PCACHE_DIRTYLIST_FRONT    3    /* Move pPage to the front of the list */
151 
152 /*
153 ** Manage pPage's participation on the dirty list.  Bits of the addRemove
154 ** argument determines what operation to do.  The 0x01 bit means first
155 ** remove pPage from the dirty list.  The 0x02 means add pPage back to
156 ** the dirty list.  Doing both moves pPage to the front of the dirty list.
157 */
158 static void pcacheManageDirtyList(PgHdr *pPage, u8 addRemove){
159   PCache *p = pPage->pCache;
160 
161   pcacheTrace(("%p.DIRTYLIST.%s %d\n", p,
162                 addRemove==1 ? "REMOVE" : addRemove==2 ? "ADD" : "FRONT",
163                 pPage->pgno));
164   if( addRemove & PCACHE_DIRTYLIST_REMOVE ){
165     assert( pPage->pDirtyNext || pPage==p->pDirtyTail );
166     assert( pPage->pDirtyPrev || pPage==p->pDirty );
167 
168     /* Update the PCache1.pSynced variable if necessary. */
169     if( p->pSynced==pPage ){
170       p->pSynced = pPage->pDirtyPrev;
171     }
172 
173     if( pPage->pDirtyNext ){
174       pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev;
175     }else{
176       assert( pPage==p->pDirtyTail );
177       p->pDirtyTail = pPage->pDirtyPrev;
178     }
179     if( pPage->pDirtyPrev ){
180       pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext;
181     }else{
182       /* If there are now no dirty pages in the cache, set eCreate to 2.
183       ** This is an optimization that allows sqlite3PcacheFetch() to skip
184       ** searching for a dirty page to eject from the cache when it might
185       ** otherwise have to.  */
186       assert( pPage==p->pDirty );
187       p->pDirty = pPage->pDirtyNext;
188       assert( p->bPurgeable || p->eCreate==2 );
189       if( p->pDirty==0 ){         /*OPTIMIZATION-IF-TRUE*/
190         assert( p->bPurgeable==0 || p->eCreate==1 );
191         p->eCreate = 2;
192       }
193     }
194   }
195   if( addRemove & PCACHE_DIRTYLIST_ADD ){
196     pPage->pDirtyPrev = 0;
197     pPage->pDirtyNext = p->pDirty;
198     if( pPage->pDirtyNext ){
199       assert( pPage->pDirtyNext->pDirtyPrev==0 );
200       pPage->pDirtyNext->pDirtyPrev = pPage;
201     }else{
202       p->pDirtyTail = pPage;
203       if( p->bPurgeable ){
204         assert( p->eCreate==2 );
205         p->eCreate = 1;
206       }
207     }
208     p->pDirty = pPage;
209 
210     /* If pSynced is NULL and this page has a clear NEED_SYNC flag, set
211     ** pSynced to point to it. Checking the NEED_SYNC flag is an
212     ** optimization, as if pSynced points to a page with the NEED_SYNC
213     ** flag set sqlite3PcacheFetchStress() searches through all newer
214     ** entries of the dirty-list for a page with NEED_SYNC clear anyway.  */
215     if( !p->pSynced
216      && 0==(pPage->flags&PGHDR_NEED_SYNC)   /*OPTIMIZATION-IF-FALSE*/
217     ){
218       p->pSynced = pPage;
219     }
220   }
221   pcacheDump(p);
222 }
223 
224 /*
225 ** Wrapper around the pluggable caches xUnpin method. If the cache is
226 ** being used for an in-memory database, this function is a no-op.
227 */
228 static void pcacheUnpin(PgHdr *p){
229   if( p->pCache->bPurgeable ){
230     pcacheTrace(("%p.UNPIN %d\n", p->pCache, p->pgno));
231     sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0);
232     pcacheDump(p->pCache);
233   }
234 }
235 
236 /*
237 ** Compute the number of pages of cache requested.   p->szCache is the
238 ** cache size requested by the "PRAGMA cache_size" statement.
239 */
240 static int numberOfCachePages(PCache *p){
241   if( p->szCache>=0 ){
242     /* IMPLEMENTATION-OF: R-42059-47211 If the argument N is positive then the
243     ** suggested cache size is set to N. */
244     return p->szCache;
245   }else{
246     /* IMPLEMANTATION-OF: R-59858-46238 If the argument N is negative, then the
247     ** number of cache pages is adjusted to be a number of pages that would
248     ** use approximately abs(N*1024) bytes of memory based on the current
249     ** page size. */
250     return (int)((-1024*(i64)p->szCache)/(p->szPage+p->szExtra));
251   }
252 }
253 
254 /*************************************************** General Interfaces ******
255 **
256 ** Initialize and shutdown the page cache subsystem. Neither of these
257 ** functions are threadsafe.
258 */
259 int sqlite3PcacheInitialize(void){
260   if( sqlite3GlobalConfig.pcache2.xInit==0 ){
261     /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the
262     ** built-in default page cache is used instead of the application defined
263     ** page cache. */
264     sqlite3PCacheSetDefault();
265     assert( sqlite3GlobalConfig.pcache2.xInit!=0 );
266   }
267   return sqlite3GlobalConfig.pcache2.xInit(sqlite3GlobalConfig.pcache2.pArg);
268 }
269 void sqlite3PcacheShutdown(void){
270   if( sqlite3GlobalConfig.pcache2.xShutdown ){
271     /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */
272     sqlite3GlobalConfig.pcache2.xShutdown(sqlite3GlobalConfig.pcache2.pArg);
273   }
274 }
275 
276 /*
277 ** Return the size in bytes of a PCache object.
278 */
279 int sqlite3PcacheSize(void){ return sizeof(PCache); }
280 
281 /*
282 ** Create a new PCache object. Storage space to hold the object
283 ** has already been allocated and is passed in as the p pointer.
284 ** The caller discovers how much space needs to be allocated by
285 ** calling sqlite3PcacheSize().
286 **
287 ** szExtra is some extra space allocated for each page.  The first
288 ** 8 bytes of the extra space will be zeroed as the page is allocated,
289 ** but remaining content will be uninitialized.  Though it is opaque
290 ** to this module, the extra space really ends up being the MemPage
291 ** structure in the pager.
292 */
293 int sqlite3PcacheOpen(
294   int szPage,                  /* Size of every page */
295   int szExtra,                 /* Extra space associated with each page */
296   int bPurgeable,              /* True if pages are on backing store */
297   int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */
298   void *pStress,               /* Argument to xStress */
299   PCache *p                    /* Preallocated space for the PCache */
300 ){
301   memset(p, 0, sizeof(PCache));
302   p->szPage = 1;
303   p->szExtra = szExtra;
304   assert( szExtra>=8 );  /* First 8 bytes will be zeroed */
305   p->bPurgeable = bPurgeable;
306   p->eCreate = 2;
307   p->xStress = xStress;
308   p->pStress = pStress;
309   p->szCache = 100;
310   p->szSpill = 1;
311   pcacheTrace(("%p.OPEN szPage %d bPurgeable %d\n",p,szPage,bPurgeable));
312   return sqlite3PcacheSetPageSize(p, szPage);
313 }
314 
315 /*
316 ** Change the page size for PCache object. The caller must ensure that there
317 ** are no outstanding page references when this function is called.
318 */
319 int sqlite3PcacheSetPageSize(PCache *pCache, int szPage){
320   assert( pCache->nRefSum==0 && pCache->pDirty==0 );
321   if( pCache->szPage ){
322     sqlite3_pcache *pNew;
323     pNew = sqlite3GlobalConfig.pcache2.xCreate(
324                 szPage, pCache->szExtra + ROUND8(sizeof(PgHdr)),
325                 pCache->bPurgeable
326     );
327     if( pNew==0 ) return SQLITE_NOMEM_BKPT;
328     sqlite3GlobalConfig.pcache2.xCachesize(pNew, numberOfCachePages(pCache));
329     if( pCache->pCache ){
330       sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache);
331     }
332     pCache->pCache = pNew;
333     pCache->szPage = szPage;
334     pcacheTrace(("%p.PAGESIZE %d\n",pCache,szPage));
335   }
336   return SQLITE_OK;
337 }
338 
339 /*
340 ** Try to obtain a page from the cache.
341 **
342 ** This routine returns a pointer to an sqlite3_pcache_page object if
343 ** such an object is already in cache, or if a new one is created.
344 ** This routine returns a NULL pointer if the object was not in cache
345 ** and could not be created.
346 **
347 ** The createFlags should be 0 to check for existing pages and should
348 ** be 3 (not 1, but 3) to try to create a new page.
349 **
350 ** If the createFlag is 0, then NULL is always returned if the page
351 ** is not already in the cache.  If createFlag is 1, then a new page
352 ** is created only if that can be done without spilling dirty pages
353 ** and without exceeding the cache size limit.
354 **
355 ** The caller needs to invoke sqlite3PcacheFetchFinish() to properly
356 ** initialize the sqlite3_pcache_page object and convert it into a
357 ** PgHdr object.  The sqlite3PcacheFetch() and sqlite3PcacheFetchFinish()
358 ** routines are split this way for performance reasons. When separated
359 ** they can both (usually) operate without having to push values to
360 ** the stack on entry and pop them back off on exit, which saves a
361 ** lot of pushing and popping.
362 */
363 sqlite3_pcache_page *sqlite3PcacheFetch(
364   PCache *pCache,       /* Obtain the page from this cache */
365   Pgno pgno,            /* Page number to obtain */
366   int createFlag        /* If true, create page if it does not exist already */
367 ){
368   int eCreate;
369   sqlite3_pcache_page *pRes;
370 
371   assert( pCache!=0 );
372   assert( pCache->pCache!=0 );
373   assert( createFlag==3 || createFlag==0 );
374   assert( pCache->eCreate==((pCache->bPurgeable && pCache->pDirty) ? 1 : 2) );
375 
376   /* eCreate defines what to do if the page does not exist.
377   **    0     Do not allocate a new page.  (createFlag==0)
378   **    1     Allocate a new page if doing so is inexpensive.
379   **          (createFlag==1 AND bPurgeable AND pDirty)
380   **    2     Allocate a new page even it doing so is difficult.
381   **          (createFlag==1 AND !(bPurgeable AND pDirty)
382   */
383   eCreate = createFlag & pCache->eCreate;
384   assert( eCreate==0 || eCreate==1 || eCreate==2 );
385   assert( createFlag==0 || pCache->eCreate==eCreate );
386   assert( createFlag==0 || eCreate==1+(!pCache->bPurgeable||!pCache->pDirty) );
387   pRes = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate);
388   pcacheTrace(("%p.FETCH %d%s (result: %p)\n",pCache,pgno,
389                createFlag?" create":"",pRes));
390   return pRes;
391 }
392 
393 /*
394 ** If the sqlite3PcacheFetch() routine is unable to allocate a new
395 ** page because no clean pages are available for reuse and the cache
396 ** size limit has been reached, then this routine can be invoked to
397 ** try harder to allocate a page.  This routine might invoke the stress
398 ** callback to spill dirty pages to the journal.  It will then try to
399 ** allocate the new page and will only fail to allocate a new page on
400 ** an OOM error.
401 **
402 ** This routine should be invoked only after sqlite3PcacheFetch() fails.
403 */
404 int sqlite3PcacheFetchStress(
405   PCache *pCache,                 /* Obtain the page from this cache */
406   Pgno pgno,                      /* Page number to obtain */
407   sqlite3_pcache_page **ppPage    /* Write result here */
408 ){
409   PgHdr *pPg;
410   if( pCache->eCreate==2 ) return 0;
411 
412   if( sqlite3PcachePagecount(pCache)>pCache->szSpill ){
413     /* Find a dirty page to write-out and recycle. First try to find a
414     ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC
415     ** cleared), but if that is not possible settle for any other
416     ** unreferenced dirty page.
417     **
418     ** If the LRU page in the dirty list that has a clear PGHDR_NEED_SYNC
419     ** flag is currently referenced, then the following may leave pSynced
420     ** set incorrectly (pointing to other than the LRU page with NEED_SYNC
421     ** cleared). This is Ok, as pSynced is just an optimization.  */
422     for(pPg=pCache->pSynced;
423         pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC));
424         pPg=pPg->pDirtyPrev
425     );
426     pCache->pSynced = pPg;
427     if( !pPg ){
428       for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev);
429     }
430     if( pPg ){
431       int rc;
432 #ifdef SQLITE_LOG_CACHE_SPILL
433       sqlite3_log(SQLITE_FULL,
434                   "spill page %d making room for %d - cache used: %d/%d",
435                   pPg->pgno, pgno,
436                   sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache),
437                 numberOfCachePages(pCache));
438 #endif
439       pcacheTrace(("%p.SPILL %d\n",pCache,pPg->pgno));
440       rc = pCache->xStress(pCache->pStress, pPg);
441       pcacheDump(pCache);
442       if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){
443         return rc;
444       }
445     }
446   }
447   *ppPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, 2);
448   return *ppPage==0 ? SQLITE_NOMEM_BKPT : SQLITE_OK;
449 }
450 
451 /*
452 ** This is a helper routine for sqlite3PcacheFetchFinish()
453 **
454 ** In the uncommon case where the page being fetched has not been
455 ** initialized, this routine is invoked to do the initialization.
456 ** This routine is broken out into a separate function since it
457 ** requires extra stack manipulation that can be avoided in the common
458 ** case.
459 */
460 static SQLITE_NOINLINE PgHdr *pcacheFetchFinishWithInit(
461   PCache *pCache,             /* Obtain the page from this cache */
462   Pgno pgno,                  /* Page number obtained */
463   sqlite3_pcache_page *pPage  /* Page obtained by prior PcacheFetch() call */
464 ){
465   PgHdr *pPgHdr;
466   assert( pPage!=0 );
467   pPgHdr = (PgHdr*)pPage->pExtra;
468   assert( pPgHdr->pPage==0 );
469   memset(&pPgHdr->pDirty, 0, sizeof(PgHdr) - offsetof(PgHdr,pDirty));
470   pPgHdr->pPage = pPage;
471   pPgHdr->pData = pPage->pBuf;
472   pPgHdr->pExtra = (void *)&pPgHdr[1];
473   memset(pPgHdr->pExtra, 0, 8);
474   pPgHdr->pCache = pCache;
475   pPgHdr->pgno = pgno;
476   pPgHdr->flags = PGHDR_CLEAN;
477   return sqlite3PcacheFetchFinish(pCache,pgno,pPage);
478 }
479 
480 /*
481 ** This routine converts the sqlite3_pcache_page object returned by
482 ** sqlite3PcacheFetch() into an initialized PgHdr object.  This routine
483 ** must be called after sqlite3PcacheFetch() in order to get a usable
484 ** result.
485 */
486 PgHdr *sqlite3PcacheFetchFinish(
487   PCache *pCache,             /* Obtain the page from this cache */
488   Pgno pgno,                  /* Page number obtained */
489   sqlite3_pcache_page *pPage  /* Page obtained by prior PcacheFetch() call */
490 ){
491   PgHdr *pPgHdr;
492 
493   assert( pPage!=0 );
494   pPgHdr = (PgHdr *)pPage->pExtra;
495 
496   if( !pPgHdr->pPage ){
497     return pcacheFetchFinishWithInit(pCache, pgno, pPage);
498   }
499   pCache->nRefSum++;
500   pPgHdr->nRef++;
501   assert( sqlite3PcachePageSanity(pPgHdr) );
502   return pPgHdr;
503 }
504 
505 /*
506 ** Decrement the reference count on a page. If the page is clean and the
507 ** reference count drops to 0, then it is made eligible for recycling.
508 */
509 void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){
510   assert( p->nRef>0 );
511   p->pCache->nRefSum--;
512   if( (--p->nRef)==0 ){
513     if( p->flags&PGHDR_CLEAN ){
514       pcacheUnpin(p);
515     }else{
516       pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT);
517     }
518   }
519 }
520 
521 /*
522 ** Increase the reference count of a supplied page by 1.
523 */
524 void sqlite3PcacheRef(PgHdr *p){
525   assert(p->nRef>0);
526   assert( sqlite3PcachePageSanity(p) );
527   p->nRef++;
528   p->pCache->nRefSum++;
529 }
530 
531 /*
532 ** Drop a page from the cache. There must be exactly one reference to the
533 ** page. This function deletes that reference, so after it returns the
534 ** page pointed to by p is invalid.
535 */
536 void sqlite3PcacheDrop(PgHdr *p){
537   assert( p->nRef==1 );
538   assert( sqlite3PcachePageSanity(p) );
539   if( p->flags&PGHDR_DIRTY ){
540     pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE);
541   }
542   p->pCache->nRefSum--;
543   sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 1);
544 }
545 
546 /*
547 ** Make sure the page is marked as dirty. If it isn't dirty already,
548 ** make it so.
549 */
550 void sqlite3PcacheMakeDirty(PgHdr *p){
551   assert( p->nRef>0 );
552   assert( sqlite3PcachePageSanity(p) );
553   if( p->flags & (PGHDR_CLEAN|PGHDR_DONT_WRITE) ){    /*OPTIMIZATION-IF-FALSE*/
554     p->flags &= ~PGHDR_DONT_WRITE;
555     if( p->flags & PGHDR_CLEAN ){
556       p->flags ^= (PGHDR_DIRTY|PGHDR_CLEAN);
557       pcacheTrace(("%p.DIRTY %d\n",p->pCache,p->pgno));
558       assert( (p->flags & (PGHDR_DIRTY|PGHDR_CLEAN))==PGHDR_DIRTY );
559       pcacheManageDirtyList(p, PCACHE_DIRTYLIST_ADD);
560     }
561     assert( sqlite3PcachePageSanity(p) );
562   }
563 }
564 
565 /*
566 ** Make sure the page is marked as clean. If it isn't clean already,
567 ** make it so.
568 */
569 void sqlite3PcacheMakeClean(PgHdr *p){
570   assert( sqlite3PcachePageSanity(p) );
571   assert( (p->flags & PGHDR_DIRTY)!=0 );
572   assert( (p->flags & PGHDR_CLEAN)==0 );
573   pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE);
574   p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC|PGHDR_WRITEABLE);
575   p->flags |= PGHDR_CLEAN;
576   pcacheTrace(("%p.CLEAN %d\n",p->pCache,p->pgno));
577   assert( sqlite3PcachePageSanity(p) );
578   if( p->nRef==0 ){
579     pcacheUnpin(p);
580   }
581 }
582 
583 /*
584 ** Make every page in the cache clean.
585 */
586 void sqlite3PcacheCleanAll(PCache *pCache){
587   PgHdr *p;
588   pcacheTrace(("%p.CLEAN-ALL\n",pCache));
589   while( (p = pCache->pDirty)!=0 ){
590     sqlite3PcacheMakeClean(p);
591   }
592 }
593 
594 /*
595 ** Clear the PGHDR_NEED_SYNC and PGHDR_WRITEABLE flag from all dirty pages.
596 */
597 void sqlite3PcacheClearWritable(PCache *pCache){
598   PgHdr *p;
599   pcacheTrace(("%p.CLEAR-WRITEABLE\n",pCache));
600   for(p=pCache->pDirty; p; p=p->pDirtyNext){
601     p->flags &= ~(PGHDR_NEED_SYNC|PGHDR_WRITEABLE);
602   }
603   pCache->pSynced = pCache->pDirtyTail;
604 }
605 
606 /*
607 ** Clear the PGHDR_NEED_SYNC flag from all dirty pages.
608 */
609 void sqlite3PcacheClearSyncFlags(PCache *pCache){
610   PgHdr *p;
611   for(p=pCache->pDirty; p; p=p->pDirtyNext){
612     p->flags &= ~PGHDR_NEED_SYNC;
613   }
614   pCache->pSynced = pCache->pDirtyTail;
615 }
616 
617 /*
618 ** Change the page number of page p to newPgno.
619 */
620 void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){
621   PCache *pCache = p->pCache;
622   assert( p->nRef>0 );
623   assert( newPgno>0 );
624   assert( sqlite3PcachePageSanity(p) );
625   pcacheTrace(("%p.MOVE %d -> %d\n",pCache,p->pgno,newPgno));
626   sqlite3GlobalConfig.pcache2.xRekey(pCache->pCache, p->pPage, p->pgno,newPgno);
627   p->pgno = newPgno;
628   if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){
629     pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT);
630   }
631 }
632 
633 /*
634 ** Drop every cache entry whose page number is greater than "pgno". The
635 ** caller must ensure that there are no outstanding references to any pages
636 ** other than page 1 with a page number greater than pgno.
637 **
638 ** If there is a reference to page 1 and the pgno parameter passed to this
639 ** function is 0, then the data area associated with page 1 is zeroed, but
640 ** the page object is not dropped.
641 */
642 void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){
643   if( pCache->pCache ){
644     PgHdr *p;
645     PgHdr *pNext;
646     pcacheTrace(("%p.TRUNCATE %d\n",pCache,pgno));
647     for(p=pCache->pDirty; p; p=pNext){
648       pNext = p->pDirtyNext;
649       /* This routine never gets call with a positive pgno except right
650       ** after sqlite3PcacheCleanAll().  So if there are dirty pages,
651       ** it must be that pgno==0.
652       */
653       assert( p->pgno>0 );
654       if( p->pgno>pgno ){
655         assert( p->flags&PGHDR_DIRTY );
656         sqlite3PcacheMakeClean(p);
657       }
658     }
659     if( pgno==0 && pCache->nRefSum ){
660       sqlite3_pcache_page *pPage1;
661       pPage1 = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache,1,0);
662       if( ALWAYS(pPage1) ){  /* Page 1 is always available in cache, because
663                              ** pCache->nRefSum>0 */
664         memset(pPage1->pBuf, 0, pCache->szPage);
665         pgno = 1;
666       }
667     }
668     sqlite3GlobalConfig.pcache2.xTruncate(pCache->pCache, pgno+1);
669   }
670 }
671 
672 /*
673 ** Close a cache.
674 */
675 void sqlite3PcacheClose(PCache *pCache){
676   assert( pCache->pCache!=0 );
677   pcacheTrace(("%p.CLOSE\n",pCache));
678   sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache);
679 }
680 
681 /*
682 ** Discard the contents of the cache.
683 */
684 void sqlite3PcacheClear(PCache *pCache){
685   sqlite3PcacheTruncate(pCache, 0);
686 }
687 
688 /*
689 ** Merge two lists of pages connected by pDirty and in pgno order.
690 ** Do not bother fixing the pDirtyPrev pointers.
691 */
692 static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){
693   PgHdr result, *pTail;
694   pTail = &result;
695   assert( pA!=0 && pB!=0 );
696   for(;;){
697     if( pA->pgno<pB->pgno ){
698       pTail->pDirty = pA;
699       pTail = pA;
700       pA = pA->pDirty;
701       if( pA==0 ){
702         pTail->pDirty = pB;
703         break;
704       }
705     }else{
706       pTail->pDirty = pB;
707       pTail = pB;
708       pB = pB->pDirty;
709       if( pB==0 ){
710         pTail->pDirty = pA;
711         break;
712       }
713     }
714   }
715   return result.pDirty;
716 }
717 
718 /*
719 ** Sort the list of pages in accending order by pgno.  Pages are
720 ** connected by pDirty pointers.  The pDirtyPrev pointers are
721 ** corrupted by this sort.
722 **
723 ** Since there cannot be more than 2^31 distinct pages in a database,
724 ** there cannot be more than 31 buckets required by the merge sorter.
725 ** One extra bucket is added to catch overflow in case something
726 ** ever changes to make the previous sentence incorrect.
727 */
728 #define N_SORT_BUCKET  32
729 static PgHdr *pcacheSortDirtyList(PgHdr *pIn){
730   PgHdr *a[N_SORT_BUCKET], *p;
731   int i;
732   memset(a, 0, sizeof(a));
733   while( pIn ){
734     p = pIn;
735     pIn = p->pDirty;
736     p->pDirty = 0;
737     for(i=0; ALWAYS(i<N_SORT_BUCKET-1); i++){
738       if( a[i]==0 ){
739         a[i] = p;
740         break;
741       }else{
742         p = pcacheMergeDirtyList(a[i], p);
743         a[i] = 0;
744       }
745     }
746     if( NEVER(i==N_SORT_BUCKET-1) ){
747       /* To get here, there need to be 2^(N_SORT_BUCKET) elements in
748       ** the input list.  But that is impossible.
749       */
750       a[i] = pcacheMergeDirtyList(a[i], p);
751     }
752   }
753   p = a[0];
754   for(i=1; i<N_SORT_BUCKET; i++){
755     if( a[i]==0 ) continue;
756     p = p ? pcacheMergeDirtyList(p, a[i]) : a[i];
757   }
758   return p;
759 }
760 
761 /*
762 ** Return a list of all dirty pages in the cache, sorted by page number.
763 */
764 PgHdr *sqlite3PcacheDirtyList(PCache *pCache){
765   PgHdr *p;
766   for(p=pCache->pDirty; p; p=p->pDirtyNext){
767     p->pDirty = p->pDirtyNext;
768   }
769   return pcacheSortDirtyList(pCache->pDirty);
770 }
771 
772 /*
773 ** Return the total number of references to all pages held by the cache.
774 **
775 ** This is not the total number of pages referenced, but the sum of the
776 ** reference count for all pages.
777 */
778 int sqlite3PcacheRefCount(PCache *pCache){
779   return pCache->nRefSum;
780 }
781 
782 /*
783 ** Return the number of references to the page supplied as an argument.
784 */
785 int sqlite3PcachePageRefcount(PgHdr *p){
786   return p->nRef;
787 }
788 
789 /*
790 ** Return the total number of pages in the cache.
791 */
792 int sqlite3PcachePagecount(PCache *pCache){
793   assert( pCache->pCache!=0 );
794   return sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache);
795 }
796 
797 #ifdef SQLITE_TEST
798 /*
799 ** Get the suggested cache-size value.
800 */
801 int sqlite3PcacheGetCachesize(PCache *pCache){
802   return numberOfCachePages(pCache);
803 }
804 #endif
805 
806 /*
807 ** Set the suggested cache-size value.
808 */
809 void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){
810   assert( pCache->pCache!=0 );
811   pCache->szCache = mxPage;
812   sqlite3GlobalConfig.pcache2.xCachesize(pCache->pCache,
813                                          numberOfCachePages(pCache));
814 }
815 
816 /*
817 ** Set the suggested cache-spill value.  Make no changes if if the
818 ** argument is zero.  Return the effective cache-spill size, which will
819 ** be the larger of the szSpill and szCache.
820 */
821 int sqlite3PcacheSetSpillsize(PCache *p, int mxPage){
822   int res;
823   assert( p->pCache!=0 );
824   if( mxPage ){
825     if( mxPage<0 ){
826       mxPage = (int)((-1024*(i64)mxPage)/(p->szPage+p->szExtra));
827     }
828     p->szSpill = mxPage;
829   }
830   res = numberOfCachePages(p);
831   if( res<p->szSpill ) res = p->szSpill;
832   return res;
833 }
834 
835 /*
836 ** Free up as much memory as possible from the page cache.
837 */
838 void sqlite3PcacheShrink(PCache *pCache){
839   assert( pCache->pCache!=0 );
840   sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache);
841 }
842 
843 /*
844 ** Return the size of the header added by this middleware layer
845 ** in the page-cache hierarchy.
846 */
847 int sqlite3HeaderSizePcache(void){ return ROUND8(sizeof(PgHdr)); }
848 
849 /*
850 ** Return the number of dirty pages currently in the cache, as a percentage
851 ** of the configured cache size.
852 */
853 int sqlite3PCachePercentDirty(PCache *pCache){
854   PgHdr *pDirty;
855   int nDirty = 0;
856   int nCache = numberOfCachePages(pCache);
857   for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext) nDirty++;
858   return nCache ? (int)(((i64)nDirty * 100) / nCache) : 0;
859 }
860 
861 #ifdef SQLITE_DIRECT_OVERFLOW_READ
862 /*
863 ** Return true if there are one or more dirty pages in the cache. Else false.
864 */
865 int sqlite3PCacheIsDirty(PCache *pCache){
866   return (pCache->pDirty!=0);
867 }
868 #endif
869 
870 #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG)
871 /*
872 ** For all dirty pages currently in the cache, invoke the specified
873 ** callback. This is only used if the SQLITE_CHECK_PAGES macro is
874 ** defined.
875 */
876 void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){
877   PgHdr *pDirty;
878   for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){
879     xIter(pDirty);
880   }
881 }
882 #endif
883