1 /* 2 ** 2008 August 05 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file implements that page cache. 13 */ 14 #include "sqliteInt.h" 15 16 /* 17 ** A complete page cache is an instance of this structure. Every 18 ** entry in the cache holds a single page of the database file. The 19 ** btree layer only operates on the cached copy of the database pages. 20 ** 21 ** A page cache entry is "clean" if it exactly matches what is currently 22 ** on disk. A page is "dirty" if it has been modified and needs to be 23 ** persisted to disk. 24 ** 25 ** pDirty, pDirtyTail, pSynced: 26 ** All dirty pages are linked into the doubly linked list using 27 ** PgHdr.pDirtyNext and pDirtyPrev. The list is maintained in LRU order 28 ** such that p was added to the list more recently than p->pDirtyNext. 29 ** PCache.pDirty points to the first (newest) element in the list and 30 ** pDirtyTail to the last (oldest). 31 ** 32 ** The PCache.pSynced variable is used to optimize searching for a dirty 33 ** page to eject from the cache mid-transaction. It is better to eject 34 ** a page that does not require a journal sync than one that does. 35 ** Therefore, pSynced is maintained so that it *almost* always points 36 ** to either the oldest page in the pDirty/pDirtyTail list that has a 37 ** clear PGHDR_NEED_SYNC flag or to a page that is older than this one 38 ** (so that the right page to eject can be found by following pDirtyPrev 39 ** pointers). 40 */ 41 struct PCache { 42 PgHdr *pDirty, *pDirtyTail; /* List of dirty pages in LRU order */ 43 PgHdr *pSynced; /* Last synced page in dirty page list */ 44 int nRefSum; /* Sum of ref counts over all pages */ 45 int szCache; /* Configured cache size */ 46 int szSpill; /* Size before spilling occurs */ 47 int szPage; /* Size of every page in this cache */ 48 int szExtra; /* Size of extra space for each page */ 49 u8 bPurgeable; /* True if pages are on backing store */ 50 u8 eCreate; /* eCreate value for for xFetch() */ 51 int (*xStress)(void*,PgHdr*); /* Call to try make a page clean */ 52 void *pStress; /* Argument to xStress */ 53 sqlite3_pcache *pCache; /* Pluggable cache module */ 54 }; 55 56 /********************************** Test and Debug Logic **********************/ 57 /* 58 ** Debug tracing macros. Enable by by changing the "0" to "1" and 59 ** recompiling. 60 ** 61 ** When sqlite3PcacheTrace is 1, single line trace messages are issued. 62 ** When sqlite3PcacheTrace is 2, a dump of the pcache showing all cache entries 63 ** is displayed for many operations, resulting in a lot of output. 64 */ 65 #if defined(SQLITE_DEBUG) && 0 66 int sqlite3PcacheTrace = 2; /* 0: off 1: simple 2: cache dumps */ 67 int sqlite3PcacheMxDump = 9999; /* Max cache entries for pcacheDump() */ 68 # define pcacheTrace(X) if(sqlite3PcacheTrace){sqlite3DebugPrintf X;} 69 void pcacheDump(PCache *pCache){ 70 int N; 71 int i, j; 72 sqlite3_pcache_page *pLower; 73 PgHdr *pPg; 74 unsigned char *a; 75 76 if( sqlite3PcacheTrace<2 ) return; 77 if( pCache->pCache==0 ) return; 78 N = sqlite3PcachePagecount(pCache); 79 if( N>sqlite3PcacheMxDump ) N = sqlite3PcacheMxDump; 80 for(i=1; i<=N; i++){ 81 pLower = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, i, 0); 82 if( pLower==0 ) continue; 83 pPg = (PgHdr*)pLower->pExtra; 84 printf("%3d: nRef %2d flgs %02x data ", i, pPg->nRef, pPg->flags); 85 a = (unsigned char *)pLower->pBuf; 86 for(j=0; j<12; j++) printf("%02x", a[j]); 87 printf("\n"); 88 if( pPg->pPage==0 ){ 89 sqlite3GlobalConfig.pcache2.xUnpin(pCache->pCache, pLower, 0); 90 } 91 } 92 } 93 #else 94 # define pcacheTrace(X) 95 # define pcacheDump(X) 96 #endif 97 98 /* 99 ** Check invariants on a PgHdr entry. Return true if everything is OK. 100 ** Return false if any invariant is violated. 101 ** 102 ** This routine is for use inside of assert() statements only. For 103 ** example: 104 ** 105 ** assert( sqlite3PcachePageSanity(pPg) ); 106 */ 107 #ifdef SQLITE_DEBUG 108 int sqlite3PcachePageSanity(PgHdr *pPg){ 109 PCache *pCache; 110 assert( pPg!=0 ); 111 assert( pPg->pgno>0 || pPg->pPager==0 ); /* Page number is 1 or more */ 112 pCache = pPg->pCache; 113 assert( pCache!=0 ); /* Every page has an associated PCache */ 114 if( pPg->flags & PGHDR_CLEAN ){ 115 assert( (pPg->flags & PGHDR_DIRTY)==0 );/* Cannot be both CLEAN and DIRTY */ 116 assert( pCache->pDirty!=pPg ); /* CLEAN pages not on dirty list */ 117 assert( pCache->pDirtyTail!=pPg ); 118 } 119 /* WRITEABLE pages must also be DIRTY */ 120 if( pPg->flags & PGHDR_WRITEABLE ){ 121 assert( pPg->flags & PGHDR_DIRTY ); /* WRITEABLE implies DIRTY */ 122 } 123 /* NEED_SYNC can be set independently of WRITEABLE. This can happen, 124 ** for example, when using the sqlite3PagerDontWrite() optimization: 125 ** (1) Page X is journalled, and gets WRITEABLE and NEED_SEEK. 126 ** (2) Page X moved to freelist, WRITEABLE is cleared 127 ** (3) Page X reused, WRITEABLE is set again 128 ** If NEED_SYNC had been cleared in step 2, then it would not be reset 129 ** in step 3, and page might be written into the database without first 130 ** syncing the rollback journal, which might cause corruption on a power 131 ** loss. 132 ** 133 ** Another example is when the database page size is smaller than the 134 ** disk sector size. When any page of a sector is journalled, all pages 135 ** in that sector are marked NEED_SYNC even if they are still CLEAN, just 136 ** in case they are later modified, since all pages in the same sector 137 ** must be journalled and synced before any of those pages can be safely 138 ** written. 139 */ 140 return 1; 141 } 142 #endif /* SQLITE_DEBUG */ 143 144 145 /********************************** Linked List Management ********************/ 146 147 /* Allowed values for second argument to pcacheManageDirtyList() */ 148 #define PCACHE_DIRTYLIST_REMOVE 1 /* Remove pPage from dirty list */ 149 #define PCACHE_DIRTYLIST_ADD 2 /* Add pPage to the dirty list */ 150 #define PCACHE_DIRTYLIST_FRONT 3 /* Move pPage to the front of the list */ 151 152 /* 153 ** Manage pPage's participation on the dirty list. Bits of the addRemove 154 ** argument determines what operation to do. The 0x01 bit means first 155 ** remove pPage from the dirty list. The 0x02 means add pPage back to 156 ** the dirty list. Doing both moves pPage to the front of the dirty list. 157 */ 158 static void pcacheManageDirtyList(PgHdr *pPage, u8 addRemove){ 159 PCache *p = pPage->pCache; 160 161 pcacheTrace(("%p.DIRTYLIST.%s %d\n", p, 162 addRemove==1 ? "REMOVE" : addRemove==2 ? "ADD" : "FRONT", 163 pPage->pgno)); 164 if( addRemove & PCACHE_DIRTYLIST_REMOVE ){ 165 assert( pPage->pDirtyNext || pPage==p->pDirtyTail ); 166 assert( pPage->pDirtyPrev || pPage==p->pDirty ); 167 168 /* Update the PCache1.pSynced variable if necessary. */ 169 if( p->pSynced==pPage ){ 170 p->pSynced = pPage->pDirtyPrev; 171 } 172 173 if( pPage->pDirtyNext ){ 174 pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev; 175 }else{ 176 assert( pPage==p->pDirtyTail ); 177 p->pDirtyTail = pPage->pDirtyPrev; 178 } 179 if( pPage->pDirtyPrev ){ 180 pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext; 181 }else{ 182 /* If there are now no dirty pages in the cache, set eCreate to 2. 183 ** This is an optimization that allows sqlite3PcacheFetch() to skip 184 ** searching for a dirty page to eject from the cache when it might 185 ** otherwise have to. */ 186 assert( pPage==p->pDirty ); 187 p->pDirty = pPage->pDirtyNext; 188 assert( p->bPurgeable || p->eCreate==2 ); 189 if( p->pDirty==0 ){ /*OPTIMIZATION-IF-TRUE*/ 190 assert( p->bPurgeable==0 || p->eCreate==1 ); 191 p->eCreate = 2; 192 } 193 } 194 } 195 if( addRemove & PCACHE_DIRTYLIST_ADD ){ 196 pPage->pDirtyPrev = 0; 197 pPage->pDirtyNext = p->pDirty; 198 if( pPage->pDirtyNext ){ 199 assert( pPage->pDirtyNext->pDirtyPrev==0 ); 200 pPage->pDirtyNext->pDirtyPrev = pPage; 201 }else{ 202 p->pDirtyTail = pPage; 203 if( p->bPurgeable ){ 204 assert( p->eCreate==2 ); 205 p->eCreate = 1; 206 } 207 } 208 p->pDirty = pPage; 209 210 /* If pSynced is NULL and this page has a clear NEED_SYNC flag, set 211 ** pSynced to point to it. Checking the NEED_SYNC flag is an 212 ** optimization, as if pSynced points to a page with the NEED_SYNC 213 ** flag set sqlite3PcacheFetchStress() searches through all newer 214 ** entries of the dirty-list for a page with NEED_SYNC clear anyway. */ 215 if( !p->pSynced 216 && 0==(pPage->flags&PGHDR_NEED_SYNC) /*OPTIMIZATION-IF-FALSE*/ 217 ){ 218 p->pSynced = pPage; 219 } 220 } 221 pcacheDump(p); 222 } 223 224 /* 225 ** Wrapper around the pluggable caches xUnpin method. If the cache is 226 ** being used for an in-memory database, this function is a no-op. 227 */ 228 static void pcacheUnpin(PgHdr *p){ 229 if( p->pCache->bPurgeable ){ 230 pcacheTrace(("%p.UNPIN %d\n", p->pCache, p->pgno)); 231 sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0); 232 pcacheDump(p->pCache); 233 } 234 } 235 236 /* 237 ** Compute the number of pages of cache requested. p->szCache is the 238 ** cache size requested by the "PRAGMA cache_size" statement. 239 */ 240 static int numberOfCachePages(PCache *p){ 241 if( p->szCache>=0 ){ 242 /* IMPLEMENTATION-OF: R-42059-47211 If the argument N is positive then the 243 ** suggested cache size is set to N. */ 244 return p->szCache; 245 }else{ 246 /* IMPLEMENTATION-OF: R-61436-13639 If the argument N is negative, then 247 ** the number of cache pages is adjusted to use approximately abs(N*1024) 248 ** bytes of memory. */ 249 return (int)((-1024*(i64)p->szCache)/(p->szPage+p->szExtra)); 250 } 251 } 252 253 /*************************************************** General Interfaces ****** 254 ** 255 ** Initialize and shutdown the page cache subsystem. Neither of these 256 ** functions are threadsafe. 257 */ 258 int sqlite3PcacheInitialize(void){ 259 if( sqlite3GlobalConfig.pcache2.xInit==0 ){ 260 /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the 261 ** built-in default page cache is used instead of the application defined 262 ** page cache. */ 263 sqlite3PCacheSetDefault(); 264 } 265 return sqlite3GlobalConfig.pcache2.xInit(sqlite3GlobalConfig.pcache2.pArg); 266 } 267 void sqlite3PcacheShutdown(void){ 268 if( sqlite3GlobalConfig.pcache2.xShutdown ){ 269 /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */ 270 sqlite3GlobalConfig.pcache2.xShutdown(sqlite3GlobalConfig.pcache2.pArg); 271 } 272 } 273 274 /* 275 ** Return the size in bytes of a PCache object. 276 */ 277 int sqlite3PcacheSize(void){ return sizeof(PCache); } 278 279 /* 280 ** Create a new PCache object. Storage space to hold the object 281 ** has already been allocated and is passed in as the p pointer. 282 ** The caller discovers how much space needs to be allocated by 283 ** calling sqlite3PcacheSize(). 284 ** 285 ** szExtra is some extra space allocated for each page. The first 286 ** 8 bytes of the extra space will be zeroed as the page is allocated, 287 ** but remaining content will be uninitialized. Though it is opaque 288 ** to this module, the extra space really ends up being the MemPage 289 ** structure in the pager. 290 */ 291 int sqlite3PcacheOpen( 292 int szPage, /* Size of every page */ 293 int szExtra, /* Extra space associated with each page */ 294 int bPurgeable, /* True if pages are on backing store */ 295 int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */ 296 void *pStress, /* Argument to xStress */ 297 PCache *p /* Preallocated space for the PCache */ 298 ){ 299 memset(p, 0, sizeof(PCache)); 300 p->szPage = 1; 301 p->szExtra = szExtra; 302 assert( szExtra>=8 ); /* First 8 bytes will be zeroed */ 303 p->bPurgeable = bPurgeable; 304 p->eCreate = 2; 305 p->xStress = xStress; 306 p->pStress = pStress; 307 p->szCache = 100; 308 p->szSpill = 1; 309 pcacheTrace(("%p.OPEN szPage %d bPurgeable %d\n",p,szPage,bPurgeable)); 310 return sqlite3PcacheSetPageSize(p, szPage); 311 } 312 313 /* 314 ** Change the page size for PCache object. The caller must ensure that there 315 ** are no outstanding page references when this function is called. 316 */ 317 int sqlite3PcacheSetPageSize(PCache *pCache, int szPage){ 318 assert( pCache->nRefSum==0 && pCache->pDirty==0 ); 319 if( pCache->szPage ){ 320 sqlite3_pcache *pNew; 321 pNew = sqlite3GlobalConfig.pcache2.xCreate( 322 szPage, pCache->szExtra + ROUND8(sizeof(PgHdr)), 323 pCache->bPurgeable 324 ); 325 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 326 sqlite3GlobalConfig.pcache2.xCachesize(pNew, numberOfCachePages(pCache)); 327 if( pCache->pCache ){ 328 sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); 329 } 330 pCache->pCache = pNew; 331 pCache->szPage = szPage; 332 pcacheTrace(("%p.PAGESIZE %d\n",pCache,szPage)); 333 } 334 return SQLITE_OK; 335 } 336 337 /* 338 ** Try to obtain a page from the cache. 339 ** 340 ** This routine returns a pointer to an sqlite3_pcache_page object if 341 ** such an object is already in cache, or if a new one is created. 342 ** This routine returns a NULL pointer if the object was not in cache 343 ** and could not be created. 344 ** 345 ** The createFlags should be 0 to check for existing pages and should 346 ** be 3 (not 1, but 3) to try to create a new page. 347 ** 348 ** If the createFlag is 0, then NULL is always returned if the page 349 ** is not already in the cache. If createFlag is 1, then a new page 350 ** is created only if that can be done without spilling dirty pages 351 ** and without exceeding the cache size limit. 352 ** 353 ** The caller needs to invoke sqlite3PcacheFetchFinish() to properly 354 ** initialize the sqlite3_pcache_page object and convert it into a 355 ** PgHdr object. The sqlite3PcacheFetch() and sqlite3PcacheFetchFinish() 356 ** routines are split this way for performance reasons. When separated 357 ** they can both (usually) operate without having to push values to 358 ** the stack on entry and pop them back off on exit, which saves a 359 ** lot of pushing and popping. 360 */ 361 sqlite3_pcache_page *sqlite3PcacheFetch( 362 PCache *pCache, /* Obtain the page from this cache */ 363 Pgno pgno, /* Page number to obtain */ 364 int createFlag /* If true, create page if it does not exist already */ 365 ){ 366 int eCreate; 367 sqlite3_pcache_page *pRes; 368 369 assert( pCache!=0 ); 370 assert( pCache->pCache!=0 ); 371 assert( createFlag==3 || createFlag==0 ); 372 assert( pCache->eCreate==((pCache->bPurgeable && pCache->pDirty) ? 1 : 2) ); 373 374 /* eCreate defines what to do if the page does not exist. 375 ** 0 Do not allocate a new page. (createFlag==0) 376 ** 1 Allocate a new page if doing so is inexpensive. 377 ** (createFlag==1 AND bPurgeable AND pDirty) 378 ** 2 Allocate a new page even it doing so is difficult. 379 ** (createFlag==1 AND !(bPurgeable AND pDirty) 380 */ 381 eCreate = createFlag & pCache->eCreate; 382 assert( eCreate==0 || eCreate==1 || eCreate==2 ); 383 assert( createFlag==0 || pCache->eCreate==eCreate ); 384 assert( createFlag==0 || eCreate==1+(!pCache->bPurgeable||!pCache->pDirty) ); 385 pRes = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate); 386 pcacheTrace(("%p.FETCH %d%s (result: %p)\n",pCache,pgno, 387 createFlag?" create":"",pRes)); 388 return pRes; 389 } 390 391 /* 392 ** If the sqlite3PcacheFetch() routine is unable to allocate a new 393 ** page because no clean pages are available for reuse and the cache 394 ** size limit has been reached, then this routine can be invoked to 395 ** try harder to allocate a page. This routine might invoke the stress 396 ** callback to spill dirty pages to the journal. It will then try to 397 ** allocate the new page and will only fail to allocate a new page on 398 ** an OOM error. 399 ** 400 ** This routine should be invoked only after sqlite3PcacheFetch() fails. 401 */ 402 int sqlite3PcacheFetchStress( 403 PCache *pCache, /* Obtain the page from this cache */ 404 Pgno pgno, /* Page number to obtain */ 405 sqlite3_pcache_page **ppPage /* Write result here */ 406 ){ 407 PgHdr *pPg; 408 if( pCache->eCreate==2 ) return 0; 409 410 if( sqlite3PcachePagecount(pCache)>pCache->szSpill ){ 411 /* Find a dirty page to write-out and recycle. First try to find a 412 ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC 413 ** cleared), but if that is not possible settle for any other 414 ** unreferenced dirty page. 415 ** 416 ** If the LRU page in the dirty list that has a clear PGHDR_NEED_SYNC 417 ** flag is currently referenced, then the following may leave pSynced 418 ** set incorrectly (pointing to other than the LRU page with NEED_SYNC 419 ** cleared). This is Ok, as pSynced is just an optimization. */ 420 for(pPg=pCache->pSynced; 421 pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC)); 422 pPg=pPg->pDirtyPrev 423 ); 424 pCache->pSynced = pPg; 425 if( !pPg ){ 426 for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev); 427 } 428 if( pPg ){ 429 int rc; 430 #ifdef SQLITE_LOG_CACHE_SPILL 431 sqlite3_log(SQLITE_FULL, 432 "spill page %d making room for %d - cache used: %d/%d", 433 pPg->pgno, pgno, 434 sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache), 435 numberOfCachePages(pCache)); 436 #endif 437 pcacheTrace(("%p.SPILL %d\n",pCache,pPg->pgno)); 438 rc = pCache->xStress(pCache->pStress, pPg); 439 pcacheDump(pCache); 440 if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){ 441 return rc; 442 } 443 } 444 } 445 *ppPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, 2); 446 return *ppPage==0 ? SQLITE_NOMEM_BKPT : SQLITE_OK; 447 } 448 449 /* 450 ** This is a helper routine for sqlite3PcacheFetchFinish() 451 ** 452 ** In the uncommon case where the page being fetched has not been 453 ** initialized, this routine is invoked to do the initialization. 454 ** This routine is broken out into a separate function since it 455 ** requires extra stack manipulation that can be avoided in the common 456 ** case. 457 */ 458 static SQLITE_NOINLINE PgHdr *pcacheFetchFinishWithInit( 459 PCache *pCache, /* Obtain the page from this cache */ 460 Pgno pgno, /* Page number obtained */ 461 sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ 462 ){ 463 PgHdr *pPgHdr; 464 assert( pPage!=0 ); 465 pPgHdr = (PgHdr*)pPage->pExtra; 466 assert( pPgHdr->pPage==0 ); 467 memset(&pPgHdr->pDirty, 0, sizeof(PgHdr) - offsetof(PgHdr,pDirty)); 468 pPgHdr->pPage = pPage; 469 pPgHdr->pData = pPage->pBuf; 470 pPgHdr->pExtra = (void *)&pPgHdr[1]; 471 memset(pPgHdr->pExtra, 0, 8); 472 pPgHdr->pCache = pCache; 473 pPgHdr->pgno = pgno; 474 pPgHdr->flags = PGHDR_CLEAN; 475 return sqlite3PcacheFetchFinish(pCache,pgno,pPage); 476 } 477 478 /* 479 ** This routine converts the sqlite3_pcache_page object returned by 480 ** sqlite3PcacheFetch() into an initialized PgHdr object. This routine 481 ** must be called after sqlite3PcacheFetch() in order to get a usable 482 ** result. 483 */ 484 PgHdr *sqlite3PcacheFetchFinish( 485 PCache *pCache, /* Obtain the page from this cache */ 486 Pgno pgno, /* Page number obtained */ 487 sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ 488 ){ 489 PgHdr *pPgHdr; 490 491 assert( pPage!=0 ); 492 pPgHdr = (PgHdr *)pPage->pExtra; 493 494 if( !pPgHdr->pPage ){ 495 return pcacheFetchFinishWithInit(pCache, pgno, pPage); 496 } 497 pCache->nRefSum++; 498 pPgHdr->nRef++; 499 assert( sqlite3PcachePageSanity(pPgHdr) ); 500 return pPgHdr; 501 } 502 503 /* 504 ** Decrement the reference count on a page. If the page is clean and the 505 ** reference count drops to 0, then it is made eligible for recycling. 506 */ 507 void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){ 508 assert( p->nRef>0 ); 509 p->pCache->nRefSum--; 510 if( (--p->nRef)==0 ){ 511 if( p->flags&PGHDR_CLEAN ){ 512 pcacheUnpin(p); 513 }else{ 514 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); 515 } 516 } 517 } 518 519 /* 520 ** Increase the reference count of a supplied page by 1. 521 */ 522 void sqlite3PcacheRef(PgHdr *p){ 523 assert(p->nRef>0); 524 assert( sqlite3PcachePageSanity(p) ); 525 p->nRef++; 526 p->pCache->nRefSum++; 527 } 528 529 /* 530 ** Drop a page from the cache. There must be exactly one reference to the 531 ** page. This function deletes that reference, so after it returns the 532 ** page pointed to by p is invalid. 533 */ 534 void sqlite3PcacheDrop(PgHdr *p){ 535 assert( p->nRef==1 ); 536 assert( sqlite3PcachePageSanity(p) ); 537 if( p->flags&PGHDR_DIRTY ){ 538 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); 539 } 540 p->pCache->nRefSum--; 541 sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 1); 542 } 543 544 /* 545 ** Make sure the page is marked as dirty. If it isn't dirty already, 546 ** make it so. 547 */ 548 void sqlite3PcacheMakeDirty(PgHdr *p){ 549 assert( p->nRef>0 ); 550 assert( sqlite3PcachePageSanity(p) ); 551 if( p->flags & (PGHDR_CLEAN|PGHDR_DONT_WRITE) ){ /*OPTIMIZATION-IF-FALSE*/ 552 p->flags &= ~PGHDR_DONT_WRITE; 553 if( p->flags & PGHDR_CLEAN ){ 554 p->flags ^= (PGHDR_DIRTY|PGHDR_CLEAN); 555 pcacheTrace(("%p.DIRTY %d\n",p->pCache,p->pgno)); 556 assert( (p->flags & (PGHDR_DIRTY|PGHDR_CLEAN))==PGHDR_DIRTY ); 557 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_ADD); 558 } 559 assert( sqlite3PcachePageSanity(p) ); 560 } 561 } 562 563 /* 564 ** Make sure the page is marked as clean. If it isn't clean already, 565 ** make it so. 566 */ 567 void sqlite3PcacheMakeClean(PgHdr *p){ 568 assert( sqlite3PcachePageSanity(p) ); 569 assert( (p->flags & PGHDR_DIRTY)!=0 ); 570 assert( (p->flags & PGHDR_CLEAN)==0 ); 571 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); 572 p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC|PGHDR_WRITEABLE); 573 p->flags |= PGHDR_CLEAN; 574 pcacheTrace(("%p.CLEAN %d\n",p->pCache,p->pgno)); 575 assert( sqlite3PcachePageSanity(p) ); 576 if( p->nRef==0 ){ 577 pcacheUnpin(p); 578 } 579 } 580 581 /* 582 ** Make every page in the cache clean. 583 */ 584 void sqlite3PcacheCleanAll(PCache *pCache){ 585 PgHdr *p; 586 pcacheTrace(("%p.CLEAN-ALL\n",pCache)); 587 while( (p = pCache->pDirty)!=0 ){ 588 sqlite3PcacheMakeClean(p); 589 } 590 } 591 592 /* 593 ** Clear the PGHDR_NEED_SYNC and PGHDR_WRITEABLE flag from all dirty pages. 594 */ 595 void sqlite3PcacheClearWritable(PCache *pCache){ 596 PgHdr *p; 597 pcacheTrace(("%p.CLEAR-WRITEABLE\n",pCache)); 598 for(p=pCache->pDirty; p; p=p->pDirtyNext){ 599 p->flags &= ~(PGHDR_NEED_SYNC|PGHDR_WRITEABLE); 600 } 601 pCache->pSynced = pCache->pDirtyTail; 602 } 603 604 /* 605 ** Clear the PGHDR_NEED_SYNC flag from all dirty pages. 606 */ 607 void sqlite3PcacheClearSyncFlags(PCache *pCache){ 608 PgHdr *p; 609 for(p=pCache->pDirty; p; p=p->pDirtyNext){ 610 p->flags &= ~PGHDR_NEED_SYNC; 611 } 612 pCache->pSynced = pCache->pDirtyTail; 613 } 614 615 /* 616 ** Change the page number of page p to newPgno. 617 */ 618 void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){ 619 PCache *pCache = p->pCache; 620 assert( p->nRef>0 ); 621 assert( newPgno>0 ); 622 assert( sqlite3PcachePageSanity(p) ); 623 pcacheTrace(("%p.MOVE %d -> %d\n",pCache,p->pgno,newPgno)); 624 sqlite3GlobalConfig.pcache2.xRekey(pCache->pCache, p->pPage, p->pgno,newPgno); 625 p->pgno = newPgno; 626 if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){ 627 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); 628 } 629 } 630 631 /* 632 ** Drop every cache entry whose page number is greater than "pgno". The 633 ** caller must ensure that there are no outstanding references to any pages 634 ** other than page 1 with a page number greater than pgno. 635 ** 636 ** If there is a reference to page 1 and the pgno parameter passed to this 637 ** function is 0, then the data area associated with page 1 is zeroed, but 638 ** the page object is not dropped. 639 */ 640 void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){ 641 if( pCache->pCache ){ 642 PgHdr *p; 643 PgHdr *pNext; 644 pcacheTrace(("%p.TRUNCATE %d\n",pCache,pgno)); 645 for(p=pCache->pDirty; p; p=pNext){ 646 pNext = p->pDirtyNext; 647 /* This routine never gets call with a positive pgno except right 648 ** after sqlite3PcacheCleanAll(). So if there are dirty pages, 649 ** it must be that pgno==0. 650 */ 651 assert( p->pgno>0 ); 652 if( p->pgno>pgno ){ 653 assert( p->flags&PGHDR_DIRTY ); 654 sqlite3PcacheMakeClean(p); 655 } 656 } 657 if( pgno==0 && pCache->nRefSum ){ 658 sqlite3_pcache_page *pPage1; 659 pPage1 = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache,1,0); 660 if( ALWAYS(pPage1) ){ /* Page 1 is always available in cache, because 661 ** pCache->nRefSum>0 */ 662 memset(pPage1->pBuf, 0, pCache->szPage); 663 pgno = 1; 664 } 665 } 666 sqlite3GlobalConfig.pcache2.xTruncate(pCache->pCache, pgno+1); 667 } 668 } 669 670 /* 671 ** Close a cache. 672 */ 673 void sqlite3PcacheClose(PCache *pCache){ 674 assert( pCache->pCache!=0 ); 675 pcacheTrace(("%p.CLOSE\n",pCache)); 676 sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); 677 } 678 679 /* 680 ** Discard the contents of the cache. 681 */ 682 void sqlite3PcacheClear(PCache *pCache){ 683 sqlite3PcacheTruncate(pCache, 0); 684 } 685 686 /* 687 ** Merge two lists of pages connected by pDirty and in pgno order. 688 ** Do not bother fixing the pDirtyPrev pointers. 689 */ 690 static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){ 691 PgHdr result, *pTail; 692 pTail = &result; 693 assert( pA!=0 && pB!=0 ); 694 for(;;){ 695 if( pA->pgno<pB->pgno ){ 696 pTail->pDirty = pA; 697 pTail = pA; 698 pA = pA->pDirty; 699 if( pA==0 ){ 700 pTail->pDirty = pB; 701 break; 702 } 703 }else{ 704 pTail->pDirty = pB; 705 pTail = pB; 706 pB = pB->pDirty; 707 if( pB==0 ){ 708 pTail->pDirty = pA; 709 break; 710 } 711 } 712 } 713 return result.pDirty; 714 } 715 716 /* 717 ** Sort the list of pages in accending order by pgno. Pages are 718 ** connected by pDirty pointers. The pDirtyPrev pointers are 719 ** corrupted by this sort. 720 ** 721 ** Since there cannot be more than 2^31 distinct pages in a database, 722 ** there cannot be more than 31 buckets required by the merge sorter. 723 ** One extra bucket is added to catch overflow in case something 724 ** ever changes to make the previous sentence incorrect. 725 */ 726 #define N_SORT_BUCKET 32 727 static PgHdr *pcacheSortDirtyList(PgHdr *pIn){ 728 PgHdr *a[N_SORT_BUCKET], *p; 729 int i; 730 memset(a, 0, sizeof(a)); 731 while( pIn ){ 732 p = pIn; 733 pIn = p->pDirty; 734 p->pDirty = 0; 735 for(i=0; ALWAYS(i<N_SORT_BUCKET-1); i++){ 736 if( a[i]==0 ){ 737 a[i] = p; 738 break; 739 }else{ 740 p = pcacheMergeDirtyList(a[i], p); 741 a[i] = 0; 742 } 743 } 744 if( NEVER(i==N_SORT_BUCKET-1) ){ 745 /* To get here, there need to be 2^(N_SORT_BUCKET) elements in 746 ** the input list. But that is impossible. 747 */ 748 a[i] = pcacheMergeDirtyList(a[i], p); 749 } 750 } 751 p = a[0]; 752 for(i=1; i<N_SORT_BUCKET; i++){ 753 if( a[i]==0 ) continue; 754 p = p ? pcacheMergeDirtyList(p, a[i]) : a[i]; 755 } 756 return p; 757 } 758 759 /* 760 ** Return a list of all dirty pages in the cache, sorted by page number. 761 */ 762 PgHdr *sqlite3PcacheDirtyList(PCache *pCache){ 763 PgHdr *p; 764 for(p=pCache->pDirty; p; p=p->pDirtyNext){ 765 p->pDirty = p->pDirtyNext; 766 } 767 return pcacheSortDirtyList(pCache->pDirty); 768 } 769 770 /* 771 ** Return the total number of references to all pages held by the cache. 772 ** 773 ** This is not the total number of pages referenced, but the sum of the 774 ** reference count for all pages. 775 */ 776 int sqlite3PcacheRefCount(PCache *pCache){ 777 return pCache->nRefSum; 778 } 779 780 /* 781 ** Return the number of references to the page supplied as an argument. 782 */ 783 int sqlite3PcachePageRefcount(PgHdr *p){ 784 return p->nRef; 785 } 786 787 /* 788 ** Return the total number of pages in the cache. 789 */ 790 int sqlite3PcachePagecount(PCache *pCache){ 791 assert( pCache->pCache!=0 ); 792 return sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache); 793 } 794 795 #ifdef SQLITE_TEST 796 /* 797 ** Get the suggested cache-size value. 798 */ 799 int sqlite3PcacheGetCachesize(PCache *pCache){ 800 return numberOfCachePages(pCache); 801 } 802 #endif 803 804 /* 805 ** Set the suggested cache-size value. 806 */ 807 void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){ 808 assert( pCache->pCache!=0 ); 809 pCache->szCache = mxPage; 810 sqlite3GlobalConfig.pcache2.xCachesize(pCache->pCache, 811 numberOfCachePages(pCache)); 812 } 813 814 /* 815 ** Set the suggested cache-spill value. Make no changes if if the 816 ** argument is zero. Return the effective cache-spill size, which will 817 ** be the larger of the szSpill and szCache. 818 */ 819 int sqlite3PcacheSetSpillsize(PCache *p, int mxPage){ 820 int res; 821 assert( p->pCache!=0 ); 822 if( mxPage ){ 823 if( mxPage<0 ){ 824 mxPage = (int)((-1024*(i64)mxPage)/(p->szPage+p->szExtra)); 825 } 826 p->szSpill = mxPage; 827 } 828 res = numberOfCachePages(p); 829 if( res<p->szSpill ) res = p->szSpill; 830 return res; 831 } 832 833 /* 834 ** Free up as much memory as possible from the page cache. 835 */ 836 void sqlite3PcacheShrink(PCache *pCache){ 837 assert( pCache->pCache!=0 ); 838 sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache); 839 } 840 841 /* 842 ** Return the size of the header added by this middleware layer 843 ** in the page-cache hierarchy. 844 */ 845 int sqlite3HeaderSizePcache(void){ return ROUND8(sizeof(PgHdr)); } 846 847 /* 848 ** Return the number of dirty pages currently in the cache, as a percentage 849 ** of the configured cache size. 850 */ 851 int sqlite3PCachePercentDirty(PCache *pCache){ 852 PgHdr *pDirty; 853 int nDirty = 0; 854 int nCache = numberOfCachePages(pCache); 855 for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext) nDirty++; 856 return nCache ? (int)(((i64)nDirty * 100) / nCache) : 0; 857 } 858 859 #ifdef SQLITE_DIRECT_OVERFLOW_READ 860 /* 861 ** Return true if there are one or more dirty pages in the cache. Else false. 862 */ 863 int sqlite3PCacheIsDirty(PCache *pCache){ 864 return (pCache->pDirty!=0); 865 } 866 #endif 867 868 #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG) 869 /* 870 ** For all dirty pages currently in the cache, invoke the specified 871 ** callback. This is only used if the SQLITE_CHECK_PAGES macro is 872 ** defined. 873 */ 874 void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){ 875 PgHdr *pDirty; 876 for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){ 877 xIter(pDirty); 878 } 879 } 880 #endif 881