1 /* 2 ** 2008 August 05 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file implements that page cache. 13 */ 14 #include "sqliteInt.h" 15 16 /* 17 ** A complete page cache is an instance of this structure. Every 18 ** entry in the cache holds a single page of the database file. The 19 ** btree layer only operates on the cached copy of the database pages. 20 ** 21 ** A page cache entry is "clean" if it exactly matches what is currently 22 ** on disk. A page is "dirty" if it has been modified and needs to be 23 ** persisted to disk. 24 ** 25 ** pDirty, pDirtyTail, pSynced: 26 ** All dirty pages are linked into the doubly linked list using 27 ** PgHdr.pDirtyNext and pDirtyPrev. The list is maintained in LRU order 28 ** such that p was added to the list more recently than p->pDirtyNext. 29 ** PCache.pDirty points to the first (newest) element in the list and 30 ** pDirtyTail to the last (oldest). 31 ** 32 ** The PCache.pSynced variable is used to optimize searching for a dirty 33 ** page to eject from the cache mid-transaction. It is better to eject 34 ** a page that does not require a journal sync than one that does. 35 ** Therefore, pSynced is maintained to that it *almost* always points 36 ** to either the oldest page in the pDirty/pDirtyTail list that has a 37 ** clear PGHDR_NEED_SYNC flag or to a page that is older than this one 38 ** (so that the right page to eject can be found by following pDirtyPrev 39 ** pointers). 40 */ 41 struct PCache { 42 PgHdr *pDirty, *pDirtyTail; /* List of dirty pages in LRU order */ 43 PgHdr *pSynced; /* Last synced page in dirty page list */ 44 int nRefSum; /* Sum of ref counts over all pages */ 45 int szCache; /* Configured cache size */ 46 int szSpill; /* Size before spilling occurs */ 47 int szPage; /* Size of every page in this cache */ 48 int szExtra; /* Size of extra space for each page */ 49 u8 bPurgeable; /* True if pages are on backing store */ 50 u8 eCreate; /* eCreate value for for xFetch() */ 51 int (*xStress)(void*,PgHdr*); /* Call to try make a page clean */ 52 void *pStress; /* Argument to xStress */ 53 sqlite3_pcache *pCache; /* Pluggable cache module */ 54 }; 55 56 /********************************** Test and Debug Logic **********************/ 57 /* 58 ** Debug tracing macros. Enable by by changing the "0" to "1" and 59 ** recompiling. 60 ** 61 ** When sqlite3PcacheTrace is 1, single line trace messages are issued. 62 ** When sqlite3PcacheTrace is 2, a dump of the pcache showing all cache entries 63 ** is displayed for many operations, resulting in a lot of output. 64 */ 65 #if defined(SQLITE_DEBUG) && 0 66 int sqlite3PcacheTrace = 2; /* 0: off 1: simple 2: cache dumps */ 67 int sqlite3PcacheMxDump = 9999; /* Max cache entries for pcacheDump() */ 68 # define pcacheTrace(X) if(sqlite3PcacheTrace){sqlite3DebugPrintf X;} 69 void pcacheDump(PCache *pCache){ 70 int N; 71 int i, j; 72 sqlite3_pcache_page *pLower; 73 PgHdr *pPg; 74 unsigned char *a; 75 76 if( sqlite3PcacheTrace<2 ) return; 77 if( pCache->pCache==0 ) return; 78 N = sqlite3PcachePagecount(pCache); 79 if( N>sqlite3PcacheMxDump ) N = sqlite3PcacheMxDump; 80 for(i=1; i<=N; i++){ 81 pLower = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, i, 0); 82 if( pLower==0 ) continue; 83 pPg = (PgHdr*)pLower->pExtra; 84 printf("%3d: nRef %2d flgs %02x data ", i, pPg->nRef, pPg->flags); 85 a = (unsigned char *)pLower->pBuf; 86 for(j=0; j<12; j++) printf("%02x", a[j]); 87 printf("\n"); 88 if( pPg->pPage==0 ){ 89 sqlite3GlobalConfig.pcache2.xUnpin(pCache->pCache, pLower, 0); 90 } 91 } 92 } 93 #else 94 # define pcacheTrace(X) 95 # define pcacheDump(X) 96 #endif 97 98 /* 99 ** Check invariants on a PgHdr entry. Return true if everything is OK. 100 ** Return false if any invariant is violated. 101 ** 102 ** This routine is for use inside of assert() statements only. For 103 ** example: 104 ** 105 ** assert( sqlite3PcachePageSanity(pPg) ); 106 */ 107 #if SQLITE_DEBUG 108 int sqlite3PcachePageSanity(PgHdr *pPg){ 109 PCache *pCache; 110 assert( pPg!=0 ); 111 assert( pPg->pgno>0 ); /* Page number is 1 or more */ 112 pCache = pPg->pCache; 113 assert( pCache!=0 ); /* Every page has an associated PCache */ 114 if( pPg->flags & PGHDR_CLEAN ){ 115 assert( (pPg->flags & PGHDR_DIRTY)==0 );/* Cannot be both CLEAN and DIRTY */ 116 assert( pCache->pDirty!=pPg ); /* CLEAN pages not on dirty list */ 117 assert( pCache->pDirtyTail!=pPg ); 118 } 119 /* WRITEABLE pages must also be DIRTY */ 120 if( pPg->flags & PGHDR_WRITEABLE ){ 121 assert( pPg->flags & PGHDR_DIRTY ); /* WRITEABLE implies DIRTY */ 122 } 123 /* NEED_SYNC can be set independently of WRITEABLE. This can happen, 124 ** for example, when using the sqlite3PagerDontWrite() optimization: 125 ** (1) Page X is journalled, and gets WRITEABLE and NEED_SEEK. 126 ** (2) Page X moved to freelist, WRITEABLE is cleared 127 ** (3) Page X reused, WRITEABLE is set again 128 ** If NEED_SYNC had been cleared in step 2, then it would not be reset 129 ** in step 3, and page might be written into the database without first 130 ** syncing the rollback journal, which might cause corruption on a power 131 ** loss. 132 ** 133 ** Another example is when the database page size is smaller than the 134 ** disk sector size. When any page of a sector is journalled, all pages 135 ** in that sector are marked NEED_SYNC even if they are still CLEAN, just 136 ** in case they are later modified, since all pages in the same sector 137 ** must be journalled and synced before any of those pages can be safely 138 ** written. 139 */ 140 return 1; 141 } 142 #endif /* SQLITE_DEBUG */ 143 144 145 /********************************** Linked List Management ********************/ 146 147 /* Allowed values for second argument to pcacheManageDirtyList() */ 148 #define PCACHE_DIRTYLIST_REMOVE 1 /* Remove pPage from dirty list */ 149 #define PCACHE_DIRTYLIST_ADD 2 /* Add pPage to the dirty list */ 150 #define PCACHE_DIRTYLIST_FRONT 3 /* Move pPage to the front of the list */ 151 152 /* 153 ** Manage pPage's participation on the dirty list. Bits of the addRemove 154 ** argument determines what operation to do. The 0x01 bit means first 155 ** remove pPage from the dirty list. The 0x02 means add pPage back to 156 ** the dirty list. Doing both moves pPage to the front of the dirty list. 157 */ 158 static void pcacheManageDirtyList(PgHdr *pPage, u8 addRemove){ 159 PCache *p = pPage->pCache; 160 161 pcacheTrace(("%p.DIRTYLIST.%s %d\n", p, 162 addRemove==1 ? "REMOVE" : addRemove==2 ? "ADD" : "FRONT", 163 pPage->pgno)); 164 if( addRemove & PCACHE_DIRTYLIST_REMOVE ){ 165 assert( pPage->pDirtyNext || pPage==p->pDirtyTail ); 166 assert( pPage->pDirtyPrev || pPage==p->pDirty ); 167 168 /* Update the PCache1.pSynced variable if necessary. */ 169 if( p->pSynced==pPage ){ 170 p->pSynced = pPage->pDirtyPrev; 171 } 172 173 if( pPage->pDirtyNext ){ 174 pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev; 175 }else{ 176 assert( pPage==p->pDirtyTail ); 177 p->pDirtyTail = pPage->pDirtyPrev; 178 } 179 if( pPage->pDirtyPrev ){ 180 pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext; 181 }else{ 182 /* If there are now no dirty pages in the cache, set eCreate to 2. 183 ** This is an optimization that allows sqlite3PcacheFetch() to skip 184 ** searching for a dirty page to eject from the cache when it might 185 ** otherwise have to. */ 186 assert( pPage==p->pDirty ); 187 p->pDirty = pPage->pDirtyNext; 188 assert( p->bPurgeable || p->eCreate==2 ); 189 if( p->pDirty==0 ){ /*OPTIMIZATION-IF-TRUE*/ 190 assert( p->bPurgeable==0 || p->eCreate==1 ); 191 p->eCreate = 2; 192 } 193 } 194 pPage->pDirtyNext = 0; 195 pPage->pDirtyPrev = 0; 196 } 197 if( addRemove & PCACHE_DIRTYLIST_ADD ){ 198 assert( pPage->pDirtyNext==0 && pPage->pDirtyPrev==0 && p->pDirty!=pPage ); 199 200 pPage->pDirtyNext = p->pDirty; 201 if( pPage->pDirtyNext ){ 202 assert( pPage->pDirtyNext->pDirtyPrev==0 ); 203 pPage->pDirtyNext->pDirtyPrev = pPage; 204 }else{ 205 p->pDirtyTail = pPage; 206 if( p->bPurgeable ){ 207 assert( p->eCreate==2 ); 208 p->eCreate = 1; 209 } 210 } 211 p->pDirty = pPage; 212 213 /* If pSynced is NULL and this page has a clear NEED_SYNC flag, set 214 ** pSynced to point to it. Checking the NEED_SYNC flag is an 215 ** optimization, as if pSynced points to a page with the NEED_SYNC 216 ** flag set sqlite3PcacheFetchStress() searches through all newer 217 ** entries of the dirty-list for a page with NEED_SYNC clear anyway. */ 218 if( !p->pSynced 219 && 0==(pPage->flags&PGHDR_NEED_SYNC) /*OPTIMIZATION-IF-FALSE*/ 220 ){ 221 p->pSynced = pPage; 222 } 223 } 224 pcacheDump(p); 225 } 226 227 /* 228 ** Wrapper around the pluggable caches xUnpin method. If the cache is 229 ** being used for an in-memory database, this function is a no-op. 230 */ 231 static void pcacheUnpin(PgHdr *p){ 232 if( p->pCache->bPurgeable ){ 233 pcacheTrace(("%p.UNPIN %d\n", p->pCache, p->pgno)); 234 sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0); 235 pcacheDump(p->pCache); 236 } 237 } 238 239 /* 240 ** Compute the number of pages of cache requested. p->szCache is the 241 ** cache size requested by the "PRAGMA cache_size" statement. 242 */ 243 static int numberOfCachePages(PCache *p){ 244 if( p->szCache>=0 ){ 245 /* IMPLEMENTATION-OF: R-42059-47211 If the argument N is positive then the 246 ** suggested cache size is set to N. */ 247 return p->szCache; 248 }else{ 249 /* IMPLEMENTATION-OF: R-61436-13639 If the argument N is negative, then 250 ** the number of cache pages is adjusted to use approximately abs(N*1024) 251 ** bytes of memory. */ 252 return (int)((-1024*(i64)p->szCache)/(p->szPage+p->szExtra)); 253 } 254 } 255 256 /*************************************************** General Interfaces ****** 257 ** 258 ** Initialize and shutdown the page cache subsystem. Neither of these 259 ** functions are threadsafe. 260 */ 261 int sqlite3PcacheInitialize(void){ 262 if( sqlite3GlobalConfig.pcache2.xInit==0 ){ 263 /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the 264 ** built-in default page cache is used instead of the application defined 265 ** page cache. */ 266 sqlite3PCacheSetDefault(); 267 } 268 return sqlite3GlobalConfig.pcache2.xInit(sqlite3GlobalConfig.pcache2.pArg); 269 } 270 void sqlite3PcacheShutdown(void){ 271 if( sqlite3GlobalConfig.pcache2.xShutdown ){ 272 /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */ 273 sqlite3GlobalConfig.pcache2.xShutdown(sqlite3GlobalConfig.pcache2.pArg); 274 } 275 } 276 277 /* 278 ** Return the size in bytes of a PCache object. 279 */ 280 int sqlite3PcacheSize(void){ return sizeof(PCache); } 281 282 /* 283 ** Create a new PCache object. Storage space to hold the object 284 ** has already been allocated and is passed in as the p pointer. 285 ** The caller discovers how much space needs to be allocated by 286 ** calling sqlite3PcacheSize(). 287 */ 288 int sqlite3PcacheOpen( 289 int szPage, /* Size of every page */ 290 int szExtra, /* Extra space associated with each page */ 291 int bPurgeable, /* True if pages are on backing store */ 292 int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */ 293 void *pStress, /* Argument to xStress */ 294 PCache *p /* Preallocated space for the PCache */ 295 ){ 296 memset(p, 0, sizeof(PCache)); 297 p->szPage = 1; 298 p->szExtra = szExtra; 299 p->bPurgeable = bPurgeable; 300 p->eCreate = 2; 301 p->xStress = xStress; 302 p->pStress = pStress; 303 p->szCache = 100; 304 p->szSpill = 1; 305 pcacheTrace(("%p.OPEN szPage %d bPurgeable %d\n",p,szPage,bPurgeable)); 306 return sqlite3PcacheSetPageSize(p, szPage); 307 } 308 309 /* 310 ** Change the page size for PCache object. The caller must ensure that there 311 ** are no outstanding page references when this function is called. 312 */ 313 int sqlite3PcacheSetPageSize(PCache *pCache, int szPage){ 314 assert( pCache->nRefSum==0 && pCache->pDirty==0 ); 315 if( pCache->szPage ){ 316 sqlite3_pcache *pNew; 317 pNew = sqlite3GlobalConfig.pcache2.xCreate( 318 szPage, pCache->szExtra + ROUND8(sizeof(PgHdr)), 319 pCache->bPurgeable 320 ); 321 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 322 sqlite3GlobalConfig.pcache2.xCachesize(pNew, numberOfCachePages(pCache)); 323 if( pCache->pCache ){ 324 sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); 325 } 326 pCache->pCache = pNew; 327 pCache->szPage = szPage; 328 pcacheTrace(("%p.PAGESIZE %d\n",pCache,szPage)); 329 } 330 return SQLITE_OK; 331 } 332 333 /* 334 ** Try to obtain a page from the cache. 335 ** 336 ** This routine returns a pointer to an sqlite3_pcache_page object if 337 ** such an object is already in cache, or if a new one is created. 338 ** This routine returns a NULL pointer if the object was not in cache 339 ** and could not be created. 340 ** 341 ** The createFlags should be 0 to check for existing pages and should 342 ** be 3 (not 1, but 3) to try to create a new page. 343 ** 344 ** If the createFlag is 0, then NULL is always returned if the page 345 ** is not already in the cache. If createFlag is 1, then a new page 346 ** is created only if that can be done without spilling dirty pages 347 ** and without exceeding the cache size limit. 348 ** 349 ** The caller needs to invoke sqlite3PcacheFetchFinish() to properly 350 ** initialize the sqlite3_pcache_page object and convert it into a 351 ** PgHdr object. The sqlite3PcacheFetch() and sqlite3PcacheFetchFinish() 352 ** routines are split this way for performance reasons. When separated 353 ** they can both (usually) operate without having to push values to 354 ** the stack on entry and pop them back off on exit, which saves a 355 ** lot of pushing and popping. 356 */ 357 sqlite3_pcache_page *sqlite3PcacheFetch( 358 PCache *pCache, /* Obtain the page from this cache */ 359 Pgno pgno, /* Page number to obtain */ 360 int createFlag /* If true, create page if it does not exist already */ 361 ){ 362 int eCreate; 363 sqlite3_pcache_page *pRes; 364 365 assert( pCache!=0 ); 366 assert( pCache->pCache!=0 ); 367 assert( createFlag==3 || createFlag==0 ); 368 assert( pgno>0 ); 369 assert( pCache->eCreate==((pCache->bPurgeable && pCache->pDirty) ? 1 : 2) ); 370 371 /* eCreate defines what to do if the page does not exist. 372 ** 0 Do not allocate a new page. (createFlag==0) 373 ** 1 Allocate a new page if doing so is inexpensive. 374 ** (createFlag==1 AND bPurgeable AND pDirty) 375 ** 2 Allocate a new page even it doing so is difficult. 376 ** (createFlag==1 AND !(bPurgeable AND pDirty) 377 */ 378 eCreate = createFlag & pCache->eCreate; 379 assert( eCreate==0 || eCreate==1 || eCreate==2 ); 380 assert( createFlag==0 || pCache->eCreate==eCreate ); 381 assert( createFlag==0 || eCreate==1+(!pCache->bPurgeable||!pCache->pDirty) ); 382 pRes = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate); 383 pcacheTrace(("%p.FETCH %d%s (result: %p)\n",pCache,pgno, 384 createFlag?" create":"",pRes)); 385 return pRes; 386 } 387 388 /* 389 ** If the sqlite3PcacheFetch() routine is unable to allocate a new 390 ** page because no clean pages are available for reuse and the cache 391 ** size limit has been reached, then this routine can be invoked to 392 ** try harder to allocate a page. This routine might invoke the stress 393 ** callback to spill dirty pages to the journal. It will then try to 394 ** allocate the new page and will only fail to allocate a new page on 395 ** an OOM error. 396 ** 397 ** This routine should be invoked only after sqlite3PcacheFetch() fails. 398 */ 399 int sqlite3PcacheFetchStress( 400 PCache *pCache, /* Obtain the page from this cache */ 401 Pgno pgno, /* Page number to obtain */ 402 sqlite3_pcache_page **ppPage /* Write result here */ 403 ){ 404 PgHdr *pPg; 405 if( pCache->eCreate==2 ) return 0; 406 407 if( sqlite3PcachePagecount(pCache)>pCache->szSpill ){ 408 /* Find a dirty page to write-out and recycle. First try to find a 409 ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC 410 ** cleared), but if that is not possible settle for any other 411 ** unreferenced dirty page. 412 ** 413 ** If the LRU page in the dirty list that has a clear PGHDR_NEED_SYNC 414 ** flag is currently referenced, then the following may leave pSynced 415 ** set incorrectly (pointing to other than the LRU page with NEED_SYNC 416 ** cleared). This is Ok, as pSynced is just an optimization. */ 417 for(pPg=pCache->pSynced; 418 pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC)); 419 pPg=pPg->pDirtyPrev 420 ); 421 pCache->pSynced = pPg; 422 if( !pPg ){ 423 for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev); 424 } 425 if( pPg ){ 426 int rc; 427 #ifdef SQLITE_LOG_CACHE_SPILL 428 sqlite3_log(SQLITE_FULL, 429 "spill page %d making room for %d - cache used: %d/%d", 430 pPg->pgno, pgno, 431 sqlite3GlobalConfig.pcache.xPagecount(pCache->pCache), 432 numberOfCachePages(pCache)); 433 #endif 434 pcacheTrace(("%p.SPILL %d\n",pCache,pPg->pgno)); 435 rc = pCache->xStress(pCache->pStress, pPg); 436 pcacheDump(pCache); 437 if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){ 438 return rc; 439 } 440 } 441 } 442 *ppPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, 2); 443 return *ppPage==0 ? SQLITE_NOMEM_BKPT : SQLITE_OK; 444 } 445 446 /* 447 ** This is a helper routine for sqlite3PcacheFetchFinish() 448 ** 449 ** In the uncommon case where the page being fetched has not been 450 ** initialized, this routine is invoked to do the initialization. 451 ** This routine is broken out into a separate function since it 452 ** requires extra stack manipulation that can be avoided in the common 453 ** case. 454 */ 455 static SQLITE_NOINLINE PgHdr *pcacheFetchFinishWithInit( 456 PCache *pCache, /* Obtain the page from this cache */ 457 Pgno pgno, /* Page number obtained */ 458 sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ 459 ){ 460 PgHdr *pPgHdr; 461 assert( pPage!=0 ); 462 pPgHdr = (PgHdr*)pPage->pExtra; 463 assert( pPgHdr->pPage==0 ); 464 memset(&pPgHdr->pDirty, 0, sizeof(PgHdr) - offsetof(PgHdr,pDirty)); 465 pPgHdr->pPage = pPage; 466 pPgHdr->pData = pPage->pBuf; 467 pPgHdr->pExtra = (void *)&pPgHdr[1]; 468 memset(pPgHdr->pExtra, 0, pCache->szExtra); 469 pPgHdr->pCache = pCache; 470 pPgHdr->pgno = pgno; 471 pPgHdr->flags = PGHDR_CLEAN; 472 return sqlite3PcacheFetchFinish(pCache,pgno,pPage); 473 } 474 475 /* 476 ** This routine converts the sqlite3_pcache_page object returned by 477 ** sqlite3PcacheFetch() into an initialized PgHdr object. This routine 478 ** must be called after sqlite3PcacheFetch() in order to get a usable 479 ** result. 480 */ 481 PgHdr *sqlite3PcacheFetchFinish( 482 PCache *pCache, /* Obtain the page from this cache */ 483 Pgno pgno, /* Page number obtained */ 484 sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ 485 ){ 486 PgHdr *pPgHdr; 487 488 assert( pPage!=0 ); 489 pPgHdr = (PgHdr *)pPage->pExtra; 490 491 if( !pPgHdr->pPage ){ 492 return pcacheFetchFinishWithInit(pCache, pgno, pPage); 493 } 494 pCache->nRefSum++; 495 pPgHdr->nRef++; 496 assert( sqlite3PcachePageSanity(pPgHdr) ); 497 return pPgHdr; 498 } 499 500 /* 501 ** Decrement the reference count on a page. If the page is clean and the 502 ** reference count drops to 0, then it is made eligible for recycling. 503 */ 504 void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){ 505 assert( p->nRef>0 ); 506 p->pCache->nRefSum--; 507 if( (--p->nRef)==0 ){ 508 if( p->flags&PGHDR_CLEAN ){ 509 pcacheUnpin(p); 510 }else if( p->pDirtyPrev!=0 ){ /*OPTIMIZATION-IF-FALSE*/ 511 /* Move the page to the head of the dirty list. If p->pDirtyPrev==0, 512 ** then page p is already at the head of the dirty list and the 513 ** following call would be a no-op. Hence the OPTIMIZATION-IF-FALSE 514 ** tag above. */ 515 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); 516 } 517 } 518 } 519 520 /* 521 ** Increase the reference count of a supplied page by 1. 522 */ 523 void sqlite3PcacheRef(PgHdr *p){ 524 assert(p->nRef>0); 525 assert( sqlite3PcachePageSanity(p) ); 526 p->nRef++; 527 p->pCache->nRefSum++; 528 } 529 530 /* 531 ** Drop a page from the cache. There must be exactly one reference to the 532 ** page. This function deletes that reference, so after it returns the 533 ** page pointed to by p is invalid. 534 */ 535 void sqlite3PcacheDrop(PgHdr *p){ 536 assert( p->nRef==1 ); 537 assert( sqlite3PcachePageSanity(p) ); 538 if( p->flags&PGHDR_DIRTY ){ 539 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); 540 } 541 p->pCache->nRefSum--; 542 sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 1); 543 } 544 545 /* 546 ** Make sure the page is marked as dirty. If it isn't dirty already, 547 ** make it so. 548 */ 549 void sqlite3PcacheMakeDirty(PgHdr *p){ 550 assert( p->nRef>0 ); 551 assert( sqlite3PcachePageSanity(p) ); 552 if( p->flags & (PGHDR_CLEAN|PGHDR_DONT_WRITE) ){ /*OPTIMIZATION-IF-FALSE*/ 553 p->flags &= ~PGHDR_DONT_WRITE; 554 if( p->flags & PGHDR_CLEAN ){ 555 p->flags ^= (PGHDR_DIRTY|PGHDR_CLEAN); 556 pcacheTrace(("%p.DIRTY %d\n",p->pCache,p->pgno)); 557 assert( (p->flags & (PGHDR_DIRTY|PGHDR_CLEAN))==PGHDR_DIRTY ); 558 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_ADD); 559 } 560 assert( sqlite3PcachePageSanity(p) ); 561 } 562 } 563 564 /* 565 ** Make sure the page is marked as clean. If it isn't clean already, 566 ** make it so. 567 */ 568 void sqlite3PcacheMakeClean(PgHdr *p){ 569 assert( sqlite3PcachePageSanity(p) ); 570 if( ALWAYS((p->flags & PGHDR_DIRTY)!=0) ){ 571 assert( (p->flags & PGHDR_CLEAN)==0 ); 572 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); 573 p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC|PGHDR_WRITEABLE); 574 p->flags |= PGHDR_CLEAN; 575 pcacheTrace(("%p.CLEAN %d\n",p->pCache,p->pgno)); 576 assert( sqlite3PcachePageSanity(p) ); 577 if( p->nRef==0 ){ 578 pcacheUnpin(p); 579 } 580 } 581 } 582 583 /* 584 ** Make every page in the cache clean. 585 */ 586 void sqlite3PcacheCleanAll(PCache *pCache){ 587 PgHdr *p; 588 pcacheTrace(("%p.CLEAN-ALL\n",pCache)); 589 while( (p = pCache->pDirty)!=0 ){ 590 sqlite3PcacheMakeClean(p); 591 } 592 } 593 594 /* 595 ** Clear the PGHDR_NEED_SYNC and PGHDR_WRITEABLE flag from all dirty pages. 596 */ 597 void sqlite3PcacheClearWritable(PCache *pCache){ 598 PgHdr *p; 599 pcacheTrace(("%p.CLEAR-WRITEABLE\n",pCache)); 600 for(p=pCache->pDirty; p; p=p->pDirtyNext){ 601 p->flags &= ~(PGHDR_NEED_SYNC|PGHDR_WRITEABLE); 602 } 603 pCache->pSynced = pCache->pDirtyTail; 604 } 605 606 /* 607 ** Clear the PGHDR_NEED_SYNC flag from all dirty pages. 608 */ 609 void sqlite3PcacheClearSyncFlags(PCache *pCache){ 610 PgHdr *p; 611 for(p=pCache->pDirty; p; p=p->pDirtyNext){ 612 p->flags &= ~PGHDR_NEED_SYNC; 613 } 614 pCache->pSynced = pCache->pDirtyTail; 615 } 616 617 /* 618 ** Change the page number of page p to newPgno. 619 */ 620 void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){ 621 PCache *pCache = p->pCache; 622 assert( p->nRef>0 ); 623 assert( newPgno>0 ); 624 assert( sqlite3PcachePageSanity(p) ); 625 pcacheTrace(("%p.MOVE %d -> %d\n",pCache,p->pgno,newPgno)); 626 sqlite3GlobalConfig.pcache2.xRekey(pCache->pCache, p->pPage, p->pgno,newPgno); 627 p->pgno = newPgno; 628 if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){ 629 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); 630 } 631 } 632 633 /* 634 ** Drop every cache entry whose page number is greater than "pgno". The 635 ** caller must ensure that there are no outstanding references to any pages 636 ** other than page 1 with a page number greater than pgno. 637 ** 638 ** If there is a reference to page 1 and the pgno parameter passed to this 639 ** function is 0, then the data area associated with page 1 is zeroed, but 640 ** the page object is not dropped. 641 */ 642 void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){ 643 if( pCache->pCache ){ 644 PgHdr *p; 645 PgHdr *pNext; 646 pcacheTrace(("%p.TRUNCATE %d\n",pCache,pgno)); 647 for(p=pCache->pDirty; p; p=pNext){ 648 pNext = p->pDirtyNext; 649 /* This routine never gets call with a positive pgno except right 650 ** after sqlite3PcacheCleanAll(). So if there are dirty pages, 651 ** it must be that pgno==0. 652 */ 653 assert( p->pgno>0 ); 654 if( p->pgno>pgno ){ 655 assert( p->flags&PGHDR_DIRTY ); 656 sqlite3PcacheMakeClean(p); 657 } 658 } 659 if( pgno==0 && pCache->nRefSum ){ 660 sqlite3_pcache_page *pPage1; 661 pPage1 = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache,1,0); 662 if( ALWAYS(pPage1) ){ /* Page 1 is always available in cache, because 663 ** pCache->nRefSum>0 */ 664 memset(pPage1->pBuf, 0, pCache->szPage); 665 pgno = 1; 666 } 667 } 668 sqlite3GlobalConfig.pcache2.xTruncate(pCache->pCache, pgno+1); 669 } 670 } 671 672 /* 673 ** Close a cache. 674 */ 675 void sqlite3PcacheClose(PCache *pCache){ 676 assert( pCache->pCache!=0 ); 677 pcacheTrace(("%p.CLOSE\n",pCache)); 678 sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); 679 } 680 681 /* 682 ** Discard the contents of the cache. 683 */ 684 void sqlite3PcacheClear(PCache *pCache){ 685 sqlite3PcacheTruncate(pCache, 0); 686 } 687 688 /* 689 ** Merge two lists of pages connected by pDirty and in pgno order. 690 ** Do not bother fixing the pDirtyPrev pointers. 691 */ 692 static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){ 693 PgHdr result, *pTail; 694 pTail = &result; 695 assert( pA!=0 && pB!=0 ); 696 for(;;){ 697 if( pA->pgno<pB->pgno ){ 698 pTail->pDirty = pA; 699 pTail = pA; 700 pA = pA->pDirty; 701 if( pA==0 ){ 702 pTail->pDirty = pB; 703 break; 704 } 705 }else{ 706 pTail->pDirty = pB; 707 pTail = pB; 708 pB = pB->pDirty; 709 if( pB==0 ){ 710 pTail->pDirty = pA; 711 break; 712 } 713 } 714 } 715 return result.pDirty; 716 } 717 718 /* 719 ** Sort the list of pages in accending order by pgno. Pages are 720 ** connected by pDirty pointers. The pDirtyPrev pointers are 721 ** corrupted by this sort. 722 ** 723 ** Since there cannot be more than 2^31 distinct pages in a database, 724 ** there cannot be more than 31 buckets required by the merge sorter. 725 ** One extra bucket is added to catch overflow in case something 726 ** ever changes to make the previous sentence incorrect. 727 */ 728 #define N_SORT_BUCKET 32 729 static PgHdr *pcacheSortDirtyList(PgHdr *pIn){ 730 PgHdr *a[N_SORT_BUCKET], *p; 731 int i; 732 memset(a, 0, sizeof(a)); 733 while( pIn ){ 734 p = pIn; 735 pIn = p->pDirty; 736 p->pDirty = 0; 737 for(i=0; ALWAYS(i<N_SORT_BUCKET-1); i++){ 738 if( a[i]==0 ){ 739 a[i] = p; 740 break; 741 }else{ 742 p = pcacheMergeDirtyList(a[i], p); 743 a[i] = 0; 744 } 745 } 746 if( NEVER(i==N_SORT_BUCKET-1) ){ 747 /* To get here, there need to be 2^(N_SORT_BUCKET) elements in 748 ** the input list. But that is impossible. 749 */ 750 a[i] = pcacheMergeDirtyList(a[i], p); 751 } 752 } 753 p = a[0]; 754 for(i=1; i<N_SORT_BUCKET; i++){ 755 if( a[i]==0 ) continue; 756 p = p ? pcacheMergeDirtyList(p, a[i]) : a[i]; 757 } 758 return p; 759 } 760 761 /* 762 ** Return a list of all dirty pages in the cache, sorted by page number. 763 */ 764 PgHdr *sqlite3PcacheDirtyList(PCache *pCache){ 765 PgHdr *p; 766 for(p=pCache->pDirty; p; p=p->pDirtyNext){ 767 p->pDirty = p->pDirtyNext; 768 } 769 return pcacheSortDirtyList(pCache->pDirty); 770 } 771 772 /* 773 ** Return the total number of references to all pages held by the cache. 774 ** 775 ** This is not the total number of pages referenced, but the sum of the 776 ** reference count for all pages. 777 */ 778 int sqlite3PcacheRefCount(PCache *pCache){ 779 return pCache->nRefSum; 780 } 781 782 /* 783 ** Return the number of references to the page supplied as an argument. 784 */ 785 int sqlite3PcachePageRefcount(PgHdr *p){ 786 return p->nRef; 787 } 788 789 /* 790 ** Return the total number of pages in the cache. 791 */ 792 int sqlite3PcachePagecount(PCache *pCache){ 793 assert( pCache->pCache!=0 ); 794 return sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache); 795 } 796 797 #ifdef SQLITE_TEST 798 /* 799 ** Get the suggested cache-size value. 800 */ 801 int sqlite3PcacheGetCachesize(PCache *pCache){ 802 return numberOfCachePages(pCache); 803 } 804 #endif 805 806 /* 807 ** Set the suggested cache-size value. 808 */ 809 void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){ 810 assert( pCache->pCache!=0 ); 811 pCache->szCache = mxPage; 812 sqlite3GlobalConfig.pcache2.xCachesize(pCache->pCache, 813 numberOfCachePages(pCache)); 814 } 815 816 /* 817 ** Set the suggested cache-spill value. Make no changes if if the 818 ** argument is zero. Return the effective cache-spill size, which will 819 ** be the larger of the szSpill and szCache. 820 */ 821 int sqlite3PcacheSetSpillsize(PCache *p, int mxPage){ 822 int res; 823 assert( p->pCache!=0 ); 824 if( mxPage ){ 825 if( mxPage<0 ){ 826 mxPage = (int)((-1024*(i64)mxPage)/(p->szPage+p->szExtra)); 827 } 828 p->szSpill = mxPage; 829 } 830 res = numberOfCachePages(p); 831 if( res<p->szSpill ) res = p->szSpill; 832 return res; 833 } 834 835 /* 836 ** Free up as much memory as possible from the page cache. 837 */ 838 void sqlite3PcacheShrink(PCache *pCache){ 839 assert( pCache->pCache!=0 ); 840 sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache); 841 } 842 843 /* 844 ** Return the size of the header added by this middleware layer 845 ** in the page-cache hierarchy. 846 */ 847 int sqlite3HeaderSizePcache(void){ return ROUND8(sizeof(PgHdr)); } 848 849 /* 850 ** Return the number of dirty pages currently in the cache, as a percentage 851 ** of the configured cache size. 852 */ 853 int sqlite3PCachePercentDirty(PCache *pCache){ 854 PgHdr *pDirty; 855 int nDirty = 0; 856 int nCache = numberOfCachePages(pCache); 857 for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext) nDirty++; 858 return nCache ? (int)(((i64)nDirty * 100) / nCache) : 0; 859 } 860 861 #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG) 862 /* 863 ** For all dirty pages currently in the cache, invoke the specified 864 ** callback. This is only used if the SQLITE_CHECK_PAGES macro is 865 ** defined. 866 */ 867 void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){ 868 PgHdr *pDirty; 869 for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){ 870 xIter(pDirty); 871 } 872 } 873 #endif 874