1 /* 2 ** 2008 August 05 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file implements that page cache. 13 */ 14 #include "sqliteInt.h" 15 16 /* 17 ** A complete page cache is an instance of this structure. 18 */ 19 struct PCache { 20 PgHdr *pDirty, *pDirtyTail; /* List of dirty pages in LRU order */ 21 PgHdr *pSynced; /* Last synced page in dirty page list */ 22 int nRef; /* Number of referenced pages */ 23 int szCache; /* Configured cache size */ 24 int szPage; /* Size of every page in this cache */ 25 int szExtra; /* Size of extra space for each page */ 26 u8 bPurgeable; /* True if pages are on backing store */ 27 u8 eCreate; /* eCreate value for for xFetch() */ 28 int (*xStress)(void*,PgHdr*); /* Call to try make a page clean */ 29 void *pStress; /* Argument to xStress */ 30 sqlite3_pcache *pCache; /* Pluggable cache module */ 31 PgHdr *pPage1; /* Reference to page 1 */ 32 }; 33 34 /********************************** Linked List Management ********************/ 35 36 /* Allowed values for second argument to pcacheManageDirtyList() */ 37 #define PCACHE_DIRTYLIST_REMOVE 1 /* Remove pPage from dirty list */ 38 #define PCACHE_DIRTYLIST_ADD 2 /* Add pPage to the dirty list */ 39 #define PCACHE_DIRTYLIST_FRONT 3 /* Move pPage to the front of the list */ 40 41 /* 42 ** Manage pPage's participation on the dirty list. Bits of the addRemove 43 ** argument determines what operation to do. The 0x01 bit means first 44 ** remove pPage from the dirty list. The 0x02 means add pPage back to 45 ** the dirty list. Doing both moves pPage to the front of the dirty list. 46 */ 47 static void pcacheManageDirtyList(PgHdr *pPage, u8 addRemove){ 48 PCache *p = pPage->pCache; 49 50 if( addRemove & PCACHE_DIRTYLIST_REMOVE ){ 51 assert( pPage->pDirtyNext || pPage==p->pDirtyTail ); 52 assert( pPage->pDirtyPrev || pPage==p->pDirty ); 53 54 /* Update the PCache1.pSynced variable if necessary. */ 55 if( p->pSynced==pPage ){ 56 PgHdr *pSynced = pPage->pDirtyPrev; 57 while( pSynced && (pSynced->flags&PGHDR_NEED_SYNC) ){ 58 pSynced = pSynced->pDirtyPrev; 59 } 60 p->pSynced = pSynced; 61 } 62 63 if( pPage->pDirtyNext ){ 64 pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev; 65 }else{ 66 assert( pPage==p->pDirtyTail ); 67 p->pDirtyTail = pPage->pDirtyPrev; 68 } 69 if( pPage->pDirtyPrev ){ 70 pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext; 71 }else{ 72 assert( pPage==p->pDirty ); 73 p->pDirty = pPage->pDirtyNext; 74 if( p->pDirty==0 && p->bPurgeable ){ 75 assert( p->eCreate==1 ); 76 p->eCreate = 2; 77 } 78 } 79 pPage->pDirtyNext = 0; 80 pPage->pDirtyPrev = 0; 81 } 82 if( addRemove & PCACHE_DIRTYLIST_ADD ){ 83 assert( pPage->pDirtyNext==0 && pPage->pDirtyPrev==0 && p->pDirty!=pPage ); 84 85 pPage->pDirtyNext = p->pDirty; 86 if( pPage->pDirtyNext ){ 87 assert( pPage->pDirtyNext->pDirtyPrev==0 ); 88 pPage->pDirtyNext->pDirtyPrev = pPage; 89 }else{ 90 p->pDirtyTail = pPage; 91 if( p->bPurgeable ){ 92 assert( p->eCreate==2 ); 93 p->eCreate = 1; 94 } 95 } 96 p->pDirty = pPage; 97 if( !p->pSynced && 0==(pPage->flags&PGHDR_NEED_SYNC) ){ 98 p->pSynced = pPage; 99 } 100 } 101 } 102 103 /* 104 ** Wrapper around the pluggable caches xUnpin method. If the cache is 105 ** being used for an in-memory database, this function is a no-op. 106 */ 107 static void pcacheUnpin(PgHdr *p){ 108 if( p->pCache->bPurgeable ){ 109 if( p->pgno==1 ){ 110 p->pCache->pPage1 = 0; 111 } 112 sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0); 113 } 114 } 115 116 /* 117 ** Compute the number of pages of cache requested. p->szCache is the 118 ** cache size requested by the "PRAGMA cache_size" statement. 119 ** 120 ** 121 */ 122 static int numberOfCachePages(PCache *p){ 123 if( p->szCache>=0 ){ 124 /* IMPLEMENTATION-OF: R-42059-47211 If the argument N is positive then the 125 ** suggested cache size is set to N. */ 126 return p->szCache; 127 }else{ 128 /* IMPLEMENTATION-OF: R-61436-13639 If the argument N is negative, then 129 ** the number of cache pages is adjusted to use approximately abs(N*1024) 130 ** bytes of memory. */ 131 return (int)((-1024*(i64)p->szCache)/(p->szPage+p->szExtra)); 132 } 133 } 134 135 /*************************************************** General Interfaces ****** 136 ** 137 ** Initialize and shutdown the page cache subsystem. Neither of these 138 ** functions are threadsafe. 139 */ 140 int sqlite3PcacheInitialize(void){ 141 if( sqlite3GlobalConfig.pcache2.xInit==0 ){ 142 /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the 143 ** built-in default page cache is used instead of the application defined 144 ** page cache. */ 145 sqlite3PCacheSetDefault(); 146 } 147 return sqlite3GlobalConfig.pcache2.xInit(sqlite3GlobalConfig.pcache2.pArg); 148 } 149 void sqlite3PcacheShutdown(void){ 150 if( sqlite3GlobalConfig.pcache2.xShutdown ){ 151 /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */ 152 sqlite3GlobalConfig.pcache2.xShutdown(sqlite3GlobalConfig.pcache2.pArg); 153 } 154 } 155 156 /* 157 ** Return the size in bytes of a PCache object. 158 */ 159 int sqlite3PcacheSize(void){ return sizeof(PCache); } 160 161 /* 162 ** Create a new PCache object. Storage space to hold the object 163 ** has already been allocated and is passed in as the p pointer. 164 ** The caller discovers how much space needs to be allocated by 165 ** calling sqlite3PcacheSize(). 166 */ 167 int sqlite3PcacheOpen( 168 int szPage, /* Size of every page */ 169 int szExtra, /* Extra space associated with each page */ 170 int bPurgeable, /* True if pages are on backing store */ 171 int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */ 172 void *pStress, /* Argument to xStress */ 173 PCache *p /* Preallocated space for the PCache */ 174 ){ 175 memset(p, 0, sizeof(PCache)); 176 p->szPage = 1; 177 p->szExtra = szExtra; 178 p->bPurgeable = bPurgeable; 179 p->eCreate = 2; 180 p->xStress = xStress; 181 p->pStress = pStress; 182 p->szCache = 100; 183 return sqlite3PcacheSetPageSize(p, szPage); 184 } 185 186 /* 187 ** Change the page size for PCache object. The caller must ensure that there 188 ** are no outstanding page references when this function is called. 189 */ 190 int sqlite3PcacheSetPageSize(PCache *pCache, int szPage){ 191 assert( pCache->nRef==0 && pCache->pDirty==0 ); 192 if( pCache->szPage ){ 193 sqlite3_pcache *pNew; 194 pNew = sqlite3GlobalConfig.pcache2.xCreate( 195 szPage, pCache->szExtra + ROUND8(sizeof(PgHdr)), 196 pCache->bPurgeable 197 ); 198 if( pNew==0 ) return SQLITE_NOMEM; 199 sqlite3GlobalConfig.pcache2.xCachesize(pNew, numberOfCachePages(pCache)); 200 if( pCache->pCache ){ 201 sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); 202 } 203 pCache->pCache = pNew; 204 pCache->pPage1 = 0; 205 pCache->szPage = szPage; 206 } 207 return SQLITE_OK; 208 } 209 210 /* 211 ** Try to obtain a page from the cache. 212 ** 213 ** This routine returns a pointer to an sqlite3_pcache_page object if 214 ** such an object is already in cache, or if a new one is created. 215 ** This routine returns a NULL pointer if the object was not in cache 216 ** and could not be created. 217 ** 218 ** The createFlags should be 0 to check for existing pages and should 219 ** be 3 (not 1, but 3) to try to create a new page. 220 ** 221 ** If the createFlag is 0, then NULL is always returned if the page 222 ** is not already in the cache. If createFlag is 1, then a new page 223 ** is created only if that can be done without spilling dirty pages 224 ** and without exceeding the cache size limit. 225 ** 226 ** The caller needs to invoke sqlite3PcacheFetchFinish() to properly 227 ** initialize the sqlite3_pcache_page object and convert it into a 228 ** PgHdr object. The sqlite3PcacheFetch() and sqlite3PcacheFetchFinish() 229 ** routines are split this way for performance reasons. When separated 230 ** they can both (usually) operate without having to push values to 231 ** the stack on entry and pop them back off on exit, which saves a 232 ** lot of pushing and popping. 233 */ 234 sqlite3_pcache_page *sqlite3PcacheFetch( 235 PCache *pCache, /* Obtain the page from this cache */ 236 Pgno pgno, /* Page number to obtain */ 237 int createFlag /* If true, create page if it does not exist already */ 238 ){ 239 int eCreate; 240 241 assert( pCache!=0 ); 242 assert( pCache->pCache!=0 ); 243 assert( createFlag==3 || createFlag==0 ); 244 assert( pgno>0 ); 245 246 /* eCreate defines what to do if the page does not exist. 247 ** 0 Do not allocate a new page. (createFlag==0) 248 ** 1 Allocate a new page if doing so is inexpensive. 249 ** (createFlag==1 AND bPurgeable AND pDirty) 250 ** 2 Allocate a new page even it doing so is difficult. 251 ** (createFlag==1 AND !(bPurgeable AND pDirty) 252 */ 253 eCreate = createFlag & pCache->eCreate; 254 assert( eCreate==0 || eCreate==1 || eCreate==2 ); 255 assert( createFlag==0 || pCache->eCreate==eCreate ); 256 assert( createFlag==0 || eCreate==1+(!pCache->bPurgeable||!pCache->pDirty) ); 257 return sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate); 258 } 259 260 /* 261 ** If the sqlite3PcacheFetch() routine is unable to allocate a new 262 ** page because new clean pages are available for reuse and the cache 263 ** size limit has been reached, then this routine can be invoked to 264 ** try harder to allocate a page. This routine might invoke the stress 265 ** callback to spill dirty pages to the journal. It will then try to 266 ** allocate the new page and will only fail to allocate a new page on 267 ** an OOM error. 268 ** 269 ** This routine should be invoked only after sqlite3PcacheFetch() fails. 270 */ 271 int sqlite3PcacheFetchStress( 272 PCache *pCache, /* Obtain the page from this cache */ 273 Pgno pgno, /* Page number to obtain */ 274 sqlite3_pcache_page **ppPage /* Write result here */ 275 ){ 276 PgHdr *pPg; 277 if( pCache->eCreate==2 ) return 0; 278 279 280 /* Find a dirty page to write-out and recycle. First try to find a 281 ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC 282 ** cleared), but if that is not possible settle for any other 283 ** unreferenced dirty page. 284 */ 285 for(pPg=pCache->pSynced; 286 pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC)); 287 pPg=pPg->pDirtyPrev 288 ); 289 pCache->pSynced = pPg; 290 if( !pPg ){ 291 for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev); 292 } 293 if( pPg ){ 294 int rc; 295 #ifdef SQLITE_LOG_CACHE_SPILL 296 sqlite3_log(SQLITE_FULL, 297 "spill page %d making room for %d - cache used: %d/%d", 298 pPg->pgno, pgno, 299 sqlite3GlobalConfig.pcache.xPagecount(pCache->pCache), 300 numberOfCachePages(pCache)); 301 #endif 302 rc = pCache->xStress(pCache->pStress, pPg); 303 if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){ 304 return rc; 305 } 306 } 307 *ppPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, 2); 308 return *ppPage==0 ? SQLITE_NOMEM : SQLITE_OK; 309 } 310 311 /* 312 ** This is a helper routine for sqlite3PcacheFetchFinish() 313 ** 314 ** In the uncommon case where the page being fetched has not been 315 ** initialized, this routine is invoked to do the initialization. 316 ** This routine is broken out into a separate function since it 317 ** requires extra stack manipulation that can be avoided in the common 318 ** case. 319 */ 320 static SQLITE_NOINLINE PgHdr *pcacheFetchFinishWithInit( 321 PCache *pCache, /* Obtain the page from this cache */ 322 Pgno pgno, /* Page number obtained */ 323 sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ 324 ){ 325 PgHdr *pPgHdr; 326 assert( pPage!=0 ); 327 pPgHdr = (PgHdr*)pPage->pExtra; 328 assert( pPgHdr->pPage==0 ); 329 memset(pPgHdr, 0, sizeof(PgHdr)); 330 pPgHdr->pPage = pPage; 331 pPgHdr->pData = pPage->pBuf; 332 pPgHdr->pExtra = (void *)&pPgHdr[1]; 333 memset(pPgHdr->pExtra, 0, pCache->szExtra); 334 pPgHdr->pCache = pCache; 335 pPgHdr->pgno = pgno; 336 return sqlite3PcacheFetchFinish(pCache,pgno,pPage); 337 } 338 339 /* 340 ** This routine converts the sqlite3_pcache_page object returned by 341 ** sqlite3PcacheFetch() into an initialized PgHdr object. This routine 342 ** must be called after sqlite3PcacheFetch() in order to get a usable 343 ** result. 344 */ 345 PgHdr *sqlite3PcacheFetchFinish( 346 PCache *pCache, /* Obtain the page from this cache */ 347 Pgno pgno, /* Page number obtained */ 348 sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ 349 ){ 350 PgHdr *pPgHdr; 351 352 if( pPage==0 ) return 0; 353 pPgHdr = (PgHdr *)pPage->pExtra; 354 355 if( !pPgHdr->pPage ){ 356 return pcacheFetchFinishWithInit(pCache, pgno, pPage); 357 } 358 if( 0==pPgHdr->nRef ){ 359 pCache->nRef++; 360 } 361 pPgHdr->nRef++; 362 if( pgno==1 ){ 363 pCache->pPage1 = pPgHdr; 364 } 365 return pPgHdr; 366 } 367 368 /* 369 ** Decrement the reference count on a page. If the page is clean and the 370 ** reference count drops to 0, then it is made eligible for recycling. 371 */ 372 void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){ 373 assert( p->nRef>0 ); 374 p->nRef--; 375 if( p->nRef==0 ){ 376 p->pCache->nRef--; 377 if( (p->flags&PGHDR_DIRTY)==0 ){ 378 pcacheUnpin(p); 379 }else if( p->pDirtyPrev!=0 ){ 380 /* Move the page to the head of the dirty list. */ 381 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); 382 } 383 } 384 } 385 386 /* 387 ** Increase the reference count of a supplied page by 1. 388 */ 389 void sqlite3PcacheRef(PgHdr *p){ 390 assert(p->nRef>0); 391 p->nRef++; 392 } 393 394 /* 395 ** Drop a page from the cache. There must be exactly one reference to the 396 ** page. This function deletes that reference, so after it returns the 397 ** page pointed to by p is invalid. 398 */ 399 void sqlite3PcacheDrop(PgHdr *p){ 400 assert( p->nRef==1 ); 401 if( p->flags&PGHDR_DIRTY ){ 402 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); 403 } 404 p->pCache->nRef--; 405 if( p->pgno==1 ){ 406 p->pCache->pPage1 = 0; 407 } 408 sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 1); 409 } 410 411 /* 412 ** Make sure the page is marked as dirty. If it isn't dirty already, 413 ** make it so. 414 */ 415 void sqlite3PcacheMakeDirty(PgHdr *p){ 416 p->flags &= ~PGHDR_DONT_WRITE; 417 assert( p->nRef>0 ); 418 if( 0==(p->flags & PGHDR_DIRTY) ){ 419 p->flags |= PGHDR_DIRTY; 420 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_ADD); 421 } 422 } 423 424 /* 425 ** Make sure the page is marked as clean. If it isn't clean already, 426 ** make it so. 427 */ 428 void sqlite3PcacheMakeClean(PgHdr *p){ 429 if( (p->flags & PGHDR_DIRTY) ){ 430 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); 431 p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC); 432 if( p->nRef==0 ){ 433 pcacheUnpin(p); 434 } 435 } 436 } 437 438 /* 439 ** Make every page in the cache clean. 440 */ 441 void sqlite3PcacheCleanAll(PCache *pCache){ 442 PgHdr *p; 443 while( (p = pCache->pDirty)!=0 ){ 444 sqlite3PcacheMakeClean(p); 445 } 446 } 447 448 /* 449 ** Clear the PGHDR_NEED_SYNC flag from all dirty pages. 450 */ 451 void sqlite3PcacheClearSyncFlags(PCache *pCache){ 452 PgHdr *p; 453 for(p=pCache->pDirty; p; p=p->pDirtyNext){ 454 p->flags &= ~PGHDR_NEED_SYNC; 455 } 456 pCache->pSynced = pCache->pDirtyTail; 457 } 458 459 /* 460 ** Change the page number of page p to newPgno. 461 */ 462 void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){ 463 PCache *pCache = p->pCache; 464 assert( p->nRef>0 ); 465 assert( newPgno>0 ); 466 sqlite3GlobalConfig.pcache2.xRekey(pCache->pCache, p->pPage, p->pgno,newPgno); 467 p->pgno = newPgno; 468 if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){ 469 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); 470 } 471 } 472 473 /* 474 ** Drop every cache entry whose page number is greater than "pgno". The 475 ** caller must ensure that there are no outstanding references to any pages 476 ** other than page 1 with a page number greater than pgno. 477 ** 478 ** If there is a reference to page 1 and the pgno parameter passed to this 479 ** function is 0, then the data area associated with page 1 is zeroed, but 480 ** the page object is not dropped. 481 */ 482 void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){ 483 if( pCache->pCache ){ 484 PgHdr *p; 485 PgHdr *pNext; 486 for(p=pCache->pDirty; p; p=pNext){ 487 pNext = p->pDirtyNext; 488 /* This routine never gets call with a positive pgno except right 489 ** after sqlite3PcacheCleanAll(). So if there are dirty pages, 490 ** it must be that pgno==0. 491 */ 492 assert( p->pgno>0 ); 493 if( ALWAYS(p->pgno>pgno) ){ 494 assert( p->flags&PGHDR_DIRTY ); 495 sqlite3PcacheMakeClean(p); 496 } 497 } 498 if( pgno==0 && pCache->pPage1 ){ 499 memset(pCache->pPage1->pData, 0, pCache->szPage); 500 pgno = 1; 501 } 502 sqlite3GlobalConfig.pcache2.xTruncate(pCache->pCache, pgno+1); 503 } 504 } 505 506 /* 507 ** Close a cache. 508 */ 509 void sqlite3PcacheClose(PCache *pCache){ 510 assert( pCache->pCache!=0 ); 511 sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); 512 } 513 514 /* 515 ** Discard the contents of the cache. 516 */ 517 void sqlite3PcacheClear(PCache *pCache){ 518 sqlite3PcacheTruncate(pCache, 0); 519 } 520 521 /* 522 ** Merge two lists of pages connected by pDirty and in pgno order. 523 ** Do not both fixing the pDirtyPrev pointers. 524 */ 525 static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){ 526 PgHdr result, *pTail; 527 pTail = &result; 528 while( pA && pB ){ 529 if( pA->pgno<pB->pgno ){ 530 pTail->pDirty = pA; 531 pTail = pA; 532 pA = pA->pDirty; 533 }else{ 534 pTail->pDirty = pB; 535 pTail = pB; 536 pB = pB->pDirty; 537 } 538 } 539 if( pA ){ 540 pTail->pDirty = pA; 541 }else if( pB ){ 542 pTail->pDirty = pB; 543 }else{ 544 pTail->pDirty = 0; 545 } 546 return result.pDirty; 547 } 548 549 /* 550 ** Sort the list of pages in accending order by pgno. Pages are 551 ** connected by pDirty pointers. The pDirtyPrev pointers are 552 ** corrupted by this sort. 553 ** 554 ** Since there cannot be more than 2^31 distinct pages in a database, 555 ** there cannot be more than 31 buckets required by the merge sorter. 556 ** One extra bucket is added to catch overflow in case something 557 ** ever changes to make the previous sentence incorrect. 558 */ 559 #define N_SORT_BUCKET 32 560 static PgHdr *pcacheSortDirtyList(PgHdr *pIn){ 561 PgHdr *a[N_SORT_BUCKET], *p; 562 int i; 563 memset(a, 0, sizeof(a)); 564 while( pIn ){ 565 p = pIn; 566 pIn = p->pDirty; 567 p->pDirty = 0; 568 for(i=0; ALWAYS(i<N_SORT_BUCKET-1); i++){ 569 if( a[i]==0 ){ 570 a[i] = p; 571 break; 572 }else{ 573 p = pcacheMergeDirtyList(a[i], p); 574 a[i] = 0; 575 } 576 } 577 if( NEVER(i==N_SORT_BUCKET-1) ){ 578 /* To get here, there need to be 2^(N_SORT_BUCKET) elements in 579 ** the input list. But that is impossible. 580 */ 581 a[i] = pcacheMergeDirtyList(a[i], p); 582 } 583 } 584 p = a[0]; 585 for(i=1; i<N_SORT_BUCKET; i++){ 586 p = pcacheMergeDirtyList(p, a[i]); 587 } 588 return p; 589 } 590 591 /* 592 ** Return a list of all dirty pages in the cache, sorted by page number. 593 */ 594 PgHdr *sqlite3PcacheDirtyList(PCache *pCache){ 595 PgHdr *p; 596 for(p=pCache->pDirty; p; p=p->pDirtyNext){ 597 p->pDirty = p->pDirtyNext; 598 } 599 return pcacheSortDirtyList(pCache->pDirty); 600 } 601 602 /* 603 ** Return the total number of referenced pages held by the cache. 604 */ 605 int sqlite3PcacheRefCount(PCache *pCache){ 606 return pCache->nRef; 607 } 608 609 /* 610 ** Return the number of references to the page supplied as an argument. 611 */ 612 int sqlite3PcachePageRefcount(PgHdr *p){ 613 return p->nRef; 614 } 615 616 /* 617 ** Return the total number of pages in the cache. 618 */ 619 int sqlite3PcachePagecount(PCache *pCache){ 620 assert( pCache->pCache!=0 ); 621 return sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache); 622 } 623 624 #ifdef SQLITE_TEST 625 /* 626 ** Get the suggested cache-size value. 627 */ 628 int sqlite3PcacheGetCachesize(PCache *pCache){ 629 return numberOfCachePages(pCache); 630 } 631 #endif 632 633 /* 634 ** Set the suggested cache-size value. 635 */ 636 void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){ 637 assert( pCache->pCache!=0 ); 638 pCache->szCache = mxPage; 639 sqlite3GlobalConfig.pcache2.xCachesize(pCache->pCache, 640 numberOfCachePages(pCache)); 641 } 642 643 /* 644 ** Free up as much memory as possible from the page cache. 645 */ 646 void sqlite3PcacheShrink(PCache *pCache){ 647 assert( pCache->pCache!=0 ); 648 sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache); 649 } 650 651 /* 652 ** Return the size of the header added by this middleware layer 653 ** in the page-cache hierarchy. 654 */ 655 int sqlite3HeaderSizePcache(void){ return ROUND8(sizeof(PgHdr)); } 656 657 658 #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG) 659 /* 660 ** For all dirty pages currently in the cache, invoke the specified 661 ** callback. This is only used if the SQLITE_CHECK_PAGES macro is 662 ** defined. 663 */ 664 void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){ 665 PgHdr *pDirty; 666 for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){ 667 xIter(pDirty); 668 } 669 } 670 #endif 671