xref: /sqlite-3.40.0/src/pcache.c (revision 8c53b4e7)
1 /*
2 ** 2008 August 05
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file implements that page cache.
13 */
14 #include "sqliteInt.h"
15 
16 /*
17 ** A complete page cache is an instance of this structure.  Every
18 ** entry in the cache holds a single page of the database file.  The
19 ** btree layer only operates on the cached copy of the database pages.
20 **
21 ** A page cache entry is "clean" if it exactly matches what is currently
22 ** on disk.  A page is "dirty" if it has been modified and needs to be
23 ** persisted to disk.
24 **
25 ** pDirty, pDirtyTail, pSynced:
26 **   All dirty pages are linked into the doubly linked list using
27 **   PgHdr.pDirtyNext and pDirtyPrev. The list is maintained in LRU order
28 **   such that p was added to the list more recently than p->pDirtyNext.
29 **   PCache.pDirty points to the first (newest) element in the list and
30 **   pDirtyTail to the last (oldest).
31 **
32 **   The PCache.pSynced variable is used to optimize searching for a dirty
33 **   page to eject from the cache mid-transaction. It is better to eject
34 **   a page that does not require a journal sync than one that does.
35 **   Therefore, pSynced is maintained so that it *almost* always points
36 **   to either the oldest page in the pDirty/pDirtyTail list that has a
37 **   clear PGHDR_NEED_SYNC flag or to a page that is older than this one
38 **   (so that the right page to eject can be found by following pDirtyPrev
39 **   pointers).
40 */
41 struct PCache {
42   PgHdr *pDirty, *pDirtyTail;         /* List of dirty pages in LRU order */
43   PgHdr *pSynced;                     /* Last synced page in dirty page list */
44   int nRefSum;                        /* Sum of ref counts over all pages */
45   int szCache;                        /* Configured cache size */
46   int szSpill;                        /* Size before spilling occurs */
47   int szPage;                         /* Size of every page in this cache */
48   int szExtra;                        /* Size of extra space for each page */
49   u8 bPurgeable;                      /* True if pages are on backing store */
50   u8 eCreate;                         /* eCreate value for for xFetch() */
51   int (*xStress)(void*,PgHdr*);       /* Call to try make a page clean */
52   void *pStress;                      /* Argument to xStress */
53   sqlite3_pcache *pCache;             /* Pluggable cache module */
54 };
55 
56 /********************************** Test and Debug Logic **********************/
57 /*
58 ** Debug tracing macros.  Enable by by changing the "0" to "1" and
59 ** recompiling.
60 **
61 ** When sqlite3PcacheTrace is 1, single line trace messages are issued.
62 ** When sqlite3PcacheTrace is 2, a dump of the pcache showing all cache entries
63 ** is displayed for many operations, resulting in a lot of output.
64 */
65 #if defined(SQLITE_DEBUG) && 0
66   int sqlite3PcacheTrace = 2;       /* 0: off  1: simple  2: cache dumps */
67   int sqlite3PcacheMxDump = 9999;   /* Max cache entries for pcacheDump() */
68 # define pcacheTrace(X) if(sqlite3PcacheTrace){sqlite3DebugPrintf X;}
69   void pcacheDump(PCache *pCache){
70     int N;
71     int i, j;
72     sqlite3_pcache_page *pLower;
73     PgHdr *pPg;
74     unsigned char *a;
75 
76     if( sqlite3PcacheTrace<2 ) return;
77     if( pCache->pCache==0 ) return;
78     N = sqlite3PcachePagecount(pCache);
79     if( N>sqlite3PcacheMxDump ) N = sqlite3PcacheMxDump;
80     for(i=1; i<=N; i++){
81        pLower = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, i, 0);
82        if( pLower==0 ) continue;
83        pPg = (PgHdr*)pLower->pExtra;
84        printf("%3d: nRef %2d flgs %02x data ", i, pPg->nRef, pPg->flags);
85        a = (unsigned char *)pLower->pBuf;
86        for(j=0; j<12; j++) printf("%02x", a[j]);
87        printf("\n");
88        if( pPg->pPage==0 ){
89          sqlite3GlobalConfig.pcache2.xUnpin(pCache->pCache, pLower, 0);
90        }
91     }
92   }
93   #else
94 # define pcacheTrace(X)
95 # define pcacheDump(X)
96 #endif
97 
98 /*
99 ** Check invariants on a PgHdr entry.  Return true if everything is OK.
100 ** Return false if any invariant is violated.
101 **
102 ** This routine is for use inside of assert() statements only.  For
103 ** example:
104 **
105 **          assert( sqlite3PcachePageSanity(pPg) );
106 */
107 #ifdef SQLITE_DEBUG
108 int sqlite3PcachePageSanity(PgHdr *pPg){
109   PCache *pCache;
110   assert( pPg!=0 );
111   assert( pPg->pgno>0 || pPg->pPager==0 );    /* Page number is 1 or more */
112   pCache = pPg->pCache;
113   assert( pCache!=0 );      /* Every page has an associated PCache */
114   if( pPg->flags & PGHDR_CLEAN ){
115     assert( (pPg->flags & PGHDR_DIRTY)==0 );/* Cannot be both CLEAN and DIRTY */
116     assert( pCache->pDirty!=pPg );          /* CLEAN pages not on dirty list */
117     assert( pCache->pDirtyTail!=pPg );
118   }
119   /* WRITEABLE pages must also be DIRTY */
120   if( pPg->flags & PGHDR_WRITEABLE ){
121     assert( pPg->flags & PGHDR_DIRTY );     /* WRITEABLE implies DIRTY */
122   }
123   /* NEED_SYNC can be set independently of WRITEABLE.  This can happen,
124   ** for example, when using the sqlite3PagerDontWrite() optimization:
125   **    (1)  Page X is journalled, and gets WRITEABLE and NEED_SEEK.
126   **    (2)  Page X moved to freelist, WRITEABLE is cleared
127   **    (3)  Page X reused, WRITEABLE is set again
128   ** If NEED_SYNC had been cleared in step 2, then it would not be reset
129   ** in step 3, and page might be written into the database without first
130   ** syncing the rollback journal, which might cause corruption on a power
131   ** loss.
132   **
133   ** Another example is when the database page size is smaller than the
134   ** disk sector size.  When any page of a sector is journalled, all pages
135   ** in that sector are marked NEED_SYNC even if they are still CLEAN, just
136   ** in case they are later modified, since all pages in the same sector
137   ** must be journalled and synced before any of those pages can be safely
138   ** written.
139   */
140   return 1;
141 }
142 #endif /* SQLITE_DEBUG */
143 
144 
145 /********************************** Linked List Management ********************/
146 
147 /* Allowed values for second argument to pcacheManageDirtyList() */
148 #define PCACHE_DIRTYLIST_REMOVE   1    /* Remove pPage from dirty list */
149 #define PCACHE_DIRTYLIST_ADD      2    /* Add pPage to the dirty list */
150 #define PCACHE_DIRTYLIST_FRONT    3    /* Move pPage to the front of the list */
151 
152 /*
153 ** Manage pPage's participation on the dirty list.  Bits of the addRemove
154 ** argument determines what operation to do.  The 0x01 bit means first
155 ** remove pPage from the dirty list.  The 0x02 means add pPage back to
156 ** the dirty list.  Doing both moves pPage to the front of the dirty list.
157 */
158 static void pcacheManageDirtyList(PgHdr *pPage, u8 addRemove){
159   PCache *p = pPage->pCache;
160 
161   pcacheTrace(("%p.DIRTYLIST.%s %d\n", p,
162                 addRemove==1 ? "REMOVE" : addRemove==2 ? "ADD" : "FRONT",
163                 pPage->pgno));
164   if( addRemove & PCACHE_DIRTYLIST_REMOVE ){
165     assert( pPage->pDirtyNext || pPage==p->pDirtyTail );
166     assert( pPage->pDirtyPrev || pPage==p->pDirty );
167 
168     /* Update the PCache1.pSynced variable if necessary. */
169     if( p->pSynced==pPage ){
170       p->pSynced = pPage->pDirtyPrev;
171     }
172 
173     if( pPage->pDirtyNext ){
174       pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev;
175     }else{
176       assert( pPage==p->pDirtyTail );
177       p->pDirtyTail = pPage->pDirtyPrev;
178     }
179     if( pPage->pDirtyPrev ){
180       pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext;
181     }else{
182       /* If there are now no dirty pages in the cache, set eCreate to 2.
183       ** This is an optimization that allows sqlite3PcacheFetch() to skip
184       ** searching for a dirty page to eject from the cache when it might
185       ** otherwise have to.  */
186       assert( pPage==p->pDirty );
187       p->pDirty = pPage->pDirtyNext;
188       assert( p->bPurgeable || p->eCreate==2 );
189       if( p->pDirty==0 ){         /*OPTIMIZATION-IF-TRUE*/
190         assert( p->bPurgeable==0 || p->eCreate==1 );
191         p->eCreate = 2;
192       }
193     }
194   }
195   if( addRemove & PCACHE_DIRTYLIST_ADD ){
196     pPage->pDirtyPrev = 0;
197     pPage->pDirtyNext = p->pDirty;
198     if( pPage->pDirtyNext ){
199       assert( pPage->pDirtyNext->pDirtyPrev==0 );
200       pPage->pDirtyNext->pDirtyPrev = pPage;
201     }else{
202       p->pDirtyTail = pPage;
203       if( p->bPurgeable ){
204         assert( p->eCreate==2 );
205         p->eCreate = 1;
206       }
207     }
208     p->pDirty = pPage;
209 
210     /* If pSynced is NULL and this page has a clear NEED_SYNC flag, set
211     ** pSynced to point to it. Checking the NEED_SYNC flag is an
212     ** optimization, as if pSynced points to a page with the NEED_SYNC
213     ** flag set sqlite3PcacheFetchStress() searches through all newer
214     ** entries of the dirty-list for a page with NEED_SYNC clear anyway.  */
215     if( !p->pSynced
216      && 0==(pPage->flags&PGHDR_NEED_SYNC)   /*OPTIMIZATION-IF-FALSE*/
217     ){
218       p->pSynced = pPage;
219     }
220   }
221   pcacheDump(p);
222 }
223 
224 /*
225 ** Wrapper around the pluggable caches xUnpin method. If the cache is
226 ** being used for an in-memory database, this function is a no-op.
227 */
228 static void pcacheUnpin(PgHdr *p){
229   if( p->pCache->bPurgeable ){
230     pcacheTrace(("%p.UNPIN %d\n", p->pCache, p->pgno));
231     sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0);
232     pcacheDump(p->pCache);
233   }
234 }
235 
236 /*
237 ** Compute the number of pages of cache requested.   p->szCache is the
238 ** cache size requested by the "PRAGMA cache_size" statement.
239 */
240 static int numberOfCachePages(PCache *p){
241   if( p->szCache>=0 ){
242     /* IMPLEMENTATION-OF: R-42059-47211 If the argument N is positive then the
243     ** suggested cache size is set to N. */
244     return p->szCache;
245   }else{
246     /* IMPLEMENTATION-OF: R-61436-13639 If the argument N is negative, then
247     ** the number of cache pages is adjusted to use approximately abs(N*1024)
248     ** bytes of memory. */
249     return (int)((-1024*(i64)p->szCache)/(p->szPage+p->szExtra));
250   }
251 }
252 
253 /*************************************************** General Interfaces ******
254 **
255 ** Initialize and shutdown the page cache subsystem. Neither of these
256 ** functions are threadsafe.
257 */
258 int sqlite3PcacheInitialize(void){
259   if( sqlite3GlobalConfig.pcache2.xInit==0 ){
260     /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the
261     ** built-in default page cache is used instead of the application defined
262     ** page cache. */
263     sqlite3PCacheSetDefault();
264   }
265   return sqlite3GlobalConfig.pcache2.xInit(sqlite3GlobalConfig.pcache2.pArg);
266 }
267 void sqlite3PcacheShutdown(void){
268   if( sqlite3GlobalConfig.pcache2.xShutdown ){
269     /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */
270     sqlite3GlobalConfig.pcache2.xShutdown(sqlite3GlobalConfig.pcache2.pArg);
271   }
272 }
273 
274 /*
275 ** Return the size in bytes of a PCache object.
276 */
277 int sqlite3PcacheSize(void){ return sizeof(PCache); }
278 
279 /*
280 ** Create a new PCache object. Storage space to hold the object
281 ** has already been allocated and is passed in as the p pointer.
282 ** The caller discovers how much space needs to be allocated by
283 ** calling sqlite3PcacheSize().
284 **
285 ** szExtra is some extra space allocated for each page.  The first
286 ** 8 bytes of the extra space will be zeroed as the page is allocated,
287 ** but remaining content will be uninitialized.  Though it is opaque
288 ** to this module, the extra space really ends up being the MemPage
289 ** structure in the pager.
290 */
291 int sqlite3PcacheOpen(
292   int szPage,                  /* Size of every page */
293   int szExtra,                 /* Extra space associated with each page */
294   int bPurgeable,              /* True if pages are on backing store */
295   int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */
296   void *pStress,               /* Argument to xStress */
297   PCache *p                    /* Preallocated space for the PCache */
298 ){
299   memset(p, 0, sizeof(PCache));
300   p->szPage = 1;
301   p->szExtra = szExtra;
302   assert( szExtra>=8 );  /* First 8 bytes will be zeroed */
303   p->bPurgeable = bPurgeable;
304   p->eCreate = 2;
305   p->xStress = xStress;
306   p->pStress = pStress;
307   p->szCache = 100;
308   p->szSpill = 1;
309   pcacheTrace(("%p.OPEN szPage %d bPurgeable %d\n",p,szPage,bPurgeable));
310   return sqlite3PcacheSetPageSize(p, szPage);
311 }
312 
313 /*
314 ** Change the page size for PCache object. The caller must ensure that there
315 ** are no outstanding page references when this function is called.
316 */
317 int sqlite3PcacheSetPageSize(PCache *pCache, int szPage){
318   assert( pCache->nRefSum==0 && pCache->pDirty==0 );
319   if( pCache->szPage ){
320     sqlite3_pcache *pNew;
321     pNew = sqlite3GlobalConfig.pcache2.xCreate(
322                 szPage, pCache->szExtra + ROUND8(sizeof(PgHdr)),
323                 pCache->bPurgeable
324     );
325     if( pNew==0 ) return SQLITE_NOMEM_BKPT;
326     sqlite3GlobalConfig.pcache2.xCachesize(pNew, numberOfCachePages(pCache));
327     if( pCache->pCache ){
328       sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache);
329     }
330     pCache->pCache = pNew;
331     pCache->szPage = szPage;
332     pcacheTrace(("%p.PAGESIZE %d\n",pCache,szPage));
333   }
334   return SQLITE_OK;
335 }
336 
337 /*
338 ** Try to obtain a page from the cache.
339 **
340 ** This routine returns a pointer to an sqlite3_pcache_page object if
341 ** such an object is already in cache, or if a new one is created.
342 ** This routine returns a NULL pointer if the object was not in cache
343 ** and could not be created.
344 **
345 ** The createFlags should be 0 to check for existing pages and should
346 ** be 3 (not 1, but 3) to try to create a new page.
347 **
348 ** If the createFlag is 0, then NULL is always returned if the page
349 ** is not already in the cache.  If createFlag is 1, then a new page
350 ** is created only if that can be done without spilling dirty pages
351 ** and without exceeding the cache size limit.
352 **
353 ** The caller needs to invoke sqlite3PcacheFetchFinish() to properly
354 ** initialize the sqlite3_pcache_page object and convert it into a
355 ** PgHdr object.  The sqlite3PcacheFetch() and sqlite3PcacheFetchFinish()
356 ** routines are split this way for performance reasons. When separated
357 ** they can both (usually) operate without having to push values to
358 ** the stack on entry and pop them back off on exit, which saves a
359 ** lot of pushing and popping.
360 */
361 sqlite3_pcache_page *sqlite3PcacheFetch(
362   PCache *pCache,       /* Obtain the page from this cache */
363   Pgno pgno,            /* Page number to obtain */
364   int createFlag        /* If true, create page if it does not exist already */
365 ){
366   int eCreate;
367   sqlite3_pcache_page *pRes;
368 
369   assert( pCache!=0 );
370   assert( pCache->pCache!=0 );
371   assert( createFlag==3 || createFlag==0 );
372   assert( pCache->eCreate==((pCache->bPurgeable && pCache->pDirty) ? 1 : 2) );
373 
374   /* eCreate defines what to do if the page does not exist.
375   **    0     Do not allocate a new page.  (createFlag==0)
376   **    1     Allocate a new page if doing so is inexpensive.
377   **          (createFlag==1 AND bPurgeable AND pDirty)
378   **    2     Allocate a new page even it doing so is difficult.
379   **          (createFlag==1 AND !(bPurgeable AND pDirty)
380   */
381   eCreate = createFlag & pCache->eCreate;
382   assert( eCreate==0 || eCreate==1 || eCreate==2 );
383   assert( createFlag==0 || pCache->eCreate==eCreate );
384   assert( createFlag==0 || eCreate==1+(!pCache->bPurgeable||!pCache->pDirty) );
385   pRes = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate);
386   pcacheTrace(("%p.FETCH %d%s (result: %p)\n",pCache,pgno,
387                createFlag?" create":"",pRes));
388   return pRes;
389 }
390 
391 /*
392 ** If the sqlite3PcacheFetch() routine is unable to allocate a new
393 ** page because no clean pages are available for reuse and the cache
394 ** size limit has been reached, then this routine can be invoked to
395 ** try harder to allocate a page.  This routine might invoke the stress
396 ** callback to spill dirty pages to the journal.  It will then try to
397 ** allocate the new page and will only fail to allocate a new page on
398 ** an OOM error.
399 **
400 ** This routine should be invoked only after sqlite3PcacheFetch() fails.
401 */
402 int sqlite3PcacheFetchStress(
403   PCache *pCache,                 /* Obtain the page from this cache */
404   Pgno pgno,                      /* Page number to obtain */
405   sqlite3_pcache_page **ppPage    /* Write result here */
406 ){
407   PgHdr *pPg;
408   if( pCache->eCreate==2 ) return 0;
409 
410   if( sqlite3PcachePagecount(pCache)>pCache->szSpill ){
411     /* Find a dirty page to write-out and recycle. First try to find a
412     ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC
413     ** cleared), but if that is not possible settle for any other
414     ** unreferenced dirty page.
415     **
416     ** If the LRU page in the dirty list that has a clear PGHDR_NEED_SYNC
417     ** flag is currently referenced, then the following may leave pSynced
418     ** set incorrectly (pointing to other than the LRU page with NEED_SYNC
419     ** cleared). This is Ok, as pSynced is just an optimization.  */
420     for(pPg=pCache->pSynced;
421         pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC));
422         pPg=pPg->pDirtyPrev
423     );
424     pCache->pSynced = pPg;
425     if( !pPg ){
426       for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev);
427     }
428     if( pPg ){
429       int rc;
430 #ifdef SQLITE_LOG_CACHE_SPILL
431       sqlite3_log(SQLITE_FULL,
432                   "spill page %d making room for %d - cache used: %d/%d",
433                   pPg->pgno, pgno,
434                   sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache),
435                 numberOfCachePages(pCache));
436 #endif
437       pcacheTrace(("%p.SPILL %d\n",pCache,pPg->pgno));
438       rc = pCache->xStress(pCache->pStress, pPg);
439       pcacheDump(pCache);
440       if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){
441         return rc;
442       }
443     }
444   }
445   *ppPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, 2);
446   return *ppPage==0 ? SQLITE_NOMEM_BKPT : SQLITE_OK;
447 }
448 
449 /*
450 ** This is a helper routine for sqlite3PcacheFetchFinish()
451 **
452 ** In the uncommon case where the page being fetched has not been
453 ** initialized, this routine is invoked to do the initialization.
454 ** This routine is broken out into a separate function since it
455 ** requires extra stack manipulation that can be avoided in the common
456 ** case.
457 */
458 static SQLITE_NOINLINE PgHdr *pcacheFetchFinishWithInit(
459   PCache *pCache,             /* Obtain the page from this cache */
460   Pgno pgno,                  /* Page number obtained */
461   sqlite3_pcache_page *pPage  /* Page obtained by prior PcacheFetch() call */
462 ){
463   PgHdr *pPgHdr;
464   assert( pPage!=0 );
465   pPgHdr = (PgHdr*)pPage->pExtra;
466   assert( pPgHdr->pPage==0 );
467   memset(&pPgHdr->pDirty, 0, sizeof(PgHdr) - offsetof(PgHdr,pDirty));
468   pPgHdr->pPage = pPage;
469   pPgHdr->pData = pPage->pBuf;
470   pPgHdr->pExtra = (void *)&pPgHdr[1];
471   memset(pPgHdr->pExtra, 0, 8);
472   pPgHdr->pCache = pCache;
473   pPgHdr->pgno = pgno;
474   pPgHdr->flags = PGHDR_CLEAN;
475   return sqlite3PcacheFetchFinish(pCache,pgno,pPage);
476 }
477 
478 /*
479 ** This routine converts the sqlite3_pcache_page object returned by
480 ** sqlite3PcacheFetch() into an initialized PgHdr object.  This routine
481 ** must be called after sqlite3PcacheFetch() in order to get a usable
482 ** result.
483 */
484 PgHdr *sqlite3PcacheFetchFinish(
485   PCache *pCache,             /* Obtain the page from this cache */
486   Pgno pgno,                  /* Page number obtained */
487   sqlite3_pcache_page *pPage  /* Page obtained by prior PcacheFetch() call */
488 ){
489   PgHdr *pPgHdr;
490 
491   assert( pPage!=0 );
492   pPgHdr = (PgHdr *)pPage->pExtra;
493 
494   if( !pPgHdr->pPage ){
495     return pcacheFetchFinishWithInit(pCache, pgno, pPage);
496   }
497   pCache->nRefSum++;
498   pPgHdr->nRef++;
499   assert( sqlite3PcachePageSanity(pPgHdr) );
500   return pPgHdr;
501 }
502 
503 /*
504 ** Decrement the reference count on a page. If the page is clean and the
505 ** reference count drops to 0, then it is made eligible for recycling.
506 */
507 void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){
508   assert( p->nRef>0 );
509   p->pCache->nRefSum--;
510   if( (--p->nRef)==0 ){
511     if( p->flags&PGHDR_CLEAN ){
512       pcacheUnpin(p);
513     }else{
514       pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT);
515     }
516   }
517 }
518 
519 /*
520 ** Increase the reference count of a supplied page by 1.
521 */
522 void sqlite3PcacheRef(PgHdr *p){
523   assert(p->nRef>0);
524   assert( sqlite3PcachePageSanity(p) );
525   p->nRef++;
526   p->pCache->nRefSum++;
527 }
528 
529 /*
530 ** Drop a page from the cache. There must be exactly one reference to the
531 ** page. This function deletes that reference, so after it returns the
532 ** page pointed to by p is invalid.
533 */
534 void sqlite3PcacheDrop(PgHdr *p){
535   assert( p->nRef==1 );
536   assert( sqlite3PcachePageSanity(p) );
537   if( p->flags&PGHDR_DIRTY ){
538     pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE);
539   }
540   p->pCache->nRefSum--;
541   sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 1);
542 }
543 
544 /*
545 ** Make sure the page is marked as dirty. If it isn't dirty already,
546 ** make it so.
547 */
548 void sqlite3PcacheMakeDirty(PgHdr *p){
549   assert( p->nRef>0 );
550   assert( sqlite3PcachePageSanity(p) );
551   if( p->flags & (PGHDR_CLEAN|PGHDR_DONT_WRITE) ){    /*OPTIMIZATION-IF-FALSE*/
552     p->flags &= ~PGHDR_DONT_WRITE;
553     if( p->flags & PGHDR_CLEAN ){
554       p->flags ^= (PGHDR_DIRTY|PGHDR_CLEAN);
555       pcacheTrace(("%p.DIRTY %d\n",p->pCache,p->pgno));
556       assert( (p->flags & (PGHDR_DIRTY|PGHDR_CLEAN))==PGHDR_DIRTY );
557       pcacheManageDirtyList(p, PCACHE_DIRTYLIST_ADD);
558     }
559     assert( sqlite3PcachePageSanity(p) );
560   }
561 }
562 
563 /*
564 ** Make sure the page is marked as clean. If it isn't clean already,
565 ** make it so.
566 */
567 void sqlite3PcacheMakeClean(PgHdr *p){
568   assert( sqlite3PcachePageSanity(p) );
569   assert( (p->flags & PGHDR_DIRTY)!=0 );
570   assert( (p->flags & PGHDR_CLEAN)==0 );
571   pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE);
572   p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC|PGHDR_WRITEABLE);
573   p->flags |= PGHDR_CLEAN;
574   pcacheTrace(("%p.CLEAN %d\n",p->pCache,p->pgno));
575   assert( sqlite3PcachePageSanity(p) );
576   if( p->nRef==0 ){
577     pcacheUnpin(p);
578   }
579 }
580 
581 /*
582 ** Make every page in the cache clean.
583 */
584 void sqlite3PcacheCleanAll(PCache *pCache){
585   PgHdr *p;
586   pcacheTrace(("%p.CLEAN-ALL\n",pCache));
587   while( (p = pCache->pDirty)!=0 ){
588     sqlite3PcacheMakeClean(p);
589   }
590 }
591 
592 /*
593 ** Clear the PGHDR_NEED_SYNC and PGHDR_WRITEABLE flag from all dirty pages.
594 */
595 void sqlite3PcacheClearWritable(PCache *pCache){
596   PgHdr *p;
597   pcacheTrace(("%p.CLEAR-WRITEABLE\n",pCache));
598   for(p=pCache->pDirty; p; p=p->pDirtyNext){
599     p->flags &= ~(PGHDR_NEED_SYNC|PGHDR_WRITEABLE);
600   }
601   pCache->pSynced = pCache->pDirtyTail;
602 }
603 
604 /*
605 ** Clear the PGHDR_NEED_SYNC flag from all dirty pages.
606 */
607 void sqlite3PcacheClearSyncFlags(PCache *pCache){
608   PgHdr *p;
609   for(p=pCache->pDirty; p; p=p->pDirtyNext){
610     p->flags &= ~PGHDR_NEED_SYNC;
611   }
612   pCache->pSynced = pCache->pDirtyTail;
613 }
614 
615 /*
616 ** Change the page number of page p to newPgno.
617 */
618 void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){
619   PCache *pCache = p->pCache;
620   assert( p->nRef>0 );
621   assert( newPgno>0 );
622   assert( sqlite3PcachePageSanity(p) );
623   pcacheTrace(("%p.MOVE %d -> %d\n",pCache,p->pgno,newPgno));
624   sqlite3GlobalConfig.pcache2.xRekey(pCache->pCache, p->pPage, p->pgno,newPgno);
625   p->pgno = newPgno;
626   if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){
627     pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT);
628   }
629 }
630 
631 /*
632 ** Drop every cache entry whose page number is greater than "pgno". The
633 ** caller must ensure that there are no outstanding references to any pages
634 ** other than page 1 with a page number greater than pgno.
635 **
636 ** If there is a reference to page 1 and the pgno parameter passed to this
637 ** function is 0, then the data area associated with page 1 is zeroed, but
638 ** the page object is not dropped.
639 */
640 void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){
641   if( pCache->pCache ){
642     PgHdr *p;
643     PgHdr *pNext;
644     pcacheTrace(("%p.TRUNCATE %d\n",pCache,pgno));
645     for(p=pCache->pDirty; p; p=pNext){
646       pNext = p->pDirtyNext;
647       /* This routine never gets call with a positive pgno except right
648       ** after sqlite3PcacheCleanAll().  So if there are dirty pages,
649       ** it must be that pgno==0.
650       */
651       assert( p->pgno>0 );
652       if( p->pgno>pgno ){
653         assert( p->flags&PGHDR_DIRTY );
654         sqlite3PcacheMakeClean(p);
655       }
656     }
657     if( pgno==0 && pCache->nRefSum ){
658       sqlite3_pcache_page *pPage1;
659       pPage1 = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache,1,0);
660       if( ALWAYS(pPage1) ){  /* Page 1 is always available in cache, because
661                              ** pCache->nRefSum>0 */
662         memset(pPage1->pBuf, 0, pCache->szPage);
663         pgno = 1;
664       }
665     }
666     sqlite3GlobalConfig.pcache2.xTruncate(pCache->pCache, pgno+1);
667   }
668 }
669 
670 /*
671 ** Close a cache.
672 */
673 void sqlite3PcacheClose(PCache *pCache){
674   assert( pCache->pCache!=0 );
675   pcacheTrace(("%p.CLOSE\n",pCache));
676   sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache);
677 }
678 
679 /*
680 ** Discard the contents of the cache.
681 */
682 void sqlite3PcacheClear(PCache *pCache){
683   sqlite3PcacheTruncate(pCache, 0);
684 }
685 
686 /*
687 ** Merge two lists of pages connected by pDirty and in pgno order.
688 ** Do not bother fixing the pDirtyPrev pointers.
689 */
690 static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){
691   PgHdr result, *pTail;
692   pTail = &result;
693   assert( pA!=0 && pB!=0 );
694   for(;;){
695     if( pA->pgno<pB->pgno ){
696       pTail->pDirty = pA;
697       pTail = pA;
698       pA = pA->pDirty;
699       if( pA==0 ){
700         pTail->pDirty = pB;
701         break;
702       }
703     }else{
704       pTail->pDirty = pB;
705       pTail = pB;
706       pB = pB->pDirty;
707       if( pB==0 ){
708         pTail->pDirty = pA;
709         break;
710       }
711     }
712   }
713   return result.pDirty;
714 }
715 
716 /*
717 ** Sort the list of pages in accending order by pgno.  Pages are
718 ** connected by pDirty pointers.  The pDirtyPrev pointers are
719 ** corrupted by this sort.
720 **
721 ** Since there cannot be more than 2^31 distinct pages in a database,
722 ** there cannot be more than 31 buckets required by the merge sorter.
723 ** One extra bucket is added to catch overflow in case something
724 ** ever changes to make the previous sentence incorrect.
725 */
726 #define N_SORT_BUCKET  32
727 static PgHdr *pcacheSortDirtyList(PgHdr *pIn){
728   PgHdr *a[N_SORT_BUCKET], *p;
729   int i;
730   memset(a, 0, sizeof(a));
731   while( pIn ){
732     p = pIn;
733     pIn = p->pDirty;
734     p->pDirty = 0;
735     for(i=0; ALWAYS(i<N_SORT_BUCKET-1); i++){
736       if( a[i]==0 ){
737         a[i] = p;
738         break;
739       }else{
740         p = pcacheMergeDirtyList(a[i], p);
741         a[i] = 0;
742       }
743     }
744     if( NEVER(i==N_SORT_BUCKET-1) ){
745       /* To get here, there need to be 2^(N_SORT_BUCKET) elements in
746       ** the input list.  But that is impossible.
747       */
748       a[i] = pcacheMergeDirtyList(a[i], p);
749     }
750   }
751   p = a[0];
752   for(i=1; i<N_SORT_BUCKET; i++){
753     if( a[i]==0 ) continue;
754     p = p ? pcacheMergeDirtyList(p, a[i]) : a[i];
755   }
756   return p;
757 }
758 
759 /*
760 ** Return a list of all dirty pages in the cache, sorted by page number.
761 */
762 PgHdr *sqlite3PcacheDirtyList(PCache *pCache){
763   PgHdr *p;
764   for(p=pCache->pDirty; p; p=p->pDirtyNext){
765     p->pDirty = p->pDirtyNext;
766   }
767   return pcacheSortDirtyList(pCache->pDirty);
768 }
769 
770 /*
771 ** Return the total number of references to all pages held by the cache.
772 **
773 ** This is not the total number of pages referenced, but the sum of the
774 ** reference count for all pages.
775 */
776 int sqlite3PcacheRefCount(PCache *pCache){
777   return pCache->nRefSum;
778 }
779 
780 /*
781 ** Return the number of references to the page supplied as an argument.
782 */
783 int sqlite3PcachePageRefcount(PgHdr *p){
784   return p->nRef;
785 }
786 
787 /*
788 ** Return the total number of pages in the cache.
789 */
790 int sqlite3PcachePagecount(PCache *pCache){
791   assert( pCache->pCache!=0 );
792   return sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache);
793 }
794 
795 #ifdef SQLITE_TEST
796 /*
797 ** Get the suggested cache-size value.
798 */
799 int sqlite3PcacheGetCachesize(PCache *pCache){
800   return numberOfCachePages(pCache);
801 }
802 #endif
803 
804 /*
805 ** Set the suggested cache-size value.
806 */
807 void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){
808   assert( pCache->pCache!=0 );
809   pCache->szCache = mxPage;
810   sqlite3GlobalConfig.pcache2.xCachesize(pCache->pCache,
811                                          numberOfCachePages(pCache));
812 }
813 
814 /*
815 ** Set the suggested cache-spill value.  Make no changes if if the
816 ** argument is zero.  Return the effective cache-spill size, which will
817 ** be the larger of the szSpill and szCache.
818 */
819 int sqlite3PcacheSetSpillsize(PCache *p, int mxPage){
820   int res;
821   assert( p->pCache!=0 );
822   if( mxPage ){
823     if( mxPage<0 ){
824       mxPage = (int)((-1024*(i64)mxPage)/(p->szPage+p->szExtra));
825     }
826     p->szSpill = mxPage;
827   }
828   res = numberOfCachePages(p);
829   if( res<p->szSpill ) res = p->szSpill;
830   return res;
831 }
832 
833 /*
834 ** Free up as much memory as possible from the page cache.
835 */
836 void sqlite3PcacheShrink(PCache *pCache){
837   assert( pCache->pCache!=0 );
838   sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache);
839 }
840 
841 /*
842 ** Return the size of the header added by this middleware layer
843 ** in the page-cache hierarchy.
844 */
845 int sqlite3HeaderSizePcache(void){ return ROUND8(sizeof(PgHdr)); }
846 
847 /*
848 ** Return the number of dirty pages currently in the cache, as a percentage
849 ** of the configured cache size.
850 */
851 int sqlite3PCachePercentDirty(PCache *pCache){
852   PgHdr *pDirty;
853   int nDirty = 0;
854   int nCache = numberOfCachePages(pCache);
855   for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext) nDirty++;
856   return nCache ? (int)(((i64)nDirty * 100) / nCache) : 0;
857 }
858 
859 #ifdef SQLITE_DIRECT_OVERFLOW_READ
860 /*
861 ** Return true if there are one or more dirty pages in the cache. Else false.
862 */
863 int sqlite3PCacheIsDirty(PCache *pCache){
864   return (pCache->pDirty!=0);
865 }
866 #endif
867 
868 #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG)
869 /*
870 ** For all dirty pages currently in the cache, invoke the specified
871 ** callback. This is only used if the SQLITE_CHECK_PAGES macro is
872 ** defined.
873 */
874 void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){
875   PgHdr *pDirty;
876   for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){
877     xIter(pDirty);
878   }
879 }
880 #endif
881