1 /* 2 ** 2008 August 05 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file implements that page cache. 13 */ 14 #include "sqliteInt.h" 15 16 /* 17 ** A complete page cache is an instance of this structure. Every 18 ** entry in the cache holds a single page of the database file. The 19 ** btree layer only operates on the cached copy of the database pages. 20 ** 21 ** A page cache entry is "clean" if it exactly matches what is currently 22 ** on disk. A page is "dirty" if it has been modified and needs to be 23 ** persisted to disk. 24 ** 25 ** pDirty, pDirtyTail, pSynced: 26 ** All dirty pages are linked into the doubly linked list using 27 ** PgHdr.pDirtyNext and pDirtyPrev. The list is maintained in LRU order 28 ** such that p was added to the list more recently than p->pDirtyNext. 29 ** PCache.pDirty points to the first (newest) element in the list and 30 ** pDirtyTail to the last (oldest). 31 ** 32 ** The PCache.pSynced variable is used to optimize searching for a dirty 33 ** page to eject from the cache mid-transaction. It is better to eject 34 ** a page that does not require a journal sync than one that does. 35 ** Therefore, pSynced is maintained to that it *almost* always points 36 ** to either the oldest page in the pDirty/pDirtyTail list that has a 37 ** clear PGHDR_NEED_SYNC flag or to a page that is older than this one 38 ** (so that the right page to eject can be found by following pDirtyPrev 39 ** pointers). 40 */ 41 struct PCache { 42 PgHdr *pDirty, *pDirtyTail; /* List of dirty pages in LRU order */ 43 PgHdr *pSynced; /* Last synced page in dirty page list */ 44 int nRefSum; /* Sum of ref counts over all pages */ 45 int szCache; /* Configured cache size */ 46 int szSpill; /* Size before spilling occurs */ 47 int szPage; /* Size of every page in this cache */ 48 int szExtra; /* Size of extra space for each page */ 49 u8 bPurgeable; /* True if pages are on backing store */ 50 u8 eCreate; /* eCreate value for for xFetch() */ 51 int (*xStress)(void*,PgHdr*); /* Call to try make a page clean */ 52 void *pStress; /* Argument to xStress */ 53 sqlite3_pcache *pCache; /* Pluggable cache module */ 54 }; 55 56 /********************************** Test and Debug Logic **********************/ 57 /* 58 ** Debug tracing macros. Enable by by changing the "0" to "1" and 59 ** recompiling. 60 ** 61 ** When sqlite3PcacheTrace is 1, single line trace messages are issued. 62 ** When sqlite3PcacheTrace is 2, a dump of the pcache showing all cache entries 63 ** is displayed for many operations, resulting in a lot of output. 64 */ 65 #if defined(SQLITE_DEBUG) && 0 66 int sqlite3PcacheTrace = 2; /* 0: off 1: simple 2: cache dumps */ 67 int sqlite3PcacheMxDump = 9999; /* Max cache entries for pcacheDump() */ 68 # define pcacheTrace(X) if(sqlite3PcacheTrace){sqlite3DebugPrintf X;} 69 void pcacheDump(PCache *pCache){ 70 int N; 71 int i, j; 72 sqlite3_pcache_page *pLower; 73 PgHdr *pPg; 74 unsigned char *a; 75 76 if( sqlite3PcacheTrace<2 ) return; 77 if( pCache->pCache==0 ) return; 78 N = sqlite3PcachePagecount(pCache); 79 if( N>sqlite3PcacheMxDump ) N = sqlite3PcacheMxDump; 80 for(i=1; i<=N; i++){ 81 pLower = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, i, 0); 82 if( pLower==0 ) continue; 83 pPg = (PgHdr*)pLower->pExtra; 84 printf("%3d: nRef %2d flgs %02x data ", i, pPg->nRef, pPg->flags); 85 a = (unsigned char *)pLower->pBuf; 86 for(j=0; j<12; j++) printf("%02x", a[j]); 87 printf("\n"); 88 if( pPg->pPage==0 ){ 89 sqlite3GlobalConfig.pcache2.xUnpin(pCache->pCache, pLower, 0); 90 } 91 } 92 } 93 #else 94 # define pcacheTrace(X) 95 # define pcacheDump(X) 96 #endif 97 98 /* 99 ** Check invariants on a PgHdr entry. Return true if everything is OK. 100 ** Return false if any invariant is violated. 101 ** 102 ** This routine is for use inside of assert() statements only. For 103 ** example: 104 ** 105 ** assert( sqlite3PcachePageSanity(pPg) ); 106 */ 107 #if SQLITE_DEBUG 108 int sqlite3PcachePageSanity(PgHdr *pPg){ 109 PCache *pCache; 110 assert( pPg!=0 ); 111 assert( pPg->pgno>0 ); /* Page number is 1 or more */ 112 pCache = pPg->pCache; 113 assert( pCache!=0 ); /* Every page has an associated PCache */ 114 if( pPg->flags & PGHDR_CLEAN ){ 115 assert( (pPg->flags & PGHDR_DIRTY)==0 );/* Cannot be both CLEAN and DIRTY */ 116 assert( pCache->pDirty!=pPg ); /* CLEAN pages not on dirty list */ 117 assert( pCache->pDirtyTail!=pPg ); 118 } 119 /* WRITEABLE pages must also be DIRTY */ 120 if( pPg->flags & PGHDR_WRITEABLE ){ 121 assert( pPg->flags & PGHDR_DIRTY ); /* WRITEABLE implies DIRTY */ 122 } 123 /* NEED_SYNC can be set independently of WRITEABLE. This can happen, 124 ** for example, when using the sqlite3PagerDontWrite() optimization: 125 ** (1) Page X is journalled, and gets WRITEABLE and NEED_SEEK. 126 ** (2) Page X moved to freelist, WRITEABLE is cleared 127 ** (3) Page X reused, WRITEABLE is set again 128 ** If NEED_SYNC had been cleared in step 2, then it would not be reset 129 ** in step 3, and page might be written into the database without first 130 ** syncing the rollback journal, which might cause corruption on a power 131 ** loss. 132 */ 133 return 1; 134 } 135 #endif /* SQLITE_DEBUG */ 136 137 138 /********************************** Linked List Management ********************/ 139 140 /* Allowed values for second argument to pcacheManageDirtyList() */ 141 #define PCACHE_DIRTYLIST_REMOVE 1 /* Remove pPage from dirty list */ 142 #define PCACHE_DIRTYLIST_ADD 2 /* Add pPage to the dirty list */ 143 #define PCACHE_DIRTYLIST_FRONT 3 /* Move pPage to the front of the list */ 144 145 /* 146 ** Manage pPage's participation on the dirty list. Bits of the addRemove 147 ** argument determines what operation to do. The 0x01 bit means first 148 ** remove pPage from the dirty list. The 0x02 means add pPage back to 149 ** the dirty list. Doing both moves pPage to the front of the dirty list. 150 */ 151 static void pcacheManageDirtyList(PgHdr *pPage, u8 addRemove){ 152 PCache *p = pPage->pCache; 153 154 pcacheTrace(("%p.DIRTYLIST.%s %d\n", p, 155 addRemove==1 ? "REMOVE" : addRemove==2 ? "ADD" : "FRONT", 156 pPage->pgno)); 157 if( addRemove & PCACHE_DIRTYLIST_REMOVE ){ 158 assert( pPage->pDirtyNext || pPage==p->pDirtyTail ); 159 assert( pPage->pDirtyPrev || pPage==p->pDirty ); 160 161 /* Update the PCache1.pSynced variable if necessary. */ 162 if( p->pSynced==pPage ){ 163 p->pSynced = pPage->pDirtyPrev; 164 } 165 166 if( pPage->pDirtyNext ){ 167 pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev; 168 }else{ 169 assert( pPage==p->pDirtyTail ); 170 p->pDirtyTail = pPage->pDirtyPrev; 171 } 172 if( pPage->pDirtyPrev ){ 173 pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext; 174 }else{ 175 /* If there are now no dirty pages in the cache, set eCreate to 2. 176 ** This is an optimization that allows sqlite3PcacheFetch() to skip 177 ** searching for a dirty page to eject from the cache when it might 178 ** otherwise have to. */ 179 assert( pPage==p->pDirty ); 180 p->pDirty = pPage->pDirtyNext; 181 assert( p->bPurgeable || p->eCreate==2 ); 182 if( p->pDirty==0 ){ /*OPTIMIZATION-IF-TRUE*/ 183 assert( p->bPurgeable==0 || p->eCreate==1 ); 184 p->eCreate = 2; 185 } 186 } 187 pPage->pDirtyNext = 0; 188 pPage->pDirtyPrev = 0; 189 } 190 if( addRemove & PCACHE_DIRTYLIST_ADD ){ 191 assert( pPage->pDirtyNext==0 && pPage->pDirtyPrev==0 && p->pDirty!=pPage ); 192 193 pPage->pDirtyNext = p->pDirty; 194 if( pPage->pDirtyNext ){ 195 assert( pPage->pDirtyNext->pDirtyPrev==0 ); 196 pPage->pDirtyNext->pDirtyPrev = pPage; 197 }else{ 198 p->pDirtyTail = pPage; 199 if( p->bPurgeable ){ 200 assert( p->eCreate==2 ); 201 p->eCreate = 1; 202 } 203 } 204 p->pDirty = pPage; 205 206 /* If pSynced is NULL and this page has a clear NEED_SYNC flag, set 207 ** pSynced to point to it. Checking the NEED_SYNC flag is an 208 ** optimization, as if pSynced points to a page with the NEED_SYNC 209 ** flag set sqlite3PcacheFetchStress() searches through all newer 210 ** entries of the dirty-list for a page with NEED_SYNC clear anyway. */ 211 if( !p->pSynced 212 && 0==(pPage->flags&PGHDR_NEED_SYNC) /*OPTIMIZATION-IF-FALSE*/ 213 ){ 214 p->pSynced = pPage; 215 } 216 } 217 pcacheDump(p); 218 } 219 220 /* 221 ** Wrapper around the pluggable caches xUnpin method. If the cache is 222 ** being used for an in-memory database, this function is a no-op. 223 */ 224 static void pcacheUnpin(PgHdr *p){ 225 if( p->pCache->bPurgeable ){ 226 pcacheTrace(("%p.UNPIN %d\n", p->pCache, p->pgno)); 227 sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0); 228 pcacheDump(p->pCache); 229 } 230 } 231 232 /* 233 ** Compute the number of pages of cache requested. p->szCache is the 234 ** cache size requested by the "PRAGMA cache_size" statement. 235 */ 236 static int numberOfCachePages(PCache *p){ 237 if( p->szCache>=0 ){ 238 /* IMPLEMENTATION-OF: R-42059-47211 If the argument N is positive then the 239 ** suggested cache size is set to N. */ 240 return p->szCache; 241 }else{ 242 /* IMPLEMENTATION-OF: R-61436-13639 If the argument N is negative, then 243 ** the number of cache pages is adjusted to use approximately abs(N*1024) 244 ** bytes of memory. */ 245 return (int)((-1024*(i64)p->szCache)/(p->szPage+p->szExtra)); 246 } 247 } 248 249 /*************************************************** General Interfaces ****** 250 ** 251 ** Initialize and shutdown the page cache subsystem. Neither of these 252 ** functions are threadsafe. 253 */ 254 int sqlite3PcacheInitialize(void){ 255 if( sqlite3GlobalConfig.pcache2.xInit==0 ){ 256 /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the 257 ** built-in default page cache is used instead of the application defined 258 ** page cache. */ 259 sqlite3PCacheSetDefault(); 260 } 261 return sqlite3GlobalConfig.pcache2.xInit(sqlite3GlobalConfig.pcache2.pArg); 262 } 263 void sqlite3PcacheShutdown(void){ 264 if( sqlite3GlobalConfig.pcache2.xShutdown ){ 265 /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */ 266 sqlite3GlobalConfig.pcache2.xShutdown(sqlite3GlobalConfig.pcache2.pArg); 267 } 268 } 269 270 /* 271 ** Return the size in bytes of a PCache object. 272 */ 273 int sqlite3PcacheSize(void){ return sizeof(PCache); } 274 275 /* 276 ** Create a new PCache object. Storage space to hold the object 277 ** has already been allocated and is passed in as the p pointer. 278 ** The caller discovers how much space needs to be allocated by 279 ** calling sqlite3PcacheSize(). 280 */ 281 int sqlite3PcacheOpen( 282 int szPage, /* Size of every page */ 283 int szExtra, /* Extra space associated with each page */ 284 int bPurgeable, /* True if pages are on backing store */ 285 int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */ 286 void *pStress, /* Argument to xStress */ 287 PCache *p /* Preallocated space for the PCache */ 288 ){ 289 memset(p, 0, sizeof(PCache)); 290 p->szPage = 1; 291 p->szExtra = szExtra; 292 p->bPurgeable = bPurgeable; 293 p->eCreate = 2; 294 p->xStress = xStress; 295 p->pStress = pStress; 296 p->szCache = 100; 297 p->szSpill = 1; 298 pcacheTrace(("%p.OPEN szPage %d bPurgeable %d\n",p,szPage,bPurgeable)); 299 return sqlite3PcacheSetPageSize(p, szPage); 300 } 301 302 /* 303 ** Change the page size for PCache object. The caller must ensure that there 304 ** are no outstanding page references when this function is called. 305 */ 306 int sqlite3PcacheSetPageSize(PCache *pCache, int szPage){ 307 assert( pCache->nRefSum==0 && pCache->pDirty==0 ); 308 if( pCache->szPage ){ 309 sqlite3_pcache *pNew; 310 pNew = sqlite3GlobalConfig.pcache2.xCreate( 311 szPage, pCache->szExtra + ROUND8(sizeof(PgHdr)), 312 pCache->bPurgeable 313 ); 314 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 315 sqlite3GlobalConfig.pcache2.xCachesize(pNew, numberOfCachePages(pCache)); 316 if( pCache->pCache ){ 317 sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); 318 } 319 pCache->pCache = pNew; 320 pCache->szPage = szPage; 321 pcacheTrace(("%p.PAGESIZE %d\n",pCache,szPage)); 322 } 323 return SQLITE_OK; 324 } 325 326 /* 327 ** Try to obtain a page from the cache. 328 ** 329 ** This routine returns a pointer to an sqlite3_pcache_page object if 330 ** such an object is already in cache, or if a new one is created. 331 ** This routine returns a NULL pointer if the object was not in cache 332 ** and could not be created. 333 ** 334 ** The createFlags should be 0 to check for existing pages and should 335 ** be 3 (not 1, but 3) to try to create a new page. 336 ** 337 ** If the createFlag is 0, then NULL is always returned if the page 338 ** is not already in the cache. If createFlag is 1, then a new page 339 ** is created only if that can be done without spilling dirty pages 340 ** and without exceeding the cache size limit. 341 ** 342 ** The caller needs to invoke sqlite3PcacheFetchFinish() to properly 343 ** initialize the sqlite3_pcache_page object and convert it into a 344 ** PgHdr object. The sqlite3PcacheFetch() and sqlite3PcacheFetchFinish() 345 ** routines are split this way for performance reasons. When separated 346 ** they can both (usually) operate without having to push values to 347 ** the stack on entry and pop them back off on exit, which saves a 348 ** lot of pushing and popping. 349 */ 350 sqlite3_pcache_page *sqlite3PcacheFetch( 351 PCache *pCache, /* Obtain the page from this cache */ 352 Pgno pgno, /* Page number to obtain */ 353 int createFlag /* If true, create page if it does not exist already */ 354 ){ 355 int eCreate; 356 sqlite3_pcache_page *pRes; 357 358 assert( pCache!=0 ); 359 assert( pCache->pCache!=0 ); 360 assert( createFlag==3 || createFlag==0 ); 361 assert( pgno>0 ); 362 assert( pCache->eCreate==((pCache->bPurgeable && pCache->pDirty) ? 1 : 2) ); 363 364 /* eCreate defines what to do if the page does not exist. 365 ** 0 Do not allocate a new page. (createFlag==0) 366 ** 1 Allocate a new page if doing so is inexpensive. 367 ** (createFlag==1 AND bPurgeable AND pDirty) 368 ** 2 Allocate a new page even it doing so is difficult. 369 ** (createFlag==1 AND !(bPurgeable AND pDirty) 370 */ 371 eCreate = createFlag & pCache->eCreate; 372 assert( eCreate==0 || eCreate==1 || eCreate==2 ); 373 assert( createFlag==0 || pCache->eCreate==eCreate ); 374 assert( createFlag==0 || eCreate==1+(!pCache->bPurgeable||!pCache->pDirty) ); 375 pRes = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate); 376 pcacheTrace(("%p.FETCH %d%s (result: %p)\n",pCache,pgno, 377 createFlag?" create":"",pRes)); 378 return pRes; 379 } 380 381 /* 382 ** If the sqlite3PcacheFetch() routine is unable to allocate a new 383 ** page because no clean pages are available for reuse and the cache 384 ** size limit has been reached, then this routine can be invoked to 385 ** try harder to allocate a page. This routine might invoke the stress 386 ** callback to spill dirty pages to the journal. It will then try to 387 ** allocate the new page and will only fail to allocate a new page on 388 ** an OOM error. 389 ** 390 ** This routine should be invoked only after sqlite3PcacheFetch() fails. 391 */ 392 int sqlite3PcacheFetchStress( 393 PCache *pCache, /* Obtain the page from this cache */ 394 Pgno pgno, /* Page number to obtain */ 395 sqlite3_pcache_page **ppPage /* Write result here */ 396 ){ 397 PgHdr *pPg; 398 if( pCache->eCreate==2 ) return 0; 399 400 if( sqlite3PcachePagecount(pCache)>pCache->szSpill ){ 401 /* Find a dirty page to write-out and recycle. First try to find a 402 ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC 403 ** cleared), but if that is not possible settle for any other 404 ** unreferenced dirty page. 405 ** 406 ** If the LRU page in the dirty list that has a clear PGHDR_NEED_SYNC 407 ** flag is currently referenced, then the following may leave pSynced 408 ** set incorrectly (pointing to other than the LRU page with NEED_SYNC 409 ** cleared). This is Ok, as pSynced is just an optimization. */ 410 for(pPg=pCache->pSynced; 411 pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC)); 412 pPg=pPg->pDirtyPrev 413 ); 414 pCache->pSynced = pPg; 415 if( !pPg ){ 416 for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev); 417 } 418 if( pPg ){ 419 int rc; 420 #ifdef SQLITE_LOG_CACHE_SPILL 421 sqlite3_log(SQLITE_FULL, 422 "spill page %d making room for %d - cache used: %d/%d", 423 pPg->pgno, pgno, 424 sqlite3GlobalConfig.pcache.xPagecount(pCache->pCache), 425 numberOfCachePages(pCache)); 426 #endif 427 pcacheTrace(("%p.SPILL %d\n",pCache,pPg->pgno)); 428 rc = pCache->xStress(pCache->pStress, pPg); 429 pcacheDump(pCache); 430 if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){ 431 return rc; 432 } 433 } 434 } 435 *ppPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, 2); 436 return *ppPage==0 ? SQLITE_NOMEM_BKPT : SQLITE_OK; 437 } 438 439 /* 440 ** This is a helper routine for sqlite3PcacheFetchFinish() 441 ** 442 ** In the uncommon case where the page being fetched has not been 443 ** initialized, this routine is invoked to do the initialization. 444 ** This routine is broken out into a separate function since it 445 ** requires extra stack manipulation that can be avoided in the common 446 ** case. 447 */ 448 static SQLITE_NOINLINE PgHdr *pcacheFetchFinishWithInit( 449 PCache *pCache, /* Obtain the page from this cache */ 450 Pgno pgno, /* Page number obtained */ 451 sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ 452 ){ 453 PgHdr *pPgHdr; 454 assert( pPage!=0 ); 455 pPgHdr = (PgHdr*)pPage->pExtra; 456 assert( pPgHdr->pPage==0 ); 457 memset(pPgHdr, 0, sizeof(PgHdr)); 458 pPgHdr->pPage = pPage; 459 pPgHdr->pData = pPage->pBuf; 460 pPgHdr->pExtra = (void *)&pPgHdr[1]; 461 memset(pPgHdr->pExtra, 0, pCache->szExtra); 462 pPgHdr->pCache = pCache; 463 pPgHdr->pgno = pgno; 464 pPgHdr->flags = PGHDR_CLEAN; 465 return sqlite3PcacheFetchFinish(pCache,pgno,pPage); 466 } 467 468 /* 469 ** This routine converts the sqlite3_pcache_page object returned by 470 ** sqlite3PcacheFetch() into an initialized PgHdr object. This routine 471 ** must be called after sqlite3PcacheFetch() in order to get a usable 472 ** result. 473 */ 474 PgHdr *sqlite3PcacheFetchFinish( 475 PCache *pCache, /* Obtain the page from this cache */ 476 Pgno pgno, /* Page number obtained */ 477 sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ 478 ){ 479 PgHdr *pPgHdr; 480 481 assert( pPage!=0 ); 482 pPgHdr = (PgHdr *)pPage->pExtra; 483 484 if( !pPgHdr->pPage ){ 485 return pcacheFetchFinishWithInit(pCache, pgno, pPage); 486 } 487 pCache->nRefSum++; 488 pPgHdr->nRef++; 489 assert( sqlite3PcachePageSanity(pPgHdr) ); 490 return pPgHdr; 491 } 492 493 /* 494 ** Decrement the reference count on a page. If the page is clean and the 495 ** reference count drops to 0, then it is made eligible for recycling. 496 */ 497 void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){ 498 assert( p->nRef>0 ); 499 p->pCache->nRefSum--; 500 if( (--p->nRef)==0 ){ 501 if( p->flags&PGHDR_CLEAN ){ 502 pcacheUnpin(p); 503 }else if( p->pDirtyPrev!=0 ){ /*OPTIMIZATION-IF-FALSE*/ 504 /* Move the page to the head of the dirty list. If p->pDirtyPrev==0, 505 ** then page p is already at the head of the dirty list and the 506 ** following call would be a no-op. Hence the OPTIMIZATION-IF-FALSE 507 ** tag above. */ 508 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); 509 } 510 } 511 } 512 513 /* 514 ** Increase the reference count of a supplied page by 1. 515 */ 516 void sqlite3PcacheRef(PgHdr *p){ 517 assert(p->nRef>0); 518 assert( sqlite3PcachePageSanity(p) ); 519 p->nRef++; 520 p->pCache->nRefSum++; 521 } 522 523 /* 524 ** Drop a page from the cache. There must be exactly one reference to the 525 ** page. This function deletes that reference, so after it returns the 526 ** page pointed to by p is invalid. 527 */ 528 void sqlite3PcacheDrop(PgHdr *p){ 529 assert( p->nRef==1 ); 530 assert( sqlite3PcachePageSanity(p) ); 531 if( p->flags&PGHDR_DIRTY ){ 532 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); 533 } 534 p->pCache->nRefSum--; 535 sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 1); 536 } 537 538 /* 539 ** Make sure the page is marked as dirty. If it isn't dirty already, 540 ** make it so. 541 */ 542 void sqlite3PcacheMakeDirty(PgHdr *p){ 543 assert( p->nRef>0 ); 544 assert( sqlite3PcachePageSanity(p) ); 545 if( p->flags & (PGHDR_CLEAN|PGHDR_DONT_WRITE) ){ /*OPTIMIZATION-IF-FALSE*/ 546 p->flags &= ~PGHDR_DONT_WRITE; 547 if( p->flags & PGHDR_CLEAN ){ 548 p->flags ^= (PGHDR_DIRTY|PGHDR_CLEAN); 549 pcacheTrace(("%p.DIRTY %d\n",p->pCache,p->pgno)); 550 assert( (p->flags & (PGHDR_DIRTY|PGHDR_CLEAN))==PGHDR_DIRTY ); 551 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_ADD); 552 } 553 assert( sqlite3PcachePageSanity(p) ); 554 } 555 } 556 557 /* 558 ** Make sure the page is marked as clean. If it isn't clean already, 559 ** make it so. 560 */ 561 void sqlite3PcacheMakeClean(PgHdr *p){ 562 assert( sqlite3PcachePageSanity(p) ); 563 if( ALWAYS((p->flags & PGHDR_DIRTY)!=0) ){ 564 assert( (p->flags & PGHDR_CLEAN)==0 ); 565 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); 566 p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC|PGHDR_WRITEABLE); 567 p->flags |= PGHDR_CLEAN; 568 pcacheTrace(("%p.CLEAN %d\n",p->pCache,p->pgno)); 569 assert( sqlite3PcachePageSanity(p) ); 570 if( p->nRef==0 ){ 571 pcacheUnpin(p); 572 } 573 } 574 } 575 576 /* 577 ** Make every page in the cache clean. 578 */ 579 void sqlite3PcacheCleanAll(PCache *pCache){ 580 PgHdr *p; 581 pcacheTrace(("%p.CLEAN-ALL\n",pCache)); 582 while( (p = pCache->pDirty)!=0 ){ 583 sqlite3PcacheMakeClean(p); 584 } 585 } 586 587 /* 588 ** Clear the PGHDR_NEED_SYNC and PGHDR_WRITEABLE flag from all dirty pages. 589 */ 590 void sqlite3PcacheClearWritable(PCache *pCache){ 591 PgHdr *p; 592 pcacheTrace(("%p.CLEAR-WRITEABLE\n",pCache)); 593 for(p=pCache->pDirty; p; p=p->pDirtyNext){ 594 p->flags &= ~(PGHDR_NEED_SYNC|PGHDR_WRITEABLE); 595 } 596 pCache->pSynced = pCache->pDirtyTail; 597 } 598 599 /* 600 ** Clear the PGHDR_NEED_SYNC flag from all dirty pages. 601 */ 602 void sqlite3PcacheClearSyncFlags(PCache *pCache){ 603 PgHdr *p; 604 for(p=pCache->pDirty; p; p=p->pDirtyNext){ 605 p->flags &= ~PGHDR_NEED_SYNC; 606 } 607 pCache->pSynced = pCache->pDirtyTail; 608 } 609 610 /* 611 ** Change the page number of page p to newPgno. 612 */ 613 void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){ 614 PCache *pCache = p->pCache; 615 assert( p->nRef>0 ); 616 assert( newPgno>0 ); 617 assert( sqlite3PcachePageSanity(p) ); 618 pcacheTrace(("%p.MOVE %d -> %d\n",pCache,p->pgno,newPgno)); 619 sqlite3GlobalConfig.pcache2.xRekey(pCache->pCache, p->pPage, p->pgno,newPgno); 620 p->pgno = newPgno; 621 if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){ 622 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); 623 } 624 } 625 626 /* 627 ** Drop every cache entry whose page number is greater than "pgno". The 628 ** caller must ensure that there are no outstanding references to any pages 629 ** other than page 1 with a page number greater than pgno. 630 ** 631 ** If there is a reference to page 1 and the pgno parameter passed to this 632 ** function is 0, then the data area associated with page 1 is zeroed, but 633 ** the page object is not dropped. 634 */ 635 void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){ 636 if( pCache->pCache ){ 637 PgHdr *p; 638 PgHdr *pNext; 639 pcacheTrace(("%p.TRUNCATE %d\n",pCache,pgno)); 640 for(p=pCache->pDirty; p; p=pNext){ 641 pNext = p->pDirtyNext; 642 /* This routine never gets call with a positive pgno except right 643 ** after sqlite3PcacheCleanAll(). So if there are dirty pages, 644 ** it must be that pgno==0. 645 */ 646 assert( p->pgno>0 ); 647 if( p->pgno>pgno ){ 648 assert( p->flags&PGHDR_DIRTY ); 649 sqlite3PcacheMakeClean(p); 650 } 651 } 652 if( pgno==0 && pCache->nRefSum ){ 653 sqlite3_pcache_page *pPage1; 654 pPage1 = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache,1,0); 655 if( ALWAYS(pPage1) ){ /* Page 1 is always available in cache, because 656 ** pCache->nRefSum>0 */ 657 memset(pPage1->pBuf, 0, pCache->szPage); 658 pgno = 1; 659 } 660 } 661 sqlite3GlobalConfig.pcache2.xTruncate(pCache->pCache, pgno+1); 662 } 663 } 664 665 /* 666 ** Close a cache. 667 */ 668 void sqlite3PcacheClose(PCache *pCache){ 669 assert( pCache->pCache!=0 ); 670 pcacheTrace(("%p.CLOSE\n",pCache)); 671 sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); 672 } 673 674 /* 675 ** Discard the contents of the cache. 676 */ 677 void sqlite3PcacheClear(PCache *pCache){ 678 sqlite3PcacheTruncate(pCache, 0); 679 } 680 681 /* 682 ** Merge two lists of pages connected by pDirty and in pgno order. 683 ** Do not both fixing the pDirtyPrev pointers. 684 */ 685 static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){ 686 PgHdr result, *pTail; 687 pTail = &result; 688 while( pA && pB ){ 689 if( pA->pgno<pB->pgno ){ 690 pTail->pDirty = pA; 691 pTail = pA; 692 pA = pA->pDirty; 693 }else{ 694 pTail->pDirty = pB; 695 pTail = pB; 696 pB = pB->pDirty; 697 } 698 } 699 if( pA ){ 700 pTail->pDirty = pA; 701 }else if( pB ){ 702 pTail->pDirty = pB; 703 }else{ 704 pTail->pDirty = 0; 705 } 706 return result.pDirty; 707 } 708 709 /* 710 ** Sort the list of pages in accending order by pgno. Pages are 711 ** connected by pDirty pointers. The pDirtyPrev pointers are 712 ** corrupted by this sort. 713 ** 714 ** Since there cannot be more than 2^31 distinct pages in a database, 715 ** there cannot be more than 31 buckets required by the merge sorter. 716 ** One extra bucket is added to catch overflow in case something 717 ** ever changes to make the previous sentence incorrect. 718 */ 719 #define N_SORT_BUCKET 32 720 static PgHdr *pcacheSortDirtyList(PgHdr *pIn){ 721 PgHdr *a[N_SORT_BUCKET], *p; 722 int i; 723 memset(a, 0, sizeof(a)); 724 while( pIn ){ 725 p = pIn; 726 pIn = p->pDirty; 727 p->pDirty = 0; 728 for(i=0; ALWAYS(i<N_SORT_BUCKET-1); i++){ 729 if( a[i]==0 ){ 730 a[i] = p; 731 break; 732 }else{ 733 p = pcacheMergeDirtyList(a[i], p); 734 a[i] = 0; 735 } 736 } 737 if( NEVER(i==N_SORT_BUCKET-1) ){ 738 /* To get here, there need to be 2^(N_SORT_BUCKET) elements in 739 ** the input list. But that is impossible. 740 */ 741 a[i] = pcacheMergeDirtyList(a[i], p); 742 } 743 } 744 p = a[0]; 745 for(i=1; i<N_SORT_BUCKET; i++){ 746 p = pcacheMergeDirtyList(p, a[i]); 747 } 748 return p; 749 } 750 751 /* 752 ** Return a list of all dirty pages in the cache, sorted by page number. 753 */ 754 PgHdr *sqlite3PcacheDirtyList(PCache *pCache){ 755 PgHdr *p; 756 for(p=pCache->pDirty; p; p=p->pDirtyNext){ 757 p->pDirty = p->pDirtyNext; 758 } 759 return pcacheSortDirtyList(pCache->pDirty); 760 } 761 762 /* 763 ** Return the total number of references to all pages held by the cache. 764 ** 765 ** This is not the total number of pages referenced, but the sum of the 766 ** reference count for all pages. 767 */ 768 int sqlite3PcacheRefCount(PCache *pCache){ 769 return pCache->nRefSum; 770 } 771 772 /* 773 ** Return the number of references to the page supplied as an argument. 774 */ 775 int sqlite3PcachePageRefcount(PgHdr *p){ 776 return p->nRef; 777 } 778 779 /* 780 ** Return the total number of pages in the cache. 781 */ 782 int sqlite3PcachePagecount(PCache *pCache){ 783 assert( pCache->pCache!=0 ); 784 return sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache); 785 } 786 787 #ifdef SQLITE_TEST 788 /* 789 ** Get the suggested cache-size value. 790 */ 791 int sqlite3PcacheGetCachesize(PCache *pCache){ 792 return numberOfCachePages(pCache); 793 } 794 #endif 795 796 /* 797 ** Set the suggested cache-size value. 798 */ 799 void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){ 800 assert( pCache->pCache!=0 ); 801 pCache->szCache = mxPage; 802 sqlite3GlobalConfig.pcache2.xCachesize(pCache->pCache, 803 numberOfCachePages(pCache)); 804 } 805 806 /* 807 ** Set the suggested cache-spill value. Make no changes if if the 808 ** argument is zero. Return the effective cache-spill size, which will 809 ** be the larger of the szSpill and szCache. 810 */ 811 int sqlite3PcacheSetSpillsize(PCache *p, int mxPage){ 812 int res; 813 assert( p->pCache!=0 ); 814 if( mxPage ){ 815 if( mxPage<0 ){ 816 mxPage = (int)((-1024*(i64)mxPage)/(p->szPage+p->szExtra)); 817 } 818 p->szSpill = mxPage; 819 } 820 res = numberOfCachePages(p); 821 if( res<p->szSpill ) res = p->szSpill; 822 return res; 823 } 824 825 /* 826 ** Free up as much memory as possible from the page cache. 827 */ 828 void sqlite3PcacheShrink(PCache *pCache){ 829 assert( pCache->pCache!=0 ); 830 sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache); 831 } 832 833 /* 834 ** Return the size of the header added by this middleware layer 835 ** in the page-cache hierarchy. 836 */ 837 int sqlite3HeaderSizePcache(void){ return ROUND8(sizeof(PgHdr)); } 838 839 /* 840 ** Return the number of dirty pages currently in the cache, as a percentage 841 ** of the configured cache size. 842 */ 843 int sqlite3PCachePercentDirty(PCache *pCache){ 844 PgHdr *pDirty; 845 int nDirty = 0; 846 int nCache = numberOfCachePages(pCache); 847 for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext) nDirty++; 848 return nCache ? (int)(((i64)nDirty * 100) / nCache) : 0; 849 } 850 851 #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG) 852 /* 853 ** For all dirty pages currently in the cache, invoke the specified 854 ** callback. This is only used if the SQLITE_CHECK_PAGES macro is 855 ** defined. 856 */ 857 void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){ 858 PgHdr *pDirty; 859 for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){ 860 xIter(pDirty); 861 } 862 } 863 #endif 864