1 /* 2 ** 2008 August 05 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file implements that page cache. 13 */ 14 #include "sqliteInt.h" 15 16 /* 17 ** A complete page cache is an instance of this structure. 18 */ 19 struct PCache { 20 PgHdr *pDirty, *pDirtyTail; /* List of dirty pages in LRU order */ 21 PgHdr *pSynced; /* Last synced page in dirty page list */ 22 int nRefSum; /* Sum of ref counts over all pages */ 23 int szCache; /* Configured cache size */ 24 int szSpill; /* Size before spilling occurs */ 25 int szPage; /* Size of every page in this cache */ 26 int szExtra; /* Size of extra space for each page */ 27 u8 bPurgeable; /* True if pages are on backing store */ 28 u8 eCreate; /* eCreate value for for xFetch() */ 29 int (*xStress)(void*,PgHdr*); /* Call to try make a page clean */ 30 void *pStress; /* Argument to xStress */ 31 sqlite3_pcache *pCache; /* Pluggable cache module */ 32 }; 33 34 /********************************** Linked List Management ********************/ 35 36 /* Allowed values for second argument to pcacheManageDirtyList() */ 37 #define PCACHE_DIRTYLIST_REMOVE 1 /* Remove pPage from dirty list */ 38 #define PCACHE_DIRTYLIST_ADD 2 /* Add pPage to the dirty list */ 39 #define PCACHE_DIRTYLIST_FRONT 3 /* Move pPage to the front of the list */ 40 41 /* 42 ** Manage pPage's participation on the dirty list. Bits of the addRemove 43 ** argument determines what operation to do. The 0x01 bit means first 44 ** remove pPage from the dirty list. The 0x02 means add pPage back to 45 ** the dirty list. Doing both moves pPage to the front of the dirty list. 46 */ 47 static void pcacheManageDirtyList(PgHdr *pPage, u8 addRemove){ 48 PCache *p = pPage->pCache; 49 50 if( addRemove & PCACHE_DIRTYLIST_REMOVE ){ 51 assert( pPage->pDirtyNext || pPage==p->pDirtyTail ); 52 assert( pPage->pDirtyPrev || pPage==p->pDirty ); 53 54 /* Update the PCache1.pSynced variable if necessary. */ 55 if( p->pSynced==pPage ){ 56 PgHdr *pSynced = pPage->pDirtyPrev; 57 while( pSynced && (pSynced->flags&PGHDR_NEED_SYNC) ){ 58 pSynced = pSynced->pDirtyPrev; 59 } 60 p->pSynced = pSynced; 61 } 62 63 if( pPage->pDirtyNext ){ 64 pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev; 65 }else{ 66 assert( pPage==p->pDirtyTail ); 67 p->pDirtyTail = pPage->pDirtyPrev; 68 } 69 if( pPage->pDirtyPrev ){ 70 pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext; 71 }else{ 72 assert( pPage==p->pDirty ); 73 p->pDirty = pPage->pDirtyNext; 74 if( p->pDirty==0 && p->bPurgeable ){ 75 assert( p->eCreate==1 ); 76 p->eCreate = 2; 77 } 78 } 79 pPage->pDirtyNext = 0; 80 pPage->pDirtyPrev = 0; 81 } 82 if( addRemove & PCACHE_DIRTYLIST_ADD ){ 83 assert( pPage->pDirtyNext==0 && pPage->pDirtyPrev==0 && p->pDirty!=pPage ); 84 85 pPage->pDirtyNext = p->pDirty; 86 if( pPage->pDirtyNext ){ 87 assert( pPage->pDirtyNext->pDirtyPrev==0 ); 88 pPage->pDirtyNext->pDirtyPrev = pPage; 89 }else{ 90 p->pDirtyTail = pPage; 91 if( p->bPurgeable ){ 92 assert( p->eCreate==2 ); 93 p->eCreate = 1; 94 } 95 } 96 p->pDirty = pPage; 97 if( !p->pSynced && 0==(pPage->flags&PGHDR_NEED_SYNC) ){ 98 p->pSynced = pPage; 99 } 100 } 101 } 102 103 /* 104 ** Wrapper around the pluggable caches xUnpin method. If the cache is 105 ** being used for an in-memory database, this function is a no-op. 106 */ 107 static void pcacheUnpin(PgHdr *p){ 108 if( p->pCache->bPurgeable ){ 109 sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0); 110 } 111 } 112 113 /* 114 ** Compute the number of pages of cache requested. p->szCache is the 115 ** cache size requested by the "PRAGMA cache_size" statement. 116 */ 117 static int numberOfCachePages(PCache *p){ 118 if( p->szCache>=0 ){ 119 /* IMPLEMENTATION-OF: R-42059-47211 If the argument N is positive then the 120 ** suggested cache size is set to N. */ 121 return p->szCache; 122 }else{ 123 /* IMPLEMENTATION-OF: R-61436-13639 If the argument N is negative, then 124 ** the number of cache pages is adjusted to use approximately abs(N*1024) 125 ** bytes of memory. */ 126 return (int)((-1024*(i64)p->szCache)/(p->szPage+p->szExtra)); 127 } 128 } 129 130 /*************************************************** General Interfaces ****** 131 ** 132 ** Initialize and shutdown the page cache subsystem. Neither of these 133 ** functions are threadsafe. 134 */ 135 int sqlite3PcacheInitialize(void){ 136 if( sqlite3GlobalConfig.pcache2.xInit==0 ){ 137 /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the 138 ** built-in default page cache is used instead of the application defined 139 ** page cache. */ 140 sqlite3PCacheSetDefault(); 141 } 142 return sqlite3GlobalConfig.pcache2.xInit(sqlite3GlobalConfig.pcache2.pArg); 143 } 144 void sqlite3PcacheShutdown(void){ 145 if( sqlite3GlobalConfig.pcache2.xShutdown ){ 146 /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */ 147 sqlite3GlobalConfig.pcache2.xShutdown(sqlite3GlobalConfig.pcache2.pArg); 148 } 149 } 150 151 /* 152 ** Return the size in bytes of a PCache object. 153 */ 154 int sqlite3PcacheSize(void){ return sizeof(PCache); } 155 156 /* 157 ** Create a new PCache object. Storage space to hold the object 158 ** has already been allocated and is passed in as the p pointer. 159 ** The caller discovers how much space needs to be allocated by 160 ** calling sqlite3PcacheSize(). 161 */ 162 int sqlite3PcacheOpen( 163 int szPage, /* Size of every page */ 164 int szExtra, /* Extra space associated with each page */ 165 int bPurgeable, /* True if pages are on backing store */ 166 int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */ 167 void *pStress, /* Argument to xStress */ 168 PCache *p /* Preallocated space for the PCache */ 169 ){ 170 memset(p, 0, sizeof(PCache)); 171 p->szPage = 1; 172 p->szExtra = szExtra; 173 p->bPurgeable = bPurgeable; 174 p->eCreate = 2; 175 p->xStress = xStress; 176 p->pStress = pStress; 177 p->szCache = 100; 178 p->szSpill = 1; 179 return sqlite3PcacheSetPageSize(p, szPage); 180 } 181 182 /* 183 ** Change the page size for PCache object. The caller must ensure that there 184 ** are no outstanding page references when this function is called. 185 */ 186 int sqlite3PcacheSetPageSize(PCache *pCache, int szPage){ 187 assert( pCache->nRefSum==0 && pCache->pDirty==0 ); 188 if( pCache->szPage ){ 189 sqlite3_pcache *pNew; 190 pNew = sqlite3GlobalConfig.pcache2.xCreate( 191 szPage, pCache->szExtra + ROUND8(sizeof(PgHdr)), 192 pCache->bPurgeable 193 ); 194 if( pNew==0 ) return SQLITE_NOMEM; 195 sqlite3GlobalConfig.pcache2.xCachesize(pNew, numberOfCachePages(pCache)); 196 if( pCache->pCache ){ 197 sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); 198 } 199 pCache->pCache = pNew; 200 pCache->szPage = szPage; 201 } 202 return SQLITE_OK; 203 } 204 205 /* 206 ** Try to obtain a page from the cache. 207 ** 208 ** This routine returns a pointer to an sqlite3_pcache_page object if 209 ** such an object is already in cache, or if a new one is created. 210 ** This routine returns a NULL pointer if the object was not in cache 211 ** and could not be created. 212 ** 213 ** The createFlags should be 0 to check for existing pages and should 214 ** be 3 (not 1, but 3) to try to create a new page. 215 ** 216 ** If the createFlag is 0, then NULL is always returned if the page 217 ** is not already in the cache. If createFlag is 1, then a new page 218 ** is created only if that can be done without spilling dirty pages 219 ** and without exceeding the cache size limit. 220 ** 221 ** The caller needs to invoke sqlite3PcacheFetchFinish() to properly 222 ** initialize the sqlite3_pcache_page object and convert it into a 223 ** PgHdr object. The sqlite3PcacheFetch() and sqlite3PcacheFetchFinish() 224 ** routines are split this way for performance reasons. When separated 225 ** they can both (usually) operate without having to push values to 226 ** the stack on entry and pop them back off on exit, which saves a 227 ** lot of pushing and popping. 228 */ 229 sqlite3_pcache_page *sqlite3PcacheFetch( 230 PCache *pCache, /* Obtain the page from this cache */ 231 Pgno pgno, /* Page number to obtain */ 232 int createFlag /* If true, create page if it does not exist already */ 233 ){ 234 int eCreate; 235 236 assert( pCache!=0 ); 237 assert( pCache->pCache!=0 ); 238 assert( createFlag==3 || createFlag==0 ); 239 assert( pgno>0 ); 240 241 /* eCreate defines what to do if the page does not exist. 242 ** 0 Do not allocate a new page. (createFlag==0) 243 ** 1 Allocate a new page if doing so is inexpensive. 244 ** (createFlag==1 AND bPurgeable AND pDirty) 245 ** 2 Allocate a new page even it doing so is difficult. 246 ** (createFlag==1 AND !(bPurgeable AND pDirty) 247 */ 248 eCreate = createFlag & pCache->eCreate; 249 assert( eCreate==0 || eCreate==1 || eCreate==2 ); 250 assert( createFlag==0 || pCache->eCreate==eCreate ); 251 assert( createFlag==0 || eCreate==1+(!pCache->bPurgeable||!pCache->pDirty) ); 252 return sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate); 253 } 254 255 /* 256 ** If the sqlite3PcacheFetch() routine is unable to allocate a new 257 ** page because new clean pages are available for reuse and the cache 258 ** size limit has been reached, then this routine can be invoked to 259 ** try harder to allocate a page. This routine might invoke the stress 260 ** callback to spill dirty pages to the journal. It will then try to 261 ** allocate the new page and will only fail to allocate a new page on 262 ** an OOM error. 263 ** 264 ** This routine should be invoked only after sqlite3PcacheFetch() fails. 265 */ 266 int sqlite3PcacheFetchStress( 267 PCache *pCache, /* Obtain the page from this cache */ 268 Pgno pgno, /* Page number to obtain */ 269 sqlite3_pcache_page **ppPage /* Write result here */ 270 ){ 271 PgHdr *pPg; 272 if( pCache->eCreate==2 ) return 0; 273 274 if( sqlite3PcachePagecount(pCache)>pCache->szSpill ){ 275 /* Find a dirty page to write-out and recycle. First try to find a 276 ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC 277 ** cleared), but if that is not possible settle for any other 278 ** unreferenced dirty page. 279 */ 280 for(pPg=pCache->pSynced; 281 pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC)); 282 pPg=pPg->pDirtyPrev 283 ); 284 pCache->pSynced = pPg; 285 if( !pPg ){ 286 for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev); 287 } 288 if( pPg ){ 289 int rc; 290 #ifdef SQLITE_LOG_CACHE_SPILL 291 sqlite3_log(SQLITE_FULL, 292 "spill page %d making room for %d - cache used: %d/%d", 293 pPg->pgno, pgno, 294 sqlite3GlobalConfig.pcache.xPagecount(pCache->pCache), 295 numberOfCachePages(pCache)); 296 #endif 297 rc = pCache->xStress(pCache->pStress, pPg); 298 if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){ 299 return rc; 300 } 301 } 302 } 303 *ppPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, 2); 304 return *ppPage==0 ? SQLITE_NOMEM : SQLITE_OK; 305 } 306 307 /* 308 ** This is a helper routine for sqlite3PcacheFetchFinish() 309 ** 310 ** In the uncommon case where the page being fetched has not been 311 ** initialized, this routine is invoked to do the initialization. 312 ** This routine is broken out into a separate function since it 313 ** requires extra stack manipulation that can be avoided in the common 314 ** case. 315 */ 316 static SQLITE_NOINLINE PgHdr *pcacheFetchFinishWithInit( 317 PCache *pCache, /* Obtain the page from this cache */ 318 Pgno pgno, /* Page number obtained */ 319 sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ 320 ){ 321 PgHdr *pPgHdr; 322 assert( pPage!=0 ); 323 pPgHdr = (PgHdr*)pPage->pExtra; 324 assert( pPgHdr->pPage==0 ); 325 memset(pPgHdr, 0, sizeof(PgHdr)); 326 pPgHdr->pPage = pPage; 327 pPgHdr->pData = pPage->pBuf; 328 pPgHdr->pExtra = (void *)&pPgHdr[1]; 329 memset(pPgHdr->pExtra, 0, pCache->szExtra); 330 pPgHdr->pCache = pCache; 331 pPgHdr->pgno = pgno; 332 pPgHdr->flags = PGHDR_CLEAN; 333 return sqlite3PcacheFetchFinish(pCache,pgno,pPage); 334 } 335 336 /* 337 ** This routine converts the sqlite3_pcache_page object returned by 338 ** sqlite3PcacheFetch() into an initialized PgHdr object. This routine 339 ** must be called after sqlite3PcacheFetch() in order to get a usable 340 ** result. 341 */ 342 PgHdr *sqlite3PcacheFetchFinish( 343 PCache *pCache, /* Obtain the page from this cache */ 344 Pgno pgno, /* Page number obtained */ 345 sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ 346 ){ 347 PgHdr *pPgHdr; 348 349 assert( pPage!=0 ); 350 pPgHdr = (PgHdr *)pPage->pExtra; 351 352 if( !pPgHdr->pPage ){ 353 return pcacheFetchFinishWithInit(pCache, pgno, pPage); 354 } 355 pCache->nRefSum++; 356 pPgHdr->nRef++; 357 return pPgHdr; 358 } 359 360 /* 361 ** Decrement the reference count on a page. If the page is clean and the 362 ** reference count drops to 0, then it is made eligible for recycling. 363 */ 364 void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){ 365 assert( p->nRef>0 ); 366 p->pCache->nRefSum--; 367 if( (--p->nRef)==0 ){ 368 if( p->flags&PGHDR_CLEAN ){ 369 pcacheUnpin(p); 370 }else if( p->pDirtyPrev!=0 ){ 371 /* Move the page to the head of the dirty list. */ 372 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); 373 } 374 } 375 } 376 377 /* 378 ** Increase the reference count of a supplied page by 1. 379 */ 380 void sqlite3PcacheRef(PgHdr *p){ 381 assert(p->nRef>0); 382 p->nRef++; 383 p->pCache->nRefSum++; 384 } 385 386 /* 387 ** Drop a page from the cache. There must be exactly one reference to the 388 ** page. This function deletes that reference, so after it returns the 389 ** page pointed to by p is invalid. 390 */ 391 void sqlite3PcacheDrop(PgHdr *p){ 392 assert( p->nRef==1 ); 393 if( p->flags&PGHDR_DIRTY ){ 394 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); 395 } 396 p->pCache->nRefSum--; 397 sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 1); 398 } 399 400 /* 401 ** Make sure the page is marked as dirty. If it isn't dirty already, 402 ** make it so. 403 */ 404 void sqlite3PcacheMakeDirty(PgHdr *p){ 405 assert( p->nRef>0 ); 406 if( p->flags & (PGHDR_CLEAN|PGHDR_DONT_WRITE) ){ 407 p->flags &= ~PGHDR_DONT_WRITE; 408 if( p->flags & PGHDR_CLEAN ){ 409 p->flags ^= (PGHDR_DIRTY|PGHDR_CLEAN); 410 assert( (p->flags & (PGHDR_DIRTY|PGHDR_CLEAN))==PGHDR_DIRTY ); 411 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_ADD); 412 } 413 } 414 } 415 416 /* 417 ** Make sure the page is marked as clean. If it isn't clean already, 418 ** make it so. 419 */ 420 void sqlite3PcacheMakeClean(PgHdr *p){ 421 if( (p->flags & PGHDR_DIRTY) ){ 422 assert( (p->flags & PGHDR_CLEAN)==0 ); 423 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); 424 p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC|PGHDR_WRITEABLE); 425 p->flags |= PGHDR_CLEAN; 426 if( p->nRef==0 ){ 427 pcacheUnpin(p); 428 } 429 } 430 } 431 432 /* 433 ** Make every page in the cache clean. 434 */ 435 void sqlite3PcacheCleanAll(PCache *pCache){ 436 PgHdr *p; 437 while( (p = pCache->pDirty)!=0 ){ 438 sqlite3PcacheMakeClean(p); 439 } 440 } 441 442 /* 443 ** Clear the PGHDR_NEED_SYNC flag from all dirty pages. 444 */ 445 void sqlite3PcacheClearSyncFlags(PCache *pCache){ 446 PgHdr *p; 447 for(p=pCache->pDirty; p; p=p->pDirtyNext){ 448 p->flags &= ~PGHDR_NEED_SYNC; 449 } 450 pCache->pSynced = pCache->pDirtyTail; 451 } 452 453 /* 454 ** Change the page number of page p to newPgno. 455 */ 456 void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){ 457 PCache *pCache = p->pCache; 458 assert( p->nRef>0 ); 459 assert( newPgno>0 ); 460 sqlite3GlobalConfig.pcache2.xRekey(pCache->pCache, p->pPage, p->pgno,newPgno); 461 p->pgno = newPgno; 462 if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){ 463 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); 464 } 465 } 466 467 /* 468 ** Drop every cache entry whose page number is greater than "pgno". The 469 ** caller must ensure that there are no outstanding references to any pages 470 ** other than page 1 with a page number greater than pgno. 471 ** 472 ** If there is a reference to page 1 and the pgno parameter passed to this 473 ** function is 0, then the data area associated with page 1 is zeroed, but 474 ** the page object is not dropped. 475 */ 476 void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){ 477 if( pCache->pCache ){ 478 PgHdr *p; 479 PgHdr *pNext; 480 for(p=pCache->pDirty; p; p=pNext){ 481 pNext = p->pDirtyNext; 482 /* This routine never gets call with a positive pgno except right 483 ** after sqlite3PcacheCleanAll(). So if there are dirty pages, 484 ** it must be that pgno==0. 485 */ 486 assert( p->pgno>0 ); 487 if( ALWAYS(p->pgno>pgno) ){ 488 assert( p->flags&PGHDR_DIRTY ); 489 sqlite3PcacheMakeClean(p); 490 } 491 } 492 if( pgno==0 && pCache->nRefSum ){ 493 sqlite3_pcache_page *pPage1; 494 pPage1 = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache,1,0); 495 if( ALWAYS(pPage1) ){ /* Page 1 is always available in cache, because 496 ** pCache->nRefSum>0 */ 497 memset(pPage1->pBuf, 0, pCache->szPage); 498 pgno = 1; 499 } 500 } 501 sqlite3GlobalConfig.pcache2.xTruncate(pCache->pCache, pgno+1); 502 } 503 } 504 505 /* 506 ** Close a cache. 507 */ 508 void sqlite3PcacheClose(PCache *pCache){ 509 assert( pCache->pCache!=0 ); 510 sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); 511 } 512 513 /* 514 ** Discard the contents of the cache. 515 */ 516 void sqlite3PcacheClear(PCache *pCache){ 517 sqlite3PcacheTruncate(pCache, 0); 518 } 519 520 /* 521 ** Merge two lists of pages connected by pDirty and in pgno order. 522 ** Do not both fixing the pDirtyPrev pointers. 523 */ 524 static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){ 525 PgHdr result, *pTail; 526 pTail = &result; 527 while( pA && pB ){ 528 if( pA->pgno<pB->pgno ){ 529 pTail->pDirty = pA; 530 pTail = pA; 531 pA = pA->pDirty; 532 }else{ 533 pTail->pDirty = pB; 534 pTail = pB; 535 pB = pB->pDirty; 536 } 537 } 538 if( pA ){ 539 pTail->pDirty = pA; 540 }else if( pB ){ 541 pTail->pDirty = pB; 542 }else{ 543 pTail->pDirty = 0; 544 } 545 return result.pDirty; 546 } 547 548 /* 549 ** Sort the list of pages in accending order by pgno. Pages are 550 ** connected by pDirty pointers. The pDirtyPrev pointers are 551 ** corrupted by this sort. 552 ** 553 ** Since there cannot be more than 2^31 distinct pages in a database, 554 ** there cannot be more than 31 buckets required by the merge sorter. 555 ** One extra bucket is added to catch overflow in case something 556 ** ever changes to make the previous sentence incorrect. 557 */ 558 #define N_SORT_BUCKET 32 559 static PgHdr *pcacheSortDirtyList(PgHdr *pIn){ 560 PgHdr *a[N_SORT_BUCKET], *p; 561 int i; 562 memset(a, 0, sizeof(a)); 563 while( pIn ){ 564 p = pIn; 565 pIn = p->pDirty; 566 p->pDirty = 0; 567 for(i=0; ALWAYS(i<N_SORT_BUCKET-1); i++){ 568 if( a[i]==0 ){ 569 a[i] = p; 570 break; 571 }else{ 572 p = pcacheMergeDirtyList(a[i], p); 573 a[i] = 0; 574 } 575 } 576 if( NEVER(i==N_SORT_BUCKET-1) ){ 577 /* To get here, there need to be 2^(N_SORT_BUCKET) elements in 578 ** the input list. But that is impossible. 579 */ 580 a[i] = pcacheMergeDirtyList(a[i], p); 581 } 582 } 583 p = a[0]; 584 for(i=1; i<N_SORT_BUCKET; i++){ 585 p = pcacheMergeDirtyList(p, a[i]); 586 } 587 return p; 588 } 589 590 /* 591 ** Return a list of all dirty pages in the cache, sorted by page number. 592 */ 593 PgHdr *sqlite3PcacheDirtyList(PCache *pCache){ 594 PgHdr *p; 595 for(p=pCache->pDirty; p; p=p->pDirtyNext){ 596 p->pDirty = p->pDirtyNext; 597 } 598 return pcacheSortDirtyList(pCache->pDirty); 599 } 600 601 /* 602 ** Return the total number of references to all pages held by the cache. 603 ** 604 ** This is not the total number of pages referenced, but the sum of the 605 ** reference count for all pages. 606 */ 607 int sqlite3PcacheRefCount(PCache *pCache){ 608 return pCache->nRefSum; 609 } 610 611 /* 612 ** Return the number of references to the page supplied as an argument. 613 */ 614 int sqlite3PcachePageRefcount(PgHdr *p){ 615 return p->nRef; 616 } 617 618 /* 619 ** Return the total number of pages in the cache. 620 */ 621 int sqlite3PcachePagecount(PCache *pCache){ 622 assert( pCache->pCache!=0 ); 623 return sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache); 624 } 625 626 #ifdef SQLITE_TEST 627 /* 628 ** Get the suggested cache-size value. 629 */ 630 int sqlite3PcacheGetCachesize(PCache *pCache){ 631 return numberOfCachePages(pCache); 632 } 633 #endif 634 635 /* 636 ** Set the suggested cache-size value. 637 */ 638 void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){ 639 assert( pCache->pCache!=0 ); 640 pCache->szCache = mxPage; 641 sqlite3GlobalConfig.pcache2.xCachesize(pCache->pCache, 642 numberOfCachePages(pCache)); 643 } 644 645 /* 646 ** Set the suggested cache-spill value. Make no changes if if the 647 ** argument is zero. Return the effective cache-spill size, which will 648 ** be the larger of the szSpill and szCache. 649 */ 650 int sqlite3PcacheSetSpillsize(PCache *p, int mxPage){ 651 int res; 652 assert( p->pCache!=0 ); 653 if( mxPage ){ 654 if( mxPage<0 ){ 655 mxPage = (int)((-1024*(i64)mxPage)/(p->szPage+p->szExtra)); 656 } 657 p->szSpill = mxPage; 658 } 659 res = numberOfCachePages(p); 660 if( res<p->szSpill ) res = p->szSpill; 661 return res; 662 } 663 664 /* 665 ** Free up as much memory as possible from the page cache. 666 */ 667 void sqlite3PcacheShrink(PCache *pCache){ 668 assert( pCache->pCache!=0 ); 669 sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache); 670 } 671 672 /* 673 ** Return the size of the header added by this middleware layer 674 ** in the page-cache hierarchy. 675 */ 676 int sqlite3HeaderSizePcache(void){ return ROUND8(sizeof(PgHdr)); } 677 678 679 #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG) 680 /* 681 ** For all dirty pages currently in the cache, invoke the specified 682 ** callback. This is only used if the SQLITE_CHECK_PAGES macro is 683 ** defined. 684 */ 685 void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){ 686 PgHdr *pDirty; 687 for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){ 688 xIter(pDirty); 689 } 690 } 691 #endif 692