xref: /sqlite-3.40.0/src/pcache.c (revision 4f3557e4)
1 /*
2 ** 2008 August 05
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file implements that page cache.
13 */
14 #include "sqliteInt.h"
15 
16 /*
17 ** A complete page cache is an instance of this structure.  Every
18 ** entry in the cache holds a single page of the database file.  The
19 ** btree layer only operates on the cached copy of the database pages.
20 **
21 ** A page cache entry is "clean" if it exactly matches what is currently
22 ** on disk.  A page is "dirty" if it has been modified and needs to be
23 ** persisted to disk.
24 **
25 ** pDirty, pDirtyTail, pSynced:
26 **   All dirty pages are linked into the doubly linked list using
27 **   PgHdr.pDirtyNext and pDirtyPrev. The list is maintained in LRU order
28 **   such that p was added to the list more recently than p->pDirtyNext.
29 **   PCache.pDirty points to the first (newest) element in the list and
30 **   pDirtyTail to the last (oldest).
31 **
32 **   The PCache.pSynced variable is used to optimize searching for a dirty
33 **   page to eject from the cache mid-transaction. It is better to eject
34 **   a page that does not require a journal sync than one that does.
35 **   Therefore, pSynced is maintained so that it *almost* always points
36 **   to either the oldest page in the pDirty/pDirtyTail list that has a
37 **   clear PGHDR_NEED_SYNC flag or to a page that is older than this one
38 **   (so that the right page to eject can be found by following pDirtyPrev
39 **   pointers).
40 */
41 struct PCache {
42   PgHdr *pDirty, *pDirtyTail;         /* List of dirty pages in LRU order */
43   PgHdr *pSynced;                     /* Last synced page in dirty page list */
44   int nRefSum;                        /* Sum of ref counts over all pages */
45   int szCache;                        /* Configured cache size */
46   int szSpill;                        /* Size before spilling occurs */
47   int szPage;                         /* Size of every page in this cache */
48   int szExtra;                        /* Size of extra space for each page */
49   u8 bPurgeable;                      /* True if pages are on backing store */
50   u8 eCreate;                         /* eCreate value for for xFetch() */
51   int (*xStress)(void*,PgHdr*);       /* Call to try make a page clean */
52   void *pStress;                      /* Argument to xStress */
53   sqlite3_pcache *pCache;             /* Pluggable cache module */
54 };
55 
56 /********************************** Test and Debug Logic **********************/
57 /*
58 ** Debug tracing macros.  Enable by by changing the "0" to "1" and
59 ** recompiling.
60 **
61 ** When sqlite3PcacheTrace is 1, single line trace messages are issued.
62 ** When sqlite3PcacheTrace is 2, a dump of the pcache showing all cache entries
63 ** is displayed for many operations, resulting in a lot of output.
64 */
65 #if defined(SQLITE_DEBUG) && 0
66   int sqlite3PcacheTrace = 2;       /* 0: off  1: simple  2: cache dumps */
67   int sqlite3PcacheMxDump = 9999;   /* Max cache entries for pcacheDump() */
68 # define pcacheTrace(X) if(sqlite3PcacheTrace){sqlite3DebugPrintf X;}
69   void pcacheDump(PCache *pCache){
70     int N;
71     int i, j;
72     sqlite3_pcache_page *pLower;
73     PgHdr *pPg;
74     unsigned char *a;
75 
76     if( sqlite3PcacheTrace<2 ) return;
77     if( pCache->pCache==0 ) return;
78     N = sqlite3PcachePagecount(pCache);
79     if( N>sqlite3PcacheMxDump ) N = sqlite3PcacheMxDump;
80     for(i=1; i<=N; i++){
81        pLower = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, i, 0);
82        if( pLower==0 ) continue;
83        pPg = (PgHdr*)pLower->pExtra;
84        printf("%3d: nRef %2d flgs %02x data ", i, pPg->nRef, pPg->flags);
85        a = (unsigned char *)pLower->pBuf;
86        for(j=0; j<12; j++) printf("%02x", a[j]);
87        printf("\n");
88        if( pPg->pPage==0 ){
89          sqlite3GlobalConfig.pcache2.xUnpin(pCache->pCache, pLower, 0);
90        }
91     }
92   }
93   #else
94 # define pcacheTrace(X)
95 # define pcacheDump(X)
96 #endif
97 
98 /*
99 ** Check invariants on a PgHdr entry.  Return true if everything is OK.
100 ** Return false if any invariant is violated.
101 **
102 ** This routine is for use inside of assert() statements only.  For
103 ** example:
104 **
105 **          assert( sqlite3PcachePageSanity(pPg) );
106 */
107 #ifdef SQLITE_DEBUG
108 int sqlite3PcachePageSanity(PgHdr *pPg){
109   PCache *pCache;
110   assert( pPg!=0 );
111   assert( pPg->pgno>0 || pPg->pPager==0 );    /* Page number is 1 or more */
112   pCache = pPg->pCache;
113   assert( pCache!=0 );      /* Every page has an associated PCache */
114   if( pPg->flags & PGHDR_CLEAN ){
115     assert( (pPg->flags & PGHDR_DIRTY)==0 );/* Cannot be both CLEAN and DIRTY */
116     assert( pCache->pDirty!=pPg );          /* CLEAN pages not on dirty list */
117     assert( pCache->pDirtyTail!=pPg );
118   }
119   /* WRITEABLE pages must also be DIRTY */
120   if( pPg->flags & PGHDR_WRITEABLE ){
121     assert( pPg->flags & PGHDR_DIRTY );     /* WRITEABLE implies DIRTY */
122   }
123   /* NEED_SYNC can be set independently of WRITEABLE.  This can happen,
124   ** for example, when using the sqlite3PagerDontWrite() optimization:
125   **    (1)  Page X is journalled, and gets WRITEABLE and NEED_SEEK.
126   **    (2)  Page X moved to freelist, WRITEABLE is cleared
127   **    (3)  Page X reused, WRITEABLE is set again
128   ** If NEED_SYNC had been cleared in step 2, then it would not be reset
129   ** in step 3, and page might be written into the database without first
130   ** syncing the rollback journal, which might cause corruption on a power
131   ** loss.
132   **
133   ** Another example is when the database page size is smaller than the
134   ** disk sector size.  When any page of a sector is journalled, all pages
135   ** in that sector are marked NEED_SYNC even if they are still CLEAN, just
136   ** in case they are later modified, since all pages in the same sector
137   ** must be journalled and synced before any of those pages can be safely
138   ** written.
139   */
140   return 1;
141 }
142 #endif /* SQLITE_DEBUG */
143 
144 
145 /********************************** Linked List Management ********************/
146 
147 /* Allowed values for second argument to pcacheManageDirtyList() */
148 #define PCACHE_DIRTYLIST_REMOVE   1    /* Remove pPage from dirty list */
149 #define PCACHE_DIRTYLIST_ADD      2    /* Add pPage to the dirty list */
150 #define PCACHE_DIRTYLIST_FRONT    3    /* Move pPage to the front of the list */
151 
152 /*
153 ** Manage pPage's participation on the dirty list.  Bits of the addRemove
154 ** argument determines what operation to do.  The 0x01 bit means first
155 ** remove pPage from the dirty list.  The 0x02 means add pPage back to
156 ** the dirty list.  Doing both moves pPage to the front of the dirty list.
157 */
158 static void pcacheManageDirtyList(PgHdr *pPage, u8 addRemove){
159   PCache *p = pPage->pCache;
160 
161   pcacheTrace(("%p.DIRTYLIST.%s %d\n", p,
162                 addRemove==1 ? "REMOVE" : addRemove==2 ? "ADD" : "FRONT",
163                 pPage->pgno));
164   if( addRemove & PCACHE_DIRTYLIST_REMOVE ){
165     assert( pPage->pDirtyNext || pPage==p->pDirtyTail );
166     assert( pPage->pDirtyPrev || pPage==p->pDirty );
167 
168     /* Update the PCache1.pSynced variable if necessary. */
169     if( p->pSynced==pPage ){
170       p->pSynced = pPage->pDirtyPrev;
171     }
172 
173     if( pPage->pDirtyNext ){
174       pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev;
175     }else{
176       assert( pPage==p->pDirtyTail );
177       p->pDirtyTail = pPage->pDirtyPrev;
178     }
179     if( pPage->pDirtyPrev ){
180       pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext;
181     }else{
182       /* If there are now no dirty pages in the cache, set eCreate to 2.
183       ** This is an optimization that allows sqlite3PcacheFetch() to skip
184       ** searching for a dirty page to eject from the cache when it might
185       ** otherwise have to.  */
186       assert( pPage==p->pDirty );
187       p->pDirty = pPage->pDirtyNext;
188       assert( p->bPurgeable || p->eCreate==2 );
189       if( p->pDirty==0 ){         /*OPTIMIZATION-IF-TRUE*/
190         assert( p->bPurgeable==0 || p->eCreate==1 );
191         p->eCreate = 2;
192       }
193     }
194   }
195   if( addRemove & PCACHE_DIRTYLIST_ADD ){
196     pPage->pDirtyPrev = 0;
197     pPage->pDirtyNext = p->pDirty;
198     if( pPage->pDirtyNext ){
199       assert( pPage->pDirtyNext->pDirtyPrev==0 );
200       pPage->pDirtyNext->pDirtyPrev = pPage;
201     }else{
202       p->pDirtyTail = pPage;
203       if( p->bPurgeable ){
204         assert( p->eCreate==2 );
205         p->eCreate = 1;
206       }
207     }
208     p->pDirty = pPage;
209 
210     /* If pSynced is NULL and this page has a clear NEED_SYNC flag, set
211     ** pSynced to point to it. Checking the NEED_SYNC flag is an
212     ** optimization, as if pSynced points to a page with the NEED_SYNC
213     ** flag set sqlite3PcacheFetchStress() searches through all newer
214     ** entries of the dirty-list for a page with NEED_SYNC clear anyway.  */
215     if( !p->pSynced
216      && 0==(pPage->flags&PGHDR_NEED_SYNC)   /*OPTIMIZATION-IF-FALSE*/
217     ){
218       p->pSynced = pPage;
219     }
220   }
221   pcacheDump(p);
222 }
223 
224 /*
225 ** Wrapper around the pluggable caches xUnpin method. If the cache is
226 ** being used for an in-memory database, this function is a no-op.
227 */
228 static void pcacheUnpin(PgHdr *p){
229   if( p->pCache->bPurgeable ){
230     pcacheTrace(("%p.UNPIN %d\n", p->pCache, p->pgno));
231     sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0);
232     pcacheDump(p->pCache);
233   }
234 }
235 
236 /*
237 ** Compute the number of pages of cache requested.   p->szCache is the
238 ** cache size requested by the "PRAGMA cache_size" statement.
239 */
240 static int numberOfCachePages(PCache *p){
241   if( p->szCache>=0 ){
242     /* IMPLEMENTATION-OF: R-42059-47211 If the argument N is positive then the
243     ** suggested cache size is set to N. */
244     return p->szCache;
245   }else{
246     i64 n;
247     /* IMPLEMANTATION-OF: R-59858-46238 If the argument N is negative, then the
248     ** number of cache pages is adjusted to be a number of pages that would
249     ** use approximately abs(N*1024) bytes of memory based on the current
250     ** page size. */
251     n = ((-1024*(i64)p->szCache)/(p->szPage+p->szExtra));
252     if( n>1000000000 ) n = 1000000000;
253     return (int)n;
254   }
255 }
256 
257 /*************************************************** General Interfaces ******
258 **
259 ** Initialize and shutdown the page cache subsystem. Neither of these
260 ** functions are threadsafe.
261 */
262 int sqlite3PcacheInitialize(void){
263   if( sqlite3GlobalConfig.pcache2.xInit==0 ){
264     /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the
265     ** built-in default page cache is used instead of the application defined
266     ** page cache. */
267     sqlite3PCacheSetDefault();
268     assert( sqlite3GlobalConfig.pcache2.xInit!=0 );
269   }
270   return sqlite3GlobalConfig.pcache2.xInit(sqlite3GlobalConfig.pcache2.pArg);
271 }
272 void sqlite3PcacheShutdown(void){
273   if( sqlite3GlobalConfig.pcache2.xShutdown ){
274     /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */
275     sqlite3GlobalConfig.pcache2.xShutdown(sqlite3GlobalConfig.pcache2.pArg);
276   }
277 }
278 
279 /*
280 ** Return the size in bytes of a PCache object.
281 */
282 int sqlite3PcacheSize(void){ return sizeof(PCache); }
283 
284 /*
285 ** Create a new PCache object. Storage space to hold the object
286 ** has already been allocated and is passed in as the p pointer.
287 ** The caller discovers how much space needs to be allocated by
288 ** calling sqlite3PcacheSize().
289 **
290 ** szExtra is some extra space allocated for each page.  The first
291 ** 8 bytes of the extra space will be zeroed as the page is allocated,
292 ** but remaining content will be uninitialized.  Though it is opaque
293 ** to this module, the extra space really ends up being the MemPage
294 ** structure in the pager.
295 */
296 int sqlite3PcacheOpen(
297   int szPage,                  /* Size of every page */
298   int szExtra,                 /* Extra space associated with each page */
299   int bPurgeable,              /* True if pages are on backing store */
300   int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */
301   void *pStress,               /* Argument to xStress */
302   PCache *p                    /* Preallocated space for the PCache */
303 ){
304   memset(p, 0, sizeof(PCache));
305   p->szPage = 1;
306   p->szExtra = szExtra;
307   assert( szExtra>=8 );  /* First 8 bytes will be zeroed */
308   p->bPurgeable = bPurgeable;
309   p->eCreate = 2;
310   p->xStress = xStress;
311   p->pStress = pStress;
312   p->szCache = 100;
313   p->szSpill = 1;
314   pcacheTrace(("%p.OPEN szPage %d bPurgeable %d\n",p,szPage,bPurgeable));
315   return sqlite3PcacheSetPageSize(p, szPage);
316 }
317 
318 /*
319 ** Change the page size for PCache object. The caller must ensure that there
320 ** are no outstanding page references when this function is called.
321 */
322 int sqlite3PcacheSetPageSize(PCache *pCache, int szPage){
323   assert( pCache->nRefSum==0 && pCache->pDirty==0 );
324   if( pCache->szPage ){
325     sqlite3_pcache *pNew;
326     pNew = sqlite3GlobalConfig.pcache2.xCreate(
327                 szPage, pCache->szExtra + ROUND8(sizeof(PgHdr)),
328                 pCache->bPurgeable
329     );
330     if( pNew==0 ) return SQLITE_NOMEM_BKPT;
331     sqlite3GlobalConfig.pcache2.xCachesize(pNew, numberOfCachePages(pCache));
332     if( pCache->pCache ){
333       sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache);
334     }
335     pCache->pCache = pNew;
336     pCache->szPage = szPage;
337     pcacheTrace(("%p.PAGESIZE %d\n",pCache,szPage));
338   }
339   return SQLITE_OK;
340 }
341 
342 /*
343 ** Try to obtain a page from the cache.
344 **
345 ** This routine returns a pointer to an sqlite3_pcache_page object if
346 ** such an object is already in cache, or if a new one is created.
347 ** This routine returns a NULL pointer if the object was not in cache
348 ** and could not be created.
349 **
350 ** The createFlags should be 0 to check for existing pages and should
351 ** be 3 (not 1, but 3) to try to create a new page.
352 **
353 ** If the createFlag is 0, then NULL is always returned if the page
354 ** is not already in the cache.  If createFlag is 1, then a new page
355 ** is created only if that can be done without spilling dirty pages
356 ** and without exceeding the cache size limit.
357 **
358 ** The caller needs to invoke sqlite3PcacheFetchFinish() to properly
359 ** initialize the sqlite3_pcache_page object and convert it into a
360 ** PgHdr object.  The sqlite3PcacheFetch() and sqlite3PcacheFetchFinish()
361 ** routines are split this way for performance reasons. When separated
362 ** they can both (usually) operate without having to push values to
363 ** the stack on entry and pop them back off on exit, which saves a
364 ** lot of pushing and popping.
365 */
366 sqlite3_pcache_page *sqlite3PcacheFetch(
367   PCache *pCache,       /* Obtain the page from this cache */
368   Pgno pgno,            /* Page number to obtain */
369   int createFlag        /* If true, create page if it does not exist already */
370 ){
371   int eCreate;
372   sqlite3_pcache_page *pRes;
373 
374   assert( pCache!=0 );
375   assert( pCache->pCache!=0 );
376   assert( createFlag==3 || createFlag==0 );
377   assert( pCache->eCreate==((pCache->bPurgeable && pCache->pDirty) ? 1 : 2) );
378 
379   /* eCreate defines what to do if the page does not exist.
380   **    0     Do not allocate a new page.  (createFlag==0)
381   **    1     Allocate a new page if doing so is inexpensive.
382   **          (createFlag==1 AND bPurgeable AND pDirty)
383   **    2     Allocate a new page even it doing so is difficult.
384   **          (createFlag==1 AND !(bPurgeable AND pDirty)
385   */
386   eCreate = createFlag & pCache->eCreate;
387   assert( eCreate==0 || eCreate==1 || eCreate==2 );
388   assert( createFlag==0 || pCache->eCreate==eCreate );
389   assert( createFlag==0 || eCreate==1+(!pCache->bPurgeable||!pCache->pDirty) );
390   pRes = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate);
391   pcacheTrace(("%p.FETCH %d%s (result: %p)\n",pCache,pgno,
392                createFlag?" create":"",pRes));
393   return pRes;
394 }
395 
396 /*
397 ** If the sqlite3PcacheFetch() routine is unable to allocate a new
398 ** page because no clean pages are available for reuse and the cache
399 ** size limit has been reached, then this routine can be invoked to
400 ** try harder to allocate a page.  This routine might invoke the stress
401 ** callback to spill dirty pages to the journal.  It will then try to
402 ** allocate the new page and will only fail to allocate a new page on
403 ** an OOM error.
404 **
405 ** This routine should be invoked only after sqlite3PcacheFetch() fails.
406 */
407 int sqlite3PcacheFetchStress(
408   PCache *pCache,                 /* Obtain the page from this cache */
409   Pgno pgno,                      /* Page number to obtain */
410   sqlite3_pcache_page **ppPage    /* Write result here */
411 ){
412   PgHdr *pPg;
413   if( pCache->eCreate==2 ) return 0;
414 
415   if( sqlite3PcachePagecount(pCache)>pCache->szSpill ){
416     /* Find a dirty page to write-out and recycle. First try to find a
417     ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC
418     ** cleared), but if that is not possible settle for any other
419     ** unreferenced dirty page.
420     **
421     ** If the LRU page in the dirty list that has a clear PGHDR_NEED_SYNC
422     ** flag is currently referenced, then the following may leave pSynced
423     ** set incorrectly (pointing to other than the LRU page with NEED_SYNC
424     ** cleared). This is Ok, as pSynced is just an optimization.  */
425     for(pPg=pCache->pSynced;
426         pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC));
427         pPg=pPg->pDirtyPrev
428     );
429     pCache->pSynced = pPg;
430     if( !pPg ){
431       for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev);
432     }
433     if( pPg ){
434       int rc;
435 #ifdef SQLITE_LOG_CACHE_SPILL
436       sqlite3_log(SQLITE_FULL,
437                   "spill page %d making room for %d - cache used: %d/%d",
438                   pPg->pgno, pgno,
439                   sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache),
440                 numberOfCachePages(pCache));
441 #endif
442       pcacheTrace(("%p.SPILL %d\n",pCache,pPg->pgno));
443       rc = pCache->xStress(pCache->pStress, pPg);
444       pcacheDump(pCache);
445       if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){
446         return rc;
447       }
448     }
449   }
450   *ppPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, 2);
451   return *ppPage==0 ? SQLITE_NOMEM_BKPT : SQLITE_OK;
452 }
453 
454 /*
455 ** This is a helper routine for sqlite3PcacheFetchFinish()
456 **
457 ** In the uncommon case where the page being fetched has not been
458 ** initialized, this routine is invoked to do the initialization.
459 ** This routine is broken out into a separate function since it
460 ** requires extra stack manipulation that can be avoided in the common
461 ** case.
462 */
463 static SQLITE_NOINLINE PgHdr *pcacheFetchFinishWithInit(
464   PCache *pCache,             /* Obtain the page from this cache */
465   Pgno pgno,                  /* Page number obtained */
466   sqlite3_pcache_page *pPage  /* Page obtained by prior PcacheFetch() call */
467 ){
468   PgHdr *pPgHdr;
469   assert( pPage!=0 );
470   pPgHdr = (PgHdr*)pPage->pExtra;
471   assert( pPgHdr->pPage==0 );
472   memset(&pPgHdr->pDirty, 0, sizeof(PgHdr) - offsetof(PgHdr,pDirty));
473   pPgHdr->pPage = pPage;
474   pPgHdr->pData = pPage->pBuf;
475   pPgHdr->pExtra = (void *)&pPgHdr[1];
476   memset(pPgHdr->pExtra, 0, 8);
477   pPgHdr->pCache = pCache;
478   pPgHdr->pgno = pgno;
479   pPgHdr->flags = PGHDR_CLEAN;
480   return sqlite3PcacheFetchFinish(pCache,pgno,pPage);
481 }
482 
483 /*
484 ** This routine converts the sqlite3_pcache_page object returned by
485 ** sqlite3PcacheFetch() into an initialized PgHdr object.  This routine
486 ** must be called after sqlite3PcacheFetch() in order to get a usable
487 ** result.
488 */
489 PgHdr *sqlite3PcacheFetchFinish(
490   PCache *pCache,             /* Obtain the page from this cache */
491   Pgno pgno,                  /* Page number obtained */
492   sqlite3_pcache_page *pPage  /* Page obtained by prior PcacheFetch() call */
493 ){
494   PgHdr *pPgHdr;
495 
496   assert( pPage!=0 );
497   pPgHdr = (PgHdr *)pPage->pExtra;
498 
499   if( !pPgHdr->pPage ){
500     return pcacheFetchFinishWithInit(pCache, pgno, pPage);
501   }
502   pCache->nRefSum++;
503   pPgHdr->nRef++;
504   assert( sqlite3PcachePageSanity(pPgHdr) );
505   return pPgHdr;
506 }
507 
508 /*
509 ** Decrement the reference count on a page. If the page is clean and the
510 ** reference count drops to 0, then it is made eligible for recycling.
511 */
512 void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){
513   assert( p->nRef>0 );
514   p->pCache->nRefSum--;
515   if( (--p->nRef)==0 ){
516     if( p->flags&PGHDR_CLEAN ){
517       pcacheUnpin(p);
518     }else{
519       pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT);
520     }
521   }
522 }
523 
524 /*
525 ** Increase the reference count of a supplied page by 1.
526 */
527 void sqlite3PcacheRef(PgHdr *p){
528   assert(p->nRef>0);
529   assert( sqlite3PcachePageSanity(p) );
530   p->nRef++;
531   p->pCache->nRefSum++;
532 }
533 
534 /*
535 ** Drop a page from the cache. There must be exactly one reference to the
536 ** page. This function deletes that reference, so after it returns the
537 ** page pointed to by p is invalid.
538 */
539 void sqlite3PcacheDrop(PgHdr *p){
540   assert( p->nRef==1 );
541   assert( sqlite3PcachePageSanity(p) );
542   if( p->flags&PGHDR_DIRTY ){
543     pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE);
544   }
545   p->pCache->nRefSum--;
546   sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 1);
547 }
548 
549 /*
550 ** Make sure the page is marked as dirty. If it isn't dirty already,
551 ** make it so.
552 */
553 void sqlite3PcacheMakeDirty(PgHdr *p){
554   assert( p->nRef>0 );
555   assert( sqlite3PcachePageSanity(p) );
556   if( p->flags & (PGHDR_CLEAN|PGHDR_DONT_WRITE) ){    /*OPTIMIZATION-IF-FALSE*/
557     p->flags &= ~PGHDR_DONT_WRITE;
558     if( p->flags & PGHDR_CLEAN ){
559       p->flags ^= (PGHDR_DIRTY|PGHDR_CLEAN);
560       pcacheTrace(("%p.DIRTY %d\n",p->pCache,p->pgno));
561       assert( (p->flags & (PGHDR_DIRTY|PGHDR_CLEAN))==PGHDR_DIRTY );
562       pcacheManageDirtyList(p, PCACHE_DIRTYLIST_ADD);
563     }
564     assert( sqlite3PcachePageSanity(p) );
565   }
566 }
567 
568 /*
569 ** Make sure the page is marked as clean. If it isn't clean already,
570 ** make it so.
571 */
572 void sqlite3PcacheMakeClean(PgHdr *p){
573   assert( sqlite3PcachePageSanity(p) );
574   assert( (p->flags & PGHDR_DIRTY)!=0 );
575   assert( (p->flags & PGHDR_CLEAN)==0 );
576   pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE);
577   p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC|PGHDR_WRITEABLE);
578   p->flags |= PGHDR_CLEAN;
579   pcacheTrace(("%p.CLEAN %d\n",p->pCache,p->pgno));
580   assert( sqlite3PcachePageSanity(p) );
581   if( p->nRef==0 ){
582     pcacheUnpin(p);
583   }
584 }
585 
586 /*
587 ** Make every page in the cache clean.
588 */
589 void sqlite3PcacheCleanAll(PCache *pCache){
590   PgHdr *p;
591   pcacheTrace(("%p.CLEAN-ALL\n",pCache));
592   while( (p = pCache->pDirty)!=0 ){
593     sqlite3PcacheMakeClean(p);
594   }
595 }
596 
597 /*
598 ** Clear the PGHDR_NEED_SYNC and PGHDR_WRITEABLE flag from all dirty pages.
599 */
600 void sqlite3PcacheClearWritable(PCache *pCache){
601   PgHdr *p;
602   pcacheTrace(("%p.CLEAR-WRITEABLE\n",pCache));
603   for(p=pCache->pDirty; p; p=p->pDirtyNext){
604     p->flags &= ~(PGHDR_NEED_SYNC|PGHDR_WRITEABLE);
605   }
606   pCache->pSynced = pCache->pDirtyTail;
607 }
608 
609 /*
610 ** Clear the PGHDR_NEED_SYNC flag from all dirty pages.
611 */
612 void sqlite3PcacheClearSyncFlags(PCache *pCache){
613   PgHdr *p;
614   for(p=pCache->pDirty; p; p=p->pDirtyNext){
615     p->flags &= ~PGHDR_NEED_SYNC;
616   }
617   pCache->pSynced = pCache->pDirtyTail;
618 }
619 
620 /*
621 ** Change the page number of page p to newPgno.
622 */
623 void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){
624   PCache *pCache = p->pCache;
625   assert( p->nRef>0 );
626   assert( newPgno>0 );
627   assert( sqlite3PcachePageSanity(p) );
628   pcacheTrace(("%p.MOVE %d -> %d\n",pCache,p->pgno,newPgno));
629   sqlite3GlobalConfig.pcache2.xRekey(pCache->pCache, p->pPage, p->pgno,newPgno);
630   p->pgno = newPgno;
631   if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){
632     pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT);
633   }
634 }
635 
636 /*
637 ** Drop every cache entry whose page number is greater than "pgno". The
638 ** caller must ensure that there are no outstanding references to any pages
639 ** other than page 1 with a page number greater than pgno.
640 **
641 ** If there is a reference to page 1 and the pgno parameter passed to this
642 ** function is 0, then the data area associated with page 1 is zeroed, but
643 ** the page object is not dropped.
644 */
645 void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){
646   if( pCache->pCache ){
647     PgHdr *p;
648     PgHdr *pNext;
649     pcacheTrace(("%p.TRUNCATE %d\n",pCache,pgno));
650     for(p=pCache->pDirty; p; p=pNext){
651       pNext = p->pDirtyNext;
652       /* This routine never gets call with a positive pgno except right
653       ** after sqlite3PcacheCleanAll().  So if there are dirty pages,
654       ** it must be that pgno==0.
655       */
656       assert( p->pgno>0 );
657       if( p->pgno>pgno ){
658         assert( p->flags&PGHDR_DIRTY );
659         sqlite3PcacheMakeClean(p);
660       }
661     }
662     if( pgno==0 && pCache->nRefSum ){
663       sqlite3_pcache_page *pPage1;
664       pPage1 = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache,1,0);
665       if( ALWAYS(pPage1) ){  /* Page 1 is always available in cache, because
666                              ** pCache->nRefSum>0 */
667         memset(pPage1->pBuf, 0, pCache->szPage);
668         pgno = 1;
669       }
670     }
671     sqlite3GlobalConfig.pcache2.xTruncate(pCache->pCache, pgno+1);
672   }
673 }
674 
675 /*
676 ** Close a cache.
677 */
678 void sqlite3PcacheClose(PCache *pCache){
679   assert( pCache->pCache!=0 );
680   pcacheTrace(("%p.CLOSE\n",pCache));
681   sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache);
682 }
683 
684 /*
685 ** Discard the contents of the cache.
686 */
687 void sqlite3PcacheClear(PCache *pCache){
688   sqlite3PcacheTruncate(pCache, 0);
689 }
690 
691 /*
692 ** Merge two lists of pages connected by pDirty and in pgno order.
693 ** Do not bother fixing the pDirtyPrev pointers.
694 */
695 static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){
696   PgHdr result, *pTail;
697   pTail = &result;
698   assert( pA!=0 && pB!=0 );
699   for(;;){
700     if( pA->pgno<pB->pgno ){
701       pTail->pDirty = pA;
702       pTail = pA;
703       pA = pA->pDirty;
704       if( pA==0 ){
705         pTail->pDirty = pB;
706         break;
707       }
708     }else{
709       pTail->pDirty = pB;
710       pTail = pB;
711       pB = pB->pDirty;
712       if( pB==0 ){
713         pTail->pDirty = pA;
714         break;
715       }
716     }
717   }
718   return result.pDirty;
719 }
720 
721 /*
722 ** Sort the list of pages in accending order by pgno.  Pages are
723 ** connected by pDirty pointers.  The pDirtyPrev pointers are
724 ** corrupted by this sort.
725 **
726 ** Since there cannot be more than 2^31 distinct pages in a database,
727 ** there cannot be more than 31 buckets required by the merge sorter.
728 ** One extra bucket is added to catch overflow in case something
729 ** ever changes to make the previous sentence incorrect.
730 */
731 #define N_SORT_BUCKET  32
732 static PgHdr *pcacheSortDirtyList(PgHdr *pIn){
733   PgHdr *a[N_SORT_BUCKET], *p;
734   int i;
735   memset(a, 0, sizeof(a));
736   while( pIn ){
737     p = pIn;
738     pIn = p->pDirty;
739     p->pDirty = 0;
740     for(i=0; ALWAYS(i<N_SORT_BUCKET-1); i++){
741       if( a[i]==0 ){
742         a[i] = p;
743         break;
744       }else{
745         p = pcacheMergeDirtyList(a[i], p);
746         a[i] = 0;
747       }
748     }
749     if( NEVER(i==N_SORT_BUCKET-1) ){
750       /* To get here, there need to be 2^(N_SORT_BUCKET) elements in
751       ** the input list.  But that is impossible.
752       */
753       a[i] = pcacheMergeDirtyList(a[i], p);
754     }
755   }
756   p = a[0];
757   for(i=1; i<N_SORT_BUCKET; i++){
758     if( a[i]==0 ) continue;
759     p = p ? pcacheMergeDirtyList(p, a[i]) : a[i];
760   }
761   return p;
762 }
763 
764 /*
765 ** Return a list of all dirty pages in the cache, sorted by page number.
766 */
767 PgHdr *sqlite3PcacheDirtyList(PCache *pCache){
768   PgHdr *p;
769   for(p=pCache->pDirty; p; p=p->pDirtyNext){
770     p->pDirty = p->pDirtyNext;
771   }
772   return pcacheSortDirtyList(pCache->pDirty);
773 }
774 
775 /*
776 ** Return the total number of references to all pages held by the cache.
777 **
778 ** This is not the total number of pages referenced, but the sum of the
779 ** reference count for all pages.
780 */
781 int sqlite3PcacheRefCount(PCache *pCache){
782   return pCache->nRefSum;
783 }
784 
785 /*
786 ** Return the number of references to the page supplied as an argument.
787 */
788 int sqlite3PcachePageRefcount(PgHdr *p){
789   return p->nRef;
790 }
791 
792 /*
793 ** Return the total number of pages in the cache.
794 */
795 int sqlite3PcachePagecount(PCache *pCache){
796   assert( pCache->pCache!=0 );
797   return sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache);
798 }
799 
800 #ifdef SQLITE_TEST
801 /*
802 ** Get the suggested cache-size value.
803 */
804 int sqlite3PcacheGetCachesize(PCache *pCache){
805   return numberOfCachePages(pCache);
806 }
807 #endif
808 
809 /*
810 ** Set the suggested cache-size value.
811 */
812 void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){
813   assert( pCache->pCache!=0 );
814   pCache->szCache = mxPage;
815   sqlite3GlobalConfig.pcache2.xCachesize(pCache->pCache,
816                                          numberOfCachePages(pCache));
817 }
818 
819 /*
820 ** Set the suggested cache-spill value.  Make no changes if if the
821 ** argument is zero.  Return the effective cache-spill size, which will
822 ** be the larger of the szSpill and szCache.
823 */
824 int sqlite3PcacheSetSpillsize(PCache *p, int mxPage){
825   int res;
826   assert( p->pCache!=0 );
827   if( mxPage ){
828     if( mxPage<0 ){
829       mxPage = (int)((-1024*(i64)mxPage)/(p->szPage+p->szExtra));
830     }
831     p->szSpill = mxPage;
832   }
833   res = numberOfCachePages(p);
834   if( res<p->szSpill ) res = p->szSpill;
835   return res;
836 }
837 
838 /*
839 ** Free up as much memory as possible from the page cache.
840 */
841 void sqlite3PcacheShrink(PCache *pCache){
842   assert( pCache->pCache!=0 );
843   sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache);
844 }
845 
846 /*
847 ** Return the size of the header added by this middleware layer
848 ** in the page-cache hierarchy.
849 */
850 int sqlite3HeaderSizePcache(void){ return ROUND8(sizeof(PgHdr)); }
851 
852 /*
853 ** Return the number of dirty pages currently in the cache, as a percentage
854 ** of the configured cache size.
855 */
856 int sqlite3PCachePercentDirty(PCache *pCache){
857   PgHdr *pDirty;
858   int nDirty = 0;
859   int nCache = numberOfCachePages(pCache);
860   for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext) nDirty++;
861   return nCache ? (int)(((i64)nDirty * 100) / nCache) : 0;
862 }
863 
864 #ifdef SQLITE_DIRECT_OVERFLOW_READ
865 /*
866 ** Return true if there are one or more dirty pages in the cache. Else false.
867 */
868 int sqlite3PCacheIsDirty(PCache *pCache){
869   return (pCache->pDirty!=0);
870 }
871 #endif
872 
873 #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG)
874 /*
875 ** For all dirty pages currently in the cache, invoke the specified
876 ** callback. This is only used if the SQLITE_CHECK_PAGES macro is
877 ** defined.
878 */
879 void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){
880   PgHdr *pDirty;
881   for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){
882     xIter(pDirty);
883   }
884 }
885 #endif
886