xref: /sqlite-3.40.0/src/pcache.c (revision 60176fa9)
1 /*
2 ** 2008 August 05
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file implements that page cache.
13 */
14 #include "sqliteInt.h"
15 
16 /*
17 ** A complete page cache is an instance of this structure.
18 */
19 struct PCache {
20   PgHdr *pDirty, *pDirtyTail;         /* List of dirty pages in LRU order */
21   PgHdr *pSynced;                     /* Last synced page in dirty page list */
22   int nRef;                           /* Number of referenced pages */
23   int nMax;                           /* Configured cache size */
24   int szPage;                         /* Size of every page in this cache */
25   int szExtra;                        /* Size of extra space for each page */
26   int bPurgeable;                     /* True if pages are on backing store */
27   int (*xStress)(void*,PgHdr*);       /* Call to try make a page clean */
28   void *pStress;                      /* Argument to xStress */
29   sqlite3_pcache *pCache;             /* Pluggable cache module */
30   PgHdr *pPage1;                      /* Reference to page 1 */
31 };
32 
33 /*
34 ** Some of the assert() macros in this code are too expensive to run
35 ** even during normal debugging.  Use them only rarely on long-running
36 ** tests.  Enable the expensive asserts using the
37 ** -DSQLITE_ENABLE_EXPENSIVE_ASSERT=1 compile-time option.
38 */
39 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
40 # define expensive_assert(X)  assert(X)
41 #else
42 # define expensive_assert(X)
43 #endif
44 
45 /********************************** Linked List Management ********************/
46 
47 #if !defined(NDEBUG) && defined(SQLITE_ENABLE_EXPENSIVE_ASSERT)
48 /*
49 ** Check that the pCache->pSynced variable is set correctly. If it
50 ** is not, either fail an assert or return zero. Otherwise, return
51 ** non-zero. This is only used in debugging builds, as follows:
52 **
53 **   expensive_assert( pcacheCheckSynced(pCache) );
54 */
55 static int pcacheCheckSynced(PCache *pCache){
56   PgHdr *p;
57   for(p=pCache->pDirtyTail; p!=pCache->pSynced; p=p->pDirtyPrev){
58     assert( p->nRef || (p->flags&PGHDR_NEED_SYNC) );
59   }
60   return (p==0 || p->nRef || (p->flags&PGHDR_NEED_SYNC)==0);
61 }
62 #endif /* !NDEBUG && SQLITE_ENABLE_EXPENSIVE_ASSERT */
63 
64 /*
65 ** Remove page pPage from the list of dirty pages.
66 */
67 static void pcacheRemoveFromDirtyList(PgHdr *pPage){
68   PCache *p = pPage->pCache;
69 
70   assert( pPage->pDirtyNext || pPage==p->pDirtyTail );
71   assert( pPage->pDirtyPrev || pPage==p->pDirty );
72 
73   /* Update the PCache1.pSynced variable if necessary. */
74   if( p->pSynced==pPage ){
75     PgHdr *pSynced = pPage->pDirtyPrev;
76     while( pSynced && (pSynced->flags&PGHDR_NEED_SYNC) ){
77       pSynced = pSynced->pDirtyPrev;
78     }
79     p->pSynced = pSynced;
80   }
81 
82   if( pPage->pDirtyNext ){
83     pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev;
84   }else{
85     assert( pPage==p->pDirtyTail );
86     p->pDirtyTail = pPage->pDirtyPrev;
87   }
88   if( pPage->pDirtyPrev ){
89     pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext;
90   }else{
91     assert( pPage==p->pDirty );
92     p->pDirty = pPage->pDirtyNext;
93   }
94   pPage->pDirtyNext = 0;
95   pPage->pDirtyPrev = 0;
96 
97   expensive_assert( pcacheCheckSynced(p) );
98 }
99 
100 /*
101 ** Add page pPage to the head of the dirty list (PCache1.pDirty is set to
102 ** pPage).
103 */
104 static void pcacheAddToDirtyList(PgHdr *pPage){
105   PCache *p = pPage->pCache;
106 
107   assert( pPage->pDirtyNext==0 && pPage->pDirtyPrev==0 && p->pDirty!=pPage );
108 
109   pPage->pDirtyNext = p->pDirty;
110   if( pPage->pDirtyNext ){
111     assert( pPage->pDirtyNext->pDirtyPrev==0 );
112     pPage->pDirtyNext->pDirtyPrev = pPage;
113   }
114   p->pDirty = pPage;
115   if( !p->pDirtyTail ){
116     p->pDirtyTail = pPage;
117   }
118   if( !p->pSynced && 0==(pPage->flags&PGHDR_NEED_SYNC) ){
119     p->pSynced = pPage;
120   }
121   expensive_assert( pcacheCheckSynced(p) );
122 }
123 
124 /*
125 ** Wrapper around the pluggable caches xUnpin method. If the cache is
126 ** being used for an in-memory database, this function is a no-op.
127 */
128 static void pcacheUnpin(PgHdr *p){
129   PCache *pCache = p->pCache;
130   if( pCache->bPurgeable ){
131     if( p->pgno==1 ){
132       pCache->pPage1 = 0;
133     }
134     sqlite3GlobalConfig.pcache.xUnpin(pCache->pCache, p, 0);
135   }
136 }
137 
138 /*************************************************** General Interfaces ******
139 **
140 ** Initialize and shutdown the page cache subsystem. Neither of these
141 ** functions are threadsafe.
142 */
143 int sqlite3PcacheInitialize(void){
144   if( sqlite3GlobalConfig.pcache.xInit==0 ){
145     sqlite3PCacheSetDefault();
146   }
147   return sqlite3GlobalConfig.pcache.xInit(sqlite3GlobalConfig.pcache.pArg);
148 }
149 void sqlite3PcacheShutdown(void){
150   if( sqlite3GlobalConfig.pcache.xShutdown ){
151     sqlite3GlobalConfig.pcache.xShutdown(sqlite3GlobalConfig.pcache.pArg);
152   }
153 }
154 
155 /*
156 ** Return the size in bytes of a PCache object.
157 */
158 int sqlite3PcacheSize(void){ return sizeof(PCache); }
159 
160 /*
161 ** Create a new PCache object. Storage space to hold the object
162 ** has already been allocated and is passed in as the p pointer.
163 ** The caller discovers how much space needs to be allocated by
164 ** calling sqlite3PcacheSize().
165 */
166 void sqlite3PcacheOpen(
167   int szPage,                  /* Size of every page */
168   int szExtra,                 /* Extra space associated with each page */
169   int bPurgeable,              /* True if pages are on backing store */
170   int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */
171   void *pStress,               /* Argument to xStress */
172   PCache *p                    /* Preallocated space for the PCache */
173 ){
174   memset(p, 0, sizeof(PCache));
175   p->szPage = szPage;
176   p->szExtra = szExtra;
177   p->bPurgeable = bPurgeable;
178   p->xStress = xStress;
179   p->pStress = pStress;
180   p->nMax = 100;
181 }
182 
183 /*
184 ** Change the page size for PCache object. The caller must ensure that there
185 ** are no outstanding page references when this function is called.
186 */
187 void sqlite3PcacheSetPageSize(PCache *pCache, int szPage){
188   assert( pCache->nRef==0 && pCache->pDirty==0 );
189   if( pCache->pCache ){
190     sqlite3GlobalConfig.pcache.xDestroy(pCache->pCache);
191     pCache->pCache = 0;
192     pCache->pPage1 = 0;
193   }
194   pCache->szPage = szPage;
195 }
196 
197 /*
198 ** Try to obtain a page from the cache.
199 */
200 int sqlite3PcacheFetch(
201   PCache *pCache,       /* Obtain the page from this cache */
202   Pgno pgno,            /* Page number to obtain */
203   int createFlag,       /* If true, create page if it does not exist already */
204   PgHdr **ppPage        /* Write the page here */
205 ){
206   PgHdr *pPage = 0;
207   int eCreate;
208 
209   assert( pCache!=0 );
210   assert( createFlag==1 || createFlag==0 );
211   assert( pgno>0 );
212 
213   /* If the pluggable cache (sqlite3_pcache*) has not been allocated,
214   ** allocate it now.
215   */
216   if( !pCache->pCache && createFlag ){
217     sqlite3_pcache *p;
218     int nByte;
219     nByte = pCache->szPage + pCache->szExtra + sizeof(PgHdr);
220     p = sqlite3GlobalConfig.pcache.xCreate(nByte, pCache->bPurgeable);
221     if( !p ){
222       return SQLITE_NOMEM;
223     }
224     sqlite3GlobalConfig.pcache.xCachesize(p, pCache->nMax);
225     pCache->pCache = p;
226   }
227 
228   eCreate = createFlag * (1 + (!pCache->bPurgeable || !pCache->pDirty));
229   if( pCache->pCache ){
230     pPage = sqlite3GlobalConfig.pcache.xFetch(pCache->pCache, pgno, eCreate);
231   }
232 
233   if( !pPage && eCreate==1 ){
234     PgHdr *pPg;
235 
236     /* Find a dirty page to write-out and recycle. First try to find a
237     ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC
238     ** cleared), but if that is not possible settle for any other
239     ** unreferenced dirty page.
240     */
241     expensive_assert( pcacheCheckSynced(pCache) );
242     for(pPg=pCache->pSynced;
243         pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC));
244         pPg=pPg->pDirtyPrev
245     );
246     pCache->pSynced = pPg;
247     if( !pPg ){
248       for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev);
249     }
250     if( pPg ){
251       int rc;
252       rc = pCache->xStress(pCache->pStress, pPg);
253       if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){
254         return rc;
255       }
256     }
257 
258     pPage = sqlite3GlobalConfig.pcache.xFetch(pCache->pCache, pgno, 2);
259   }
260 
261   if( pPage ){
262     if( !pPage->pData ){
263       memset(pPage, 0, sizeof(PgHdr));
264       pPage->pData = (void *)&pPage[1];
265       pPage->pExtra = (void*)&((char *)pPage->pData)[pCache->szPage];
266       memset(pPage->pExtra, 0, pCache->szExtra);
267       pPage->pCache = pCache;
268       pPage->pgno = pgno;
269     }
270     assert( pPage->pCache==pCache );
271     assert( pPage->pgno==pgno );
272     assert( pPage->pData==(void *)&pPage[1] );
273     assert( pPage->pExtra==(void *)&((char *)&pPage[1])[pCache->szPage] );
274 
275     if( 0==pPage->nRef ){
276       pCache->nRef++;
277     }
278     pPage->nRef++;
279     if( pgno==1 ){
280       pCache->pPage1 = pPage;
281     }
282   }
283   *ppPage = pPage;
284   return (pPage==0 && eCreate) ? SQLITE_NOMEM : SQLITE_OK;
285 }
286 
287 /*
288 ** Decrement the reference count on a page. If the page is clean and the
289 ** reference count drops to 0, then it is made elible for recycling.
290 */
291 void sqlite3PcacheRelease(PgHdr *p){
292   assert( p->nRef>0 );
293   p->nRef--;
294   if( p->nRef==0 ){
295     PCache *pCache = p->pCache;
296     pCache->nRef--;
297     if( (p->flags&PGHDR_DIRTY)==0 ){
298       pcacheUnpin(p);
299     }else{
300       /* Move the page to the head of the dirty list. */
301       pcacheRemoveFromDirtyList(p);
302       pcacheAddToDirtyList(p);
303     }
304   }
305 }
306 
307 /*
308 ** Increase the reference count of a supplied page by 1.
309 */
310 void sqlite3PcacheRef(PgHdr *p){
311   assert(p->nRef>0);
312   p->nRef++;
313 }
314 
315 /*
316 ** Drop a page from the cache. There must be exactly one reference to the
317 ** page. This function deletes that reference, so after it returns the
318 ** page pointed to by p is invalid.
319 */
320 void sqlite3PcacheDrop(PgHdr *p){
321   PCache *pCache;
322   assert( p->nRef==1 );
323   if( p->flags&PGHDR_DIRTY ){
324     pcacheRemoveFromDirtyList(p);
325   }
326   pCache = p->pCache;
327   pCache->nRef--;
328   if( p->pgno==1 ){
329     pCache->pPage1 = 0;
330   }
331   sqlite3GlobalConfig.pcache.xUnpin(pCache->pCache, p, 1);
332 }
333 
334 /*
335 ** Make sure the page is marked as dirty. If it isn't dirty already,
336 ** make it so.
337 */
338 void sqlite3PcacheMakeDirty(PgHdr *p){
339   p->flags &= ~PGHDR_DONT_WRITE;
340   assert( p->nRef>0 );
341   if( 0==(p->flags & PGHDR_DIRTY) ){
342     p->flags |= PGHDR_DIRTY;
343     pcacheAddToDirtyList( p);
344   }
345 }
346 
347 /*
348 ** Make sure the page is marked as clean. If it isn't clean already,
349 ** make it so.
350 */
351 void sqlite3PcacheMakeClean(PgHdr *p){
352   if( (p->flags & PGHDR_DIRTY) ){
353     pcacheRemoveFromDirtyList(p);
354     p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC);
355     if( p->nRef==0 ){
356       pcacheUnpin(p);
357     }
358   }
359 }
360 
361 /*
362 ** Make every page in the cache clean.
363 */
364 void sqlite3PcacheCleanAll(PCache *pCache){
365   PgHdr *p;
366   while( (p = pCache->pDirty)!=0 ){
367     sqlite3PcacheMakeClean(p);
368   }
369 }
370 
371 /*
372 ** Clear the PGHDR_NEED_SYNC flag from all dirty pages.
373 */
374 void sqlite3PcacheClearSyncFlags(PCache *pCache){
375   PgHdr *p;
376   for(p=pCache->pDirty; p; p=p->pDirtyNext){
377     p->flags &= ~PGHDR_NEED_SYNC;
378   }
379   pCache->pSynced = pCache->pDirtyTail;
380 }
381 
382 /*
383 ** Change the page number of page p to newPgno.
384 */
385 void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){
386   PCache *pCache = p->pCache;
387   assert( p->nRef>0 );
388   assert( newPgno>0 );
389   sqlite3GlobalConfig.pcache.xRekey(pCache->pCache, p, p->pgno, newPgno);
390   p->pgno = newPgno;
391   if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){
392     pcacheRemoveFromDirtyList(p);
393     pcacheAddToDirtyList(p);
394   }
395 }
396 
397 /*
398 ** Drop every cache entry whose page number is greater than "pgno". The
399 ** caller must ensure that there are no outstanding references to any pages
400 ** other than page 1 with a page number greater than pgno.
401 **
402 ** If there is a reference to page 1 and the pgno parameter passed to this
403 ** function is 0, then the data area associated with page 1 is zeroed, but
404 ** the page object is not dropped.
405 */
406 void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){
407   if( pCache->pCache ){
408     PgHdr *p;
409     PgHdr *pNext;
410     for(p=pCache->pDirty; p; p=pNext){
411       pNext = p->pDirtyNext;
412       /* This routine never gets call with a positive pgno except right
413       ** after sqlite3PcacheCleanAll().  So if there are dirty pages,
414       ** it must be that pgno==0.
415       */
416       assert( p->pgno>0 );
417       if( ALWAYS(p->pgno>pgno) ){
418         assert( p->flags&PGHDR_DIRTY );
419         sqlite3PcacheMakeClean(p);
420       }
421     }
422     if( pgno==0 && pCache->pPage1 ){
423       memset(pCache->pPage1->pData, 0, pCache->szPage);
424       pgno = 1;
425     }
426     sqlite3GlobalConfig.pcache.xTruncate(pCache->pCache, pgno+1);
427   }
428 }
429 
430 /*
431 ** Close a cache.
432 */
433 void sqlite3PcacheClose(PCache *pCache){
434   if( pCache->pCache ){
435     sqlite3GlobalConfig.pcache.xDestroy(pCache->pCache);
436   }
437 }
438 
439 /*
440 ** Discard the contents of the cache.
441 */
442 void sqlite3PcacheClear(PCache *pCache){
443   sqlite3PcacheTruncate(pCache, 0);
444 }
445 
446 /*
447 ** Merge two lists of pages connected by pDirty and in pgno order.
448 ** Do not both fixing the pDirtyPrev pointers.
449 */
450 static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){
451   PgHdr result, *pTail;
452   pTail = &result;
453   while( pA && pB ){
454     if( pA->pgno<pB->pgno ){
455       pTail->pDirty = pA;
456       pTail = pA;
457       pA = pA->pDirty;
458     }else{
459       pTail->pDirty = pB;
460       pTail = pB;
461       pB = pB->pDirty;
462     }
463   }
464   if( pA ){
465     pTail->pDirty = pA;
466   }else if( pB ){
467     pTail->pDirty = pB;
468   }else{
469     pTail->pDirty = 0;
470   }
471   return result.pDirty;
472 }
473 
474 /*
475 ** Sort the list of pages in accending order by pgno.  Pages are
476 ** connected by pDirty pointers.  The pDirtyPrev pointers are
477 ** corrupted by this sort.
478 **
479 ** Since there cannot be more than 2^31 distinct pages in a database,
480 ** there cannot be more than 31 buckets required by the merge sorter.
481 ** One extra bucket is added to catch overflow in case something
482 ** ever changes to make the previous sentence incorrect.
483 */
484 #define N_SORT_BUCKET  32
485 static PgHdr *pcacheSortDirtyList(PgHdr *pIn){
486   PgHdr *a[N_SORT_BUCKET], *p;
487   int i;
488   memset(a, 0, sizeof(a));
489   while( pIn ){
490     p = pIn;
491     pIn = p->pDirty;
492     p->pDirty = 0;
493     for(i=0; ALWAYS(i<N_SORT_BUCKET-1); i++){
494       if( a[i]==0 ){
495         a[i] = p;
496         break;
497       }else{
498         p = pcacheMergeDirtyList(a[i], p);
499         a[i] = 0;
500       }
501     }
502     if( NEVER(i==N_SORT_BUCKET-1) ){
503       /* To get here, there need to be 2^(N_SORT_BUCKET) elements in
504       ** the input list.  But that is impossible.
505       */
506       a[i] = pcacheMergeDirtyList(a[i], p);
507     }
508   }
509   p = a[0];
510   for(i=1; i<N_SORT_BUCKET; i++){
511     p = pcacheMergeDirtyList(p, a[i]);
512   }
513   return p;
514 }
515 
516 /*
517 ** Return a list of all dirty pages in the cache, sorted by page number.
518 */
519 PgHdr *sqlite3PcacheDirtyList(PCache *pCache){
520   PgHdr *p;
521   for(p=pCache->pDirty; p; p=p->pDirtyNext){
522     p->pDirty = p->pDirtyNext;
523   }
524   return pcacheSortDirtyList(pCache->pDirty);
525 }
526 
527 /*
528 ** Return the total number of referenced pages held by the cache.
529 */
530 int sqlite3PcacheRefCount(PCache *pCache){
531   return pCache->nRef;
532 }
533 
534 /*
535 ** Return the number of references to the page supplied as an argument.
536 */
537 int sqlite3PcachePageRefcount(PgHdr *p){
538   return p->nRef;
539 }
540 
541 /*
542 ** Return the total number of pages in the cache.
543 */
544 int sqlite3PcachePagecount(PCache *pCache){
545   int nPage = 0;
546   if( pCache->pCache ){
547     nPage = sqlite3GlobalConfig.pcache.xPagecount(pCache->pCache);
548   }
549   return nPage;
550 }
551 
552 #ifdef SQLITE_TEST
553 /*
554 ** Get the suggested cache-size value.
555 */
556 int sqlite3PcacheGetCachesize(PCache *pCache){
557   return pCache->nMax;
558 }
559 #endif
560 
561 /*
562 ** Set the suggested cache-size value.
563 */
564 void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){
565   pCache->nMax = mxPage;
566   if( pCache->pCache ){
567     sqlite3GlobalConfig.pcache.xCachesize(pCache->pCache, mxPage);
568   }
569 }
570 
571 #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG)
572 /*
573 ** For all dirty pages currently in the cache, invoke the specified
574 ** callback. This is only used if the SQLITE_CHECK_PAGES macro is
575 ** defined.
576 */
577 void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){
578   PgHdr *pDirty;
579   for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){
580     xIter(pDirty);
581   }
582 }
583 #endif
584