xref: /sqlite-3.40.0/src/pcache.c (revision d4530979)
1 /*
2 ** 2008 August 05
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file implements that page cache.
13 */
14 #include "sqliteInt.h"
15 
16 /*
17 ** A complete page cache is an instance of this structure.
18 */
19 struct PCache {
20   PgHdr *pDirty, *pDirtyTail;         /* List of dirty pages in LRU order */
21   PgHdr *pSynced;                     /* Last synced page in dirty page list */
22   int nRef;                           /* Number of referenced pages */
23   int szCache;                        /* Configured cache size */
24   int szPage;                         /* Size of every page in this cache */
25   int szExtra;                        /* Size of extra space for each page */
26   u8 bPurgeable;                      /* True if pages are on backing store */
27   u8 eCreate;                         /* eCreate value for for xFetch() */
28   int (*xStress)(void*,PgHdr*);       /* Call to try make a page clean */
29   void *pStress;                      /* Argument to xStress */
30   sqlite3_pcache *pCache;             /* Pluggable cache module */
31   PgHdr *pPage1;                      /* Reference to page 1 */
32 };
33 
34 /*
35 ** Some of the assert() macros in this code are too expensive to run
36 ** even during normal debugging.  Use them only rarely on long-running
37 ** tests.  Enable the expensive asserts using the
38 ** -DSQLITE_ENABLE_EXPENSIVE_ASSERT=1 compile-time option.
39 */
40 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
41 # define expensive_assert(X)  assert(X)
42 #else
43 # define expensive_assert(X)
44 #endif
45 
46 /********************************** Linked List Management ********************/
47 
48 #if !defined(NDEBUG) && defined(SQLITE_ENABLE_EXPENSIVE_ASSERT)
49 /*
50 ** Check that the pCache->pSynced variable is set correctly. If it
51 ** is not, either fail an assert or return zero. Otherwise, return
52 ** non-zero. This is only used in debugging builds, as follows:
53 **
54 **   expensive_assert( pcacheCheckSynced(pCache) );
55 */
56 static int pcacheCheckSynced(PCache *pCache){
57   PgHdr *p;
58   for(p=pCache->pDirtyTail; p!=pCache->pSynced; p=p->pDirtyPrev){
59     assert( p->nRef || (p->flags&PGHDR_NEED_SYNC) );
60   }
61   return (p==0 || p->nRef || (p->flags&PGHDR_NEED_SYNC)==0);
62 }
63 #endif /* !NDEBUG && SQLITE_ENABLE_EXPENSIVE_ASSERT */
64 
65 /* Allowed values for second argument to pcacheManageDirtyList() */
66 #define PCACHE_DIRTYLIST_REMOVE   1    /* Remove pPage from dirty list */
67 #define PCACHE_DIRTYLIST_ADD      2    /* Add pPage to the dirty list */
68 #define PCACHE_DIRTYLIST_FRONT    3    /* Move pPage to the front of the list */
69 
70 /*
71 ** Manage pPage's participation on the dirty list.  Bits of the addRemove
72 ** argument determines what operation to do.  The 0x01 bit means first
73 ** remove pPage from the dirty list.  The 0x02 means add pPage back to
74 ** the dirty list.  Doing both moves pPage to the front of the dirty list.
75 */
76 static void pcacheManageDirtyList(PgHdr *pPage, u8 addRemove){
77   PCache *p = pPage->pCache;
78 
79   if( addRemove & PCACHE_DIRTYLIST_REMOVE ){
80     assert( pPage->pDirtyNext || pPage==p->pDirtyTail );
81     assert( pPage->pDirtyPrev || pPage==p->pDirty );
82 
83     /* Update the PCache1.pSynced variable if necessary. */
84     if( p->pSynced==pPage ){
85       PgHdr *pSynced = pPage->pDirtyPrev;
86       while( pSynced && (pSynced->flags&PGHDR_NEED_SYNC) ){
87         pSynced = pSynced->pDirtyPrev;
88       }
89       p->pSynced = pSynced;
90     }
91 
92     if( pPage->pDirtyNext ){
93       pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev;
94     }else{
95       assert( pPage==p->pDirtyTail );
96       p->pDirtyTail = pPage->pDirtyPrev;
97     }
98     if( pPage->pDirtyPrev ){
99       pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext;
100     }else{
101       assert( pPage==p->pDirty );
102       p->pDirty = pPage->pDirtyNext;
103       if( p->pDirty==0 && p->bPurgeable ){
104         assert( p->eCreate==1 );
105         p->eCreate = 2;
106       }
107     }
108     pPage->pDirtyNext = 0;
109     pPage->pDirtyPrev = 0;
110     expensive_assert( pcacheCheckSynced(p) );
111   }
112   if( addRemove & PCACHE_DIRTYLIST_ADD ){
113     assert( pPage->pDirtyNext==0 && pPage->pDirtyPrev==0 && p->pDirty!=pPage );
114 
115     pPage->pDirtyNext = p->pDirty;
116     if( pPage->pDirtyNext ){
117       assert( pPage->pDirtyNext->pDirtyPrev==0 );
118       pPage->pDirtyNext->pDirtyPrev = pPage;
119     }else if( p->bPurgeable ){
120       assert( p->eCreate==2 );
121       p->eCreate = 1;
122     }
123     p->pDirty = pPage;
124     if( !p->pDirtyTail ){
125       p->pDirtyTail = pPage;
126     }
127     if( !p->pSynced && 0==(pPage->flags&PGHDR_NEED_SYNC) ){
128       p->pSynced = pPage;
129     }
130     expensive_assert( pcacheCheckSynced(p) );
131   }
132 }
133 
134 /*
135 ** Wrapper around the pluggable caches xUnpin method. If the cache is
136 ** being used for an in-memory database, this function is a no-op.
137 */
138 static void pcacheUnpin(PgHdr *p){
139   if( p->pCache->bPurgeable ){
140     if( p->pgno==1 ){
141       p->pCache->pPage1 = 0;
142     }
143     sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0);
144   }
145 }
146 
147 /*
148 ** Compute the number of pages of cache requested.
149 */
150 static int numberOfCachePages(PCache *p){
151   if( p->szCache>=0 ){
152     return p->szCache;
153   }else{
154     return (int)((-1024*(i64)p->szCache)/(p->szPage+p->szExtra));
155   }
156 }
157 
158 /*************************************************** General Interfaces ******
159 **
160 ** Initialize and shutdown the page cache subsystem. Neither of these
161 ** functions are threadsafe.
162 */
163 int sqlite3PcacheInitialize(void){
164   if( sqlite3GlobalConfig.pcache2.xInit==0 ){
165     /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the
166     ** built-in default page cache is used instead of the application defined
167     ** page cache. */
168     sqlite3PCacheSetDefault();
169   }
170   return sqlite3GlobalConfig.pcache2.xInit(sqlite3GlobalConfig.pcache2.pArg);
171 }
172 void sqlite3PcacheShutdown(void){
173   if( sqlite3GlobalConfig.pcache2.xShutdown ){
174     /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */
175     sqlite3GlobalConfig.pcache2.xShutdown(sqlite3GlobalConfig.pcache2.pArg);
176   }
177 }
178 
179 /*
180 ** Return the size in bytes of a PCache object.
181 */
182 int sqlite3PcacheSize(void){ return sizeof(PCache); }
183 
184 /*
185 ** Create a new PCache object. Storage space to hold the object
186 ** has already been allocated and is passed in as the p pointer.
187 ** The caller discovers how much space needs to be allocated by
188 ** calling sqlite3PcacheSize().
189 */
190 int sqlite3PcacheOpen(
191   int szPage,                  /* Size of every page */
192   int szExtra,                 /* Extra space associated with each page */
193   int bPurgeable,              /* True if pages are on backing store */
194   int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */
195   void *pStress,               /* Argument to xStress */
196   PCache *p                    /* Preallocated space for the PCache */
197 ){
198   memset(p, 0, sizeof(PCache));
199   p->szPage = 1;
200   p->szExtra = szExtra;
201   p->bPurgeable = bPurgeable;
202   p->eCreate = 2;
203   p->xStress = xStress;
204   p->pStress = pStress;
205   p->szCache = 100;
206   return sqlite3PcacheSetPageSize(p, szPage);
207 }
208 
209 /*
210 ** Change the page size for PCache object. The caller must ensure that there
211 ** are no outstanding page references when this function is called.
212 */
213 int sqlite3PcacheSetPageSize(PCache *pCache, int szPage){
214   assert( pCache->nRef==0 && pCache->pDirty==0 );
215   if( pCache->szPage ){
216     sqlite3_pcache *pNew;
217     pNew = sqlite3GlobalConfig.pcache2.xCreate(
218                 szPage, pCache->szExtra + sizeof(PgHdr), pCache->bPurgeable
219     );
220     if( pNew==0 ) return SQLITE_NOMEM;
221     sqlite3GlobalConfig.pcache2.xCachesize(pNew, numberOfCachePages(pCache));
222     if( pCache->pCache ){
223       sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache);
224     }
225     pCache->pCache = pNew;
226     pCache->pPage1 = 0;
227     pCache->szPage = szPage;
228   }
229   return SQLITE_OK;
230 }
231 
232 /*
233 ** Try to obtain a page from the cache.
234 **
235 ** This routine returns a pointer to an sqlite3_pcache_page object if
236 ** such an object is already in cache, or if a new one is created.
237 ** This routine returns a NULL pointer if the object was not in cache
238 ** and could not be created.
239 **
240 ** The createFlags should be 0 to check for existing pages and should
241 ** be 3 (not 1, but 3) to try to create a new page.
242 **
243 ** If the createFlag is 0, then NULL is always returned if the page
244 ** is not already in the cache.  If createFlag is 1, then a new page
245 ** is created only if that can be done without spilling dirty pages
246 ** and without exceeding the cache size limit.
247 **
248 ** The caller needs to invoke sqlite3PcacheFetchFinish() to properly
249 ** initialize the sqlite3_pcache_page object and convert it into a
250 ** PgHdr object.  The sqlite3PcacheFetch() and sqlite3PcacheFetchFinish()
251 ** routines are split this way for performance reasons. When separated
252 ** they can both (usually) operate without having to push values to
253 ** the stack on entry and pop them back off on exit, which saves a
254 ** lot of pushing and popping.
255 */
256 sqlite3_pcache_page *sqlite3PcacheFetch(
257   PCache *pCache,       /* Obtain the page from this cache */
258   Pgno pgno,            /* Page number to obtain */
259   int createFlag        /* If true, create page if it does not exist already */
260 ){
261   int eCreate;
262 
263   assert( pCache!=0 );
264   assert( pCache->pCache!=0 );
265   assert( createFlag==3 || createFlag==0 );
266   assert( pgno>0 );
267 
268   /* eCreate defines what to do if the page does not exist.
269   **    0     Do not allocate a new page.  (createFlag==0)
270   **    1     Allocate a new page if doing so is inexpensive.
271   **          (createFlag==1 AND bPurgeable AND pDirty)
272   **    2     Allocate a new page even it doing so is difficult.
273   **          (createFlag==1 AND !(bPurgeable AND pDirty)
274   */
275   eCreate = createFlag & pCache->eCreate;
276   assert( eCreate==0 || eCreate==1 || eCreate==2 );
277   assert( createFlag==0 || pCache->eCreate==eCreate );
278   assert( createFlag==0 || eCreate==1+(!pCache->bPurgeable||!pCache->pDirty) );
279   return sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate);
280 }
281 
282 /*
283 ** If the sqlite3PcacheFetch() routine is unable to allocate a new
284 ** page because new clean pages are available for reuse and the cache
285 ** size limit has been reached, then this routine can be invoked to
286 ** try harder to allocate a page.  This routine might invoke the stress
287 ** callback to spill dirty pages to the journal.  It will then try to
288 ** allocate the new page and will only fail to allocate a new page on
289 ** an OOM error.
290 **
291 ** This routine should be invoked only after sqlite3PcacheFetch() fails.
292 */
293 int sqlite3PcacheFetchStress(
294   PCache *pCache,                 /* Obtain the page from this cache */
295   Pgno pgno,                      /* Page number to obtain */
296   sqlite3_pcache_page **ppPage    /* Write result here */
297 ){
298   PgHdr *pPg;
299   if( pCache->eCreate==2 ) return 0;
300 
301 
302   /* Find a dirty page to write-out and recycle. First try to find a
303   ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC
304   ** cleared), but if that is not possible settle for any other
305   ** unreferenced dirty page.
306   */
307   expensive_assert( pcacheCheckSynced(pCache) );
308   for(pPg=pCache->pSynced;
309       pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC));
310       pPg=pPg->pDirtyPrev
311   );
312   pCache->pSynced = pPg;
313   if( !pPg ){
314     for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev);
315   }
316   if( pPg ){
317     int rc;
318 #ifdef SQLITE_LOG_CACHE_SPILL
319     sqlite3_log(SQLITE_FULL,
320                 "spill page %d making room for %d - cache used: %d/%d",
321                 pPg->pgno, pgno,
322                 sqlite3GlobalConfig.pcache.xPagecount(pCache->pCache),
323                 numberOfCachePages(pCache));
324 #endif
325     rc = pCache->xStress(pCache->pStress, pPg);
326     if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){
327       return rc;
328     }
329   }
330   *ppPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, 2);
331   return *ppPage==0 ? SQLITE_NOMEM : SQLITE_OK;
332 }
333 
334 /*
335 ** This is a helper routine for sqlite3PcacheFetchFinish()
336 **
337 ** In the uncommon case where the page being fetched has not been
338 ** initialized, this routine is invoked to do the initialization.
339 ** This routine is broken out into a separate function since it
340 ** requires extra stack manipulation that can be avoided in the common
341 ** case.
342 */
343 static SQLITE_NOINLINE PgHdr *pcacheFetchFinishWithInit(
344   PCache *pCache,             /* Obtain the page from this cache */
345   Pgno pgno,                  /* Page number obtained */
346   sqlite3_pcache_page *pPage  /* Page obtained by prior PcacheFetch() call */
347 ){
348   PgHdr *pPgHdr;
349   assert( pPage!=0 );
350   pPgHdr = (PgHdr*)pPage->pExtra;
351   assert( pPgHdr->pPage==0 );
352  memset(pPgHdr, 0, sizeof(PgHdr));
353   pPgHdr->pPage = pPage;
354   pPgHdr->pData = pPage->pBuf;
355   pPgHdr->pExtra = (void *)&pPgHdr[1];
356   memset(pPgHdr->pExtra, 0, pCache->szExtra);
357   pPgHdr->pCache = pCache;
358   pPgHdr->pgno = pgno;
359   return sqlite3PcacheFetchFinish(pCache,pgno,pPage);
360 }
361 
362 /*
363 ** This routine converts the sqlite3_pcache_page object returned by
364 ** sqlite3PcacheFetch() into an initialized PgHdr object.  This routine
365 ** must be called after sqlite3PcacheFetch() in order to get a usable
366 ** result.
367 */
368 PgHdr *sqlite3PcacheFetchFinish(
369   PCache *pCache,             /* Obtain the page from this cache */
370   Pgno pgno,                  /* Page number obtained */
371   sqlite3_pcache_page *pPage  /* Page obtained by prior PcacheFetch() call */
372 ){
373   PgHdr *pPgHdr;
374 
375   if( pPage==0 ) return 0;
376   pPgHdr = (PgHdr *)pPage->pExtra;
377 
378   if( !pPgHdr->pPage ){
379     return pcacheFetchFinishWithInit(pCache, pgno, pPage);
380   }
381   if( 0==pPgHdr->nRef ){
382     pCache->nRef++;
383   }
384   pPgHdr->nRef++;
385   if( pgno==1 ){
386     pCache->pPage1 = pPgHdr;
387   }
388   return pPgHdr;
389 }
390 
391 /*
392 ** Decrement the reference count on a page. If the page is clean and the
393 ** reference count drops to 0, then it is made eligible for recycling.
394 */
395 void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){
396   assert( p->nRef>0 );
397   p->nRef--;
398   if( p->nRef==0 ){
399     p->pCache->nRef--;
400     if( (p->flags&PGHDR_DIRTY)==0 ){
401       pcacheUnpin(p);
402     }else{
403       /* Move the page to the head of the dirty list. */
404       pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT);
405     }
406   }
407 }
408 
409 /*
410 ** Increase the reference count of a supplied page by 1.
411 */
412 void sqlite3PcacheRef(PgHdr *p){
413   assert(p->nRef>0);
414   p->nRef++;
415 }
416 
417 /*
418 ** Drop a page from the cache. There must be exactly one reference to the
419 ** page. This function deletes that reference, so after it returns the
420 ** page pointed to by p is invalid.
421 */
422 void sqlite3PcacheDrop(PgHdr *p){
423   assert( p->nRef==1 );
424   if( p->flags&PGHDR_DIRTY ){
425     pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE);
426   }
427   p->pCache->nRef--;
428   if( p->pgno==1 ){
429     p->pCache->pPage1 = 0;
430   }
431   sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 1);
432 }
433 
434 /*
435 ** Make sure the page is marked as dirty. If it isn't dirty already,
436 ** make it so.
437 */
438 void sqlite3PcacheMakeDirty(PgHdr *p){
439   p->flags &= ~PGHDR_DONT_WRITE;
440   assert( p->nRef>0 );
441   if( 0==(p->flags & PGHDR_DIRTY) ){
442     p->flags |= PGHDR_DIRTY;
443     pcacheManageDirtyList(p, PCACHE_DIRTYLIST_ADD);
444   }
445 }
446 
447 /*
448 ** Make sure the page is marked as clean. If it isn't clean already,
449 ** make it so.
450 */
451 void sqlite3PcacheMakeClean(PgHdr *p){
452   if( (p->flags & PGHDR_DIRTY) ){
453     pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE);
454     p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC);
455     if( p->nRef==0 ){
456       pcacheUnpin(p);
457     }
458   }
459 }
460 
461 /*
462 ** Make every page in the cache clean.
463 */
464 void sqlite3PcacheCleanAll(PCache *pCache){
465   PgHdr *p;
466   while( (p = pCache->pDirty)!=0 ){
467     sqlite3PcacheMakeClean(p);
468   }
469 }
470 
471 /*
472 ** Clear the PGHDR_NEED_SYNC flag from all dirty pages.
473 */
474 void sqlite3PcacheClearSyncFlags(PCache *pCache){
475   PgHdr *p;
476   for(p=pCache->pDirty; p; p=p->pDirtyNext){
477     p->flags &= ~PGHDR_NEED_SYNC;
478   }
479   pCache->pSynced = pCache->pDirtyTail;
480 }
481 
482 /*
483 ** Change the page number of page p to newPgno.
484 */
485 void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){
486   PCache *pCache = p->pCache;
487   assert( p->nRef>0 );
488   assert( newPgno>0 );
489   sqlite3GlobalConfig.pcache2.xRekey(pCache->pCache, p->pPage, p->pgno,newPgno);
490   p->pgno = newPgno;
491   if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){
492     pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT);
493   }
494 }
495 
496 /*
497 ** Drop every cache entry whose page number is greater than "pgno". The
498 ** caller must ensure that there are no outstanding references to any pages
499 ** other than page 1 with a page number greater than pgno.
500 **
501 ** If there is a reference to page 1 and the pgno parameter passed to this
502 ** function is 0, then the data area associated with page 1 is zeroed, but
503 ** the page object is not dropped.
504 */
505 void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){
506   if( pCache->pCache ){
507     PgHdr *p;
508     PgHdr *pNext;
509     for(p=pCache->pDirty; p; p=pNext){
510       pNext = p->pDirtyNext;
511       /* This routine never gets call with a positive pgno except right
512       ** after sqlite3PcacheCleanAll().  So if there are dirty pages,
513       ** it must be that pgno==0.
514       */
515       assert( p->pgno>0 );
516       if( ALWAYS(p->pgno>pgno) ){
517         assert( p->flags&PGHDR_DIRTY );
518         sqlite3PcacheMakeClean(p);
519       }
520     }
521     if( pgno==0 && pCache->pPage1 ){
522       memset(pCache->pPage1->pData, 0, pCache->szPage);
523       pgno = 1;
524     }
525     sqlite3GlobalConfig.pcache2.xTruncate(pCache->pCache, pgno+1);
526   }
527 }
528 
529 /*
530 ** Close a cache.
531 */
532 void sqlite3PcacheClose(PCache *pCache){
533   assert( pCache->pCache!=0 );
534   sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache);
535 }
536 
537 /*
538 ** Discard the contents of the cache.
539 */
540 void sqlite3PcacheClear(PCache *pCache){
541   sqlite3PcacheTruncate(pCache, 0);
542 }
543 
544 /*
545 ** Merge two lists of pages connected by pDirty and in pgno order.
546 ** Do not both fixing the pDirtyPrev pointers.
547 */
548 static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){
549   PgHdr result, *pTail;
550   pTail = &result;
551   while( pA && pB ){
552     if( pA->pgno<pB->pgno ){
553       pTail->pDirty = pA;
554       pTail = pA;
555       pA = pA->pDirty;
556     }else{
557       pTail->pDirty = pB;
558       pTail = pB;
559       pB = pB->pDirty;
560     }
561   }
562   if( pA ){
563     pTail->pDirty = pA;
564   }else if( pB ){
565     pTail->pDirty = pB;
566   }else{
567     pTail->pDirty = 0;
568   }
569   return result.pDirty;
570 }
571 
572 /*
573 ** Sort the list of pages in accending order by pgno.  Pages are
574 ** connected by pDirty pointers.  The pDirtyPrev pointers are
575 ** corrupted by this sort.
576 **
577 ** Since there cannot be more than 2^31 distinct pages in a database,
578 ** there cannot be more than 31 buckets required by the merge sorter.
579 ** One extra bucket is added to catch overflow in case something
580 ** ever changes to make the previous sentence incorrect.
581 */
582 #define N_SORT_BUCKET  32
583 static PgHdr *pcacheSortDirtyList(PgHdr *pIn){
584   PgHdr *a[N_SORT_BUCKET], *p;
585   int i;
586   memset(a, 0, sizeof(a));
587   while( pIn ){
588     p = pIn;
589     pIn = p->pDirty;
590     p->pDirty = 0;
591     for(i=0; ALWAYS(i<N_SORT_BUCKET-1); i++){
592       if( a[i]==0 ){
593         a[i] = p;
594         break;
595       }else{
596         p = pcacheMergeDirtyList(a[i], p);
597         a[i] = 0;
598       }
599     }
600     if( NEVER(i==N_SORT_BUCKET-1) ){
601       /* To get here, there need to be 2^(N_SORT_BUCKET) elements in
602       ** the input list.  But that is impossible.
603       */
604       a[i] = pcacheMergeDirtyList(a[i], p);
605     }
606   }
607   p = a[0];
608   for(i=1; i<N_SORT_BUCKET; i++){
609     p = pcacheMergeDirtyList(p, a[i]);
610   }
611   return p;
612 }
613 
614 /*
615 ** Return a list of all dirty pages in the cache, sorted by page number.
616 */
617 PgHdr *sqlite3PcacheDirtyList(PCache *pCache){
618   PgHdr *p;
619   for(p=pCache->pDirty; p; p=p->pDirtyNext){
620     p->pDirty = p->pDirtyNext;
621   }
622   return pcacheSortDirtyList(pCache->pDirty);
623 }
624 
625 /*
626 ** Return the total number of referenced pages held by the cache.
627 */
628 int sqlite3PcacheRefCount(PCache *pCache){
629   return pCache->nRef;
630 }
631 
632 /*
633 ** Return the number of references to the page supplied as an argument.
634 */
635 int sqlite3PcachePageRefcount(PgHdr *p){
636   return p->nRef;
637 }
638 
639 /*
640 ** Return the total number of pages in the cache.
641 */
642 int sqlite3PcachePagecount(PCache *pCache){
643   assert( pCache->pCache!=0 );
644   return sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache);
645 }
646 
647 #ifdef SQLITE_TEST
648 /*
649 ** Get the suggested cache-size value.
650 */
651 int sqlite3PcacheGetCachesize(PCache *pCache){
652   return numberOfCachePages(pCache);
653 }
654 #endif
655 
656 /*
657 ** Set the suggested cache-size value.
658 */
659 void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){
660   assert( pCache->pCache!=0 );
661   pCache->szCache = mxPage;
662   sqlite3GlobalConfig.pcache2.xCachesize(pCache->pCache,
663                                          numberOfCachePages(pCache));
664 }
665 
666 /*
667 ** Free up as much memory as possible from the page cache.
668 */
669 void sqlite3PcacheShrink(PCache *pCache){
670   assert( pCache->pCache!=0 );
671   sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache);
672 }
673 
674 #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG)
675 /*
676 ** For all dirty pages currently in the cache, invoke the specified
677 ** callback. This is only used if the SQLITE_CHECK_PAGES macro is
678 ** defined.
679 */
680 void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){
681   PgHdr *pDirty;
682   for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){
683     xIter(pDirty);
684   }
685 }
686 #endif
687