1 /* 2 ** 2008 August 05 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file implements that page cache. 13 */ 14 #include "sqliteInt.h" 15 16 /* 17 ** A complete page cache is an instance of this structure. Every 18 ** entry in the cache holds a single page of the database file. The 19 ** btree layer only operates on the cached copy of the database pages. 20 ** 21 ** A page cache entry is "clean" if it exactly matches what is currently 22 ** on disk. A page is "dirty" if it has been modified and needs to be 23 ** persisted to disk. 24 ** 25 ** pDirty, pDirtyTail, pSynced: 26 ** All dirty pages are linked into the doubly linked list using 27 ** PgHdr.pDirtyNext and pDirtyPrev. The list is maintained in LRU order 28 ** such that p was added to the list more recently than p->pDirtyNext. 29 ** PCache.pDirty points to the first (newest) element in the list and 30 ** pDirtyTail to the last (oldest). 31 ** 32 ** The PCache.pSynced variable is used to optimize searching for a dirty 33 ** page to eject from the cache mid-transaction. It is better to eject 34 ** a page that does not require a journal sync than one that does. 35 ** Therefore, pSynced is maintained to that it *almost* always points 36 ** to either the oldest page in the pDirty/pDirtyTail list that has a 37 ** clear PGHDR_NEED_SYNC flag or to a page that is older than this one 38 ** (so that the right page to eject can be found by following pDirtyPrev 39 ** pointers). 40 */ 41 struct PCache { 42 PgHdr *pDirty, *pDirtyTail; /* List of dirty pages in LRU order */ 43 PgHdr *pSynced; /* Last synced page in dirty page list */ 44 int nRefSum; /* Sum of ref counts over all pages */ 45 int szCache; /* Configured cache size */ 46 int szSpill; /* Size before spilling occurs */ 47 int szPage; /* Size of every page in this cache */ 48 int szExtra; /* Size of extra space for each page */ 49 u8 bPurgeable; /* True if pages are on backing store */ 50 u8 eCreate; /* eCreate value for for xFetch() */ 51 int (*xStress)(void*,PgHdr*); /* Call to try make a page clean */ 52 void *pStress; /* Argument to xStress */ 53 sqlite3_pcache *pCache; /* Pluggable cache module */ 54 }; 55 56 /* 57 ** Debug tracing macros 58 */ 59 #if defined(SQLITE_DEBUG) && 0 60 int sqlite3PcacheTrace = 2; 61 # define pcacheTrace(X) if(sqlite3PcacheTrace){sqlite3DebugPrintf X;} 62 void pcacheDump(PCache *pCache){ 63 int N; 64 int i, j; 65 sqlite3_pcache_page *pLower; 66 PgHdr *pPg; 67 unsigned char *a; 68 69 if( sqlite3PcacheTrace<2 ) return; 70 if( pCache->pCache==0 ) return; 71 N = sqlite3PcachePagecount(pCache); 72 if( N>5 ) N = 5; 73 for(i=1; i<=N; i++){ 74 pLower = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, i, 0); 75 if( pLower==0 ) continue; 76 pPg = (PgHdr*)pLower->pExtra; 77 printf("%3d: nRef %2d flgs %02x data ", i, pPg->nRef, pPg->flags); 78 a = (unsigned char *)pLower->pBuf; 79 for(j=0; j<12; j++) printf("%02x", a[j]); 80 printf("\n"); 81 if( pPg->pPage==0 ){ 82 sqlite3GlobalConfig.pcache2.xUnpin(pCache->pCache, pLower, 0); 83 } 84 } 85 } 86 #else 87 # define pcacheTrace(X) 88 # define pcacheDump(X) 89 #endif 90 91 /********************************** Linked List Management ********************/ 92 93 /* Allowed values for second argument to pcacheManageDirtyList() */ 94 #define PCACHE_DIRTYLIST_REMOVE 1 /* Remove pPage from dirty list */ 95 #define PCACHE_DIRTYLIST_ADD 2 /* Add pPage to the dirty list */ 96 #define PCACHE_DIRTYLIST_FRONT 3 /* Move pPage to the front of the list */ 97 98 /* 99 ** Manage pPage's participation on the dirty list. Bits of the addRemove 100 ** argument determines what operation to do. The 0x01 bit means first 101 ** remove pPage from the dirty list. The 0x02 means add pPage back to 102 ** the dirty list. Doing both moves pPage to the front of the dirty list. 103 */ 104 static void pcacheManageDirtyList(PgHdr *pPage, u8 addRemove){ 105 PCache *p = pPage->pCache; 106 107 pcacheTrace(("%p.DIRTYLIST.%s %d\n", p, 108 addRemove==1 ? "REMOVE" : addRemove==2 ? "ADD" : "FRONT", 109 pPage->pgno)); 110 if( addRemove & PCACHE_DIRTYLIST_REMOVE ){ 111 assert( pPage->pDirtyNext || pPage==p->pDirtyTail ); 112 assert( pPage->pDirtyPrev || pPage==p->pDirty ); 113 114 /* Update the PCache1.pSynced variable if necessary. */ 115 if( p->pSynced==pPage ){ 116 p->pSynced = pPage->pDirtyPrev; 117 } 118 119 if( pPage->pDirtyNext ){ 120 pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev; 121 }else{ 122 assert( pPage==p->pDirtyTail ); 123 p->pDirtyTail = pPage->pDirtyPrev; 124 } 125 if( pPage->pDirtyPrev ){ 126 pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext; 127 }else{ 128 /* If there are now no dirty pages in the cache, set eCreate to 2. 129 ** This is an optimization that allows sqlite3PcacheFetch() to skip 130 ** searching for a dirty page to eject from the cache when it might 131 ** otherwise have to. */ 132 assert( pPage==p->pDirty ); 133 p->pDirty = pPage->pDirtyNext; 134 assert( p->bPurgeable || p->eCreate==2 ); 135 if( p->pDirty==0 ){ /*OPTIMIZATION-IF-TRUE*/ 136 assert( p->bPurgeable==0 || p->eCreate==1 ); 137 p->eCreate = 2; 138 } 139 } 140 pPage->pDirtyNext = 0; 141 pPage->pDirtyPrev = 0; 142 } 143 if( addRemove & PCACHE_DIRTYLIST_ADD ){ 144 assert( pPage->pDirtyNext==0 && pPage->pDirtyPrev==0 && p->pDirty!=pPage ); 145 146 pPage->pDirtyNext = p->pDirty; 147 if( pPage->pDirtyNext ){ 148 assert( pPage->pDirtyNext->pDirtyPrev==0 ); 149 pPage->pDirtyNext->pDirtyPrev = pPage; 150 }else{ 151 p->pDirtyTail = pPage; 152 if( p->bPurgeable ){ 153 assert( p->eCreate==2 ); 154 p->eCreate = 1; 155 } 156 } 157 p->pDirty = pPage; 158 159 /* If pSynced is NULL and this page has a clear NEED_SYNC flag, set 160 ** pSynced to point to it. Checking the NEED_SYNC flag is an 161 ** optimization, as if pSynced points to a page with the NEED_SYNC 162 ** flag set sqlite3PcacheFetchStress() searches through all newer 163 ** entries of the dirty-list for a page with NEED_SYNC clear anyway. */ 164 if( !p->pSynced 165 && 0==(pPage->flags&PGHDR_NEED_SYNC) /*OPTIMIZATION-IF-FALSE*/ 166 ){ 167 p->pSynced = pPage; 168 } 169 } 170 pcacheDump(p); 171 } 172 173 /* 174 ** Wrapper around the pluggable caches xUnpin method. If the cache is 175 ** being used for an in-memory database, this function is a no-op. 176 */ 177 static void pcacheUnpin(PgHdr *p){ 178 if( p->pCache->bPurgeable ){ 179 pcacheTrace(("%p.UNPIN %d\n", p->pCache, p->pgno)); 180 sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0); 181 pcacheDump(p->pCache); 182 } 183 } 184 185 /* 186 ** Compute the number of pages of cache requested. p->szCache is the 187 ** cache size requested by the "PRAGMA cache_size" statement. 188 */ 189 static int numberOfCachePages(PCache *p){ 190 if( p->szCache>=0 ){ 191 /* IMPLEMENTATION-OF: R-42059-47211 If the argument N is positive then the 192 ** suggested cache size is set to N. */ 193 return p->szCache; 194 }else{ 195 /* IMPLEMENTATION-OF: R-61436-13639 If the argument N is negative, then 196 ** the number of cache pages is adjusted to use approximately abs(N*1024) 197 ** bytes of memory. */ 198 return (int)((-1024*(i64)p->szCache)/(p->szPage+p->szExtra)); 199 } 200 } 201 202 /*************************************************** General Interfaces ****** 203 ** 204 ** Initialize and shutdown the page cache subsystem. Neither of these 205 ** functions are threadsafe. 206 */ 207 int sqlite3PcacheInitialize(void){ 208 if( sqlite3GlobalConfig.pcache2.xInit==0 ){ 209 /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the 210 ** built-in default page cache is used instead of the application defined 211 ** page cache. */ 212 sqlite3PCacheSetDefault(); 213 } 214 return sqlite3GlobalConfig.pcache2.xInit(sqlite3GlobalConfig.pcache2.pArg); 215 } 216 void sqlite3PcacheShutdown(void){ 217 if( sqlite3GlobalConfig.pcache2.xShutdown ){ 218 /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */ 219 sqlite3GlobalConfig.pcache2.xShutdown(sqlite3GlobalConfig.pcache2.pArg); 220 } 221 } 222 223 /* 224 ** Return the size in bytes of a PCache object. 225 */ 226 int sqlite3PcacheSize(void){ return sizeof(PCache); } 227 228 /* 229 ** Create a new PCache object. Storage space to hold the object 230 ** has already been allocated and is passed in as the p pointer. 231 ** The caller discovers how much space needs to be allocated by 232 ** calling sqlite3PcacheSize(). 233 */ 234 int sqlite3PcacheOpen( 235 int szPage, /* Size of every page */ 236 int szExtra, /* Extra space associated with each page */ 237 int bPurgeable, /* True if pages are on backing store */ 238 int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */ 239 void *pStress, /* Argument to xStress */ 240 PCache *p /* Preallocated space for the PCache */ 241 ){ 242 memset(p, 0, sizeof(PCache)); 243 p->szPage = 1; 244 p->szExtra = szExtra; 245 p->bPurgeable = bPurgeable; 246 p->eCreate = 2; 247 p->xStress = xStress; 248 p->pStress = pStress; 249 p->szCache = 100; 250 p->szSpill = 1; 251 pcacheTrace(("%p.OPEN szPage %d bPurgeable %d\n",p,szPage,bPurgeable)); 252 return sqlite3PcacheSetPageSize(p, szPage); 253 } 254 255 /* 256 ** Change the page size for PCache object. The caller must ensure that there 257 ** are no outstanding page references when this function is called. 258 */ 259 int sqlite3PcacheSetPageSize(PCache *pCache, int szPage){ 260 assert( pCache->nRefSum==0 && pCache->pDirty==0 ); 261 if( pCache->szPage ){ 262 sqlite3_pcache *pNew; 263 pNew = sqlite3GlobalConfig.pcache2.xCreate( 264 szPage, pCache->szExtra + ROUND8(sizeof(PgHdr)), 265 pCache->bPurgeable 266 ); 267 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 268 sqlite3GlobalConfig.pcache2.xCachesize(pNew, numberOfCachePages(pCache)); 269 if( pCache->pCache ){ 270 sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); 271 } 272 pCache->pCache = pNew; 273 pCache->szPage = szPage; 274 pcacheTrace(("%p.PAGESIZE %d\n",pCache,szPage)); 275 } 276 return SQLITE_OK; 277 } 278 279 /* 280 ** Try to obtain a page from the cache. 281 ** 282 ** This routine returns a pointer to an sqlite3_pcache_page object if 283 ** such an object is already in cache, or if a new one is created. 284 ** This routine returns a NULL pointer if the object was not in cache 285 ** and could not be created. 286 ** 287 ** The createFlags should be 0 to check for existing pages and should 288 ** be 3 (not 1, but 3) to try to create a new page. 289 ** 290 ** If the createFlag is 0, then NULL is always returned if the page 291 ** is not already in the cache. If createFlag is 1, then a new page 292 ** is created only if that can be done without spilling dirty pages 293 ** and without exceeding the cache size limit. 294 ** 295 ** The caller needs to invoke sqlite3PcacheFetchFinish() to properly 296 ** initialize the sqlite3_pcache_page object and convert it into a 297 ** PgHdr object. The sqlite3PcacheFetch() and sqlite3PcacheFetchFinish() 298 ** routines are split this way for performance reasons. When separated 299 ** they can both (usually) operate without having to push values to 300 ** the stack on entry and pop them back off on exit, which saves a 301 ** lot of pushing and popping. 302 */ 303 sqlite3_pcache_page *sqlite3PcacheFetch( 304 PCache *pCache, /* Obtain the page from this cache */ 305 Pgno pgno, /* Page number to obtain */ 306 int createFlag /* If true, create page if it does not exist already */ 307 ){ 308 int eCreate; 309 sqlite3_pcache_page *pRes; 310 311 assert( pCache!=0 ); 312 assert( pCache->pCache!=0 ); 313 assert( createFlag==3 || createFlag==0 ); 314 assert( pgno>0 ); 315 assert( pCache->eCreate==((pCache->bPurgeable && pCache->pDirty) ? 1 : 2) ); 316 317 /* eCreate defines what to do if the page does not exist. 318 ** 0 Do not allocate a new page. (createFlag==0) 319 ** 1 Allocate a new page if doing so is inexpensive. 320 ** (createFlag==1 AND bPurgeable AND pDirty) 321 ** 2 Allocate a new page even it doing so is difficult. 322 ** (createFlag==1 AND !(bPurgeable AND pDirty) 323 */ 324 eCreate = createFlag & pCache->eCreate; 325 assert( eCreate==0 || eCreate==1 || eCreate==2 ); 326 assert( createFlag==0 || pCache->eCreate==eCreate ); 327 assert( createFlag==0 || eCreate==1+(!pCache->bPurgeable||!pCache->pDirty) ); 328 pRes = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate); 329 pcacheTrace(("%p.FETCH %d%s (result: %p)\n",pCache,pgno, 330 createFlag?" create":"",pRes)); 331 return pRes; 332 } 333 334 /* 335 ** If the sqlite3PcacheFetch() routine is unable to allocate a new 336 ** page because no clean pages are available for reuse and the cache 337 ** size limit has been reached, then this routine can be invoked to 338 ** try harder to allocate a page. This routine might invoke the stress 339 ** callback to spill dirty pages to the journal. It will then try to 340 ** allocate the new page and will only fail to allocate a new page on 341 ** an OOM error. 342 ** 343 ** This routine should be invoked only after sqlite3PcacheFetch() fails. 344 */ 345 int sqlite3PcacheFetchStress( 346 PCache *pCache, /* Obtain the page from this cache */ 347 Pgno pgno, /* Page number to obtain */ 348 sqlite3_pcache_page **ppPage /* Write result here */ 349 ){ 350 PgHdr *pPg; 351 if( pCache->eCreate==2 ) return 0; 352 353 if( sqlite3PcachePagecount(pCache)>pCache->szSpill ){ 354 /* Find a dirty page to write-out and recycle. First try to find a 355 ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC 356 ** cleared), but if that is not possible settle for any other 357 ** unreferenced dirty page. 358 ** 359 ** If the LRU page in the dirty list that has a clear PGHDR_NEED_SYNC 360 ** flag is currently referenced, then the following may leave pSynced 361 ** set incorrectly (pointing to other than the LRU page with NEED_SYNC 362 ** cleared). This is Ok, as pSynced is just an optimization. */ 363 for(pPg=pCache->pSynced; 364 pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC)); 365 pPg=pPg->pDirtyPrev 366 ); 367 pCache->pSynced = pPg; 368 if( !pPg ){ 369 for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev); 370 } 371 if( pPg ){ 372 int rc; 373 #ifdef SQLITE_LOG_CACHE_SPILL 374 sqlite3_log(SQLITE_FULL, 375 "spill page %d making room for %d - cache used: %d/%d", 376 pPg->pgno, pgno, 377 sqlite3GlobalConfig.pcache.xPagecount(pCache->pCache), 378 numberOfCachePages(pCache)); 379 #endif 380 pcacheTrace(("%p.SPILL %d\n",pCache,pPg->pgno)); 381 rc = pCache->xStress(pCache->pStress, pPg); 382 pcacheDump(pCache); 383 if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){ 384 return rc; 385 } 386 } 387 } 388 *ppPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, 2); 389 return *ppPage==0 ? SQLITE_NOMEM_BKPT : SQLITE_OK; 390 } 391 392 /* 393 ** This is a helper routine for sqlite3PcacheFetchFinish() 394 ** 395 ** In the uncommon case where the page being fetched has not been 396 ** initialized, this routine is invoked to do the initialization. 397 ** This routine is broken out into a separate function since it 398 ** requires extra stack manipulation that can be avoided in the common 399 ** case. 400 */ 401 static SQLITE_NOINLINE PgHdr *pcacheFetchFinishWithInit( 402 PCache *pCache, /* Obtain the page from this cache */ 403 Pgno pgno, /* Page number obtained */ 404 sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ 405 ){ 406 PgHdr *pPgHdr; 407 assert( pPage!=0 ); 408 pPgHdr = (PgHdr*)pPage->pExtra; 409 assert( pPgHdr->pPage==0 ); 410 memset(pPgHdr, 0, sizeof(PgHdr)); 411 pPgHdr->pPage = pPage; 412 pPgHdr->pData = pPage->pBuf; 413 pPgHdr->pExtra = (void *)&pPgHdr[1]; 414 memset(pPgHdr->pExtra, 0, pCache->szExtra); 415 pPgHdr->pCache = pCache; 416 pPgHdr->pgno = pgno; 417 pPgHdr->flags = PGHDR_CLEAN; 418 return sqlite3PcacheFetchFinish(pCache,pgno,pPage); 419 } 420 421 /* 422 ** This routine converts the sqlite3_pcache_page object returned by 423 ** sqlite3PcacheFetch() into an initialized PgHdr object. This routine 424 ** must be called after sqlite3PcacheFetch() in order to get a usable 425 ** result. 426 */ 427 PgHdr *sqlite3PcacheFetchFinish( 428 PCache *pCache, /* Obtain the page from this cache */ 429 Pgno pgno, /* Page number obtained */ 430 sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ 431 ){ 432 PgHdr *pPgHdr; 433 434 assert( pPage!=0 ); 435 pPgHdr = (PgHdr *)pPage->pExtra; 436 437 if( !pPgHdr->pPage ){ 438 return pcacheFetchFinishWithInit(pCache, pgno, pPage); 439 } 440 pCache->nRefSum++; 441 pPgHdr->nRef++; 442 return pPgHdr; 443 } 444 445 /* 446 ** Decrement the reference count on a page. If the page is clean and the 447 ** reference count drops to 0, then it is made eligible for recycling. 448 */ 449 void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){ 450 assert( p->nRef>0 ); 451 p->pCache->nRefSum--; 452 if( (--p->nRef)==0 ){ 453 if( p->flags&PGHDR_CLEAN ){ 454 pcacheUnpin(p); 455 }else if( p->pDirtyPrev!=0 ){ /*OPTIMIZATION-IF-FALSE*/ 456 /* Move the page to the head of the dirty list. If p->pDirtyPrev==0, 457 ** then page p is already at the head of the dirty list and the 458 ** following call would be a no-op. Hence the OPTIMIZATION-IF-FALSE 459 ** tag above. */ 460 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); 461 } 462 } 463 } 464 465 /* 466 ** Increase the reference count of a supplied page by 1. 467 */ 468 void sqlite3PcacheRef(PgHdr *p){ 469 assert(p->nRef>0); 470 p->nRef++; 471 p->pCache->nRefSum++; 472 } 473 474 /* 475 ** Drop a page from the cache. There must be exactly one reference to the 476 ** page. This function deletes that reference, so after it returns the 477 ** page pointed to by p is invalid. 478 */ 479 void sqlite3PcacheDrop(PgHdr *p){ 480 assert( p->nRef==1 ); 481 if( p->flags&PGHDR_DIRTY ){ 482 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); 483 } 484 p->pCache->nRefSum--; 485 sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 1); 486 } 487 488 /* 489 ** Make sure the page is marked as dirty. If it isn't dirty already, 490 ** make it so. 491 */ 492 void sqlite3PcacheMakeDirty(PgHdr *p){ 493 assert( p->nRef>0 ); 494 if( p->flags & (PGHDR_CLEAN|PGHDR_DONT_WRITE) ){ /*OPTIMIZATION-IF-FALSE*/ 495 p->flags &= ~PGHDR_DONT_WRITE; 496 if( p->flags & PGHDR_CLEAN ){ 497 p->flags ^= (PGHDR_DIRTY|PGHDR_CLEAN); 498 pcacheTrace(("%p.DIRTY %d\n",p->pCache,p->pgno)); 499 assert( (p->flags & (PGHDR_DIRTY|PGHDR_CLEAN))==PGHDR_DIRTY ); 500 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_ADD); 501 } 502 } 503 } 504 505 /* 506 ** Make sure the page is marked as clean. If it isn't clean already, 507 ** make it so. 508 */ 509 void sqlite3PcacheMakeClean(PgHdr *p){ 510 if( ALWAYS((p->flags & PGHDR_DIRTY)!=0) ){ 511 assert( (p->flags & PGHDR_CLEAN)==0 ); 512 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); 513 p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC|PGHDR_WRITEABLE); 514 p->flags |= PGHDR_CLEAN; 515 pcacheTrace(("%p.CLEAN %d\n",p->pCache,p->pgno)); 516 if( p->nRef==0 ){ 517 pcacheUnpin(p); 518 } 519 } 520 } 521 522 /* 523 ** Make every page in the cache clean. 524 */ 525 void sqlite3PcacheCleanAll(PCache *pCache){ 526 PgHdr *p; 527 pcacheTrace(("%p.CLEAN-ALL\n",pCache)); 528 while( (p = pCache->pDirty)!=0 ){ 529 sqlite3PcacheMakeClean(p); 530 } 531 } 532 533 /* 534 ** Clear the PGHDR_NEED_SYNC and PGHDR_WRITEABLE flag from all dirty pages. 535 */ 536 void sqlite3PcacheClearWritable(PCache *pCache){ 537 PgHdr *p; 538 pcacheTrace(("%p.CLEAR-WRITEABLE\n",pCache)); 539 for(p=pCache->pDirty; p; p=p->pDirtyNext){ 540 p->flags &= ~(PGHDR_NEED_SYNC|PGHDR_WRITEABLE); 541 } 542 pCache->pSynced = pCache->pDirtyTail; 543 } 544 545 /* 546 ** Clear the PGHDR_NEED_SYNC flag from all dirty pages. 547 */ 548 void sqlite3PcacheClearSyncFlags(PCache *pCache){ 549 PgHdr *p; 550 for(p=pCache->pDirty; p; p=p->pDirtyNext){ 551 p->flags &= ~PGHDR_NEED_SYNC; 552 } 553 pCache->pSynced = pCache->pDirtyTail; 554 } 555 556 /* 557 ** Change the page number of page p to newPgno. 558 */ 559 void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){ 560 PCache *pCache = p->pCache; 561 assert( p->nRef>0 ); 562 assert( newPgno>0 ); 563 pcacheTrace(("%p.MOVE %d -> %d\n",pCache,p->pgno,newPgno)); 564 sqlite3GlobalConfig.pcache2.xRekey(pCache->pCache, p->pPage, p->pgno,newPgno); 565 p->pgno = newPgno; 566 if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){ 567 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); 568 } 569 } 570 571 /* 572 ** Drop every cache entry whose page number is greater than "pgno". The 573 ** caller must ensure that there are no outstanding references to any pages 574 ** other than page 1 with a page number greater than pgno. 575 ** 576 ** If there is a reference to page 1 and the pgno parameter passed to this 577 ** function is 0, then the data area associated with page 1 is zeroed, but 578 ** the page object is not dropped. 579 */ 580 void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){ 581 if( pCache->pCache ){ 582 PgHdr *p; 583 PgHdr *pNext; 584 pcacheTrace(("%p.TRUNCATE %d\n",pCache,pgno)); 585 for(p=pCache->pDirty; p; p=pNext){ 586 pNext = p->pDirtyNext; 587 /* This routine never gets call with a positive pgno except right 588 ** after sqlite3PcacheCleanAll(). So if there are dirty pages, 589 ** it must be that pgno==0. 590 */ 591 assert( p->pgno>0 ); 592 if( p->pgno>pgno ){ 593 assert( p->flags&PGHDR_DIRTY ); 594 sqlite3PcacheMakeClean(p); 595 } 596 } 597 if( pgno==0 && pCache->nRefSum ){ 598 sqlite3_pcache_page *pPage1; 599 pPage1 = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache,1,0); 600 if( ALWAYS(pPage1) ){ /* Page 1 is always available in cache, because 601 ** pCache->nRefSum>0 */ 602 memset(pPage1->pBuf, 0, pCache->szPage); 603 pgno = 1; 604 } 605 } 606 sqlite3GlobalConfig.pcache2.xTruncate(pCache->pCache, pgno+1); 607 } 608 } 609 610 /* 611 ** Close a cache. 612 */ 613 void sqlite3PcacheClose(PCache *pCache){ 614 assert( pCache->pCache!=0 ); 615 pcacheTrace(("%p.CLOSE\n",pCache)); 616 sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); 617 } 618 619 /* 620 ** Discard the contents of the cache. 621 */ 622 void sqlite3PcacheClear(PCache *pCache){ 623 sqlite3PcacheTruncate(pCache, 0); 624 } 625 626 /* 627 ** Merge two lists of pages connected by pDirty and in pgno order. 628 ** Do not both fixing the pDirtyPrev pointers. 629 */ 630 static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){ 631 PgHdr result, *pTail; 632 pTail = &result; 633 while( pA && pB ){ 634 if( pA->pgno<pB->pgno ){ 635 pTail->pDirty = pA; 636 pTail = pA; 637 pA = pA->pDirty; 638 }else{ 639 pTail->pDirty = pB; 640 pTail = pB; 641 pB = pB->pDirty; 642 } 643 } 644 if( pA ){ 645 pTail->pDirty = pA; 646 }else if( pB ){ 647 pTail->pDirty = pB; 648 }else{ 649 pTail->pDirty = 0; 650 } 651 return result.pDirty; 652 } 653 654 /* 655 ** Sort the list of pages in accending order by pgno. Pages are 656 ** connected by pDirty pointers. The pDirtyPrev pointers are 657 ** corrupted by this sort. 658 ** 659 ** Since there cannot be more than 2^31 distinct pages in a database, 660 ** there cannot be more than 31 buckets required by the merge sorter. 661 ** One extra bucket is added to catch overflow in case something 662 ** ever changes to make the previous sentence incorrect. 663 */ 664 #define N_SORT_BUCKET 32 665 static PgHdr *pcacheSortDirtyList(PgHdr *pIn){ 666 PgHdr *a[N_SORT_BUCKET], *p; 667 int i; 668 memset(a, 0, sizeof(a)); 669 while( pIn ){ 670 p = pIn; 671 pIn = p->pDirty; 672 p->pDirty = 0; 673 for(i=0; ALWAYS(i<N_SORT_BUCKET-1); i++){ 674 if( a[i]==0 ){ 675 a[i] = p; 676 break; 677 }else{ 678 p = pcacheMergeDirtyList(a[i], p); 679 a[i] = 0; 680 } 681 } 682 if( NEVER(i==N_SORT_BUCKET-1) ){ 683 /* To get here, there need to be 2^(N_SORT_BUCKET) elements in 684 ** the input list. But that is impossible. 685 */ 686 a[i] = pcacheMergeDirtyList(a[i], p); 687 } 688 } 689 p = a[0]; 690 for(i=1; i<N_SORT_BUCKET; i++){ 691 p = pcacheMergeDirtyList(p, a[i]); 692 } 693 return p; 694 } 695 696 /* 697 ** Return a list of all dirty pages in the cache, sorted by page number. 698 */ 699 PgHdr *sqlite3PcacheDirtyList(PCache *pCache){ 700 PgHdr *p; 701 for(p=pCache->pDirty; p; p=p->pDirtyNext){ 702 p->pDirty = p->pDirtyNext; 703 } 704 return pcacheSortDirtyList(pCache->pDirty); 705 } 706 707 /* 708 ** Return the total number of references to all pages held by the cache. 709 ** 710 ** This is not the total number of pages referenced, but the sum of the 711 ** reference count for all pages. 712 */ 713 int sqlite3PcacheRefCount(PCache *pCache){ 714 return pCache->nRefSum; 715 } 716 717 /* 718 ** Return the number of references to the page supplied as an argument. 719 */ 720 int sqlite3PcachePageRefcount(PgHdr *p){ 721 return p->nRef; 722 } 723 724 /* 725 ** Return the total number of pages in the cache. 726 */ 727 int sqlite3PcachePagecount(PCache *pCache){ 728 assert( pCache->pCache!=0 ); 729 return sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache); 730 } 731 732 #ifdef SQLITE_TEST 733 /* 734 ** Get the suggested cache-size value. 735 */ 736 int sqlite3PcacheGetCachesize(PCache *pCache){ 737 return numberOfCachePages(pCache); 738 } 739 #endif 740 741 /* 742 ** Set the suggested cache-size value. 743 */ 744 void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){ 745 assert( pCache->pCache!=0 ); 746 pCache->szCache = mxPage; 747 sqlite3GlobalConfig.pcache2.xCachesize(pCache->pCache, 748 numberOfCachePages(pCache)); 749 } 750 751 /* 752 ** Set the suggested cache-spill value. Make no changes if if the 753 ** argument is zero. Return the effective cache-spill size, which will 754 ** be the larger of the szSpill and szCache. 755 */ 756 int sqlite3PcacheSetSpillsize(PCache *p, int mxPage){ 757 int res; 758 assert( p->pCache!=0 ); 759 if( mxPage ){ 760 if( mxPage<0 ){ 761 mxPage = (int)((-1024*(i64)mxPage)/(p->szPage+p->szExtra)); 762 } 763 p->szSpill = mxPage; 764 } 765 res = numberOfCachePages(p); 766 if( res<p->szSpill ) res = p->szSpill; 767 return res; 768 } 769 770 /* 771 ** Free up as much memory as possible from the page cache. 772 */ 773 void sqlite3PcacheShrink(PCache *pCache){ 774 assert( pCache->pCache!=0 ); 775 sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache); 776 } 777 778 /* 779 ** Return the size of the header added by this middleware layer 780 ** in the page-cache hierarchy. 781 */ 782 int sqlite3HeaderSizePcache(void){ return ROUND8(sizeof(PgHdr)); } 783 784 /* 785 ** Return the number of dirty pages currently in the cache, as a percentage 786 ** of the configured cache size. 787 */ 788 int sqlite3PCachePercentDirty(PCache *pCache){ 789 PgHdr *pDirty; 790 int nDirty = 0; 791 int nCache = numberOfCachePages(pCache); 792 for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext) nDirty++; 793 return nCache ? (int)(((i64)nDirty * 100) / nCache) : 0; 794 } 795 796 #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG) 797 /* 798 ** For all dirty pages currently in the cache, invoke the specified 799 ** callback. This is only used if the SQLITE_CHECK_PAGES macro is 800 ** defined. 801 */ 802 void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){ 803 PgHdr *pDirty; 804 for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){ 805 xIter(pDirty); 806 } 807 } 808 #endif 809