1 /* 2 ** 2008 August 05 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file implements that page cache. 13 */ 14 #include "sqliteInt.h" 15 16 /* 17 ** A complete page cache is an instance of this structure. Every 18 ** entry in the cache holds a single page of the database file. The 19 ** btree layer only operates on the cached copy of the database pages. 20 ** 21 ** A page cache entry is "clean" if it exactly matches what is currently 22 ** on disk. A page is "dirty" if it has been modified and needs to be 23 ** persisted to disk. 24 ** 25 ** pDirty, pDirtyTail, pSynced: 26 ** All dirty pages are linked into the doubly linked list using 27 ** PgHdr.pDirtyNext and pDirtyPrev. The list is maintained in LRU order 28 ** such that p was added to the list more recently than p->pDirtyNext. 29 ** PCache.pDirty points to the first (newest) element in the list and 30 ** pDirtyTail to the last (oldest). 31 ** 32 ** The PCache.pSynced variable is used to optimize searching for a dirty 33 ** page to eject from the cache mid-transaction. It is better to eject 34 ** a page that does not require a journal sync than one that does. 35 ** Therefore, pSynced is maintained to that it *almost* always points 36 ** to either the oldest page in the pDirty/pDirtyTail list that has a 37 ** clear PGHDR_NEED_SYNC flag or to a page that is older than this one 38 ** (so that the right page to eject can be found by following pDirtyPrev 39 ** pointers). 40 */ 41 struct PCache { 42 PgHdr *pDirty, *pDirtyTail; /* List of dirty pages in LRU order */ 43 PgHdr *pSynced; /* Last synced page in dirty page list */ 44 int nRefSum; /* Sum of ref counts over all pages */ 45 int szCache; /* Configured cache size */ 46 int szSpill; /* Size before spilling occurs */ 47 int szPage; /* Size of every page in this cache */ 48 int szExtra; /* Size of extra space for each page */ 49 u8 bPurgeable; /* True if pages are on backing store */ 50 u8 eCreate; /* eCreate value for for xFetch() */ 51 int (*xStress)(void*,PgHdr*); /* Call to try make a page clean */ 52 void *pStress; /* Argument to xStress */ 53 sqlite3_pcache *pCache; /* Pluggable cache module */ 54 }; 55 56 /********************************** Test and Debug Logic **********************/ 57 /* 58 ** Debug tracing macros. Enable by by changing the "0" to "1" and 59 ** recompiling. 60 ** 61 ** When sqlite3PcacheTrace is 1, single line trace messages are issued. 62 ** When sqlite3PcacheTrace is 2, a dump of the pcache showing all cache entries 63 ** is displayed for many operations, resulting in a lot of output. 64 */ 65 #if defined(SQLITE_DEBUG) && 0 66 int sqlite3PcacheTrace = 2; /* 0: off 1: simple 2: cache dumps */ 67 int sqlite3PcacheMxDump = 9999; /* Max cache entries for pcacheDump() */ 68 # define pcacheTrace(X) if(sqlite3PcacheTrace){sqlite3DebugPrintf X;} 69 void pcacheDump(PCache *pCache){ 70 int N; 71 int i, j; 72 sqlite3_pcache_page *pLower; 73 PgHdr *pPg; 74 unsigned char *a; 75 76 if( sqlite3PcacheTrace<2 ) return; 77 if( pCache->pCache==0 ) return; 78 N = sqlite3PcachePagecount(pCache); 79 if( N>sqlite3PcacheMxDump ) N = sqlite3PcacheMxDump; 80 for(i=1; i<=N; i++){ 81 pLower = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, i, 0); 82 if( pLower==0 ) continue; 83 pPg = (PgHdr*)pLower->pExtra; 84 printf("%3d: nRef %2d flgs %02x data ", i, pPg->nRef, pPg->flags); 85 a = (unsigned char *)pLower->pBuf; 86 for(j=0; j<12; j++) printf("%02x", a[j]); 87 printf("\n"); 88 if( pPg->pPage==0 ){ 89 sqlite3GlobalConfig.pcache2.xUnpin(pCache->pCache, pLower, 0); 90 } 91 } 92 } 93 #else 94 # define pcacheTrace(X) 95 # define pcacheDump(X) 96 #endif 97 98 /* 99 ** Check invariants on a PgHdr entry. Return true if everything is OK. 100 ** Return false if any invariant is violated. 101 ** 102 ** This routine is for use inside of assert() statements only. For 103 ** example: 104 ** 105 ** assert( sqlite3PcachePageSanity(pPg) ); 106 */ 107 #if SQLITE_DEBUG 108 int sqlite3PcachePageSanity(PgHdr *pPg){ 109 PCache *pCache; 110 assert( pPg!=0 ); 111 assert( pPg->pgno>0 || pPg->pPager==0 ); /* Page number is 1 or more */ 112 pCache = pPg->pCache; 113 assert( pCache!=0 ); /* Every page has an associated PCache */ 114 if( pPg->flags & PGHDR_CLEAN ){ 115 assert( (pPg->flags & PGHDR_DIRTY)==0 );/* Cannot be both CLEAN and DIRTY */ 116 assert( pCache->pDirty!=pPg ); /* CLEAN pages not on dirty list */ 117 assert( pCache->pDirtyTail!=pPg ); 118 } 119 /* WRITEABLE pages must also be DIRTY */ 120 if( pPg->flags & PGHDR_WRITEABLE ){ 121 assert( pPg->flags & PGHDR_DIRTY ); /* WRITEABLE implies DIRTY */ 122 } 123 /* NEED_SYNC can be set independently of WRITEABLE. This can happen, 124 ** for example, when using the sqlite3PagerDontWrite() optimization: 125 ** (1) Page X is journalled, and gets WRITEABLE and NEED_SEEK. 126 ** (2) Page X moved to freelist, WRITEABLE is cleared 127 ** (3) Page X reused, WRITEABLE is set again 128 ** If NEED_SYNC had been cleared in step 2, then it would not be reset 129 ** in step 3, and page might be written into the database without first 130 ** syncing the rollback journal, which might cause corruption on a power 131 ** loss. 132 ** 133 ** Another example is when the database page size is smaller than the 134 ** disk sector size. When any page of a sector is journalled, all pages 135 ** in that sector are marked NEED_SYNC even if they are still CLEAN, just 136 ** in case they are later modified, since all pages in the same sector 137 ** must be journalled and synced before any of those pages can be safely 138 ** written. 139 */ 140 return 1; 141 } 142 #endif /* SQLITE_DEBUG */ 143 144 145 /********************************** Linked List Management ********************/ 146 147 /* Allowed values for second argument to pcacheManageDirtyList() */ 148 #define PCACHE_DIRTYLIST_REMOVE 1 /* Remove pPage from dirty list */ 149 #define PCACHE_DIRTYLIST_ADD 2 /* Add pPage to the dirty list */ 150 #define PCACHE_DIRTYLIST_FRONT 3 /* Move pPage to the front of the list */ 151 152 /* 153 ** Manage pPage's participation on the dirty list. Bits of the addRemove 154 ** argument determines what operation to do. The 0x01 bit means first 155 ** remove pPage from the dirty list. The 0x02 means add pPage back to 156 ** the dirty list. Doing both moves pPage to the front of the dirty list. 157 */ 158 static void pcacheManageDirtyList(PgHdr *pPage, u8 addRemove){ 159 PCache *p = pPage->pCache; 160 161 pcacheTrace(("%p.DIRTYLIST.%s %d\n", p, 162 addRemove==1 ? "REMOVE" : addRemove==2 ? "ADD" : "FRONT", 163 pPage->pgno)); 164 if( addRemove & PCACHE_DIRTYLIST_REMOVE ){ 165 assert( pPage->pDirtyNext || pPage==p->pDirtyTail ); 166 assert( pPage->pDirtyPrev || pPage==p->pDirty ); 167 168 /* Update the PCache1.pSynced variable if necessary. */ 169 if( p->pSynced==pPage ){ 170 p->pSynced = pPage->pDirtyPrev; 171 } 172 173 if( pPage->pDirtyNext ){ 174 pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev; 175 }else{ 176 assert( pPage==p->pDirtyTail ); 177 p->pDirtyTail = pPage->pDirtyPrev; 178 } 179 if( pPage->pDirtyPrev ){ 180 pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext; 181 }else{ 182 /* If there are now no dirty pages in the cache, set eCreate to 2. 183 ** This is an optimization that allows sqlite3PcacheFetch() to skip 184 ** searching for a dirty page to eject from the cache when it might 185 ** otherwise have to. */ 186 assert( pPage==p->pDirty ); 187 p->pDirty = pPage->pDirtyNext; 188 assert( p->bPurgeable || p->eCreate==2 ); 189 if( p->pDirty==0 ){ /*OPTIMIZATION-IF-TRUE*/ 190 assert( p->bPurgeable==0 || p->eCreate==1 ); 191 p->eCreate = 2; 192 } 193 } 194 pPage->pDirtyNext = 0; 195 pPage->pDirtyPrev = 0; 196 } 197 if( addRemove & PCACHE_DIRTYLIST_ADD ){ 198 assert( pPage->pDirtyNext==0 && pPage->pDirtyPrev==0 && p->pDirty!=pPage ); 199 200 pPage->pDirtyNext = p->pDirty; 201 if( pPage->pDirtyNext ){ 202 assert( pPage->pDirtyNext->pDirtyPrev==0 ); 203 pPage->pDirtyNext->pDirtyPrev = pPage; 204 }else{ 205 p->pDirtyTail = pPage; 206 if( p->bPurgeable ){ 207 assert( p->eCreate==2 ); 208 p->eCreate = 1; 209 } 210 } 211 p->pDirty = pPage; 212 213 /* If pSynced is NULL and this page has a clear NEED_SYNC flag, set 214 ** pSynced to point to it. Checking the NEED_SYNC flag is an 215 ** optimization, as if pSynced points to a page with the NEED_SYNC 216 ** flag set sqlite3PcacheFetchStress() searches through all newer 217 ** entries of the dirty-list for a page with NEED_SYNC clear anyway. */ 218 if( !p->pSynced 219 && 0==(pPage->flags&PGHDR_NEED_SYNC) /*OPTIMIZATION-IF-FALSE*/ 220 ){ 221 p->pSynced = pPage; 222 } 223 } 224 pcacheDump(p); 225 } 226 227 /* 228 ** Wrapper around the pluggable caches xUnpin method. If the cache is 229 ** being used for an in-memory database, this function is a no-op. 230 */ 231 static void pcacheUnpin(PgHdr *p){ 232 if( p->pCache->bPurgeable ){ 233 pcacheTrace(("%p.UNPIN %d\n", p->pCache, p->pgno)); 234 sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0); 235 pcacheDump(p->pCache); 236 } 237 } 238 239 /* 240 ** Compute the number of pages of cache requested. p->szCache is the 241 ** cache size requested by the "PRAGMA cache_size" statement. 242 */ 243 static int numberOfCachePages(PCache *p){ 244 if( p->szCache>=0 ){ 245 /* IMPLEMENTATION-OF: R-42059-47211 If the argument N is positive then the 246 ** suggested cache size is set to N. */ 247 return p->szCache; 248 }else{ 249 /* IMPLEMENTATION-OF: R-61436-13639 If the argument N is negative, then 250 ** the number of cache pages is adjusted to use approximately abs(N*1024) 251 ** bytes of memory. */ 252 return (int)((-1024*(i64)p->szCache)/(p->szPage+p->szExtra)); 253 } 254 } 255 256 /*************************************************** General Interfaces ****** 257 ** 258 ** Initialize and shutdown the page cache subsystem. Neither of these 259 ** functions are threadsafe. 260 */ 261 int sqlite3PcacheInitialize(void){ 262 if( sqlite3GlobalConfig.pcache2.xInit==0 ){ 263 /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the 264 ** built-in default page cache is used instead of the application defined 265 ** page cache. */ 266 sqlite3PCacheSetDefault(); 267 } 268 return sqlite3GlobalConfig.pcache2.xInit(sqlite3GlobalConfig.pcache2.pArg); 269 } 270 void sqlite3PcacheShutdown(void){ 271 if( sqlite3GlobalConfig.pcache2.xShutdown ){ 272 /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */ 273 sqlite3GlobalConfig.pcache2.xShutdown(sqlite3GlobalConfig.pcache2.pArg); 274 } 275 } 276 277 /* 278 ** Return the size in bytes of a PCache object. 279 */ 280 int sqlite3PcacheSize(void){ return sizeof(PCache); } 281 282 /* 283 ** Create a new PCache object. Storage space to hold the object 284 ** has already been allocated and is passed in as the p pointer. 285 ** The caller discovers how much space needs to be allocated by 286 ** calling sqlite3PcacheSize(). 287 ** 288 ** szExtra is some extra space allocated for each page. The first 289 ** 8 bytes of the extra space will be zeroed as the page is allocated, 290 ** but remaining content will be uninitialized. Though it is opaque 291 ** to this module, the extra space really ends up being the MemPage 292 ** structure in the pager. 293 */ 294 int sqlite3PcacheOpen( 295 int szPage, /* Size of every page */ 296 int szExtra, /* Extra space associated with each page */ 297 int bPurgeable, /* True if pages are on backing store */ 298 int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */ 299 void *pStress, /* Argument to xStress */ 300 PCache *p /* Preallocated space for the PCache */ 301 ){ 302 memset(p, 0, sizeof(PCache)); 303 p->szPage = 1; 304 p->szExtra = szExtra; 305 assert( szExtra>=8 ); /* First 8 bytes will be zeroed */ 306 p->bPurgeable = bPurgeable; 307 p->eCreate = 2; 308 p->xStress = xStress; 309 p->pStress = pStress; 310 p->szCache = 100; 311 p->szSpill = 1; 312 pcacheTrace(("%p.OPEN szPage %d bPurgeable %d\n",p,szPage,bPurgeable)); 313 return sqlite3PcacheSetPageSize(p, szPage); 314 } 315 316 /* 317 ** Change the page size for PCache object. The caller must ensure that there 318 ** are no outstanding page references when this function is called. 319 */ 320 int sqlite3PcacheSetPageSize(PCache *pCache, int szPage){ 321 assert( pCache->nRefSum==0 && pCache->pDirty==0 ); 322 if( pCache->szPage ){ 323 sqlite3_pcache *pNew; 324 pNew = sqlite3GlobalConfig.pcache2.xCreate( 325 szPage, pCache->szExtra + ROUND8(sizeof(PgHdr)), 326 pCache->bPurgeable 327 ); 328 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 329 sqlite3GlobalConfig.pcache2.xCachesize(pNew, numberOfCachePages(pCache)); 330 if( pCache->pCache ){ 331 sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); 332 } 333 pCache->pCache = pNew; 334 pCache->szPage = szPage; 335 pcacheTrace(("%p.PAGESIZE %d\n",pCache,szPage)); 336 } 337 return SQLITE_OK; 338 } 339 340 /* 341 ** Try to obtain a page from the cache. 342 ** 343 ** This routine returns a pointer to an sqlite3_pcache_page object if 344 ** such an object is already in cache, or if a new one is created. 345 ** This routine returns a NULL pointer if the object was not in cache 346 ** and could not be created. 347 ** 348 ** The createFlags should be 0 to check for existing pages and should 349 ** be 3 (not 1, but 3) to try to create a new page. 350 ** 351 ** If the createFlag is 0, then NULL is always returned if the page 352 ** is not already in the cache. If createFlag is 1, then a new page 353 ** is created only if that can be done without spilling dirty pages 354 ** and without exceeding the cache size limit. 355 ** 356 ** The caller needs to invoke sqlite3PcacheFetchFinish() to properly 357 ** initialize the sqlite3_pcache_page object and convert it into a 358 ** PgHdr object. The sqlite3PcacheFetch() and sqlite3PcacheFetchFinish() 359 ** routines are split this way for performance reasons. When separated 360 ** they can both (usually) operate without having to push values to 361 ** the stack on entry and pop them back off on exit, which saves a 362 ** lot of pushing and popping. 363 */ 364 sqlite3_pcache_page *sqlite3PcacheFetch( 365 PCache *pCache, /* Obtain the page from this cache */ 366 Pgno pgno, /* Page number to obtain */ 367 int createFlag /* If true, create page if it does not exist already */ 368 ){ 369 int eCreate; 370 sqlite3_pcache_page *pRes; 371 372 assert( pCache!=0 ); 373 assert( pCache->pCache!=0 ); 374 assert( createFlag==3 || createFlag==0 ); 375 assert( pCache->eCreate==((pCache->bPurgeable && pCache->pDirty) ? 1 : 2) ); 376 377 /* eCreate defines what to do if the page does not exist. 378 ** 0 Do not allocate a new page. (createFlag==0) 379 ** 1 Allocate a new page if doing so is inexpensive. 380 ** (createFlag==1 AND bPurgeable AND pDirty) 381 ** 2 Allocate a new page even it doing so is difficult. 382 ** (createFlag==1 AND !(bPurgeable AND pDirty) 383 */ 384 eCreate = createFlag & pCache->eCreate; 385 assert( eCreate==0 || eCreate==1 || eCreate==2 ); 386 assert( createFlag==0 || pCache->eCreate==eCreate ); 387 assert( createFlag==0 || eCreate==1+(!pCache->bPurgeable||!pCache->pDirty) ); 388 pRes = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate); 389 pcacheTrace(("%p.FETCH %d%s (result: %p)\n",pCache,pgno, 390 createFlag?" create":"",pRes)); 391 return pRes; 392 } 393 394 /* 395 ** If the sqlite3PcacheFetch() routine is unable to allocate a new 396 ** page because no clean pages are available for reuse and the cache 397 ** size limit has been reached, then this routine can be invoked to 398 ** try harder to allocate a page. This routine might invoke the stress 399 ** callback to spill dirty pages to the journal. It will then try to 400 ** allocate the new page and will only fail to allocate a new page on 401 ** an OOM error. 402 ** 403 ** This routine should be invoked only after sqlite3PcacheFetch() fails. 404 */ 405 int sqlite3PcacheFetchStress( 406 PCache *pCache, /* Obtain the page from this cache */ 407 Pgno pgno, /* Page number to obtain */ 408 sqlite3_pcache_page **ppPage /* Write result here */ 409 ){ 410 PgHdr *pPg; 411 if( pCache->eCreate==2 ) return 0; 412 413 if( sqlite3PcachePagecount(pCache)>pCache->szSpill ){ 414 /* Find a dirty page to write-out and recycle. First try to find a 415 ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC 416 ** cleared), but if that is not possible settle for any other 417 ** unreferenced dirty page. 418 ** 419 ** If the LRU page in the dirty list that has a clear PGHDR_NEED_SYNC 420 ** flag is currently referenced, then the following may leave pSynced 421 ** set incorrectly (pointing to other than the LRU page with NEED_SYNC 422 ** cleared). This is Ok, as pSynced is just an optimization. */ 423 for(pPg=pCache->pSynced; 424 pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC)); 425 pPg=pPg->pDirtyPrev 426 ); 427 pCache->pSynced = pPg; 428 if( !pPg ){ 429 for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev); 430 } 431 if( pPg ){ 432 int rc; 433 #ifdef SQLITE_LOG_CACHE_SPILL 434 sqlite3_log(SQLITE_FULL, 435 "spill page %d making room for %d - cache used: %d/%d", 436 pPg->pgno, pgno, 437 sqlite3GlobalConfig.pcache.xPagecount(pCache->pCache), 438 numberOfCachePages(pCache)); 439 #endif 440 pcacheTrace(("%p.SPILL %d\n",pCache,pPg->pgno)); 441 rc = pCache->xStress(pCache->pStress, pPg); 442 pcacheDump(pCache); 443 if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){ 444 return rc; 445 } 446 } 447 } 448 *ppPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, 2); 449 return *ppPage==0 ? SQLITE_NOMEM_BKPT : SQLITE_OK; 450 } 451 452 /* 453 ** This is a helper routine for sqlite3PcacheFetchFinish() 454 ** 455 ** In the uncommon case where the page being fetched has not been 456 ** initialized, this routine is invoked to do the initialization. 457 ** This routine is broken out into a separate function since it 458 ** requires extra stack manipulation that can be avoided in the common 459 ** case. 460 */ 461 static SQLITE_NOINLINE PgHdr *pcacheFetchFinishWithInit( 462 PCache *pCache, /* Obtain the page from this cache */ 463 Pgno pgno, /* Page number obtained */ 464 sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ 465 ){ 466 PgHdr *pPgHdr; 467 assert( pPage!=0 ); 468 pPgHdr = (PgHdr*)pPage->pExtra; 469 assert( pPgHdr->pPage==0 ); 470 memset(&pPgHdr->pDirty, 0, sizeof(PgHdr) - offsetof(PgHdr,pDirty)); 471 pPgHdr->pPage = pPage; 472 pPgHdr->pData = pPage->pBuf; 473 pPgHdr->pExtra = (void *)&pPgHdr[1]; 474 memset(pPgHdr->pExtra, 0, 8); 475 pPgHdr->pCache = pCache; 476 pPgHdr->pgno = pgno; 477 pPgHdr->flags = PGHDR_CLEAN; 478 return sqlite3PcacheFetchFinish(pCache,pgno,pPage); 479 } 480 481 /* 482 ** This routine converts the sqlite3_pcache_page object returned by 483 ** sqlite3PcacheFetch() into an initialized PgHdr object. This routine 484 ** must be called after sqlite3PcacheFetch() in order to get a usable 485 ** result. 486 */ 487 PgHdr *sqlite3PcacheFetchFinish( 488 PCache *pCache, /* Obtain the page from this cache */ 489 Pgno pgno, /* Page number obtained */ 490 sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ 491 ){ 492 PgHdr *pPgHdr; 493 494 assert( pPage!=0 ); 495 pPgHdr = (PgHdr *)pPage->pExtra; 496 497 if( !pPgHdr->pPage ){ 498 return pcacheFetchFinishWithInit(pCache, pgno, pPage); 499 } 500 pCache->nRefSum++; 501 pPgHdr->nRef++; 502 assert( sqlite3PcachePageSanity(pPgHdr) ); 503 return pPgHdr; 504 } 505 506 /* 507 ** Decrement the reference count on a page. If the page is clean and the 508 ** reference count drops to 0, then it is made eligible for recycling. 509 */ 510 void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){ 511 assert( p->nRef>0 ); 512 p->pCache->nRefSum--; 513 if( (--p->nRef)==0 ){ 514 if( p->flags&PGHDR_CLEAN ){ 515 pcacheUnpin(p); 516 }else if( p->pDirtyPrev!=0 ){ /*OPTIMIZATION-IF-FALSE*/ 517 /* Move the page to the head of the dirty list. If p->pDirtyPrev==0, 518 ** then page p is already at the head of the dirty list and the 519 ** following call would be a no-op. Hence the OPTIMIZATION-IF-FALSE 520 ** tag above. */ 521 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); 522 } 523 } 524 } 525 526 /* 527 ** Increase the reference count of a supplied page by 1. 528 */ 529 void sqlite3PcacheRef(PgHdr *p){ 530 assert(p->nRef>0); 531 assert( sqlite3PcachePageSanity(p) ); 532 p->nRef++; 533 p->pCache->nRefSum++; 534 } 535 536 /* 537 ** Drop a page from the cache. There must be exactly one reference to the 538 ** page. This function deletes that reference, so after it returns the 539 ** page pointed to by p is invalid. 540 */ 541 void sqlite3PcacheDrop(PgHdr *p){ 542 assert( p->nRef==1 ); 543 assert( sqlite3PcachePageSanity(p) ); 544 if( p->flags&PGHDR_DIRTY ){ 545 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); 546 } 547 p->pCache->nRefSum--; 548 sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 1); 549 } 550 551 /* 552 ** Make sure the page is marked as dirty. If it isn't dirty already, 553 ** make it so. 554 */ 555 void sqlite3PcacheMakeDirty(PgHdr *p){ 556 assert( p->nRef>0 ); 557 assert( sqlite3PcachePageSanity(p) ); 558 if( p->flags & (PGHDR_CLEAN|PGHDR_DONT_WRITE) ){ /*OPTIMIZATION-IF-FALSE*/ 559 p->flags &= ~PGHDR_DONT_WRITE; 560 if( p->flags & PGHDR_CLEAN ){ 561 p->flags ^= (PGHDR_DIRTY|PGHDR_CLEAN); 562 pcacheTrace(("%p.DIRTY %d\n",p->pCache,p->pgno)); 563 assert( (p->flags & (PGHDR_DIRTY|PGHDR_CLEAN))==PGHDR_DIRTY ); 564 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_ADD); 565 } 566 assert( sqlite3PcachePageSanity(p) ); 567 } 568 } 569 570 /* 571 ** Make sure the page is marked as clean. If it isn't clean already, 572 ** make it so. 573 */ 574 void sqlite3PcacheMakeClean(PgHdr *p){ 575 assert( sqlite3PcachePageSanity(p) ); 576 if( ALWAYS((p->flags & PGHDR_DIRTY)!=0) ){ 577 assert( (p->flags & PGHDR_CLEAN)==0 ); 578 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); 579 p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC|PGHDR_WRITEABLE); 580 p->flags |= PGHDR_CLEAN; 581 pcacheTrace(("%p.CLEAN %d\n",p->pCache,p->pgno)); 582 assert( sqlite3PcachePageSanity(p) ); 583 if( p->nRef==0 ){ 584 pcacheUnpin(p); 585 } 586 } 587 } 588 589 /* 590 ** Make every page in the cache clean. 591 */ 592 void sqlite3PcacheCleanAll(PCache *pCache){ 593 PgHdr *p; 594 pcacheTrace(("%p.CLEAN-ALL\n",pCache)); 595 while( (p = pCache->pDirty)!=0 ){ 596 sqlite3PcacheMakeClean(p); 597 } 598 } 599 600 /* 601 ** Clear the PGHDR_NEED_SYNC and PGHDR_WRITEABLE flag from all dirty pages. 602 */ 603 void sqlite3PcacheClearWritable(PCache *pCache){ 604 PgHdr *p; 605 pcacheTrace(("%p.CLEAR-WRITEABLE\n",pCache)); 606 for(p=pCache->pDirty; p; p=p->pDirtyNext){ 607 p->flags &= ~(PGHDR_NEED_SYNC|PGHDR_WRITEABLE); 608 } 609 pCache->pSynced = pCache->pDirtyTail; 610 } 611 612 /* 613 ** Clear the PGHDR_NEED_SYNC flag from all dirty pages. 614 */ 615 void sqlite3PcacheClearSyncFlags(PCache *pCache){ 616 PgHdr *p; 617 for(p=pCache->pDirty; p; p=p->pDirtyNext){ 618 p->flags &= ~PGHDR_NEED_SYNC; 619 } 620 pCache->pSynced = pCache->pDirtyTail; 621 } 622 623 /* 624 ** Change the page number of page p to newPgno. 625 */ 626 void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){ 627 PCache *pCache = p->pCache; 628 assert( p->nRef>0 ); 629 assert( newPgno>0 ); 630 assert( sqlite3PcachePageSanity(p) ); 631 pcacheTrace(("%p.MOVE %d -> %d\n",pCache,p->pgno,newPgno)); 632 sqlite3GlobalConfig.pcache2.xRekey(pCache->pCache, p->pPage, p->pgno,newPgno); 633 p->pgno = newPgno; 634 if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){ 635 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); 636 } 637 } 638 639 /* 640 ** Drop every cache entry whose page number is greater than "pgno". The 641 ** caller must ensure that there are no outstanding references to any pages 642 ** other than page 1 with a page number greater than pgno. 643 ** 644 ** If there is a reference to page 1 and the pgno parameter passed to this 645 ** function is 0, then the data area associated with page 1 is zeroed, but 646 ** the page object is not dropped. 647 */ 648 void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){ 649 if( pCache->pCache ){ 650 PgHdr *p; 651 PgHdr *pNext; 652 pcacheTrace(("%p.TRUNCATE %d\n",pCache,pgno)); 653 for(p=pCache->pDirty; p; p=pNext){ 654 pNext = p->pDirtyNext; 655 /* This routine never gets call with a positive pgno except right 656 ** after sqlite3PcacheCleanAll(). So if there are dirty pages, 657 ** it must be that pgno==0. 658 */ 659 assert( p->pgno>0 ); 660 if( p->pgno>pgno ){ 661 assert( p->flags&PGHDR_DIRTY ); 662 sqlite3PcacheMakeClean(p); 663 } 664 } 665 if( pgno==0 && pCache->nRefSum ){ 666 sqlite3_pcache_page *pPage1; 667 pPage1 = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache,1,0); 668 if( ALWAYS(pPage1) ){ /* Page 1 is always available in cache, because 669 ** pCache->nRefSum>0 */ 670 memset(pPage1->pBuf, 0, pCache->szPage); 671 pgno = 1; 672 } 673 } 674 sqlite3GlobalConfig.pcache2.xTruncate(pCache->pCache, pgno+1); 675 } 676 } 677 678 /* 679 ** Close a cache. 680 */ 681 void sqlite3PcacheClose(PCache *pCache){ 682 assert( pCache->pCache!=0 ); 683 pcacheTrace(("%p.CLOSE\n",pCache)); 684 sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); 685 } 686 687 /* 688 ** Discard the contents of the cache. 689 */ 690 void sqlite3PcacheClear(PCache *pCache){ 691 sqlite3PcacheTruncate(pCache, 0); 692 } 693 694 /* 695 ** Merge two lists of pages connected by pDirty and in pgno order. 696 ** Do not bother fixing the pDirtyPrev pointers. 697 */ 698 static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){ 699 PgHdr result, *pTail; 700 pTail = &result; 701 assert( pA!=0 && pB!=0 ); 702 for(;;){ 703 if( pA->pgno<pB->pgno ){ 704 pTail->pDirty = pA; 705 pTail = pA; 706 pA = pA->pDirty; 707 if( pA==0 ){ 708 pTail->pDirty = pB; 709 break; 710 } 711 }else{ 712 pTail->pDirty = pB; 713 pTail = pB; 714 pB = pB->pDirty; 715 if( pB==0 ){ 716 pTail->pDirty = pA; 717 break; 718 } 719 } 720 } 721 return result.pDirty; 722 } 723 724 /* 725 ** Sort the list of pages in accending order by pgno. Pages are 726 ** connected by pDirty pointers. The pDirtyPrev pointers are 727 ** corrupted by this sort. 728 ** 729 ** Since there cannot be more than 2^31 distinct pages in a database, 730 ** there cannot be more than 31 buckets required by the merge sorter. 731 ** One extra bucket is added to catch overflow in case something 732 ** ever changes to make the previous sentence incorrect. 733 */ 734 #define N_SORT_BUCKET 32 735 static PgHdr *pcacheSortDirtyList(PgHdr *pIn){ 736 PgHdr *a[N_SORT_BUCKET], *p; 737 int i; 738 memset(a, 0, sizeof(a)); 739 while( pIn ){ 740 p = pIn; 741 pIn = p->pDirty; 742 p->pDirty = 0; 743 for(i=0; ALWAYS(i<N_SORT_BUCKET-1); i++){ 744 if( a[i]==0 ){ 745 a[i] = p; 746 break; 747 }else{ 748 p = pcacheMergeDirtyList(a[i], p); 749 a[i] = 0; 750 } 751 } 752 if( NEVER(i==N_SORT_BUCKET-1) ){ 753 /* To get here, there need to be 2^(N_SORT_BUCKET) elements in 754 ** the input list. But that is impossible. 755 */ 756 a[i] = pcacheMergeDirtyList(a[i], p); 757 } 758 } 759 p = a[0]; 760 for(i=1; i<N_SORT_BUCKET; i++){ 761 if( a[i]==0 ) continue; 762 p = p ? pcacheMergeDirtyList(p, a[i]) : a[i]; 763 } 764 return p; 765 } 766 767 /* 768 ** Return a list of all dirty pages in the cache, sorted by page number. 769 */ 770 PgHdr *sqlite3PcacheDirtyList(PCache *pCache){ 771 PgHdr *p; 772 for(p=pCache->pDirty; p; p=p->pDirtyNext){ 773 p->pDirty = p->pDirtyNext; 774 } 775 return pcacheSortDirtyList(pCache->pDirty); 776 } 777 778 /* 779 ** Return the total number of references to all pages held by the cache. 780 ** 781 ** This is not the total number of pages referenced, but the sum of the 782 ** reference count for all pages. 783 */ 784 int sqlite3PcacheRefCount(PCache *pCache){ 785 return pCache->nRefSum; 786 } 787 788 /* 789 ** Return the number of references to the page supplied as an argument. 790 */ 791 int sqlite3PcachePageRefcount(PgHdr *p){ 792 return p->nRef; 793 } 794 795 /* 796 ** Return the total number of pages in the cache. 797 */ 798 int sqlite3PcachePagecount(PCache *pCache){ 799 assert( pCache->pCache!=0 ); 800 return sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache); 801 } 802 803 #ifdef SQLITE_TEST 804 /* 805 ** Get the suggested cache-size value. 806 */ 807 int sqlite3PcacheGetCachesize(PCache *pCache){ 808 return numberOfCachePages(pCache); 809 } 810 #endif 811 812 /* 813 ** Set the suggested cache-size value. 814 */ 815 void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){ 816 assert( pCache->pCache!=0 ); 817 pCache->szCache = mxPage; 818 sqlite3GlobalConfig.pcache2.xCachesize(pCache->pCache, 819 numberOfCachePages(pCache)); 820 } 821 822 /* 823 ** Set the suggested cache-spill value. Make no changes if if the 824 ** argument is zero. Return the effective cache-spill size, which will 825 ** be the larger of the szSpill and szCache. 826 */ 827 int sqlite3PcacheSetSpillsize(PCache *p, int mxPage){ 828 int res; 829 assert( p->pCache!=0 ); 830 if( mxPage ){ 831 if( mxPage<0 ){ 832 mxPage = (int)((-1024*(i64)mxPage)/(p->szPage+p->szExtra)); 833 } 834 p->szSpill = mxPage; 835 } 836 res = numberOfCachePages(p); 837 if( res<p->szSpill ) res = p->szSpill; 838 return res; 839 } 840 841 /* 842 ** Free up as much memory as possible from the page cache. 843 */ 844 void sqlite3PcacheShrink(PCache *pCache){ 845 assert( pCache->pCache!=0 ); 846 sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache); 847 } 848 849 /* 850 ** Return the size of the header added by this middleware layer 851 ** in the page-cache hierarchy. 852 */ 853 int sqlite3HeaderSizePcache(void){ return ROUND8(sizeof(PgHdr)); } 854 855 /* 856 ** Return the number of dirty pages currently in the cache, as a percentage 857 ** of the configured cache size. 858 */ 859 int sqlite3PCachePercentDirty(PCache *pCache){ 860 PgHdr *pDirty; 861 int nDirty = 0; 862 int nCache = numberOfCachePages(pCache); 863 for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext) nDirty++; 864 return nCache ? (int)(((i64)nDirty * 100) / nCache) : 0; 865 } 866 867 #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG) 868 /* 869 ** For all dirty pages currently in the cache, invoke the specified 870 ** callback. This is only used if the SQLITE_CHECK_PAGES macro is 871 ** defined. 872 */ 873 void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){ 874 PgHdr *pDirty; 875 for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){ 876 xIter(pDirty); 877 } 878 } 879 #endif 880