xref: /sqlite-3.40.0/src/pcache.c (revision dfe4e6bb)
1 /*
2 ** 2008 August 05
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file implements that page cache.
13 */
14 #include "sqliteInt.h"
15 
16 /*
17 ** A complete page cache is an instance of this structure.  Every
18 ** entry in the cache holds a single page of the database file.  The
19 ** btree layer only operates on the cached copy of the database pages.
20 **
21 ** A page cache entry is "clean" if it exactly matches what is currently
22 ** on disk.  A page is "dirty" if it has been modified and needs to be
23 ** persisted to disk.
24 **
25 ** pDirty, pDirtyTail, pSynced:
26 **   All dirty pages are linked into the doubly linked list using
27 **   PgHdr.pDirtyNext and pDirtyPrev. The list is maintained in LRU order
28 **   such that p was added to the list more recently than p->pDirtyNext.
29 **   PCache.pDirty points to the first (newest) element in the list and
30 **   pDirtyTail to the last (oldest).
31 **
32 **   The PCache.pSynced variable is used to optimize searching for a dirty
33 **   page to eject from the cache mid-transaction. It is better to eject
34 **   a page that does not require a journal sync than one that does.
35 **   Therefore, pSynced is maintained to that it *almost* always points
36 **   to either the oldest page in the pDirty/pDirtyTail list that has a
37 **   clear PGHDR_NEED_SYNC flag or to a page that is older than this one
38 **   (so that the right page to eject can be found by following pDirtyPrev
39 **   pointers).
40 */
41 struct PCache {
42   PgHdr *pDirty, *pDirtyTail;         /* List of dirty pages in LRU order */
43   PgHdr *pSynced;                     /* Last synced page in dirty page list */
44   int nRefSum;                        /* Sum of ref counts over all pages */
45   int szCache;                        /* Configured cache size */
46   int szSpill;                        /* Size before spilling occurs */
47   int szPage;                         /* Size of every page in this cache */
48   int szExtra;                        /* Size of extra space for each page */
49   u8 bPurgeable;                      /* True if pages are on backing store */
50   u8 eCreate;                         /* eCreate value for for xFetch() */
51   int (*xStress)(void*,PgHdr*);       /* Call to try make a page clean */
52   void *pStress;                      /* Argument to xStress */
53   sqlite3_pcache *pCache;             /* Pluggable cache module */
54 };
55 
56 /********************************** Test and Debug Logic **********************/
57 /*
58 ** Debug tracing macros.  Enable by by changing the "0" to "1" and
59 ** recompiling.
60 **
61 ** When sqlite3PcacheTrace is 1, single line trace messages are issued.
62 ** When sqlite3PcacheTrace is 2, a dump of the pcache showing all cache entries
63 ** is displayed for many operations, resulting in a lot of output.
64 */
65 #if defined(SQLITE_DEBUG) && 0
66   int sqlite3PcacheTrace = 2;       /* 0: off  1: simple  2: cache dumps */
67   int sqlite3PcacheMxDump = 9999;   /* Max cache entries for pcacheDump() */
68 # define pcacheTrace(X) if(sqlite3PcacheTrace){sqlite3DebugPrintf X;}
69   void pcacheDump(PCache *pCache){
70     int N;
71     int i, j;
72     sqlite3_pcache_page *pLower;
73     PgHdr *pPg;
74     unsigned char *a;
75 
76     if( sqlite3PcacheTrace<2 ) return;
77     if( pCache->pCache==0 ) return;
78     N = sqlite3PcachePagecount(pCache);
79     if( N>sqlite3PcacheMxDump ) N = sqlite3PcacheMxDump;
80     for(i=1; i<=N; i++){
81        pLower = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, i, 0);
82        if( pLower==0 ) continue;
83        pPg = (PgHdr*)pLower->pExtra;
84        printf("%3d: nRef %2d flgs %02x data ", i, pPg->nRef, pPg->flags);
85        a = (unsigned char *)pLower->pBuf;
86        for(j=0; j<12; j++) printf("%02x", a[j]);
87        printf("\n");
88        if( pPg->pPage==0 ){
89          sqlite3GlobalConfig.pcache2.xUnpin(pCache->pCache, pLower, 0);
90        }
91     }
92   }
93   #else
94 # define pcacheTrace(X)
95 # define pcacheDump(X)
96 #endif
97 
98 /*
99 ** Check invariants on a PgHdr entry.  Return true if everything is OK.
100 ** Return false if any invariant is violated.
101 **
102 ** This routine is for use inside of assert() statements only.  For
103 ** example:
104 **
105 **          assert( sqlite3PcachePageSanity(pPg) );
106 */
107 #if SQLITE_DEBUG
108 int sqlite3PcachePageSanity(PgHdr *pPg){
109   PCache *pCache;
110   assert( pPg!=0 );
111   assert( pPg->pgno>0 );    /* Page number is 1 or more */
112   pCache = pPg->pCache;
113   assert( pCache!=0 );      /* Every page has an associated PCache */
114   if( pPg->flags & PGHDR_CLEAN ){
115     assert( (pPg->flags & PGHDR_DIRTY)==0 );/* Cannot be both CLEAN and DIRTY */
116     assert( pCache->pDirty!=pPg );          /* CLEAN pages not on dirty list */
117     assert( pCache->pDirtyTail!=pPg );
118   }
119   /* WRITEABLE pages must also be DIRTY */
120   if( pPg->flags & PGHDR_WRITEABLE ){
121     assert( pPg->flags & PGHDR_DIRTY );     /* WRITEABLE implies DIRTY */
122   }
123   /* NEED_SYNC can be set independently of WRITEABLE.  This can happen,
124   ** for example, when using the sqlite3PagerDontWrite() optimization:
125   **    (1)  Page X is journalled, and gets WRITEABLE and NEED_SEEK.
126   **    (2)  Page X moved to freelist, WRITEABLE is cleared
127   **    (3)  Page X reused, WRITEABLE is set again
128   ** If NEED_SYNC had been cleared in step 2, then it would not be reset
129   ** in step 3, and page might be written into the database without first
130   ** syncing the rollback journal, which might cause corruption on a power
131   ** loss.
132   **
133   ** Another example is when the database page size is smaller than the
134   ** disk sector size.  When any page of a sector is journalled, all pages
135   ** in that sector are marked NEED_SYNC even if they are still CLEAN, just
136   ** in case they are later modified, since all pages in the same sector
137   ** must be journalled and synced before any of those pages can be safely
138   ** written.
139   */
140   return 1;
141 }
142 #endif /* SQLITE_DEBUG */
143 
144 
145 /********************************** Linked List Management ********************/
146 
147 /* Allowed values for second argument to pcacheManageDirtyList() */
148 #define PCACHE_DIRTYLIST_REMOVE   1    /* Remove pPage from dirty list */
149 #define PCACHE_DIRTYLIST_ADD      2    /* Add pPage to the dirty list */
150 #define PCACHE_DIRTYLIST_FRONT    3    /* Move pPage to the front of the list */
151 
152 /*
153 ** Manage pPage's participation on the dirty list.  Bits of the addRemove
154 ** argument determines what operation to do.  The 0x01 bit means first
155 ** remove pPage from the dirty list.  The 0x02 means add pPage back to
156 ** the dirty list.  Doing both moves pPage to the front of the dirty list.
157 */
158 static void pcacheManageDirtyList(PgHdr *pPage, u8 addRemove){
159   PCache *p = pPage->pCache;
160 
161   pcacheTrace(("%p.DIRTYLIST.%s %d\n", p,
162                 addRemove==1 ? "REMOVE" : addRemove==2 ? "ADD" : "FRONT",
163                 pPage->pgno));
164   if( addRemove & PCACHE_DIRTYLIST_REMOVE ){
165     assert( pPage->pDirtyNext || pPage==p->pDirtyTail );
166     assert( pPage->pDirtyPrev || pPage==p->pDirty );
167 
168     /* Update the PCache1.pSynced variable if necessary. */
169     if( p->pSynced==pPage ){
170       p->pSynced = pPage->pDirtyPrev;
171     }
172 
173     if( pPage->pDirtyNext ){
174       pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev;
175     }else{
176       assert( pPage==p->pDirtyTail );
177       p->pDirtyTail = pPage->pDirtyPrev;
178     }
179     if( pPage->pDirtyPrev ){
180       pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext;
181     }else{
182       /* If there are now no dirty pages in the cache, set eCreate to 2.
183       ** This is an optimization that allows sqlite3PcacheFetch() to skip
184       ** searching for a dirty page to eject from the cache when it might
185       ** otherwise have to.  */
186       assert( pPage==p->pDirty );
187       p->pDirty = pPage->pDirtyNext;
188       assert( p->bPurgeable || p->eCreate==2 );
189       if( p->pDirty==0 ){         /*OPTIMIZATION-IF-TRUE*/
190         assert( p->bPurgeable==0 || p->eCreate==1 );
191         p->eCreate = 2;
192       }
193     }
194     pPage->pDirtyNext = 0;
195     pPage->pDirtyPrev = 0;
196   }
197   if( addRemove & PCACHE_DIRTYLIST_ADD ){
198     assert( pPage->pDirtyNext==0 && pPage->pDirtyPrev==0 && p->pDirty!=pPage );
199 
200     pPage->pDirtyNext = p->pDirty;
201     if( pPage->pDirtyNext ){
202       assert( pPage->pDirtyNext->pDirtyPrev==0 );
203       pPage->pDirtyNext->pDirtyPrev = pPage;
204     }else{
205       p->pDirtyTail = pPage;
206       if( p->bPurgeable ){
207         assert( p->eCreate==2 );
208         p->eCreate = 1;
209       }
210     }
211     p->pDirty = pPage;
212 
213     /* If pSynced is NULL and this page has a clear NEED_SYNC flag, set
214     ** pSynced to point to it. Checking the NEED_SYNC flag is an
215     ** optimization, as if pSynced points to a page with the NEED_SYNC
216     ** flag set sqlite3PcacheFetchStress() searches through all newer
217     ** entries of the dirty-list for a page with NEED_SYNC clear anyway.  */
218     if( !p->pSynced
219      && 0==(pPage->flags&PGHDR_NEED_SYNC)   /*OPTIMIZATION-IF-FALSE*/
220     ){
221       p->pSynced = pPage;
222     }
223   }
224   pcacheDump(p);
225 }
226 
227 /*
228 ** Wrapper around the pluggable caches xUnpin method. If the cache is
229 ** being used for an in-memory database, this function is a no-op.
230 */
231 static void pcacheUnpin(PgHdr *p){
232   if( p->pCache->bPurgeable ){
233     pcacheTrace(("%p.UNPIN %d\n", p->pCache, p->pgno));
234     sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0);
235     pcacheDump(p->pCache);
236   }
237 }
238 
239 /*
240 ** Compute the number of pages of cache requested.   p->szCache is the
241 ** cache size requested by the "PRAGMA cache_size" statement.
242 */
243 static int numberOfCachePages(PCache *p){
244   if( p->szCache>=0 ){
245     /* IMPLEMENTATION-OF: R-42059-47211 If the argument N is positive then the
246     ** suggested cache size is set to N. */
247     return p->szCache;
248   }else{
249     /* IMPLEMENTATION-OF: R-61436-13639 If the argument N is negative, then
250     ** the number of cache pages is adjusted to use approximately abs(N*1024)
251     ** bytes of memory. */
252     return (int)((-1024*(i64)p->szCache)/(p->szPage+p->szExtra));
253   }
254 }
255 
256 /*************************************************** General Interfaces ******
257 **
258 ** Initialize and shutdown the page cache subsystem. Neither of these
259 ** functions are threadsafe.
260 */
261 int sqlite3PcacheInitialize(void){
262   if( sqlite3GlobalConfig.pcache2.xInit==0 ){
263     /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the
264     ** built-in default page cache is used instead of the application defined
265     ** page cache. */
266     sqlite3PCacheSetDefault();
267   }
268   return sqlite3GlobalConfig.pcache2.xInit(sqlite3GlobalConfig.pcache2.pArg);
269 }
270 void sqlite3PcacheShutdown(void){
271   if( sqlite3GlobalConfig.pcache2.xShutdown ){
272     /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */
273     sqlite3GlobalConfig.pcache2.xShutdown(sqlite3GlobalConfig.pcache2.pArg);
274   }
275 }
276 
277 /*
278 ** Return the size in bytes of a PCache object.
279 */
280 int sqlite3PcacheSize(void){ return sizeof(PCache); }
281 
282 /*
283 ** Create a new PCache object. Storage space to hold the object
284 ** has already been allocated and is passed in as the p pointer.
285 ** The caller discovers how much space needs to be allocated by
286 ** calling sqlite3PcacheSize().
287 */
288 int sqlite3PcacheOpen(
289   int szPage,                  /* Size of every page */
290   int szExtra,                 /* Extra space associated with each page */
291   int bPurgeable,              /* True if pages are on backing store */
292   int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */
293   void *pStress,               /* Argument to xStress */
294   PCache *p                    /* Preallocated space for the PCache */
295 ){
296   memset(p, 0, sizeof(PCache));
297   p->szPage = 1;
298   p->szExtra = szExtra;
299   p->bPurgeable = bPurgeable;
300   p->eCreate = 2;
301   p->xStress = xStress;
302   p->pStress = pStress;
303   p->szCache = 100;
304   p->szSpill = 1;
305   pcacheTrace(("%p.OPEN szPage %d bPurgeable %d\n",p,szPage,bPurgeable));
306   return sqlite3PcacheSetPageSize(p, szPage);
307 }
308 
309 /*
310 ** Change the page size for PCache object. The caller must ensure that there
311 ** are no outstanding page references when this function is called.
312 */
313 int sqlite3PcacheSetPageSize(PCache *pCache, int szPage){
314   assert( pCache->nRefSum==0 && pCache->pDirty==0 );
315   if( pCache->szPage ){
316     sqlite3_pcache *pNew;
317     pNew = sqlite3GlobalConfig.pcache2.xCreate(
318                 szPage, pCache->szExtra + ROUND8(sizeof(PgHdr)),
319                 pCache->bPurgeable
320     );
321     if( pNew==0 ) return SQLITE_NOMEM_BKPT;
322     sqlite3GlobalConfig.pcache2.xCachesize(pNew, numberOfCachePages(pCache));
323     if( pCache->pCache ){
324       sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache);
325     }
326     pCache->pCache = pNew;
327     pCache->szPage = szPage;
328     pcacheTrace(("%p.PAGESIZE %d\n",pCache,szPage));
329   }
330   return SQLITE_OK;
331 }
332 
333 /*
334 ** Try to obtain a page from the cache.
335 **
336 ** This routine returns a pointer to an sqlite3_pcache_page object if
337 ** such an object is already in cache, or if a new one is created.
338 ** This routine returns a NULL pointer if the object was not in cache
339 ** and could not be created.
340 **
341 ** The createFlags should be 0 to check for existing pages and should
342 ** be 3 (not 1, but 3) to try to create a new page.
343 **
344 ** If the createFlag is 0, then NULL is always returned if the page
345 ** is not already in the cache.  If createFlag is 1, then a new page
346 ** is created only if that can be done without spilling dirty pages
347 ** and without exceeding the cache size limit.
348 **
349 ** The caller needs to invoke sqlite3PcacheFetchFinish() to properly
350 ** initialize the sqlite3_pcache_page object and convert it into a
351 ** PgHdr object.  The sqlite3PcacheFetch() and sqlite3PcacheFetchFinish()
352 ** routines are split this way for performance reasons. When separated
353 ** they can both (usually) operate without having to push values to
354 ** the stack on entry and pop them back off on exit, which saves a
355 ** lot of pushing and popping.
356 */
357 sqlite3_pcache_page *sqlite3PcacheFetch(
358   PCache *pCache,       /* Obtain the page from this cache */
359   Pgno pgno,            /* Page number to obtain */
360   int createFlag        /* If true, create page if it does not exist already */
361 ){
362   int eCreate;
363   sqlite3_pcache_page *pRes;
364 
365   assert( pCache!=0 );
366   assert( pCache->pCache!=0 );
367   assert( createFlag==3 || createFlag==0 );
368   assert( pgno>0 );
369   assert( pCache->eCreate==((pCache->bPurgeable && pCache->pDirty) ? 1 : 2) );
370 
371   /* eCreate defines what to do if the page does not exist.
372   **    0     Do not allocate a new page.  (createFlag==0)
373   **    1     Allocate a new page if doing so is inexpensive.
374   **          (createFlag==1 AND bPurgeable AND pDirty)
375   **    2     Allocate a new page even it doing so is difficult.
376   **          (createFlag==1 AND !(bPurgeable AND pDirty)
377   */
378   eCreate = createFlag & pCache->eCreate;
379   assert( eCreate==0 || eCreate==1 || eCreate==2 );
380   assert( createFlag==0 || pCache->eCreate==eCreate );
381   assert( createFlag==0 || eCreate==1+(!pCache->bPurgeable||!pCache->pDirty) );
382   pRes = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate);
383   pcacheTrace(("%p.FETCH %d%s (result: %p)\n",pCache,pgno,
384                createFlag?" create":"",pRes));
385   return pRes;
386 }
387 
388 /*
389 ** If the sqlite3PcacheFetch() routine is unable to allocate a new
390 ** page because no clean pages are available for reuse and the cache
391 ** size limit has been reached, then this routine can be invoked to
392 ** try harder to allocate a page.  This routine might invoke the stress
393 ** callback to spill dirty pages to the journal.  It will then try to
394 ** allocate the new page and will only fail to allocate a new page on
395 ** an OOM error.
396 **
397 ** This routine should be invoked only after sqlite3PcacheFetch() fails.
398 */
399 int sqlite3PcacheFetchStress(
400   PCache *pCache,                 /* Obtain the page from this cache */
401   Pgno pgno,                      /* Page number to obtain */
402   sqlite3_pcache_page **ppPage    /* Write result here */
403 ){
404   PgHdr *pPg;
405   if( pCache->eCreate==2 ) return 0;
406 
407   if( sqlite3PcachePagecount(pCache)>pCache->szSpill ){
408     /* Find a dirty page to write-out and recycle. First try to find a
409     ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC
410     ** cleared), but if that is not possible settle for any other
411     ** unreferenced dirty page.
412     **
413     ** If the LRU page in the dirty list that has a clear PGHDR_NEED_SYNC
414     ** flag is currently referenced, then the following may leave pSynced
415     ** set incorrectly (pointing to other than the LRU page with NEED_SYNC
416     ** cleared). This is Ok, as pSynced is just an optimization.  */
417     for(pPg=pCache->pSynced;
418         pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC));
419         pPg=pPg->pDirtyPrev
420     );
421     pCache->pSynced = pPg;
422     if( !pPg ){
423       for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev);
424     }
425     if( pPg ){
426       int rc;
427 #ifdef SQLITE_LOG_CACHE_SPILL
428       sqlite3_log(SQLITE_FULL,
429                   "spill page %d making room for %d - cache used: %d/%d",
430                   pPg->pgno, pgno,
431                   sqlite3GlobalConfig.pcache.xPagecount(pCache->pCache),
432                 numberOfCachePages(pCache));
433 #endif
434       pcacheTrace(("%p.SPILL %d\n",pCache,pPg->pgno));
435       rc = pCache->xStress(pCache->pStress, pPg);
436       pcacheDump(pCache);
437       if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){
438         return rc;
439       }
440     }
441   }
442   *ppPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, 2);
443   return *ppPage==0 ? SQLITE_NOMEM_BKPT : SQLITE_OK;
444 }
445 
446 /*
447 ** This is a helper routine for sqlite3PcacheFetchFinish()
448 **
449 ** In the uncommon case where the page being fetched has not been
450 ** initialized, this routine is invoked to do the initialization.
451 ** This routine is broken out into a separate function since it
452 ** requires extra stack manipulation that can be avoided in the common
453 ** case.
454 */
455 static SQLITE_NOINLINE PgHdr *pcacheFetchFinishWithInit(
456   PCache *pCache,             /* Obtain the page from this cache */
457   Pgno pgno,                  /* Page number obtained */
458   sqlite3_pcache_page *pPage  /* Page obtained by prior PcacheFetch() call */
459 ){
460   PgHdr *pPgHdr;
461   assert( pPage!=0 );
462   pPgHdr = (PgHdr*)pPage->pExtra;
463   assert( pPgHdr->pPage==0 );
464   memset(&pPgHdr->pDirty, 0, sizeof(PgHdr) - offsetof(PgHdr,pDirty));
465   pPgHdr->pPage = pPage;
466   pPgHdr->pData = pPage->pBuf;
467   pPgHdr->pExtra = (void *)&pPgHdr[1];
468   memset(pPgHdr->pExtra, 0, pCache->szExtra);
469   pPgHdr->pCache = pCache;
470   pPgHdr->pgno = pgno;
471   pPgHdr->flags = PGHDR_CLEAN;
472   return sqlite3PcacheFetchFinish(pCache,pgno,pPage);
473 }
474 
475 /*
476 ** This routine converts the sqlite3_pcache_page object returned by
477 ** sqlite3PcacheFetch() into an initialized PgHdr object.  This routine
478 ** must be called after sqlite3PcacheFetch() in order to get a usable
479 ** result.
480 */
481 PgHdr *sqlite3PcacheFetchFinish(
482   PCache *pCache,             /* Obtain the page from this cache */
483   Pgno pgno,                  /* Page number obtained */
484   sqlite3_pcache_page *pPage  /* Page obtained by prior PcacheFetch() call */
485 ){
486   PgHdr *pPgHdr;
487 
488   assert( pPage!=0 );
489   pPgHdr = (PgHdr *)pPage->pExtra;
490 
491   if( !pPgHdr->pPage ){
492     return pcacheFetchFinishWithInit(pCache, pgno, pPage);
493   }
494   pCache->nRefSum++;
495   pPgHdr->nRef++;
496   assert( sqlite3PcachePageSanity(pPgHdr) );
497   return pPgHdr;
498 }
499 
500 /*
501 ** Decrement the reference count on a page. If the page is clean and the
502 ** reference count drops to 0, then it is made eligible for recycling.
503 */
504 void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){
505   assert( p->nRef>0 );
506   p->pCache->nRefSum--;
507   if( (--p->nRef)==0 ){
508     if( p->flags&PGHDR_CLEAN ){
509       pcacheUnpin(p);
510     }else if( p->pDirtyPrev!=0 ){ /*OPTIMIZATION-IF-FALSE*/
511       /* Move the page to the head of the dirty list. If p->pDirtyPrev==0,
512       ** then page p is already at the head of the dirty list and the
513       ** following call would be a no-op. Hence the OPTIMIZATION-IF-FALSE
514       ** tag above.  */
515       pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT);
516     }
517   }
518 }
519 
520 /*
521 ** Increase the reference count of a supplied page by 1.
522 */
523 void sqlite3PcacheRef(PgHdr *p){
524   assert(p->nRef>0);
525   assert( sqlite3PcachePageSanity(p) );
526   p->nRef++;
527   p->pCache->nRefSum++;
528 }
529 
530 /*
531 ** Drop a page from the cache. There must be exactly one reference to the
532 ** page. This function deletes that reference, so after it returns the
533 ** page pointed to by p is invalid.
534 */
535 void sqlite3PcacheDrop(PgHdr *p){
536   assert( p->nRef==1 );
537   assert( sqlite3PcachePageSanity(p) );
538   if( p->flags&PGHDR_DIRTY ){
539     pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE);
540   }
541   p->pCache->nRefSum--;
542   sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 1);
543 }
544 
545 /*
546 ** Make sure the page is marked as dirty. If it isn't dirty already,
547 ** make it so.
548 */
549 void sqlite3PcacheMakeDirty(PgHdr *p){
550   assert( p->nRef>0 );
551   assert( sqlite3PcachePageSanity(p) );
552   if( p->flags & (PGHDR_CLEAN|PGHDR_DONT_WRITE) ){    /*OPTIMIZATION-IF-FALSE*/
553     p->flags &= ~PGHDR_DONT_WRITE;
554     if( p->flags & PGHDR_CLEAN ){
555       p->flags ^= (PGHDR_DIRTY|PGHDR_CLEAN);
556       pcacheTrace(("%p.DIRTY %d\n",p->pCache,p->pgno));
557       assert( (p->flags & (PGHDR_DIRTY|PGHDR_CLEAN))==PGHDR_DIRTY );
558       pcacheManageDirtyList(p, PCACHE_DIRTYLIST_ADD);
559     }
560     assert( sqlite3PcachePageSanity(p) );
561   }
562 }
563 
564 /*
565 ** Make sure the page is marked as clean. If it isn't clean already,
566 ** make it so.
567 */
568 void sqlite3PcacheMakeClean(PgHdr *p){
569   assert( sqlite3PcachePageSanity(p) );
570   if( ALWAYS((p->flags & PGHDR_DIRTY)!=0) ){
571     assert( (p->flags & PGHDR_CLEAN)==0 );
572     pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE);
573     p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC|PGHDR_WRITEABLE);
574     p->flags |= PGHDR_CLEAN;
575     pcacheTrace(("%p.CLEAN %d\n",p->pCache,p->pgno));
576     assert( sqlite3PcachePageSanity(p) );
577     if( p->nRef==0 ){
578       pcacheUnpin(p);
579     }
580   }
581 }
582 
583 /*
584 ** Make every page in the cache clean.
585 */
586 void sqlite3PcacheCleanAll(PCache *pCache){
587   PgHdr *p;
588   pcacheTrace(("%p.CLEAN-ALL\n",pCache));
589   while( (p = pCache->pDirty)!=0 ){
590     sqlite3PcacheMakeClean(p);
591   }
592 }
593 
594 /*
595 ** Clear the PGHDR_NEED_SYNC and PGHDR_WRITEABLE flag from all dirty pages.
596 */
597 void sqlite3PcacheClearWritable(PCache *pCache){
598   PgHdr *p;
599   pcacheTrace(("%p.CLEAR-WRITEABLE\n",pCache));
600   for(p=pCache->pDirty; p; p=p->pDirtyNext){
601     p->flags &= ~(PGHDR_NEED_SYNC|PGHDR_WRITEABLE);
602   }
603   pCache->pSynced = pCache->pDirtyTail;
604 }
605 
606 /*
607 ** Clear the PGHDR_NEED_SYNC flag from all dirty pages.
608 */
609 void sqlite3PcacheClearSyncFlags(PCache *pCache){
610   PgHdr *p;
611   for(p=pCache->pDirty; p; p=p->pDirtyNext){
612     p->flags &= ~PGHDR_NEED_SYNC;
613   }
614   pCache->pSynced = pCache->pDirtyTail;
615 }
616 
617 /*
618 ** Change the page number of page p to newPgno.
619 */
620 void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){
621   PCache *pCache = p->pCache;
622   assert( p->nRef>0 );
623   assert( newPgno>0 );
624   assert( sqlite3PcachePageSanity(p) );
625   pcacheTrace(("%p.MOVE %d -> %d\n",pCache,p->pgno,newPgno));
626   sqlite3GlobalConfig.pcache2.xRekey(pCache->pCache, p->pPage, p->pgno,newPgno);
627   p->pgno = newPgno;
628   if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){
629     pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT);
630   }
631 }
632 
633 /*
634 ** Drop every cache entry whose page number is greater than "pgno". The
635 ** caller must ensure that there are no outstanding references to any pages
636 ** other than page 1 with a page number greater than pgno.
637 **
638 ** If there is a reference to page 1 and the pgno parameter passed to this
639 ** function is 0, then the data area associated with page 1 is zeroed, but
640 ** the page object is not dropped.
641 */
642 void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){
643   if( pCache->pCache ){
644     PgHdr *p;
645     PgHdr *pNext;
646     pcacheTrace(("%p.TRUNCATE %d\n",pCache,pgno));
647     for(p=pCache->pDirty; p; p=pNext){
648       pNext = p->pDirtyNext;
649       /* This routine never gets call with a positive pgno except right
650       ** after sqlite3PcacheCleanAll().  So if there are dirty pages,
651       ** it must be that pgno==0.
652       */
653       assert( p->pgno>0 );
654       if( p->pgno>pgno ){
655         assert( p->flags&PGHDR_DIRTY );
656         sqlite3PcacheMakeClean(p);
657       }
658     }
659     if( pgno==0 && pCache->nRefSum ){
660       sqlite3_pcache_page *pPage1;
661       pPage1 = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache,1,0);
662       if( ALWAYS(pPage1) ){  /* Page 1 is always available in cache, because
663                              ** pCache->nRefSum>0 */
664         memset(pPage1->pBuf, 0, pCache->szPage);
665         pgno = 1;
666       }
667     }
668     sqlite3GlobalConfig.pcache2.xTruncate(pCache->pCache, pgno+1);
669   }
670 }
671 
672 /*
673 ** Close a cache.
674 */
675 void sqlite3PcacheClose(PCache *pCache){
676   assert( pCache->pCache!=0 );
677   pcacheTrace(("%p.CLOSE\n",pCache));
678   sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache);
679 }
680 
681 /*
682 ** Discard the contents of the cache.
683 */
684 void sqlite3PcacheClear(PCache *pCache){
685   sqlite3PcacheTruncate(pCache, 0);
686 }
687 
688 /*
689 ** Merge two lists of pages connected by pDirty and in pgno order.
690 ** Do not bother fixing the pDirtyPrev pointers.
691 */
692 static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){
693   PgHdr result, *pTail;
694   pTail = &result;
695   assert( pA!=0 && pB!=0 );
696   for(;;){
697     if( pA->pgno<pB->pgno ){
698       pTail->pDirty = pA;
699       pTail = pA;
700       pA = pA->pDirty;
701       if( pA==0 ){
702         pTail->pDirty = pB;
703         break;
704       }
705     }else{
706       pTail->pDirty = pB;
707       pTail = pB;
708       pB = pB->pDirty;
709       if( pB==0 ){
710         pTail->pDirty = pA;
711         break;
712       }
713     }
714   }
715   return result.pDirty;
716 }
717 
718 /*
719 ** Sort the list of pages in accending order by pgno.  Pages are
720 ** connected by pDirty pointers.  The pDirtyPrev pointers are
721 ** corrupted by this sort.
722 **
723 ** Since there cannot be more than 2^31 distinct pages in a database,
724 ** there cannot be more than 31 buckets required by the merge sorter.
725 ** One extra bucket is added to catch overflow in case something
726 ** ever changes to make the previous sentence incorrect.
727 */
728 #define N_SORT_BUCKET  32
729 static PgHdr *pcacheSortDirtyList(PgHdr *pIn){
730   PgHdr *a[N_SORT_BUCKET], *p;
731   int i;
732   memset(a, 0, sizeof(a));
733   while( pIn ){
734     p = pIn;
735     pIn = p->pDirty;
736     p->pDirty = 0;
737     for(i=0; ALWAYS(i<N_SORT_BUCKET-1); i++){
738       if( a[i]==0 ){
739         a[i] = p;
740         break;
741       }else{
742         p = pcacheMergeDirtyList(a[i], p);
743         a[i] = 0;
744       }
745     }
746     if( NEVER(i==N_SORT_BUCKET-1) ){
747       /* To get here, there need to be 2^(N_SORT_BUCKET) elements in
748       ** the input list.  But that is impossible.
749       */
750       a[i] = pcacheMergeDirtyList(a[i], p);
751     }
752   }
753   p = a[0];
754   for(i=1; i<N_SORT_BUCKET; i++){
755     if( a[i]==0 ) continue;
756     p = p ? pcacheMergeDirtyList(p, a[i]) : a[i];
757   }
758   return p;
759 }
760 
761 /*
762 ** Return a list of all dirty pages in the cache, sorted by page number.
763 */
764 PgHdr *sqlite3PcacheDirtyList(PCache *pCache){
765   PgHdr *p;
766   for(p=pCache->pDirty; p; p=p->pDirtyNext){
767     p->pDirty = p->pDirtyNext;
768   }
769   return pcacheSortDirtyList(pCache->pDirty);
770 }
771 
772 /*
773 ** Return the total number of references to all pages held by the cache.
774 **
775 ** This is not the total number of pages referenced, but the sum of the
776 ** reference count for all pages.
777 */
778 int sqlite3PcacheRefCount(PCache *pCache){
779   return pCache->nRefSum;
780 }
781 
782 /*
783 ** Return the number of references to the page supplied as an argument.
784 */
785 int sqlite3PcachePageRefcount(PgHdr *p){
786   return p->nRef;
787 }
788 
789 /*
790 ** Return the total number of pages in the cache.
791 */
792 int sqlite3PcachePagecount(PCache *pCache){
793   assert( pCache->pCache!=0 );
794   return sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache);
795 }
796 
797 #ifdef SQLITE_TEST
798 /*
799 ** Get the suggested cache-size value.
800 */
801 int sqlite3PcacheGetCachesize(PCache *pCache){
802   return numberOfCachePages(pCache);
803 }
804 #endif
805 
806 /*
807 ** Set the suggested cache-size value.
808 */
809 void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){
810   assert( pCache->pCache!=0 );
811   pCache->szCache = mxPage;
812   sqlite3GlobalConfig.pcache2.xCachesize(pCache->pCache,
813                                          numberOfCachePages(pCache));
814 }
815 
816 /*
817 ** Set the suggested cache-spill value.  Make no changes if if the
818 ** argument is zero.  Return the effective cache-spill size, which will
819 ** be the larger of the szSpill and szCache.
820 */
821 int sqlite3PcacheSetSpillsize(PCache *p, int mxPage){
822   int res;
823   assert( p->pCache!=0 );
824   if( mxPage ){
825     if( mxPage<0 ){
826       mxPage = (int)((-1024*(i64)mxPage)/(p->szPage+p->szExtra));
827     }
828     p->szSpill = mxPage;
829   }
830   res = numberOfCachePages(p);
831   if( res<p->szSpill ) res = p->szSpill;
832   return res;
833 }
834 
835 /*
836 ** Free up as much memory as possible from the page cache.
837 */
838 void sqlite3PcacheShrink(PCache *pCache){
839   assert( pCache->pCache!=0 );
840   sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache);
841 }
842 
843 /*
844 ** Return the size of the header added by this middleware layer
845 ** in the page-cache hierarchy.
846 */
847 int sqlite3HeaderSizePcache(void){ return ROUND8(sizeof(PgHdr)); }
848 
849 /*
850 ** Return the number of dirty pages currently in the cache, as a percentage
851 ** of the configured cache size.
852 */
853 int sqlite3PCachePercentDirty(PCache *pCache){
854   PgHdr *pDirty;
855   int nDirty = 0;
856   int nCache = numberOfCachePages(pCache);
857   for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext) nDirty++;
858   return nCache ? (int)(((i64)nDirty * 100) / nCache) : 0;
859 }
860 
861 #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG)
862 /*
863 ** For all dirty pages currently in the cache, invoke the specified
864 ** callback. This is only used if the SQLITE_CHECK_PAGES macro is
865 ** defined.
866 */
867 void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){
868   PgHdr *pDirty;
869   for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){
870     xIter(pDirty);
871   }
872 }
873 #endif
874