1 /* 2 ** 2008 August 05 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file implements that page cache. 13 */ 14 #include "sqliteInt.h" 15 16 /* 17 ** A complete page cache is an instance of this structure. 18 */ 19 struct PCache { 20 PgHdr *pDirty, *pDirtyTail; /* List of dirty pages in LRU order */ 21 PgHdr *pSynced; /* Last synced page in dirty page list */ 22 int nRef; /* Number of referenced pages */ 23 int szCache; /* Configured cache size */ 24 int szPage; /* Size of every page in this cache */ 25 int szExtra; /* Size of extra space for each page */ 26 u8 bPurgeable; /* True if pages are on backing store */ 27 u8 eCreate; /* eCreate value for for xFetch() */ 28 int (*xStress)(void*,PgHdr*); /* Call to try make a page clean */ 29 void *pStress; /* Argument to xStress */ 30 sqlite3_pcache *pCache; /* Pluggable cache module */ 31 PgHdr *pPage1; /* Reference to page 1 */ 32 }; 33 34 /* 35 ** Some of the assert() macros in this code are too expensive to run 36 ** even during normal debugging. Use them only rarely on long-running 37 ** tests. Enable the expensive asserts using the 38 ** -DSQLITE_ENABLE_EXPENSIVE_ASSERT=1 compile-time option. 39 */ 40 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 41 # define expensive_assert(X) assert(X) 42 #else 43 # define expensive_assert(X) 44 #endif 45 46 /********************************** Linked List Management ********************/ 47 48 /* Allowed values for second argument to pcacheManageDirtyList() */ 49 #define PCACHE_DIRTYLIST_REMOVE 1 /* Remove pPage from dirty list */ 50 #define PCACHE_DIRTYLIST_ADD 2 /* Add pPage to the dirty list */ 51 #define PCACHE_DIRTYLIST_FRONT 3 /* Move pPage to the front of the list */ 52 53 /* 54 ** Manage pPage's participation on the dirty list. Bits of the addRemove 55 ** argument determines what operation to do. The 0x01 bit means first 56 ** remove pPage from the dirty list. The 0x02 means add pPage back to 57 ** the dirty list. Doing both moves pPage to the front of the dirty list. 58 */ 59 static void pcacheManageDirtyList(PgHdr *pPage, u8 addRemove){ 60 PCache *p = pPage->pCache; 61 62 if( addRemove & PCACHE_DIRTYLIST_REMOVE ){ 63 assert( pPage->pDirtyNext || pPage==p->pDirtyTail ); 64 assert( pPage->pDirtyPrev || pPage==p->pDirty ); 65 66 /* Update the PCache1.pSynced variable if necessary. */ 67 if( p->pSynced==pPage ){ 68 PgHdr *pSynced = pPage->pDirtyPrev; 69 while( pSynced && (pSynced->flags&PGHDR_NEED_SYNC) ){ 70 pSynced = pSynced->pDirtyPrev; 71 } 72 p->pSynced = pSynced; 73 } 74 75 if( pPage->pDirtyNext ){ 76 pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev; 77 }else{ 78 assert( pPage==p->pDirtyTail ); 79 p->pDirtyTail = pPage->pDirtyPrev; 80 } 81 if( pPage->pDirtyPrev ){ 82 pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext; 83 }else{ 84 assert( pPage==p->pDirty ); 85 p->pDirty = pPage->pDirtyNext; 86 if( p->pDirty==0 && p->bPurgeable ){ 87 assert( p->eCreate==1 ); 88 p->eCreate = 2; 89 } 90 } 91 pPage->pDirtyNext = 0; 92 pPage->pDirtyPrev = 0; 93 } 94 if( addRemove & PCACHE_DIRTYLIST_ADD ){ 95 assert( pPage->pDirtyNext==0 && pPage->pDirtyPrev==0 && p->pDirty!=pPage ); 96 97 pPage->pDirtyNext = p->pDirty; 98 if( pPage->pDirtyNext ){ 99 assert( pPage->pDirtyNext->pDirtyPrev==0 ); 100 pPage->pDirtyNext->pDirtyPrev = pPage; 101 }else{ 102 p->pDirtyTail = pPage; 103 if( p->bPurgeable ){ 104 assert( p->eCreate==2 ); 105 p->eCreate = 1; 106 } 107 } 108 p->pDirty = pPage; 109 if( !p->pSynced && 0==(pPage->flags&PGHDR_NEED_SYNC) ){ 110 p->pSynced = pPage; 111 } 112 } 113 } 114 115 /* 116 ** Wrapper around the pluggable caches xUnpin method. If the cache is 117 ** being used for an in-memory database, this function is a no-op. 118 */ 119 static void pcacheUnpin(PgHdr *p){ 120 if( p->pCache->bPurgeable ){ 121 if( p->pgno==1 ){ 122 p->pCache->pPage1 = 0; 123 } 124 sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0); 125 } 126 } 127 128 /* 129 ** Compute the number of pages of cache requested. 130 */ 131 static int numberOfCachePages(PCache *p){ 132 if( p->szCache>=0 ){ 133 return p->szCache; 134 }else{ 135 return (int)((-1024*(i64)p->szCache)/(p->szPage+p->szExtra)); 136 } 137 } 138 139 /*************************************************** General Interfaces ****** 140 ** 141 ** Initialize and shutdown the page cache subsystem. Neither of these 142 ** functions are threadsafe. 143 */ 144 int sqlite3PcacheInitialize(void){ 145 if( sqlite3GlobalConfig.pcache2.xInit==0 ){ 146 /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the 147 ** built-in default page cache is used instead of the application defined 148 ** page cache. */ 149 sqlite3PCacheSetDefault(); 150 } 151 return sqlite3GlobalConfig.pcache2.xInit(sqlite3GlobalConfig.pcache2.pArg); 152 } 153 void sqlite3PcacheShutdown(void){ 154 if( sqlite3GlobalConfig.pcache2.xShutdown ){ 155 /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */ 156 sqlite3GlobalConfig.pcache2.xShutdown(sqlite3GlobalConfig.pcache2.pArg); 157 } 158 } 159 160 /* 161 ** Return the size in bytes of a PCache object. 162 */ 163 int sqlite3PcacheSize(void){ return sizeof(PCache); } 164 165 /* 166 ** Create a new PCache object. Storage space to hold the object 167 ** has already been allocated and is passed in as the p pointer. 168 ** The caller discovers how much space needs to be allocated by 169 ** calling sqlite3PcacheSize(). 170 */ 171 int sqlite3PcacheOpen( 172 int szPage, /* Size of every page */ 173 int szExtra, /* Extra space associated with each page */ 174 int bPurgeable, /* True if pages are on backing store */ 175 int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */ 176 void *pStress, /* Argument to xStress */ 177 PCache *p /* Preallocated space for the PCache */ 178 ){ 179 memset(p, 0, sizeof(PCache)); 180 p->szPage = 1; 181 p->szExtra = szExtra; 182 p->bPurgeable = bPurgeable; 183 p->eCreate = 2; 184 p->xStress = xStress; 185 p->pStress = pStress; 186 p->szCache = 100; 187 return sqlite3PcacheSetPageSize(p, szPage); 188 } 189 190 /* 191 ** Change the page size for PCache object. The caller must ensure that there 192 ** are no outstanding page references when this function is called. 193 */ 194 int sqlite3PcacheSetPageSize(PCache *pCache, int szPage){ 195 assert( pCache->nRef==0 && pCache->pDirty==0 ); 196 if( pCache->szPage ){ 197 sqlite3_pcache *pNew; 198 pNew = sqlite3GlobalConfig.pcache2.xCreate( 199 szPage, pCache->szExtra + ROUND8(sizeof(PgHdr)), 200 pCache->bPurgeable 201 ); 202 if( pNew==0 ) return SQLITE_NOMEM; 203 sqlite3GlobalConfig.pcache2.xCachesize(pNew, numberOfCachePages(pCache)); 204 if( pCache->pCache ){ 205 sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); 206 } 207 pCache->pCache = pNew; 208 pCache->pPage1 = 0; 209 pCache->szPage = szPage; 210 } 211 return SQLITE_OK; 212 } 213 214 /* 215 ** Try to obtain a page from the cache. 216 ** 217 ** This routine returns a pointer to an sqlite3_pcache_page object if 218 ** such an object is already in cache, or if a new one is created. 219 ** This routine returns a NULL pointer if the object was not in cache 220 ** and could not be created. 221 ** 222 ** The createFlags should be 0 to check for existing pages and should 223 ** be 3 (not 1, but 3) to try to create a new page. 224 ** 225 ** If the createFlag is 0, then NULL is always returned if the page 226 ** is not already in the cache. If createFlag is 1, then a new page 227 ** is created only if that can be done without spilling dirty pages 228 ** and without exceeding the cache size limit. 229 ** 230 ** The caller needs to invoke sqlite3PcacheFetchFinish() to properly 231 ** initialize the sqlite3_pcache_page object and convert it into a 232 ** PgHdr object. The sqlite3PcacheFetch() and sqlite3PcacheFetchFinish() 233 ** routines are split this way for performance reasons. When separated 234 ** they can both (usually) operate without having to push values to 235 ** the stack on entry and pop them back off on exit, which saves a 236 ** lot of pushing and popping. 237 */ 238 sqlite3_pcache_page *sqlite3PcacheFetch( 239 PCache *pCache, /* Obtain the page from this cache */ 240 Pgno pgno, /* Page number to obtain */ 241 int createFlag /* If true, create page if it does not exist already */ 242 ){ 243 int eCreate; 244 245 assert( pCache!=0 ); 246 assert( pCache->pCache!=0 ); 247 assert( createFlag==3 || createFlag==0 ); 248 assert( pgno>0 ); 249 250 /* eCreate defines what to do if the page does not exist. 251 ** 0 Do not allocate a new page. (createFlag==0) 252 ** 1 Allocate a new page if doing so is inexpensive. 253 ** (createFlag==1 AND bPurgeable AND pDirty) 254 ** 2 Allocate a new page even it doing so is difficult. 255 ** (createFlag==1 AND !(bPurgeable AND pDirty) 256 */ 257 eCreate = createFlag & pCache->eCreate; 258 assert( eCreate==0 || eCreate==1 || eCreate==2 ); 259 assert( createFlag==0 || pCache->eCreate==eCreate ); 260 assert( createFlag==0 || eCreate==1+(!pCache->bPurgeable||!pCache->pDirty) ); 261 return sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate); 262 } 263 264 /* 265 ** If the sqlite3PcacheFetch() routine is unable to allocate a new 266 ** page because new clean pages are available for reuse and the cache 267 ** size limit has been reached, then this routine can be invoked to 268 ** try harder to allocate a page. This routine might invoke the stress 269 ** callback to spill dirty pages to the journal. It will then try to 270 ** allocate the new page and will only fail to allocate a new page on 271 ** an OOM error. 272 ** 273 ** This routine should be invoked only after sqlite3PcacheFetch() fails. 274 */ 275 int sqlite3PcacheFetchStress( 276 PCache *pCache, /* Obtain the page from this cache */ 277 Pgno pgno, /* Page number to obtain */ 278 sqlite3_pcache_page **ppPage /* Write result here */ 279 ){ 280 PgHdr *pPg; 281 if( pCache->eCreate==2 ) return 0; 282 283 284 /* Find a dirty page to write-out and recycle. First try to find a 285 ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC 286 ** cleared), but if that is not possible settle for any other 287 ** unreferenced dirty page. 288 */ 289 for(pPg=pCache->pSynced; 290 pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC)); 291 pPg=pPg->pDirtyPrev 292 ); 293 pCache->pSynced = pPg; 294 if( !pPg ){ 295 for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev); 296 } 297 if( pPg ){ 298 int rc; 299 #ifdef SQLITE_LOG_CACHE_SPILL 300 sqlite3_log(SQLITE_FULL, 301 "spill page %d making room for %d - cache used: %d/%d", 302 pPg->pgno, pgno, 303 sqlite3GlobalConfig.pcache.xPagecount(pCache->pCache), 304 numberOfCachePages(pCache)); 305 #endif 306 rc = pCache->xStress(pCache->pStress, pPg); 307 if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){ 308 return rc; 309 } 310 } 311 *ppPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, 2); 312 return *ppPage==0 ? SQLITE_NOMEM : SQLITE_OK; 313 } 314 315 /* 316 ** This is a helper routine for sqlite3PcacheFetchFinish() 317 ** 318 ** In the uncommon case where the page being fetched has not been 319 ** initialized, this routine is invoked to do the initialization. 320 ** This routine is broken out into a separate function since it 321 ** requires extra stack manipulation that can be avoided in the common 322 ** case. 323 */ 324 static SQLITE_NOINLINE PgHdr *pcacheFetchFinishWithInit( 325 PCache *pCache, /* Obtain the page from this cache */ 326 Pgno pgno, /* Page number obtained */ 327 sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ 328 ){ 329 PgHdr *pPgHdr; 330 assert( pPage!=0 ); 331 pPgHdr = (PgHdr*)pPage->pExtra; 332 assert( pPgHdr->pPage==0 ); 333 memset(pPgHdr, 0, sizeof(PgHdr)); 334 pPgHdr->pPage = pPage; 335 pPgHdr->pData = pPage->pBuf; 336 pPgHdr->pExtra = (void *)&pPgHdr[1]; 337 memset(pPgHdr->pExtra, 0, pCache->szExtra); 338 pPgHdr->pCache = pCache; 339 pPgHdr->pgno = pgno; 340 return sqlite3PcacheFetchFinish(pCache,pgno,pPage); 341 } 342 343 /* 344 ** This routine converts the sqlite3_pcache_page object returned by 345 ** sqlite3PcacheFetch() into an initialized PgHdr object. This routine 346 ** must be called after sqlite3PcacheFetch() in order to get a usable 347 ** result. 348 */ 349 PgHdr *sqlite3PcacheFetchFinish( 350 PCache *pCache, /* Obtain the page from this cache */ 351 Pgno pgno, /* Page number obtained */ 352 sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ 353 ){ 354 PgHdr *pPgHdr; 355 356 if( pPage==0 ) return 0; 357 pPgHdr = (PgHdr *)pPage->pExtra; 358 359 if( !pPgHdr->pPage ){ 360 return pcacheFetchFinishWithInit(pCache, pgno, pPage); 361 } 362 if( 0==pPgHdr->nRef ){ 363 pCache->nRef++; 364 } 365 pPgHdr->nRef++; 366 if( pgno==1 ){ 367 pCache->pPage1 = pPgHdr; 368 } 369 return pPgHdr; 370 } 371 372 /* 373 ** Decrement the reference count on a page. If the page is clean and the 374 ** reference count drops to 0, then it is made eligible for recycling. 375 */ 376 void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){ 377 assert( p->nRef>0 ); 378 p->nRef--; 379 if( p->nRef==0 ){ 380 p->pCache->nRef--; 381 if( (p->flags&PGHDR_DIRTY)==0 ){ 382 pcacheUnpin(p); 383 }else if( p->pDirtyPrev!=0 ){ 384 /* Move the page to the head of the dirty list. */ 385 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); 386 } 387 } 388 } 389 390 /* 391 ** Increase the reference count of a supplied page by 1. 392 */ 393 void sqlite3PcacheRef(PgHdr *p){ 394 assert(p->nRef>0); 395 p->nRef++; 396 } 397 398 /* 399 ** Drop a page from the cache. There must be exactly one reference to the 400 ** page. This function deletes that reference, so after it returns the 401 ** page pointed to by p is invalid. 402 */ 403 void sqlite3PcacheDrop(PgHdr *p){ 404 assert( p->nRef==1 ); 405 if( p->flags&PGHDR_DIRTY ){ 406 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); 407 } 408 p->pCache->nRef--; 409 if( p->pgno==1 ){ 410 p->pCache->pPage1 = 0; 411 } 412 sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 1); 413 } 414 415 /* 416 ** Make sure the page is marked as dirty. If it isn't dirty already, 417 ** make it so. 418 */ 419 void sqlite3PcacheMakeDirty(PgHdr *p){ 420 p->flags &= ~PGHDR_DONT_WRITE; 421 assert( p->nRef>0 ); 422 if( 0==(p->flags & PGHDR_DIRTY) ){ 423 p->flags |= PGHDR_DIRTY; 424 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_ADD); 425 } 426 } 427 428 /* 429 ** Make sure the page is marked as clean. If it isn't clean already, 430 ** make it so. 431 */ 432 void sqlite3PcacheMakeClean(PgHdr *p){ 433 if( (p->flags & PGHDR_DIRTY) ){ 434 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); 435 p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC); 436 if( p->nRef==0 ){ 437 pcacheUnpin(p); 438 } 439 } 440 } 441 442 /* 443 ** Make every page in the cache clean. 444 */ 445 void sqlite3PcacheCleanAll(PCache *pCache){ 446 PgHdr *p; 447 while( (p = pCache->pDirty)!=0 ){ 448 sqlite3PcacheMakeClean(p); 449 } 450 } 451 452 /* 453 ** Clear the PGHDR_NEED_SYNC flag from all dirty pages. 454 */ 455 void sqlite3PcacheClearSyncFlags(PCache *pCache){ 456 PgHdr *p; 457 for(p=pCache->pDirty; p; p=p->pDirtyNext){ 458 p->flags &= ~PGHDR_NEED_SYNC; 459 } 460 pCache->pSynced = pCache->pDirtyTail; 461 } 462 463 /* 464 ** Change the page number of page p to newPgno. 465 */ 466 void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){ 467 PCache *pCache = p->pCache; 468 assert( p->nRef>0 ); 469 assert( newPgno>0 ); 470 sqlite3GlobalConfig.pcache2.xRekey(pCache->pCache, p->pPage, p->pgno,newPgno); 471 p->pgno = newPgno; 472 if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){ 473 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); 474 } 475 } 476 477 /* 478 ** Drop every cache entry whose page number is greater than "pgno". The 479 ** caller must ensure that there are no outstanding references to any pages 480 ** other than page 1 with a page number greater than pgno. 481 ** 482 ** If there is a reference to page 1 and the pgno parameter passed to this 483 ** function is 0, then the data area associated with page 1 is zeroed, but 484 ** the page object is not dropped. 485 */ 486 void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){ 487 if( pCache->pCache ){ 488 PgHdr *p; 489 PgHdr *pNext; 490 for(p=pCache->pDirty; p; p=pNext){ 491 pNext = p->pDirtyNext; 492 /* This routine never gets call with a positive pgno except right 493 ** after sqlite3PcacheCleanAll(). So if there are dirty pages, 494 ** it must be that pgno==0. 495 */ 496 assert( p->pgno>0 ); 497 if( ALWAYS(p->pgno>pgno) ){ 498 assert( p->flags&PGHDR_DIRTY ); 499 sqlite3PcacheMakeClean(p); 500 } 501 } 502 if( pgno==0 && pCache->pPage1 ){ 503 memset(pCache->pPage1->pData, 0, pCache->szPage); 504 pgno = 1; 505 } 506 sqlite3GlobalConfig.pcache2.xTruncate(pCache->pCache, pgno+1); 507 } 508 } 509 510 /* 511 ** Close a cache. 512 */ 513 void sqlite3PcacheClose(PCache *pCache){ 514 assert( pCache->pCache!=0 ); 515 sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); 516 } 517 518 /* 519 ** Discard the contents of the cache. 520 */ 521 void sqlite3PcacheClear(PCache *pCache){ 522 sqlite3PcacheTruncate(pCache, 0); 523 } 524 525 /* 526 ** Merge two lists of pages connected by pDirty and in pgno order. 527 ** Do not both fixing the pDirtyPrev pointers. 528 */ 529 static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){ 530 PgHdr result, *pTail; 531 pTail = &result; 532 while( pA && pB ){ 533 if( pA->pgno<pB->pgno ){ 534 pTail->pDirty = pA; 535 pTail = pA; 536 pA = pA->pDirty; 537 }else{ 538 pTail->pDirty = pB; 539 pTail = pB; 540 pB = pB->pDirty; 541 } 542 } 543 if( pA ){ 544 pTail->pDirty = pA; 545 }else if( pB ){ 546 pTail->pDirty = pB; 547 }else{ 548 pTail->pDirty = 0; 549 } 550 return result.pDirty; 551 } 552 553 /* 554 ** Sort the list of pages in accending order by pgno. Pages are 555 ** connected by pDirty pointers. The pDirtyPrev pointers are 556 ** corrupted by this sort. 557 ** 558 ** Since there cannot be more than 2^31 distinct pages in a database, 559 ** there cannot be more than 31 buckets required by the merge sorter. 560 ** One extra bucket is added to catch overflow in case something 561 ** ever changes to make the previous sentence incorrect. 562 */ 563 #define N_SORT_BUCKET 32 564 static PgHdr *pcacheSortDirtyList(PgHdr *pIn){ 565 PgHdr *a[N_SORT_BUCKET], *p; 566 int i; 567 memset(a, 0, sizeof(a)); 568 while( pIn ){ 569 p = pIn; 570 pIn = p->pDirty; 571 p->pDirty = 0; 572 for(i=0; ALWAYS(i<N_SORT_BUCKET-1); i++){ 573 if( a[i]==0 ){ 574 a[i] = p; 575 break; 576 }else{ 577 p = pcacheMergeDirtyList(a[i], p); 578 a[i] = 0; 579 } 580 } 581 if( NEVER(i==N_SORT_BUCKET-1) ){ 582 /* To get here, there need to be 2^(N_SORT_BUCKET) elements in 583 ** the input list. But that is impossible. 584 */ 585 a[i] = pcacheMergeDirtyList(a[i], p); 586 } 587 } 588 p = a[0]; 589 for(i=1; i<N_SORT_BUCKET; i++){ 590 p = pcacheMergeDirtyList(p, a[i]); 591 } 592 return p; 593 } 594 595 /* 596 ** Return a list of all dirty pages in the cache, sorted by page number. 597 */ 598 PgHdr *sqlite3PcacheDirtyList(PCache *pCache){ 599 PgHdr *p; 600 for(p=pCache->pDirty; p; p=p->pDirtyNext){ 601 p->pDirty = p->pDirtyNext; 602 } 603 return pcacheSortDirtyList(pCache->pDirty); 604 } 605 606 /* 607 ** Return the total number of referenced pages held by the cache. 608 */ 609 int sqlite3PcacheRefCount(PCache *pCache){ 610 return pCache->nRef; 611 } 612 613 /* 614 ** Return the number of references to the page supplied as an argument. 615 */ 616 int sqlite3PcachePageRefcount(PgHdr *p){ 617 return p->nRef; 618 } 619 620 /* 621 ** Return the total number of pages in the cache. 622 */ 623 int sqlite3PcachePagecount(PCache *pCache){ 624 assert( pCache->pCache!=0 ); 625 return sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache); 626 } 627 628 #ifdef SQLITE_TEST 629 /* 630 ** Get the suggested cache-size value. 631 */ 632 int sqlite3PcacheGetCachesize(PCache *pCache){ 633 return numberOfCachePages(pCache); 634 } 635 #endif 636 637 /* 638 ** Set the suggested cache-size value. 639 */ 640 void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){ 641 assert( pCache->pCache!=0 ); 642 pCache->szCache = mxPage; 643 sqlite3GlobalConfig.pcache2.xCachesize(pCache->pCache, 644 numberOfCachePages(pCache)); 645 } 646 647 /* 648 ** Free up as much memory as possible from the page cache. 649 */ 650 void sqlite3PcacheShrink(PCache *pCache){ 651 assert( pCache->pCache!=0 ); 652 sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache); 653 } 654 655 /* 656 ** Return the size of the header added by this middleware layer 657 ** in the page-cache hierarchy. 658 */ 659 int sqlite3HeaderSizePcache(void){ return ROUND8(sizeof(PgHdr)); } 660 661 662 #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG) 663 /* 664 ** For all dirty pages currently in the cache, invoke the specified 665 ** callback. This is only used if the SQLITE_CHECK_PAGES macro is 666 ** defined. 667 */ 668 void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){ 669 PgHdr *pDirty; 670 for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){ 671 xIter(pDirty); 672 } 673 } 674 #endif 675