1 /* 2 ** 2008 August 05 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file implements that page cache. 13 */ 14 #include "sqliteInt.h" 15 16 /* 17 ** A complete page cache is an instance of this structure. Every 18 ** entry in the cache holds a single page of the database file. The 19 ** btree layer only operates on the cached copy of the database pages. 20 ** 21 ** A page cache entry is "clean" if it exactly matches what is currently 22 ** on disk. A page is "dirty" if it has been modified and needs to be 23 ** persisted to disk. 24 ** 25 ** pDirty, pDirtyTail, pSynced: 26 ** All dirty pages are linked into the doubly linked list using 27 ** PgHdr.pDirtyNext and pDirtyPrev. The list is maintained in LRU order 28 ** such that p was added to the list more recently than p->pDirtyNext. 29 ** PCache.pDirty points to the first (newest) element in the list and 30 ** pDirtyTail to the last (oldest). 31 ** 32 ** The PCache.pSynced variable is used to optimize searching for a dirty 33 ** page to eject from the cache mid-transaction. It is better to eject 34 ** a page that does not require a journal sync than one that does. 35 ** Therefore, pSynced is maintained so that it *almost* always points 36 ** to either the oldest page in the pDirty/pDirtyTail list that has a 37 ** clear PGHDR_NEED_SYNC flag or to a page that is older than this one 38 ** (so that the right page to eject can be found by following pDirtyPrev 39 ** pointers). 40 */ 41 struct PCache { 42 PgHdr *pDirty, *pDirtyTail; /* List of dirty pages in LRU order */ 43 PgHdr *pSynced; /* Last synced page in dirty page list */ 44 int nRefSum; /* Sum of ref counts over all pages */ 45 int szCache; /* Configured cache size */ 46 int szSpill; /* Size before spilling occurs */ 47 int szPage; /* Size of every page in this cache */ 48 int szExtra; /* Size of extra space for each page */ 49 u8 bPurgeable; /* True if pages are on backing store */ 50 u8 eCreate; /* eCreate value for for xFetch() */ 51 int (*xStress)(void*,PgHdr*); /* Call to try make a page clean */ 52 void *pStress; /* Argument to xStress */ 53 sqlite3_pcache *pCache; /* Pluggable cache module */ 54 }; 55 56 /********************************** Test and Debug Logic **********************/ 57 /* 58 ** Debug tracing macros. Enable by by changing the "0" to "1" and 59 ** recompiling. 60 ** 61 ** When sqlite3PcacheTrace is 1, single line trace messages are issued. 62 ** When sqlite3PcacheTrace is 2, a dump of the pcache showing all cache entries 63 ** is displayed for many operations, resulting in a lot of output. 64 */ 65 #if defined(SQLITE_DEBUG) && 0 66 int sqlite3PcacheTrace = 2; /* 0: off 1: simple 2: cache dumps */ 67 int sqlite3PcacheMxDump = 9999; /* Max cache entries for pcacheDump() */ 68 # define pcacheTrace(X) if(sqlite3PcacheTrace){sqlite3DebugPrintf X;} 69 void pcacheDump(PCache *pCache){ 70 int N; 71 int i, j; 72 sqlite3_pcache_page *pLower; 73 PgHdr *pPg; 74 unsigned char *a; 75 76 if( sqlite3PcacheTrace<2 ) return; 77 if( pCache->pCache==0 ) return; 78 N = sqlite3PcachePagecount(pCache); 79 if( N>sqlite3PcacheMxDump ) N = sqlite3PcacheMxDump; 80 for(i=1; i<=N; i++){ 81 pLower = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, i, 0); 82 if( pLower==0 ) continue; 83 pPg = (PgHdr*)pLower->pExtra; 84 printf("%3d: nRef %2d flgs %02x data ", i, pPg->nRef, pPg->flags); 85 a = (unsigned char *)pLower->pBuf; 86 for(j=0; j<12; j++) printf("%02x", a[j]); 87 printf("\n"); 88 if( pPg->pPage==0 ){ 89 sqlite3GlobalConfig.pcache2.xUnpin(pCache->pCache, pLower, 0); 90 } 91 } 92 } 93 #else 94 # define pcacheTrace(X) 95 # define pcacheDump(X) 96 #endif 97 98 /* 99 ** Check invariants on a PgHdr entry. Return true if everything is OK. 100 ** Return false if any invariant is violated. 101 ** 102 ** This routine is for use inside of assert() statements only. For 103 ** example: 104 ** 105 ** assert( sqlite3PcachePageSanity(pPg) ); 106 */ 107 #ifdef SQLITE_DEBUG 108 int sqlite3PcachePageSanity(PgHdr *pPg){ 109 PCache *pCache; 110 assert( pPg!=0 ); 111 assert( pPg->pgno>0 || pPg->pPager==0 ); /* Page number is 1 or more */ 112 pCache = pPg->pCache; 113 assert( pCache!=0 ); /* Every page has an associated PCache */ 114 if( pPg->flags & PGHDR_CLEAN ){ 115 assert( (pPg->flags & PGHDR_DIRTY)==0 );/* Cannot be both CLEAN and DIRTY */ 116 assert( pCache->pDirty!=pPg ); /* CLEAN pages not on dirty list */ 117 assert( pCache->pDirtyTail!=pPg ); 118 } 119 /* WRITEABLE pages must also be DIRTY */ 120 if( pPg->flags & PGHDR_WRITEABLE ){ 121 assert( pPg->flags & PGHDR_DIRTY ); /* WRITEABLE implies DIRTY */ 122 } 123 /* NEED_SYNC can be set independently of WRITEABLE. This can happen, 124 ** for example, when using the sqlite3PagerDontWrite() optimization: 125 ** (1) Page X is journalled, and gets WRITEABLE and NEED_SEEK. 126 ** (2) Page X moved to freelist, WRITEABLE is cleared 127 ** (3) Page X reused, WRITEABLE is set again 128 ** If NEED_SYNC had been cleared in step 2, then it would not be reset 129 ** in step 3, and page might be written into the database without first 130 ** syncing the rollback journal, which might cause corruption on a power 131 ** loss. 132 ** 133 ** Another example is when the database page size is smaller than the 134 ** disk sector size. When any page of a sector is journalled, all pages 135 ** in that sector are marked NEED_SYNC even if they are still CLEAN, just 136 ** in case they are later modified, since all pages in the same sector 137 ** must be journalled and synced before any of those pages can be safely 138 ** written. 139 */ 140 return 1; 141 } 142 #endif /* SQLITE_DEBUG */ 143 144 145 /********************************** Linked List Management ********************/ 146 147 /* Allowed values for second argument to pcacheManageDirtyList() */ 148 #define PCACHE_DIRTYLIST_REMOVE 1 /* Remove pPage from dirty list */ 149 #define PCACHE_DIRTYLIST_ADD 2 /* Add pPage to the dirty list */ 150 #define PCACHE_DIRTYLIST_FRONT 3 /* Move pPage to the front of the list */ 151 152 /* 153 ** Manage pPage's participation on the dirty list. Bits of the addRemove 154 ** argument determines what operation to do. The 0x01 bit means first 155 ** remove pPage from the dirty list. The 0x02 means add pPage back to 156 ** the dirty list. Doing both moves pPage to the front of the dirty list. 157 */ 158 static void pcacheManageDirtyList(PgHdr *pPage, u8 addRemove){ 159 PCache *p = pPage->pCache; 160 161 pcacheTrace(("%p.DIRTYLIST.%s %d\n", p, 162 addRemove==1 ? "REMOVE" : addRemove==2 ? "ADD" : "FRONT", 163 pPage->pgno)); 164 if( addRemove & PCACHE_DIRTYLIST_REMOVE ){ 165 assert( pPage->pDirtyNext || pPage==p->pDirtyTail ); 166 assert( pPage->pDirtyPrev || pPage==p->pDirty ); 167 168 /* Update the PCache1.pSynced variable if necessary. */ 169 if( p->pSynced==pPage ){ 170 p->pSynced = pPage->pDirtyPrev; 171 } 172 173 if( pPage->pDirtyNext ){ 174 pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev; 175 }else{ 176 assert( pPage==p->pDirtyTail ); 177 p->pDirtyTail = pPage->pDirtyPrev; 178 } 179 if( pPage->pDirtyPrev ){ 180 pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext; 181 }else{ 182 /* If there are now no dirty pages in the cache, set eCreate to 2. 183 ** This is an optimization that allows sqlite3PcacheFetch() to skip 184 ** searching for a dirty page to eject from the cache when it might 185 ** otherwise have to. */ 186 assert( pPage==p->pDirty ); 187 p->pDirty = pPage->pDirtyNext; 188 assert( p->bPurgeable || p->eCreate==2 ); 189 if( p->pDirty==0 ){ /*OPTIMIZATION-IF-TRUE*/ 190 assert( p->bPurgeable==0 || p->eCreate==1 ); 191 p->eCreate = 2; 192 } 193 } 194 } 195 if( addRemove & PCACHE_DIRTYLIST_ADD ){ 196 pPage->pDirtyPrev = 0; 197 pPage->pDirtyNext = p->pDirty; 198 if( pPage->pDirtyNext ){ 199 assert( pPage->pDirtyNext->pDirtyPrev==0 ); 200 pPage->pDirtyNext->pDirtyPrev = pPage; 201 }else{ 202 p->pDirtyTail = pPage; 203 if( p->bPurgeable ){ 204 assert( p->eCreate==2 ); 205 p->eCreate = 1; 206 } 207 } 208 p->pDirty = pPage; 209 210 /* If pSynced is NULL and this page has a clear NEED_SYNC flag, set 211 ** pSynced to point to it. Checking the NEED_SYNC flag is an 212 ** optimization, as if pSynced points to a page with the NEED_SYNC 213 ** flag set sqlite3PcacheFetchStress() searches through all newer 214 ** entries of the dirty-list for a page with NEED_SYNC clear anyway. */ 215 if( !p->pSynced 216 && 0==(pPage->flags&PGHDR_NEED_SYNC) /*OPTIMIZATION-IF-FALSE*/ 217 ){ 218 p->pSynced = pPage; 219 } 220 } 221 pcacheDump(p); 222 } 223 224 /* 225 ** Wrapper around the pluggable caches xUnpin method. If the cache is 226 ** being used for an in-memory database, this function is a no-op. 227 */ 228 static void pcacheUnpin(PgHdr *p){ 229 if( p->pCache->bPurgeable ){ 230 pcacheTrace(("%p.UNPIN %d\n", p->pCache, p->pgno)); 231 sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0); 232 pcacheDump(p->pCache); 233 } 234 } 235 236 /* 237 ** Compute the number of pages of cache requested. p->szCache is the 238 ** cache size requested by the "PRAGMA cache_size" statement. 239 */ 240 static int numberOfCachePages(PCache *p){ 241 if( p->szCache>=0 ){ 242 /* IMPLEMENTATION-OF: R-42059-47211 If the argument N is positive then the 243 ** suggested cache size is set to N. */ 244 return p->szCache; 245 }else{ 246 i64 n; 247 /* IMPLEMANTATION-OF: R-59858-46238 If the argument N is negative, then the 248 ** number of cache pages is adjusted to be a number of pages that would 249 ** use approximately abs(N*1024) bytes of memory based on the current 250 ** page size. */ 251 n = ((-1024*(i64)p->szCache)/(p->szPage+p->szExtra)); 252 if( n>1000000000 ) n = 1000000000; 253 return (int)n; 254 } 255 } 256 257 /*************************************************** General Interfaces ****** 258 ** 259 ** Initialize and shutdown the page cache subsystem. Neither of these 260 ** functions are threadsafe. 261 */ 262 int sqlite3PcacheInitialize(void){ 263 if( sqlite3GlobalConfig.pcache2.xInit==0 ){ 264 /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the 265 ** built-in default page cache is used instead of the application defined 266 ** page cache. */ 267 sqlite3PCacheSetDefault(); 268 assert( sqlite3GlobalConfig.pcache2.xInit!=0 ); 269 } 270 return sqlite3GlobalConfig.pcache2.xInit(sqlite3GlobalConfig.pcache2.pArg); 271 } 272 void sqlite3PcacheShutdown(void){ 273 if( sqlite3GlobalConfig.pcache2.xShutdown ){ 274 /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */ 275 sqlite3GlobalConfig.pcache2.xShutdown(sqlite3GlobalConfig.pcache2.pArg); 276 } 277 } 278 279 /* 280 ** Return the size in bytes of a PCache object. 281 */ 282 int sqlite3PcacheSize(void){ return sizeof(PCache); } 283 284 /* 285 ** Create a new PCache object. Storage space to hold the object 286 ** has already been allocated and is passed in as the p pointer. 287 ** The caller discovers how much space needs to be allocated by 288 ** calling sqlite3PcacheSize(). 289 ** 290 ** szExtra is some extra space allocated for each page. The first 291 ** 8 bytes of the extra space will be zeroed as the page is allocated, 292 ** but remaining content will be uninitialized. Though it is opaque 293 ** to this module, the extra space really ends up being the MemPage 294 ** structure in the pager. 295 */ 296 int sqlite3PcacheOpen( 297 int szPage, /* Size of every page */ 298 int szExtra, /* Extra space associated with each page */ 299 int bPurgeable, /* True if pages are on backing store */ 300 int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */ 301 void *pStress, /* Argument to xStress */ 302 PCache *p /* Preallocated space for the PCache */ 303 ){ 304 memset(p, 0, sizeof(PCache)); 305 p->szPage = 1; 306 p->szExtra = szExtra; 307 assert( szExtra>=8 ); /* First 8 bytes will be zeroed */ 308 p->bPurgeable = bPurgeable; 309 p->eCreate = 2; 310 p->xStress = xStress; 311 p->pStress = pStress; 312 p->szCache = 100; 313 p->szSpill = 1; 314 pcacheTrace(("%p.OPEN szPage %d bPurgeable %d\n",p,szPage,bPurgeable)); 315 return sqlite3PcacheSetPageSize(p, szPage); 316 } 317 318 /* 319 ** Change the page size for PCache object. The caller must ensure that there 320 ** are no outstanding page references when this function is called. 321 */ 322 int sqlite3PcacheSetPageSize(PCache *pCache, int szPage){ 323 assert( pCache->nRefSum==0 && pCache->pDirty==0 ); 324 if( pCache->szPage ){ 325 sqlite3_pcache *pNew; 326 pNew = sqlite3GlobalConfig.pcache2.xCreate( 327 szPage, pCache->szExtra + ROUND8(sizeof(PgHdr)), 328 pCache->bPurgeable 329 ); 330 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 331 sqlite3GlobalConfig.pcache2.xCachesize(pNew, numberOfCachePages(pCache)); 332 if( pCache->pCache ){ 333 sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); 334 } 335 pCache->pCache = pNew; 336 pCache->szPage = szPage; 337 pcacheTrace(("%p.PAGESIZE %d\n",pCache,szPage)); 338 } 339 return SQLITE_OK; 340 } 341 342 /* 343 ** Try to obtain a page from the cache. 344 ** 345 ** This routine returns a pointer to an sqlite3_pcache_page object if 346 ** such an object is already in cache, or if a new one is created. 347 ** This routine returns a NULL pointer if the object was not in cache 348 ** and could not be created. 349 ** 350 ** The createFlags should be 0 to check for existing pages and should 351 ** be 3 (not 1, but 3) to try to create a new page. 352 ** 353 ** If the createFlag is 0, then NULL is always returned if the page 354 ** is not already in the cache. If createFlag is 1, then a new page 355 ** is created only if that can be done without spilling dirty pages 356 ** and without exceeding the cache size limit. 357 ** 358 ** The caller needs to invoke sqlite3PcacheFetchFinish() to properly 359 ** initialize the sqlite3_pcache_page object and convert it into a 360 ** PgHdr object. The sqlite3PcacheFetch() and sqlite3PcacheFetchFinish() 361 ** routines are split this way for performance reasons. When separated 362 ** they can both (usually) operate without having to push values to 363 ** the stack on entry and pop them back off on exit, which saves a 364 ** lot of pushing and popping. 365 */ 366 sqlite3_pcache_page *sqlite3PcacheFetch( 367 PCache *pCache, /* Obtain the page from this cache */ 368 Pgno pgno, /* Page number to obtain */ 369 int createFlag /* If true, create page if it does not exist already */ 370 ){ 371 int eCreate; 372 sqlite3_pcache_page *pRes; 373 374 assert( pCache!=0 ); 375 assert( pCache->pCache!=0 ); 376 assert( createFlag==3 || createFlag==0 ); 377 assert( pCache->eCreate==((pCache->bPurgeable && pCache->pDirty) ? 1 : 2) ); 378 379 /* eCreate defines what to do if the page does not exist. 380 ** 0 Do not allocate a new page. (createFlag==0) 381 ** 1 Allocate a new page if doing so is inexpensive. 382 ** (createFlag==1 AND bPurgeable AND pDirty) 383 ** 2 Allocate a new page even it doing so is difficult. 384 ** (createFlag==1 AND !(bPurgeable AND pDirty) 385 */ 386 eCreate = createFlag & pCache->eCreate; 387 assert( eCreate==0 || eCreate==1 || eCreate==2 ); 388 assert( createFlag==0 || pCache->eCreate==eCreate ); 389 assert( createFlag==0 || eCreate==1+(!pCache->bPurgeable||!pCache->pDirty) ); 390 pRes = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate); 391 pcacheTrace(("%p.FETCH %d%s (result: %p)\n",pCache,pgno, 392 createFlag?" create":"",pRes)); 393 return pRes; 394 } 395 396 /* 397 ** If the sqlite3PcacheFetch() routine is unable to allocate a new 398 ** page because no clean pages are available for reuse and the cache 399 ** size limit has been reached, then this routine can be invoked to 400 ** try harder to allocate a page. This routine might invoke the stress 401 ** callback to spill dirty pages to the journal. It will then try to 402 ** allocate the new page and will only fail to allocate a new page on 403 ** an OOM error. 404 ** 405 ** This routine should be invoked only after sqlite3PcacheFetch() fails. 406 */ 407 int sqlite3PcacheFetchStress( 408 PCache *pCache, /* Obtain the page from this cache */ 409 Pgno pgno, /* Page number to obtain */ 410 sqlite3_pcache_page **ppPage /* Write result here */ 411 ){ 412 PgHdr *pPg; 413 if( pCache->eCreate==2 ) return 0; 414 415 if( sqlite3PcachePagecount(pCache)>pCache->szSpill ){ 416 /* Find a dirty page to write-out and recycle. First try to find a 417 ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC 418 ** cleared), but if that is not possible settle for any other 419 ** unreferenced dirty page. 420 ** 421 ** If the LRU page in the dirty list that has a clear PGHDR_NEED_SYNC 422 ** flag is currently referenced, then the following may leave pSynced 423 ** set incorrectly (pointing to other than the LRU page with NEED_SYNC 424 ** cleared). This is Ok, as pSynced is just an optimization. */ 425 for(pPg=pCache->pSynced; 426 pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC)); 427 pPg=pPg->pDirtyPrev 428 ); 429 pCache->pSynced = pPg; 430 if( !pPg ){ 431 for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev); 432 } 433 if( pPg ){ 434 int rc; 435 #ifdef SQLITE_LOG_CACHE_SPILL 436 sqlite3_log(SQLITE_FULL, 437 "spill page %d making room for %d - cache used: %d/%d", 438 pPg->pgno, pgno, 439 sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache), 440 numberOfCachePages(pCache)); 441 #endif 442 pcacheTrace(("%p.SPILL %d\n",pCache,pPg->pgno)); 443 rc = pCache->xStress(pCache->pStress, pPg); 444 pcacheDump(pCache); 445 if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){ 446 return rc; 447 } 448 } 449 } 450 *ppPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, 2); 451 return *ppPage==0 ? SQLITE_NOMEM_BKPT : SQLITE_OK; 452 } 453 454 /* 455 ** This is a helper routine for sqlite3PcacheFetchFinish() 456 ** 457 ** In the uncommon case where the page being fetched has not been 458 ** initialized, this routine is invoked to do the initialization. 459 ** This routine is broken out into a separate function since it 460 ** requires extra stack manipulation that can be avoided in the common 461 ** case. 462 */ 463 static SQLITE_NOINLINE PgHdr *pcacheFetchFinishWithInit( 464 PCache *pCache, /* Obtain the page from this cache */ 465 Pgno pgno, /* Page number obtained */ 466 sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ 467 ){ 468 PgHdr *pPgHdr; 469 assert( pPage!=0 ); 470 pPgHdr = (PgHdr*)pPage->pExtra; 471 assert( pPgHdr->pPage==0 ); 472 memset(&pPgHdr->pDirty, 0, sizeof(PgHdr) - offsetof(PgHdr,pDirty)); 473 pPgHdr->pPage = pPage; 474 pPgHdr->pData = pPage->pBuf; 475 pPgHdr->pExtra = (void *)&pPgHdr[1]; 476 memset(pPgHdr->pExtra, 0, 8); 477 pPgHdr->pCache = pCache; 478 pPgHdr->pgno = pgno; 479 pPgHdr->flags = PGHDR_CLEAN; 480 return sqlite3PcacheFetchFinish(pCache,pgno,pPage); 481 } 482 483 /* 484 ** This routine converts the sqlite3_pcache_page object returned by 485 ** sqlite3PcacheFetch() into an initialized PgHdr object. This routine 486 ** must be called after sqlite3PcacheFetch() in order to get a usable 487 ** result. 488 */ 489 PgHdr *sqlite3PcacheFetchFinish( 490 PCache *pCache, /* Obtain the page from this cache */ 491 Pgno pgno, /* Page number obtained */ 492 sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ 493 ){ 494 PgHdr *pPgHdr; 495 496 assert( pPage!=0 ); 497 pPgHdr = (PgHdr *)pPage->pExtra; 498 499 if( !pPgHdr->pPage ){ 500 return pcacheFetchFinishWithInit(pCache, pgno, pPage); 501 } 502 pCache->nRefSum++; 503 pPgHdr->nRef++; 504 assert( sqlite3PcachePageSanity(pPgHdr) ); 505 return pPgHdr; 506 } 507 508 /* 509 ** Decrement the reference count on a page. If the page is clean and the 510 ** reference count drops to 0, then it is made eligible for recycling. 511 */ 512 void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){ 513 assert( p->nRef>0 ); 514 p->pCache->nRefSum--; 515 if( (--p->nRef)==0 ){ 516 if( p->flags&PGHDR_CLEAN ){ 517 pcacheUnpin(p); 518 }else{ 519 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); 520 } 521 } 522 } 523 524 /* 525 ** Increase the reference count of a supplied page by 1. 526 */ 527 void sqlite3PcacheRef(PgHdr *p){ 528 assert(p->nRef>0); 529 assert( sqlite3PcachePageSanity(p) ); 530 p->nRef++; 531 p->pCache->nRefSum++; 532 } 533 534 /* 535 ** Drop a page from the cache. There must be exactly one reference to the 536 ** page. This function deletes that reference, so after it returns the 537 ** page pointed to by p is invalid. 538 */ 539 void sqlite3PcacheDrop(PgHdr *p){ 540 assert( p->nRef==1 ); 541 assert( sqlite3PcachePageSanity(p) ); 542 if( p->flags&PGHDR_DIRTY ){ 543 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); 544 } 545 p->pCache->nRefSum--; 546 sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 1); 547 } 548 549 /* 550 ** Make sure the page is marked as dirty. If it isn't dirty already, 551 ** make it so. 552 */ 553 void sqlite3PcacheMakeDirty(PgHdr *p){ 554 assert( p->nRef>0 || p->pCache->bPurgeable==0 ); 555 testcase( p->nRef==0 ); 556 assert( sqlite3PcachePageSanity(p) ); 557 if( p->flags & (PGHDR_CLEAN|PGHDR_DONT_WRITE) ){ /*OPTIMIZATION-IF-FALSE*/ 558 p->flags &= ~PGHDR_DONT_WRITE; 559 if( p->flags & PGHDR_CLEAN ){ 560 p->flags ^= (PGHDR_DIRTY|PGHDR_CLEAN); 561 pcacheTrace(("%p.DIRTY %d\n",p->pCache,p->pgno)); 562 assert( (p->flags & (PGHDR_DIRTY|PGHDR_CLEAN))==PGHDR_DIRTY ); 563 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_ADD); 564 } 565 assert( sqlite3PcachePageSanity(p) ); 566 } 567 } 568 569 /* 570 ** Make sure the page is marked as clean. If it isn't clean already, 571 ** make it so. 572 */ 573 void sqlite3PcacheMakeClean(PgHdr *p){ 574 assert( sqlite3PcachePageSanity(p) ); 575 assert( (p->flags & PGHDR_DIRTY)!=0 ); 576 assert( (p->flags & PGHDR_CLEAN)==0 ); 577 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); 578 p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC|PGHDR_WRITEABLE); 579 p->flags |= PGHDR_CLEAN; 580 pcacheTrace(("%p.CLEAN %d\n",p->pCache,p->pgno)); 581 assert( sqlite3PcachePageSanity(p) ); 582 if( p->nRef==0 ){ 583 pcacheUnpin(p); 584 } 585 } 586 587 /* 588 ** Make every page in the cache clean. 589 */ 590 void sqlite3PcacheCleanAll(PCache *pCache){ 591 PgHdr *p; 592 pcacheTrace(("%p.CLEAN-ALL\n",pCache)); 593 while( (p = pCache->pDirty)!=0 ){ 594 sqlite3PcacheMakeClean(p); 595 } 596 } 597 598 /* 599 ** Clear the PGHDR_NEED_SYNC and PGHDR_WRITEABLE flag from all dirty pages. 600 */ 601 void sqlite3PcacheClearWritable(PCache *pCache){ 602 PgHdr *p; 603 pcacheTrace(("%p.CLEAR-WRITEABLE\n",pCache)); 604 for(p=pCache->pDirty; p; p=p->pDirtyNext){ 605 p->flags &= ~(PGHDR_NEED_SYNC|PGHDR_WRITEABLE); 606 } 607 pCache->pSynced = pCache->pDirtyTail; 608 } 609 610 /* 611 ** Clear the PGHDR_NEED_SYNC flag from all dirty pages. 612 */ 613 void sqlite3PcacheClearSyncFlags(PCache *pCache){ 614 PgHdr *p; 615 for(p=pCache->pDirty; p; p=p->pDirtyNext){ 616 p->flags &= ~PGHDR_NEED_SYNC; 617 } 618 pCache->pSynced = pCache->pDirtyTail; 619 } 620 621 /* 622 ** Change the page number of page p to newPgno. 623 */ 624 void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){ 625 PCache *pCache = p->pCache; 626 assert( p->nRef>0 ); 627 assert( newPgno>0 ); 628 assert( sqlite3PcachePageSanity(p) ); 629 pcacheTrace(("%p.MOVE %d -> %d\n",pCache,p->pgno,newPgno)); 630 sqlite3GlobalConfig.pcache2.xRekey(pCache->pCache, p->pPage, p->pgno,newPgno); 631 p->pgno = newPgno; 632 if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){ 633 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); 634 } 635 } 636 637 /* 638 ** Drop every cache entry whose page number is greater than "pgno". The 639 ** caller must ensure that there are no outstanding references to any pages 640 ** other than page 1 with a page number greater than pgno. 641 ** 642 ** If there is a reference to page 1 and the pgno parameter passed to this 643 ** function is 0, then the data area associated with page 1 is zeroed, but 644 ** the page object is not dropped. 645 */ 646 void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){ 647 if( pCache->pCache ){ 648 PgHdr *p; 649 PgHdr *pNext; 650 pcacheTrace(("%p.TRUNCATE %d\n",pCache,pgno)); 651 for(p=pCache->pDirty; p; p=pNext){ 652 pNext = p->pDirtyNext; 653 /* This routine never gets call with a positive pgno except right 654 ** after sqlite3PcacheCleanAll(). So if there are dirty pages, 655 ** it must be that pgno==0. 656 */ 657 assert( p->pgno>0 ); 658 if( p->pgno>pgno ){ 659 assert( p->flags&PGHDR_DIRTY ); 660 sqlite3PcacheMakeClean(p); 661 } 662 } 663 if( pgno==0 && pCache->nRefSum ){ 664 sqlite3_pcache_page *pPage1; 665 pPage1 = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache,1,0); 666 if( ALWAYS(pPage1) ){ /* Page 1 is always available in cache, because 667 ** pCache->nRefSum>0 */ 668 memset(pPage1->pBuf, 0, pCache->szPage); 669 pgno = 1; 670 } 671 } 672 sqlite3GlobalConfig.pcache2.xTruncate(pCache->pCache, pgno+1); 673 } 674 } 675 676 /* 677 ** Close a cache. 678 */ 679 void sqlite3PcacheClose(PCache *pCache){ 680 assert( pCache->pCache!=0 ); 681 pcacheTrace(("%p.CLOSE\n",pCache)); 682 sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); 683 } 684 685 /* 686 ** Discard the contents of the cache. 687 */ 688 void sqlite3PcacheClear(PCache *pCache){ 689 sqlite3PcacheTruncate(pCache, 0); 690 } 691 692 /* 693 ** Merge two lists of pages connected by pDirty and in pgno order. 694 ** Do not bother fixing the pDirtyPrev pointers. 695 */ 696 static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){ 697 PgHdr result, *pTail; 698 pTail = &result; 699 assert( pA!=0 && pB!=0 ); 700 for(;;){ 701 if( pA->pgno<pB->pgno ){ 702 pTail->pDirty = pA; 703 pTail = pA; 704 pA = pA->pDirty; 705 if( pA==0 ){ 706 pTail->pDirty = pB; 707 break; 708 } 709 }else{ 710 pTail->pDirty = pB; 711 pTail = pB; 712 pB = pB->pDirty; 713 if( pB==0 ){ 714 pTail->pDirty = pA; 715 break; 716 } 717 } 718 } 719 return result.pDirty; 720 } 721 722 /* 723 ** Sort the list of pages in accending order by pgno. Pages are 724 ** connected by pDirty pointers. The pDirtyPrev pointers are 725 ** corrupted by this sort. 726 ** 727 ** Since there cannot be more than 2^31 distinct pages in a database, 728 ** there cannot be more than 31 buckets required by the merge sorter. 729 ** One extra bucket is added to catch overflow in case something 730 ** ever changes to make the previous sentence incorrect. 731 */ 732 #define N_SORT_BUCKET 32 733 static PgHdr *pcacheSortDirtyList(PgHdr *pIn){ 734 PgHdr *a[N_SORT_BUCKET], *p; 735 int i; 736 memset(a, 0, sizeof(a)); 737 while( pIn ){ 738 p = pIn; 739 pIn = p->pDirty; 740 p->pDirty = 0; 741 for(i=0; ALWAYS(i<N_SORT_BUCKET-1); i++){ 742 if( a[i]==0 ){ 743 a[i] = p; 744 break; 745 }else{ 746 p = pcacheMergeDirtyList(a[i], p); 747 a[i] = 0; 748 } 749 } 750 if( NEVER(i==N_SORT_BUCKET-1) ){ 751 /* To get here, there need to be 2^(N_SORT_BUCKET) elements in 752 ** the input list. But that is impossible. 753 */ 754 a[i] = pcacheMergeDirtyList(a[i], p); 755 } 756 } 757 p = a[0]; 758 for(i=1; i<N_SORT_BUCKET; i++){ 759 if( a[i]==0 ) continue; 760 p = p ? pcacheMergeDirtyList(p, a[i]) : a[i]; 761 } 762 return p; 763 } 764 765 /* 766 ** Return a list of all dirty pages in the cache, sorted by page number. 767 */ 768 PgHdr *sqlite3PcacheDirtyList(PCache *pCache){ 769 PgHdr *p; 770 for(p=pCache->pDirty; p; p=p->pDirtyNext){ 771 p->pDirty = p->pDirtyNext; 772 } 773 return pcacheSortDirtyList(pCache->pDirty); 774 } 775 776 /* 777 ** Return the total number of references to all pages held by the cache. 778 ** 779 ** This is not the total number of pages referenced, but the sum of the 780 ** reference count for all pages. 781 */ 782 int sqlite3PcacheRefCount(PCache *pCache){ 783 return pCache->nRefSum; 784 } 785 786 /* 787 ** Return the number of references to the page supplied as an argument. 788 */ 789 int sqlite3PcachePageRefcount(PgHdr *p){ 790 return p->nRef; 791 } 792 793 /* 794 ** Return the total number of pages in the cache. 795 */ 796 int sqlite3PcachePagecount(PCache *pCache){ 797 assert( pCache->pCache!=0 ); 798 return sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache); 799 } 800 801 #ifdef SQLITE_TEST 802 /* 803 ** Get the suggested cache-size value. 804 */ 805 int sqlite3PcacheGetCachesize(PCache *pCache){ 806 return numberOfCachePages(pCache); 807 } 808 #endif 809 810 /* 811 ** Set the suggested cache-size value. 812 */ 813 void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){ 814 assert( pCache->pCache!=0 ); 815 pCache->szCache = mxPage; 816 sqlite3GlobalConfig.pcache2.xCachesize(pCache->pCache, 817 numberOfCachePages(pCache)); 818 } 819 820 /* 821 ** Set the suggested cache-spill value. Make no changes if if the 822 ** argument is zero. Return the effective cache-spill size, which will 823 ** be the larger of the szSpill and szCache. 824 */ 825 int sqlite3PcacheSetSpillsize(PCache *p, int mxPage){ 826 int res; 827 assert( p->pCache!=0 ); 828 if( mxPage ){ 829 if( mxPage<0 ){ 830 mxPage = (int)((-1024*(i64)mxPage)/(p->szPage+p->szExtra)); 831 } 832 p->szSpill = mxPage; 833 } 834 res = numberOfCachePages(p); 835 if( res<p->szSpill ) res = p->szSpill; 836 return res; 837 } 838 839 /* 840 ** Free up as much memory as possible from the page cache. 841 */ 842 void sqlite3PcacheShrink(PCache *pCache){ 843 assert( pCache->pCache!=0 ); 844 sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache); 845 } 846 847 /* 848 ** Return the size of the header added by this middleware layer 849 ** in the page-cache hierarchy. 850 */ 851 int sqlite3HeaderSizePcache(void){ return ROUND8(sizeof(PgHdr)); } 852 853 /* 854 ** Return the number of dirty pages currently in the cache, as a percentage 855 ** of the configured cache size. 856 */ 857 int sqlite3PCachePercentDirty(PCache *pCache){ 858 PgHdr *pDirty; 859 int nDirty = 0; 860 int nCache = numberOfCachePages(pCache); 861 for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext) nDirty++; 862 return nCache ? (int)(((i64)nDirty * 100) / nCache) : 0; 863 } 864 865 #ifdef SQLITE_DIRECT_OVERFLOW_READ 866 /* 867 ** Return true if there are one or more dirty pages in the cache. Else false. 868 */ 869 int sqlite3PCacheIsDirty(PCache *pCache){ 870 return (pCache->pDirty!=0); 871 } 872 #endif 873 874 #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG) 875 /* 876 ** For all dirty pages currently in the cache, invoke the specified 877 ** callback. This is only used if the SQLITE_CHECK_PAGES macro is 878 ** defined. 879 */ 880 void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){ 881 PgHdr *pDirty; 882 for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){ 883 xIter(pDirty); 884 } 885 } 886 #endif 887