xref: /sqlite-3.40.0/src/pcache.c (revision bd41d566)
1 /*
2 ** 2008 August 05
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file implements that page cache.
13 */
14 #include "sqliteInt.h"
15 
16 /*
17 ** A complete page cache is an instance of this structure.
18 */
19 struct PCache {
20   PgHdr *pDirty, *pDirtyTail;         /* List of dirty pages in LRU order */
21   PgHdr *pSynced;                     /* Last synced page in dirty page list */
22   int nRef;                           /* Number of referenced pages */
23   int szCache;                        /* Configured cache size */
24   int szPage;                         /* Size of every page in this cache */
25   int szExtra;                        /* Size of extra space for each page */
26   u8 bPurgeable;                      /* True if pages are on backing store */
27   u8 eCreate;                         /* eCreate value for for xFetch() */
28   int (*xStress)(void*,PgHdr*);       /* Call to try make a page clean */
29   void *pStress;                      /* Argument to xStress */
30   sqlite3_pcache *pCache;             /* Pluggable cache module */
31   PgHdr *pPage1;                      /* Reference to page 1 */
32 };
33 
34 /*
35 ** Some of the assert() macros in this code are too expensive to run
36 ** even during normal debugging.  Use them only rarely on long-running
37 ** tests.  Enable the expensive asserts using the
38 ** -DSQLITE_ENABLE_EXPENSIVE_ASSERT=1 compile-time option.
39 */
40 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
41 # define expensive_assert(X)  assert(X)
42 #else
43 # define expensive_assert(X)
44 #endif
45 
46 /********************************** Linked List Management ********************/
47 
48 /* Allowed values for second argument to pcacheManageDirtyList() */
49 #define PCACHE_DIRTYLIST_REMOVE   1    /* Remove pPage from dirty list */
50 #define PCACHE_DIRTYLIST_ADD      2    /* Add pPage to the dirty list */
51 #define PCACHE_DIRTYLIST_FRONT    3    /* Move pPage to the front of the list */
52 
53 /*
54 ** Manage pPage's participation on the dirty list.  Bits of the addRemove
55 ** argument determines what operation to do.  The 0x01 bit means first
56 ** remove pPage from the dirty list.  The 0x02 means add pPage back to
57 ** the dirty list.  Doing both moves pPage to the front of the dirty list.
58 */
59 static void pcacheManageDirtyList(PgHdr *pPage, u8 addRemove){
60   PCache *p = pPage->pCache;
61 
62   if( addRemove & PCACHE_DIRTYLIST_REMOVE ){
63     assert( pPage->pDirtyNext || pPage==p->pDirtyTail );
64     assert( pPage->pDirtyPrev || pPage==p->pDirty );
65 
66     /* Update the PCache1.pSynced variable if necessary. */
67     if( p->pSynced==pPage ){
68       PgHdr *pSynced = pPage->pDirtyPrev;
69       while( pSynced && (pSynced->flags&PGHDR_NEED_SYNC) ){
70         pSynced = pSynced->pDirtyPrev;
71       }
72       p->pSynced = pSynced;
73     }
74 
75     if( pPage->pDirtyNext ){
76       pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev;
77     }else{
78       assert( pPage==p->pDirtyTail );
79       p->pDirtyTail = pPage->pDirtyPrev;
80     }
81     if( pPage->pDirtyPrev ){
82       pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext;
83     }else{
84       assert( pPage==p->pDirty );
85       p->pDirty = pPage->pDirtyNext;
86       if( p->pDirty==0 && p->bPurgeable ){
87         assert( p->eCreate==1 );
88         p->eCreate = 2;
89       }
90     }
91     pPage->pDirtyNext = 0;
92     pPage->pDirtyPrev = 0;
93   }
94   if( addRemove & PCACHE_DIRTYLIST_ADD ){
95     assert( pPage->pDirtyNext==0 && pPage->pDirtyPrev==0 && p->pDirty!=pPage );
96 
97     pPage->pDirtyNext = p->pDirty;
98     if( pPage->pDirtyNext ){
99       assert( pPage->pDirtyNext->pDirtyPrev==0 );
100       pPage->pDirtyNext->pDirtyPrev = pPage;
101     }else{
102       p->pDirtyTail = pPage;
103       if( p->bPurgeable ){
104         assert( p->eCreate==2 );
105         p->eCreate = 1;
106       }
107     }
108     p->pDirty = pPage;
109     if( !p->pSynced && 0==(pPage->flags&PGHDR_NEED_SYNC) ){
110       p->pSynced = pPage;
111     }
112   }
113 }
114 
115 /*
116 ** Wrapper around the pluggable caches xUnpin method. If the cache is
117 ** being used for an in-memory database, this function is a no-op.
118 */
119 static void pcacheUnpin(PgHdr *p){
120   if( p->pCache->bPurgeable ){
121     if( p->pgno==1 ){
122       p->pCache->pPage1 = 0;
123     }
124     sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0);
125   }
126 }
127 
128 /*
129 ** Compute the number of pages of cache requested.
130 */
131 static int numberOfCachePages(PCache *p){
132   if( p->szCache>=0 ){
133     return p->szCache;
134   }else{
135     return (int)((-1024*(i64)p->szCache)/(p->szPage+p->szExtra));
136   }
137 }
138 
139 /*************************************************** General Interfaces ******
140 **
141 ** Initialize and shutdown the page cache subsystem. Neither of these
142 ** functions are threadsafe.
143 */
144 int sqlite3PcacheInitialize(void){
145   if( sqlite3GlobalConfig.pcache2.xInit==0 ){
146     /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the
147     ** built-in default page cache is used instead of the application defined
148     ** page cache. */
149     sqlite3PCacheSetDefault();
150   }
151   return sqlite3GlobalConfig.pcache2.xInit(sqlite3GlobalConfig.pcache2.pArg);
152 }
153 void sqlite3PcacheShutdown(void){
154   if( sqlite3GlobalConfig.pcache2.xShutdown ){
155     /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */
156     sqlite3GlobalConfig.pcache2.xShutdown(sqlite3GlobalConfig.pcache2.pArg);
157   }
158 }
159 
160 /*
161 ** Return the size in bytes of a PCache object.
162 */
163 int sqlite3PcacheSize(void){ return sizeof(PCache); }
164 
165 /*
166 ** Create a new PCache object. Storage space to hold the object
167 ** has already been allocated and is passed in as the p pointer.
168 ** The caller discovers how much space needs to be allocated by
169 ** calling sqlite3PcacheSize().
170 */
171 int sqlite3PcacheOpen(
172   int szPage,                  /* Size of every page */
173   int szExtra,                 /* Extra space associated with each page */
174   int bPurgeable,              /* True if pages are on backing store */
175   int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */
176   void *pStress,               /* Argument to xStress */
177   PCache *p                    /* Preallocated space for the PCache */
178 ){
179   memset(p, 0, sizeof(PCache));
180   p->szPage = 1;
181   p->szExtra = szExtra;
182   p->bPurgeable = bPurgeable;
183   p->eCreate = 2;
184   p->xStress = xStress;
185   p->pStress = pStress;
186   p->szCache = 100;
187   return sqlite3PcacheSetPageSize(p, szPage);
188 }
189 
190 /*
191 ** Change the page size for PCache object. The caller must ensure that there
192 ** are no outstanding page references when this function is called.
193 */
194 int sqlite3PcacheSetPageSize(PCache *pCache, int szPage){
195   assert( pCache->nRef==0 && pCache->pDirty==0 );
196   if( pCache->szPage ){
197     sqlite3_pcache *pNew;
198     pNew = sqlite3GlobalConfig.pcache2.xCreate(
199                 szPage, pCache->szExtra + ROUND8(sizeof(PgHdr)),
200                 pCache->bPurgeable
201     );
202     if( pNew==0 ) return SQLITE_NOMEM;
203     sqlite3GlobalConfig.pcache2.xCachesize(pNew, numberOfCachePages(pCache));
204     if( pCache->pCache ){
205       sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache);
206     }
207     pCache->pCache = pNew;
208     pCache->pPage1 = 0;
209     pCache->szPage = szPage;
210   }
211   return SQLITE_OK;
212 }
213 
214 /*
215 ** Try to obtain a page from the cache.
216 **
217 ** This routine returns a pointer to an sqlite3_pcache_page object if
218 ** such an object is already in cache, or if a new one is created.
219 ** This routine returns a NULL pointer if the object was not in cache
220 ** and could not be created.
221 **
222 ** The createFlags should be 0 to check for existing pages and should
223 ** be 3 (not 1, but 3) to try to create a new page.
224 **
225 ** If the createFlag is 0, then NULL is always returned if the page
226 ** is not already in the cache.  If createFlag is 1, then a new page
227 ** is created only if that can be done without spilling dirty pages
228 ** and without exceeding the cache size limit.
229 **
230 ** The caller needs to invoke sqlite3PcacheFetchFinish() to properly
231 ** initialize the sqlite3_pcache_page object and convert it into a
232 ** PgHdr object.  The sqlite3PcacheFetch() and sqlite3PcacheFetchFinish()
233 ** routines are split this way for performance reasons. When separated
234 ** they can both (usually) operate without having to push values to
235 ** the stack on entry and pop them back off on exit, which saves a
236 ** lot of pushing and popping.
237 */
238 sqlite3_pcache_page *sqlite3PcacheFetch(
239   PCache *pCache,       /* Obtain the page from this cache */
240   Pgno pgno,            /* Page number to obtain */
241   int createFlag        /* If true, create page if it does not exist already */
242 ){
243   int eCreate;
244 
245   assert( pCache!=0 );
246   assert( pCache->pCache!=0 );
247   assert( createFlag==3 || createFlag==0 );
248   assert( pgno>0 );
249 
250   /* eCreate defines what to do if the page does not exist.
251   **    0     Do not allocate a new page.  (createFlag==0)
252   **    1     Allocate a new page if doing so is inexpensive.
253   **          (createFlag==1 AND bPurgeable AND pDirty)
254   **    2     Allocate a new page even it doing so is difficult.
255   **          (createFlag==1 AND !(bPurgeable AND pDirty)
256   */
257   eCreate = createFlag & pCache->eCreate;
258   assert( eCreate==0 || eCreate==1 || eCreate==2 );
259   assert( createFlag==0 || pCache->eCreate==eCreate );
260   assert( createFlag==0 || eCreate==1+(!pCache->bPurgeable||!pCache->pDirty) );
261   return sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate);
262 }
263 
264 /*
265 ** If the sqlite3PcacheFetch() routine is unable to allocate a new
266 ** page because new clean pages are available for reuse and the cache
267 ** size limit has been reached, then this routine can be invoked to
268 ** try harder to allocate a page.  This routine might invoke the stress
269 ** callback to spill dirty pages to the journal.  It will then try to
270 ** allocate the new page and will only fail to allocate a new page on
271 ** an OOM error.
272 **
273 ** This routine should be invoked only after sqlite3PcacheFetch() fails.
274 */
275 int sqlite3PcacheFetchStress(
276   PCache *pCache,                 /* Obtain the page from this cache */
277   Pgno pgno,                      /* Page number to obtain */
278   sqlite3_pcache_page **ppPage    /* Write result here */
279 ){
280   PgHdr *pPg;
281   if( pCache->eCreate==2 ) return 0;
282 
283 
284   /* Find a dirty page to write-out and recycle. First try to find a
285   ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC
286   ** cleared), but if that is not possible settle for any other
287   ** unreferenced dirty page.
288   */
289   for(pPg=pCache->pSynced;
290       pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC));
291       pPg=pPg->pDirtyPrev
292   );
293   pCache->pSynced = pPg;
294   if( !pPg ){
295     for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev);
296   }
297   if( pPg ){
298     int rc;
299 #ifdef SQLITE_LOG_CACHE_SPILL
300     sqlite3_log(SQLITE_FULL,
301                 "spill page %d making room for %d - cache used: %d/%d",
302                 pPg->pgno, pgno,
303                 sqlite3GlobalConfig.pcache.xPagecount(pCache->pCache),
304                 numberOfCachePages(pCache));
305 #endif
306     rc = pCache->xStress(pCache->pStress, pPg);
307     if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){
308       return rc;
309     }
310   }
311   *ppPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, 2);
312   return *ppPage==0 ? SQLITE_NOMEM : SQLITE_OK;
313 }
314 
315 /*
316 ** This is a helper routine for sqlite3PcacheFetchFinish()
317 **
318 ** In the uncommon case where the page being fetched has not been
319 ** initialized, this routine is invoked to do the initialization.
320 ** This routine is broken out into a separate function since it
321 ** requires extra stack manipulation that can be avoided in the common
322 ** case.
323 */
324 static SQLITE_NOINLINE PgHdr *pcacheFetchFinishWithInit(
325   PCache *pCache,             /* Obtain the page from this cache */
326   Pgno pgno,                  /* Page number obtained */
327   sqlite3_pcache_page *pPage  /* Page obtained by prior PcacheFetch() call */
328 ){
329   PgHdr *pPgHdr;
330   assert( pPage!=0 );
331   pPgHdr = (PgHdr*)pPage->pExtra;
332   assert( pPgHdr->pPage==0 );
333  memset(pPgHdr, 0, sizeof(PgHdr));
334   pPgHdr->pPage = pPage;
335   pPgHdr->pData = pPage->pBuf;
336   pPgHdr->pExtra = (void *)&pPgHdr[1];
337   memset(pPgHdr->pExtra, 0, pCache->szExtra);
338   pPgHdr->pCache = pCache;
339   pPgHdr->pgno = pgno;
340   return sqlite3PcacheFetchFinish(pCache,pgno,pPage);
341 }
342 
343 /*
344 ** This routine converts the sqlite3_pcache_page object returned by
345 ** sqlite3PcacheFetch() into an initialized PgHdr object.  This routine
346 ** must be called after sqlite3PcacheFetch() in order to get a usable
347 ** result.
348 */
349 PgHdr *sqlite3PcacheFetchFinish(
350   PCache *pCache,             /* Obtain the page from this cache */
351   Pgno pgno,                  /* Page number obtained */
352   sqlite3_pcache_page *pPage  /* Page obtained by prior PcacheFetch() call */
353 ){
354   PgHdr *pPgHdr;
355 
356   if( pPage==0 ) return 0;
357   pPgHdr = (PgHdr *)pPage->pExtra;
358 
359   if( !pPgHdr->pPage ){
360     return pcacheFetchFinishWithInit(pCache, pgno, pPage);
361   }
362   if( 0==pPgHdr->nRef ){
363     pCache->nRef++;
364   }
365   pPgHdr->nRef++;
366   if( pgno==1 ){
367     pCache->pPage1 = pPgHdr;
368   }
369   return pPgHdr;
370 }
371 
372 /*
373 ** Decrement the reference count on a page. If the page is clean and the
374 ** reference count drops to 0, then it is made eligible for recycling.
375 */
376 void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){
377   assert( p->nRef>0 );
378   p->nRef--;
379   if( p->nRef==0 ){
380     p->pCache->nRef--;
381     if( (p->flags&PGHDR_DIRTY)==0 ){
382       pcacheUnpin(p);
383     }else if( p->pDirtyPrev!=0 ){
384       /* Move the page to the head of the dirty list. */
385       pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT);
386     }
387   }
388 }
389 
390 /*
391 ** Increase the reference count of a supplied page by 1.
392 */
393 void sqlite3PcacheRef(PgHdr *p){
394   assert(p->nRef>0);
395   p->nRef++;
396 }
397 
398 /*
399 ** Drop a page from the cache. There must be exactly one reference to the
400 ** page. This function deletes that reference, so after it returns the
401 ** page pointed to by p is invalid.
402 */
403 void sqlite3PcacheDrop(PgHdr *p){
404   assert( p->nRef==1 );
405   if( p->flags&PGHDR_DIRTY ){
406     pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE);
407   }
408   p->pCache->nRef--;
409   if( p->pgno==1 ){
410     p->pCache->pPage1 = 0;
411   }
412   sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 1);
413 }
414 
415 /*
416 ** Make sure the page is marked as dirty. If it isn't dirty already,
417 ** make it so.
418 */
419 void sqlite3PcacheMakeDirty(PgHdr *p){
420   p->flags &= ~PGHDR_DONT_WRITE;
421   assert( p->nRef>0 );
422   if( 0==(p->flags & PGHDR_DIRTY) ){
423     p->flags |= PGHDR_DIRTY;
424     pcacheManageDirtyList(p, PCACHE_DIRTYLIST_ADD);
425   }
426 }
427 
428 /*
429 ** Make sure the page is marked as clean. If it isn't clean already,
430 ** make it so.
431 */
432 void sqlite3PcacheMakeClean(PgHdr *p){
433   if( (p->flags & PGHDR_DIRTY) ){
434     pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE);
435     p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC);
436     if( p->nRef==0 ){
437       pcacheUnpin(p);
438     }
439   }
440 }
441 
442 /*
443 ** Make every page in the cache clean.
444 */
445 void sqlite3PcacheCleanAll(PCache *pCache){
446   PgHdr *p;
447   while( (p = pCache->pDirty)!=0 ){
448     sqlite3PcacheMakeClean(p);
449   }
450 }
451 
452 /*
453 ** Clear the PGHDR_NEED_SYNC flag from all dirty pages.
454 */
455 void sqlite3PcacheClearSyncFlags(PCache *pCache){
456   PgHdr *p;
457   for(p=pCache->pDirty; p; p=p->pDirtyNext){
458     p->flags &= ~PGHDR_NEED_SYNC;
459   }
460   pCache->pSynced = pCache->pDirtyTail;
461 }
462 
463 /*
464 ** Change the page number of page p to newPgno.
465 */
466 void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){
467   PCache *pCache = p->pCache;
468   assert( p->nRef>0 );
469   assert( newPgno>0 );
470   sqlite3GlobalConfig.pcache2.xRekey(pCache->pCache, p->pPage, p->pgno,newPgno);
471   p->pgno = newPgno;
472   if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){
473     pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT);
474   }
475 }
476 
477 /*
478 ** Drop every cache entry whose page number is greater than "pgno". The
479 ** caller must ensure that there are no outstanding references to any pages
480 ** other than page 1 with a page number greater than pgno.
481 **
482 ** If there is a reference to page 1 and the pgno parameter passed to this
483 ** function is 0, then the data area associated with page 1 is zeroed, but
484 ** the page object is not dropped.
485 */
486 void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){
487   if( pCache->pCache ){
488     PgHdr *p;
489     PgHdr *pNext;
490     for(p=pCache->pDirty; p; p=pNext){
491       pNext = p->pDirtyNext;
492       /* This routine never gets call with a positive pgno except right
493       ** after sqlite3PcacheCleanAll().  So if there are dirty pages,
494       ** it must be that pgno==0.
495       */
496       assert( p->pgno>0 );
497       if( ALWAYS(p->pgno>pgno) ){
498         assert( p->flags&PGHDR_DIRTY );
499         sqlite3PcacheMakeClean(p);
500       }
501     }
502     if( pgno==0 && pCache->pPage1 ){
503       memset(pCache->pPage1->pData, 0, pCache->szPage);
504       pgno = 1;
505     }
506     sqlite3GlobalConfig.pcache2.xTruncate(pCache->pCache, pgno+1);
507   }
508 }
509 
510 /*
511 ** Close a cache.
512 */
513 void sqlite3PcacheClose(PCache *pCache){
514   assert( pCache->pCache!=0 );
515   sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache);
516 }
517 
518 /*
519 ** Discard the contents of the cache.
520 */
521 void sqlite3PcacheClear(PCache *pCache){
522   sqlite3PcacheTruncate(pCache, 0);
523 }
524 
525 /*
526 ** Merge two lists of pages connected by pDirty and in pgno order.
527 ** Do not both fixing the pDirtyPrev pointers.
528 */
529 static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){
530   PgHdr result, *pTail;
531   pTail = &result;
532   while( pA && pB ){
533     if( pA->pgno<pB->pgno ){
534       pTail->pDirty = pA;
535       pTail = pA;
536       pA = pA->pDirty;
537     }else{
538       pTail->pDirty = pB;
539       pTail = pB;
540       pB = pB->pDirty;
541     }
542   }
543   if( pA ){
544     pTail->pDirty = pA;
545   }else if( pB ){
546     pTail->pDirty = pB;
547   }else{
548     pTail->pDirty = 0;
549   }
550   return result.pDirty;
551 }
552 
553 /*
554 ** Sort the list of pages in accending order by pgno.  Pages are
555 ** connected by pDirty pointers.  The pDirtyPrev pointers are
556 ** corrupted by this sort.
557 **
558 ** Since there cannot be more than 2^31 distinct pages in a database,
559 ** there cannot be more than 31 buckets required by the merge sorter.
560 ** One extra bucket is added to catch overflow in case something
561 ** ever changes to make the previous sentence incorrect.
562 */
563 #define N_SORT_BUCKET  32
564 static PgHdr *pcacheSortDirtyList(PgHdr *pIn){
565   PgHdr *a[N_SORT_BUCKET], *p;
566   int i;
567   memset(a, 0, sizeof(a));
568   while( pIn ){
569     p = pIn;
570     pIn = p->pDirty;
571     p->pDirty = 0;
572     for(i=0; ALWAYS(i<N_SORT_BUCKET-1); i++){
573       if( a[i]==0 ){
574         a[i] = p;
575         break;
576       }else{
577         p = pcacheMergeDirtyList(a[i], p);
578         a[i] = 0;
579       }
580     }
581     if( NEVER(i==N_SORT_BUCKET-1) ){
582       /* To get here, there need to be 2^(N_SORT_BUCKET) elements in
583       ** the input list.  But that is impossible.
584       */
585       a[i] = pcacheMergeDirtyList(a[i], p);
586     }
587   }
588   p = a[0];
589   for(i=1; i<N_SORT_BUCKET; i++){
590     p = pcacheMergeDirtyList(p, a[i]);
591   }
592   return p;
593 }
594 
595 /*
596 ** Return a list of all dirty pages in the cache, sorted by page number.
597 */
598 PgHdr *sqlite3PcacheDirtyList(PCache *pCache){
599   PgHdr *p;
600   for(p=pCache->pDirty; p; p=p->pDirtyNext){
601     p->pDirty = p->pDirtyNext;
602   }
603   return pcacheSortDirtyList(pCache->pDirty);
604 }
605 
606 /*
607 ** Return the total number of referenced pages held by the cache.
608 */
609 int sqlite3PcacheRefCount(PCache *pCache){
610   return pCache->nRef;
611 }
612 
613 /*
614 ** Return the number of references to the page supplied as an argument.
615 */
616 int sqlite3PcachePageRefcount(PgHdr *p){
617   return p->nRef;
618 }
619 
620 /*
621 ** Return the total number of pages in the cache.
622 */
623 int sqlite3PcachePagecount(PCache *pCache){
624   assert( pCache->pCache!=0 );
625   return sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache);
626 }
627 
628 #ifdef SQLITE_TEST
629 /*
630 ** Get the suggested cache-size value.
631 */
632 int sqlite3PcacheGetCachesize(PCache *pCache){
633   return numberOfCachePages(pCache);
634 }
635 #endif
636 
637 /*
638 ** Set the suggested cache-size value.
639 */
640 void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){
641   assert( pCache->pCache!=0 );
642   pCache->szCache = mxPage;
643   sqlite3GlobalConfig.pcache2.xCachesize(pCache->pCache,
644                                          numberOfCachePages(pCache));
645 }
646 
647 /*
648 ** Free up as much memory as possible from the page cache.
649 */
650 void sqlite3PcacheShrink(PCache *pCache){
651   assert( pCache->pCache!=0 );
652   sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache);
653 }
654 
655 /*
656 ** Return the size of the header added by this middleware layer
657 ** in the page-cache hierarchy.
658 */
659 int sqlite3HeaderSizePcache(void){ return ROUND8(sizeof(PgHdr)); }
660 
661 
662 #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG)
663 /*
664 ** For all dirty pages currently in the cache, invoke the specified
665 ** callback. This is only used if the SQLITE_CHECK_PAGES macro is
666 ** defined.
667 */
668 void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){
669   PgHdr *pDirty;
670   for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){
671     xIter(pDirty);
672   }
673 }
674 #endif
675