1 /* 2 ** 2008 August 05 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file implements that page cache. 13 */ 14 #include "sqliteInt.h" 15 16 /* 17 ** A complete page cache is an instance of this structure. Every 18 ** entry in the cache holds a single page of the database file. The 19 ** btree layer only operates on the cached copy of the database pages. 20 ** 21 ** A page cache entry is "clean" if it exactly matches what is currently 22 ** on disk. A page is "dirty" if it has been modified and needs to be 23 ** persisted to disk. 24 ** 25 ** pDirty, pDirtyTail, pSynced: 26 ** All dirty pages are linked into the doubly linked list using 27 ** PgHdr.pDirtyNext and pDirtyPrev. The list is maintained in LRU order 28 ** such that p was added to the list more recently than p->pDirtyNext. 29 ** PCache.pDirty points to the first (newest) element in the list and 30 ** pDirtyTail to the last (oldest). 31 ** 32 ** The PCache.pSynced variable is used to optimize searching for a dirty 33 ** page to eject from the cache mid-transaction. It is better to eject 34 ** a page that does not require a journal sync than one that does. 35 ** Therefore, pSynced is maintained so that it *almost* always points 36 ** to either the oldest page in the pDirty/pDirtyTail list that has a 37 ** clear PGHDR_NEED_SYNC flag or to a page that is older than this one 38 ** (so that the right page to eject can be found by following pDirtyPrev 39 ** pointers). 40 */ 41 struct PCache { 42 PgHdr *pDirty, *pDirtyTail; /* List of dirty pages in LRU order */ 43 PgHdr *pSynced; /* Last synced page in dirty page list */ 44 int nRefSum; /* Sum of ref counts over all pages */ 45 int szCache; /* Configured cache size */ 46 int szSpill; /* Size before spilling occurs */ 47 int szPage; /* Size of every page in this cache */ 48 int szExtra; /* Size of extra space for each page */ 49 u8 bPurgeable; /* True if pages are on backing store */ 50 u8 eCreate; /* eCreate value for for xFetch() */ 51 int (*xStress)(void*,PgHdr*); /* Call to try make a page clean */ 52 void *pStress; /* Argument to xStress */ 53 sqlite3_pcache *pCache; /* Pluggable cache module */ 54 }; 55 56 /********************************** Test and Debug Logic **********************/ 57 /* 58 ** Debug tracing macros. Enable by by changing the "0" to "1" and 59 ** recompiling. 60 ** 61 ** When sqlite3PcacheTrace is 1, single line trace messages are issued. 62 ** When sqlite3PcacheTrace is 2, a dump of the pcache showing all cache entries 63 ** is displayed for many operations, resulting in a lot of output. 64 */ 65 #if defined(SQLITE_DEBUG) && 0 66 int sqlite3PcacheTrace = 2; /* 0: off 1: simple 2: cache dumps */ 67 int sqlite3PcacheMxDump = 9999; /* Max cache entries for pcacheDump() */ 68 # define pcacheTrace(X) if(sqlite3PcacheTrace){sqlite3DebugPrintf X;} 69 static void pcachePageTrace(int i, sqlite3_pcache_page *pLower){ 70 PgHdr *pPg; 71 unsigned char *a; 72 int j; 73 pPg = (PgHdr*)pLower->pExtra; 74 printf("%3d: nRef %2d flgs %02x data ", i, pPg->nRef, pPg->flags); 75 a = (unsigned char *)pLower->pBuf; 76 for(j=0; j<12; j++) printf("%02x", a[j]); 77 printf(" ptr %p\n", pPg); 78 } 79 static void pcacheDump(PCache *pCache){ 80 int N; 81 int i; 82 sqlite3_pcache_page *pLower; 83 84 if( sqlite3PcacheTrace<2 ) return; 85 if( pCache->pCache==0 ) return; 86 N = sqlite3PcachePagecount(pCache); 87 if( N>sqlite3PcacheMxDump ) N = sqlite3PcacheMxDump; 88 for(i=1; i<=N; i++){ 89 pLower = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, i, 0); 90 if( pLower==0 ) continue; 91 pcachePageTrace(i, pLower); 92 if( ((PgHdr*)pLower)->pPage==0 ){ 93 sqlite3GlobalConfig.pcache2.xUnpin(pCache->pCache, pLower, 0); 94 } 95 } 96 } 97 #else 98 # define pcacheTrace(X) 99 # define pcachePageTrace(PGNO, X) 100 # define pcacheDump(X) 101 #endif 102 103 /* 104 ** Return 1 if pPg is on the dirty list for pCache. Return 0 if not. 105 ** This routine runs inside of assert() statements only. 106 */ 107 #ifdef SQLITE_DEBUG 108 static int pageOnDirtyList(PCache *pCache, PgHdr *pPg){ 109 PgHdr *p; 110 for(p=pCache->pDirty; p; p=p->pDirtyNext){ 111 if( p==pPg ) return 1; 112 } 113 return 0; 114 } 115 #endif 116 117 /* 118 ** Check invariants on a PgHdr entry. Return true if everything is OK. 119 ** Return false if any invariant is violated. 120 ** 121 ** This routine is for use inside of assert() statements only. For 122 ** example: 123 ** 124 ** assert( sqlite3PcachePageSanity(pPg) ); 125 */ 126 #ifdef SQLITE_DEBUG 127 int sqlite3PcachePageSanity(PgHdr *pPg){ 128 PCache *pCache; 129 assert( pPg!=0 ); 130 assert( pPg->pgno>0 || pPg->pPager==0 ); /* Page number is 1 or more */ 131 pCache = pPg->pCache; 132 assert( pCache!=0 ); /* Every page has an associated PCache */ 133 if( pPg->flags & PGHDR_CLEAN ){ 134 assert( (pPg->flags & PGHDR_DIRTY)==0 );/* Cannot be both CLEAN and DIRTY */ 135 assert( !pageOnDirtyList(pCache, pPg) );/* CLEAN pages not on dirty list */ 136 }else{ 137 assert( (pPg->flags & PGHDR_DIRTY)!=0 );/* If not CLEAN must be DIRTY */ 138 assert( pPg->pDirtyNext==0 || pPg->pDirtyNext->pDirtyPrev==pPg ); 139 assert( pPg->pDirtyPrev==0 || pPg->pDirtyPrev->pDirtyNext==pPg ); 140 assert( pPg->pDirtyPrev!=0 || pCache->pDirty==pPg ); 141 assert( pageOnDirtyList(pCache, pPg) ); 142 } 143 /* WRITEABLE pages must also be DIRTY */ 144 if( pPg->flags & PGHDR_WRITEABLE ){ 145 assert( pPg->flags & PGHDR_DIRTY ); /* WRITEABLE implies DIRTY */ 146 } 147 /* NEED_SYNC can be set independently of WRITEABLE. This can happen, 148 ** for example, when using the sqlite3PagerDontWrite() optimization: 149 ** (1) Page X is journalled, and gets WRITEABLE and NEED_SEEK. 150 ** (2) Page X moved to freelist, WRITEABLE is cleared 151 ** (3) Page X reused, WRITEABLE is set again 152 ** If NEED_SYNC had been cleared in step 2, then it would not be reset 153 ** in step 3, and page might be written into the database without first 154 ** syncing the rollback journal, which might cause corruption on a power 155 ** loss. 156 ** 157 ** Another example is when the database page size is smaller than the 158 ** disk sector size. When any page of a sector is journalled, all pages 159 ** in that sector are marked NEED_SYNC even if they are still CLEAN, just 160 ** in case they are later modified, since all pages in the same sector 161 ** must be journalled and synced before any of those pages can be safely 162 ** written. 163 */ 164 return 1; 165 } 166 #endif /* SQLITE_DEBUG */ 167 168 169 /********************************** Linked List Management ********************/ 170 171 /* Allowed values for second argument to pcacheManageDirtyList() */ 172 #define PCACHE_DIRTYLIST_REMOVE 1 /* Remove pPage from dirty list */ 173 #define PCACHE_DIRTYLIST_ADD 2 /* Add pPage to the dirty list */ 174 #define PCACHE_DIRTYLIST_FRONT 3 /* Move pPage to the front of the list */ 175 176 /* 177 ** Manage pPage's participation on the dirty list. Bits of the addRemove 178 ** argument determines what operation to do. The 0x01 bit means first 179 ** remove pPage from the dirty list. The 0x02 means add pPage back to 180 ** the dirty list. Doing both moves pPage to the front of the dirty list. 181 */ 182 static void pcacheManageDirtyList(PgHdr *pPage, u8 addRemove){ 183 PCache *p = pPage->pCache; 184 185 pcacheTrace(("%p.DIRTYLIST.%s %d\n", p, 186 addRemove==1 ? "REMOVE" : addRemove==2 ? "ADD" : "FRONT", 187 pPage->pgno)); 188 if( addRemove & PCACHE_DIRTYLIST_REMOVE ){ 189 assert( pPage->pDirtyNext || pPage==p->pDirtyTail ); 190 assert( pPage->pDirtyPrev || pPage==p->pDirty ); 191 192 /* Update the PCache1.pSynced variable if necessary. */ 193 if( p->pSynced==pPage ){ 194 p->pSynced = pPage->pDirtyPrev; 195 } 196 197 if( pPage->pDirtyNext ){ 198 pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev; 199 }else{ 200 assert( pPage==p->pDirtyTail ); 201 p->pDirtyTail = pPage->pDirtyPrev; 202 } 203 if( pPage->pDirtyPrev ){ 204 pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext; 205 }else{ 206 /* If there are now no dirty pages in the cache, set eCreate to 2. 207 ** This is an optimization that allows sqlite3PcacheFetch() to skip 208 ** searching for a dirty page to eject from the cache when it might 209 ** otherwise have to. */ 210 assert( pPage==p->pDirty ); 211 p->pDirty = pPage->pDirtyNext; 212 assert( p->bPurgeable || p->eCreate==2 ); 213 if( p->pDirty==0 ){ /*OPTIMIZATION-IF-TRUE*/ 214 assert( p->bPurgeable==0 || p->eCreate==1 ); 215 p->eCreate = 2; 216 } 217 } 218 } 219 if( addRemove & PCACHE_DIRTYLIST_ADD ){ 220 pPage->pDirtyPrev = 0; 221 pPage->pDirtyNext = p->pDirty; 222 if( pPage->pDirtyNext ){ 223 assert( pPage->pDirtyNext->pDirtyPrev==0 ); 224 pPage->pDirtyNext->pDirtyPrev = pPage; 225 }else{ 226 p->pDirtyTail = pPage; 227 if( p->bPurgeable ){ 228 assert( p->eCreate==2 ); 229 p->eCreate = 1; 230 } 231 } 232 p->pDirty = pPage; 233 234 /* If pSynced is NULL and this page has a clear NEED_SYNC flag, set 235 ** pSynced to point to it. Checking the NEED_SYNC flag is an 236 ** optimization, as if pSynced points to a page with the NEED_SYNC 237 ** flag set sqlite3PcacheFetchStress() searches through all newer 238 ** entries of the dirty-list for a page with NEED_SYNC clear anyway. */ 239 if( !p->pSynced 240 && 0==(pPage->flags&PGHDR_NEED_SYNC) /*OPTIMIZATION-IF-FALSE*/ 241 ){ 242 p->pSynced = pPage; 243 } 244 } 245 pcacheDump(p); 246 } 247 248 /* 249 ** Wrapper around the pluggable caches xUnpin method. If the cache is 250 ** being used for an in-memory database, this function is a no-op. 251 */ 252 static void pcacheUnpin(PgHdr *p){ 253 if( p->pCache->bPurgeable ){ 254 pcacheTrace(("%p.UNPIN %d\n", p->pCache, p->pgno)); 255 sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0); 256 pcacheDump(p->pCache); 257 } 258 } 259 260 /* 261 ** Compute the number of pages of cache requested. p->szCache is the 262 ** cache size requested by the "PRAGMA cache_size" statement. 263 */ 264 static int numberOfCachePages(PCache *p){ 265 if( p->szCache>=0 ){ 266 /* IMPLEMENTATION-OF: R-42059-47211 If the argument N is positive then the 267 ** suggested cache size is set to N. */ 268 return p->szCache; 269 }else{ 270 i64 n; 271 /* IMPLEMANTATION-OF: R-59858-46238 If the argument N is negative, then the 272 ** number of cache pages is adjusted to be a number of pages that would 273 ** use approximately abs(N*1024) bytes of memory based on the current 274 ** page size. */ 275 n = ((-1024*(i64)p->szCache)/(p->szPage+p->szExtra)); 276 if( n>1000000000 ) n = 1000000000; 277 return (int)n; 278 } 279 } 280 281 /*************************************************** General Interfaces ****** 282 ** 283 ** Initialize and shutdown the page cache subsystem. Neither of these 284 ** functions are threadsafe. 285 */ 286 int sqlite3PcacheInitialize(void){ 287 if( sqlite3GlobalConfig.pcache2.xInit==0 ){ 288 /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the 289 ** built-in default page cache is used instead of the application defined 290 ** page cache. */ 291 sqlite3PCacheSetDefault(); 292 assert( sqlite3GlobalConfig.pcache2.xInit!=0 ); 293 } 294 return sqlite3GlobalConfig.pcache2.xInit(sqlite3GlobalConfig.pcache2.pArg); 295 } 296 void sqlite3PcacheShutdown(void){ 297 if( sqlite3GlobalConfig.pcache2.xShutdown ){ 298 /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */ 299 sqlite3GlobalConfig.pcache2.xShutdown(sqlite3GlobalConfig.pcache2.pArg); 300 } 301 } 302 303 /* 304 ** Return the size in bytes of a PCache object. 305 */ 306 int sqlite3PcacheSize(void){ return sizeof(PCache); } 307 308 /* 309 ** Create a new PCache object. Storage space to hold the object 310 ** has already been allocated and is passed in as the p pointer. 311 ** The caller discovers how much space needs to be allocated by 312 ** calling sqlite3PcacheSize(). 313 ** 314 ** szExtra is some extra space allocated for each page. The first 315 ** 8 bytes of the extra space will be zeroed as the page is allocated, 316 ** but remaining content will be uninitialized. Though it is opaque 317 ** to this module, the extra space really ends up being the MemPage 318 ** structure in the pager. 319 */ 320 int sqlite3PcacheOpen( 321 int szPage, /* Size of every page */ 322 int szExtra, /* Extra space associated with each page */ 323 int bPurgeable, /* True if pages are on backing store */ 324 int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */ 325 void *pStress, /* Argument to xStress */ 326 PCache *p /* Preallocated space for the PCache */ 327 ){ 328 memset(p, 0, sizeof(PCache)); 329 p->szPage = 1; 330 p->szExtra = szExtra; 331 assert( szExtra>=8 ); /* First 8 bytes will be zeroed */ 332 p->bPurgeable = bPurgeable; 333 p->eCreate = 2; 334 p->xStress = xStress; 335 p->pStress = pStress; 336 p->szCache = 100; 337 p->szSpill = 1; 338 pcacheTrace(("%p.OPEN szPage %d bPurgeable %d\n",p,szPage,bPurgeable)); 339 return sqlite3PcacheSetPageSize(p, szPage); 340 } 341 342 /* 343 ** Change the page size for PCache object. The caller must ensure that there 344 ** are no outstanding page references when this function is called. 345 */ 346 int sqlite3PcacheSetPageSize(PCache *pCache, int szPage){ 347 assert( pCache->nRefSum==0 && pCache->pDirty==0 ); 348 if( pCache->szPage ){ 349 sqlite3_pcache *pNew; 350 pNew = sqlite3GlobalConfig.pcache2.xCreate( 351 szPage, pCache->szExtra + ROUND8(sizeof(PgHdr)), 352 pCache->bPurgeable 353 ); 354 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 355 sqlite3GlobalConfig.pcache2.xCachesize(pNew, numberOfCachePages(pCache)); 356 if( pCache->pCache ){ 357 sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); 358 } 359 pCache->pCache = pNew; 360 pCache->szPage = szPage; 361 pcacheTrace(("%p.PAGESIZE %d\n",pCache,szPage)); 362 } 363 return SQLITE_OK; 364 } 365 366 /* 367 ** Try to obtain a page from the cache. 368 ** 369 ** This routine returns a pointer to an sqlite3_pcache_page object if 370 ** such an object is already in cache, or if a new one is created. 371 ** This routine returns a NULL pointer if the object was not in cache 372 ** and could not be created. 373 ** 374 ** The createFlags should be 0 to check for existing pages and should 375 ** be 3 (not 1, but 3) to try to create a new page. 376 ** 377 ** If the createFlag is 0, then NULL is always returned if the page 378 ** is not already in the cache. If createFlag is 1, then a new page 379 ** is created only if that can be done without spilling dirty pages 380 ** and without exceeding the cache size limit. 381 ** 382 ** The caller needs to invoke sqlite3PcacheFetchFinish() to properly 383 ** initialize the sqlite3_pcache_page object and convert it into a 384 ** PgHdr object. The sqlite3PcacheFetch() and sqlite3PcacheFetchFinish() 385 ** routines are split this way for performance reasons. When separated 386 ** they can both (usually) operate without having to push values to 387 ** the stack on entry and pop them back off on exit, which saves a 388 ** lot of pushing and popping. 389 */ 390 sqlite3_pcache_page *sqlite3PcacheFetch( 391 PCache *pCache, /* Obtain the page from this cache */ 392 Pgno pgno, /* Page number to obtain */ 393 int createFlag /* If true, create page if it does not exist already */ 394 ){ 395 int eCreate; 396 sqlite3_pcache_page *pRes; 397 398 assert( pCache!=0 ); 399 assert( pCache->pCache!=0 ); 400 assert( createFlag==3 || createFlag==0 ); 401 assert( pCache->eCreate==((pCache->bPurgeable && pCache->pDirty) ? 1 : 2) ); 402 403 /* eCreate defines what to do if the page does not exist. 404 ** 0 Do not allocate a new page. (createFlag==0) 405 ** 1 Allocate a new page if doing so is inexpensive. 406 ** (createFlag==1 AND bPurgeable AND pDirty) 407 ** 2 Allocate a new page even it doing so is difficult. 408 ** (createFlag==1 AND !(bPurgeable AND pDirty) 409 */ 410 eCreate = createFlag & pCache->eCreate; 411 assert( eCreate==0 || eCreate==1 || eCreate==2 ); 412 assert( createFlag==0 || pCache->eCreate==eCreate ); 413 assert( createFlag==0 || eCreate==1+(!pCache->bPurgeable||!pCache->pDirty) ); 414 pRes = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate); 415 pcacheTrace(("%p.FETCH %d%s (result: %p) ",pCache,pgno, 416 createFlag?" create":"",pRes)); 417 pcachePageTrace(pgno, pRes); 418 return pRes; 419 } 420 421 /* 422 ** If the sqlite3PcacheFetch() routine is unable to allocate a new 423 ** page because no clean pages are available for reuse and the cache 424 ** size limit has been reached, then this routine can be invoked to 425 ** try harder to allocate a page. This routine might invoke the stress 426 ** callback to spill dirty pages to the journal. It will then try to 427 ** allocate the new page and will only fail to allocate a new page on 428 ** an OOM error. 429 ** 430 ** This routine should be invoked only after sqlite3PcacheFetch() fails. 431 */ 432 int sqlite3PcacheFetchStress( 433 PCache *pCache, /* Obtain the page from this cache */ 434 Pgno pgno, /* Page number to obtain */ 435 sqlite3_pcache_page **ppPage /* Write result here */ 436 ){ 437 PgHdr *pPg; 438 if( pCache->eCreate==2 ) return 0; 439 440 if( sqlite3PcachePagecount(pCache)>pCache->szSpill ){ 441 /* Find a dirty page to write-out and recycle. First try to find a 442 ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC 443 ** cleared), but if that is not possible settle for any other 444 ** unreferenced dirty page. 445 ** 446 ** If the LRU page in the dirty list that has a clear PGHDR_NEED_SYNC 447 ** flag is currently referenced, then the following may leave pSynced 448 ** set incorrectly (pointing to other than the LRU page with NEED_SYNC 449 ** cleared). This is Ok, as pSynced is just an optimization. */ 450 for(pPg=pCache->pSynced; 451 pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC)); 452 pPg=pPg->pDirtyPrev 453 ); 454 pCache->pSynced = pPg; 455 if( !pPg ){ 456 for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev); 457 } 458 if( pPg ){ 459 int rc; 460 #ifdef SQLITE_LOG_CACHE_SPILL 461 sqlite3_log(SQLITE_FULL, 462 "spill page %d making room for %d - cache used: %d/%d", 463 pPg->pgno, pgno, 464 sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache), 465 numberOfCachePages(pCache)); 466 #endif 467 pcacheTrace(("%p.SPILL %d\n",pCache,pPg->pgno)); 468 rc = pCache->xStress(pCache->pStress, pPg); 469 pcacheDump(pCache); 470 if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){ 471 return rc; 472 } 473 } 474 } 475 *ppPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, 2); 476 return *ppPage==0 ? SQLITE_NOMEM_BKPT : SQLITE_OK; 477 } 478 479 /* 480 ** This is a helper routine for sqlite3PcacheFetchFinish() 481 ** 482 ** In the uncommon case where the page being fetched has not been 483 ** initialized, this routine is invoked to do the initialization. 484 ** This routine is broken out into a separate function since it 485 ** requires extra stack manipulation that can be avoided in the common 486 ** case. 487 */ 488 static SQLITE_NOINLINE PgHdr *pcacheFetchFinishWithInit( 489 PCache *pCache, /* Obtain the page from this cache */ 490 Pgno pgno, /* Page number obtained */ 491 sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ 492 ){ 493 PgHdr *pPgHdr; 494 assert( pPage!=0 ); 495 pPgHdr = (PgHdr*)pPage->pExtra; 496 assert( pPgHdr->pPage==0 ); 497 memset(&pPgHdr->pDirty, 0, sizeof(PgHdr) - offsetof(PgHdr,pDirty)); 498 pPgHdr->pPage = pPage; 499 pPgHdr->pData = pPage->pBuf; 500 pPgHdr->pExtra = (void *)&pPgHdr[1]; 501 memset(pPgHdr->pExtra, 0, 8); 502 pPgHdr->pCache = pCache; 503 pPgHdr->pgno = pgno; 504 pPgHdr->flags = PGHDR_CLEAN; 505 return sqlite3PcacheFetchFinish(pCache,pgno,pPage); 506 } 507 508 /* 509 ** This routine converts the sqlite3_pcache_page object returned by 510 ** sqlite3PcacheFetch() into an initialized PgHdr object. This routine 511 ** must be called after sqlite3PcacheFetch() in order to get a usable 512 ** result. 513 */ 514 PgHdr *sqlite3PcacheFetchFinish( 515 PCache *pCache, /* Obtain the page from this cache */ 516 Pgno pgno, /* Page number obtained */ 517 sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ 518 ){ 519 PgHdr *pPgHdr; 520 521 assert( pPage!=0 ); 522 pPgHdr = (PgHdr *)pPage->pExtra; 523 524 if( !pPgHdr->pPage ){ 525 return pcacheFetchFinishWithInit(pCache, pgno, pPage); 526 } 527 pCache->nRefSum++; 528 pPgHdr->nRef++; 529 assert( sqlite3PcachePageSanity(pPgHdr) ); 530 return pPgHdr; 531 } 532 533 /* 534 ** Decrement the reference count on a page. If the page is clean and the 535 ** reference count drops to 0, then it is made eligible for recycling. 536 */ 537 void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){ 538 assert( p->nRef>0 ); 539 p->pCache->nRefSum--; 540 if( (--p->nRef)==0 ){ 541 if( p->flags&PGHDR_CLEAN ){ 542 pcacheUnpin(p); 543 }else{ 544 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); 545 assert( sqlite3PcachePageSanity(p) ); 546 } 547 } 548 } 549 550 /* 551 ** Increase the reference count of a supplied page by 1. 552 */ 553 void sqlite3PcacheRef(PgHdr *p){ 554 assert(p->nRef>0); 555 assert( sqlite3PcachePageSanity(p) ); 556 p->nRef++; 557 p->pCache->nRefSum++; 558 } 559 560 /* 561 ** Drop a page from the cache. There must be exactly one reference to the 562 ** page. This function deletes that reference, so after it returns the 563 ** page pointed to by p is invalid. 564 */ 565 void sqlite3PcacheDrop(PgHdr *p){ 566 assert( p->nRef==1 ); 567 assert( sqlite3PcachePageSanity(p) ); 568 if( p->flags&PGHDR_DIRTY ){ 569 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); 570 } 571 p->pCache->nRefSum--; 572 sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 1); 573 } 574 575 /* 576 ** Make sure the page is marked as dirty. If it isn't dirty already, 577 ** make it so. 578 */ 579 void sqlite3PcacheMakeDirty(PgHdr *p){ 580 assert( p->nRef>0 ); 581 assert( sqlite3PcachePageSanity(p) ); 582 if( p->flags & (PGHDR_CLEAN|PGHDR_DONT_WRITE) ){ /*OPTIMIZATION-IF-FALSE*/ 583 p->flags &= ~PGHDR_DONT_WRITE; 584 if( p->flags & PGHDR_CLEAN ){ 585 p->flags ^= (PGHDR_DIRTY|PGHDR_CLEAN); 586 pcacheTrace(("%p.DIRTY %d\n",p->pCache,p->pgno)); 587 assert( (p->flags & (PGHDR_DIRTY|PGHDR_CLEAN))==PGHDR_DIRTY ); 588 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_ADD); 589 assert( sqlite3PcachePageSanity(p) ); 590 } 591 assert( sqlite3PcachePageSanity(p) ); 592 } 593 } 594 595 /* 596 ** Make sure the page is marked as clean. If it isn't clean already, 597 ** make it so. 598 */ 599 void sqlite3PcacheMakeClean(PgHdr *p){ 600 assert( sqlite3PcachePageSanity(p) ); 601 assert( (p->flags & PGHDR_DIRTY)!=0 ); 602 assert( (p->flags & PGHDR_CLEAN)==0 ); 603 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); 604 p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC|PGHDR_WRITEABLE); 605 p->flags |= PGHDR_CLEAN; 606 pcacheTrace(("%p.CLEAN %d\n",p->pCache,p->pgno)); 607 assert( sqlite3PcachePageSanity(p) ); 608 if( p->nRef==0 ){ 609 pcacheUnpin(p); 610 } 611 } 612 613 /* 614 ** Make every page in the cache clean. 615 */ 616 void sqlite3PcacheCleanAll(PCache *pCache){ 617 PgHdr *p; 618 pcacheTrace(("%p.CLEAN-ALL\n",pCache)); 619 while( (p = pCache->pDirty)!=0 ){ 620 sqlite3PcacheMakeClean(p); 621 } 622 } 623 624 /* 625 ** Clear the PGHDR_NEED_SYNC and PGHDR_WRITEABLE flag from all dirty pages. 626 */ 627 void sqlite3PcacheClearWritable(PCache *pCache){ 628 PgHdr *p; 629 pcacheTrace(("%p.CLEAR-WRITEABLE\n",pCache)); 630 for(p=pCache->pDirty; p; p=p->pDirtyNext){ 631 p->flags &= ~(PGHDR_NEED_SYNC|PGHDR_WRITEABLE); 632 } 633 pCache->pSynced = pCache->pDirtyTail; 634 } 635 636 /* 637 ** Clear the PGHDR_NEED_SYNC flag from all dirty pages. 638 */ 639 void sqlite3PcacheClearSyncFlags(PCache *pCache){ 640 PgHdr *p; 641 for(p=pCache->pDirty; p; p=p->pDirtyNext){ 642 p->flags &= ~PGHDR_NEED_SYNC; 643 } 644 pCache->pSynced = pCache->pDirtyTail; 645 } 646 647 /* 648 ** Change the page number of page p to newPgno. 649 */ 650 void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){ 651 PCache *pCache = p->pCache; 652 sqlite3_pcache_page *pOther; 653 assert( p->nRef>0 ); 654 assert( newPgno>0 ); 655 assert( sqlite3PcachePageSanity(p) ); 656 pcacheTrace(("%p.MOVE %d -> %d\n",pCache,p->pgno,newPgno)); 657 pOther = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, newPgno, 0); 658 sqlite3GlobalConfig.pcache2.xRekey(pCache->pCache, p->pPage, p->pgno,newPgno); 659 if( pOther ){ 660 PgHdr *pPg = (PgHdr*)pOther->pExtra; 661 pPg->pgno = p->pgno; 662 if( pPg->pPage==0 ){ 663 sqlite3GlobalConfig.pcache2.xUnpin(pCache->pCache, pOther, 0); 664 } 665 } 666 p->pgno = newPgno; 667 if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){ 668 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); 669 assert( sqlite3PcachePageSanity(p) ); 670 } 671 } 672 673 /* 674 ** Drop every cache entry whose page number is greater than "pgno". The 675 ** caller must ensure that there are no outstanding references to any pages 676 ** other than page 1 with a page number greater than pgno. 677 ** 678 ** If there is a reference to page 1 and the pgno parameter passed to this 679 ** function is 0, then the data area associated with page 1 is zeroed, but 680 ** the page object is not dropped. 681 */ 682 void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){ 683 if( pCache->pCache ){ 684 PgHdr *p; 685 PgHdr *pNext; 686 pcacheTrace(("%p.TRUNCATE %d\n",pCache,pgno)); 687 for(p=pCache->pDirty; p; p=pNext){ 688 pNext = p->pDirtyNext; 689 /* This routine never gets call with a positive pgno except right 690 ** after sqlite3PcacheCleanAll(). So if there are dirty pages, 691 ** it must be that pgno==0. 692 */ 693 assert( p->pgno>0 ); 694 if( p->pgno>pgno ){ 695 assert( p->flags&PGHDR_DIRTY ); 696 sqlite3PcacheMakeClean(p); 697 } 698 } 699 if( pgno==0 && pCache->nRefSum ){ 700 sqlite3_pcache_page *pPage1; 701 pPage1 = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache,1,0); 702 if( ALWAYS(pPage1) ){ /* Page 1 is always available in cache, because 703 ** pCache->nRefSum>0 */ 704 memset(pPage1->pBuf, 0, pCache->szPage); 705 pgno = 1; 706 } 707 } 708 sqlite3GlobalConfig.pcache2.xTruncate(pCache->pCache, pgno+1); 709 } 710 } 711 712 /* 713 ** Close a cache. 714 */ 715 void sqlite3PcacheClose(PCache *pCache){ 716 assert( pCache->pCache!=0 ); 717 pcacheTrace(("%p.CLOSE\n",pCache)); 718 sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); 719 } 720 721 /* 722 ** Discard the contents of the cache. 723 */ 724 void sqlite3PcacheClear(PCache *pCache){ 725 sqlite3PcacheTruncate(pCache, 0); 726 } 727 728 /* 729 ** Merge two lists of pages connected by pDirty and in pgno order. 730 ** Do not bother fixing the pDirtyPrev pointers. 731 */ 732 static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){ 733 PgHdr result, *pTail; 734 pTail = &result; 735 assert( pA!=0 && pB!=0 ); 736 for(;;){ 737 if( pA->pgno<pB->pgno ){ 738 pTail->pDirty = pA; 739 pTail = pA; 740 pA = pA->pDirty; 741 if( pA==0 ){ 742 pTail->pDirty = pB; 743 break; 744 } 745 }else{ 746 pTail->pDirty = pB; 747 pTail = pB; 748 pB = pB->pDirty; 749 if( pB==0 ){ 750 pTail->pDirty = pA; 751 break; 752 } 753 } 754 } 755 return result.pDirty; 756 } 757 758 /* 759 ** Sort the list of pages in accending order by pgno. Pages are 760 ** connected by pDirty pointers. The pDirtyPrev pointers are 761 ** corrupted by this sort. 762 ** 763 ** Since there cannot be more than 2^31 distinct pages in a database, 764 ** there cannot be more than 31 buckets required by the merge sorter. 765 ** One extra bucket is added to catch overflow in case something 766 ** ever changes to make the previous sentence incorrect. 767 */ 768 #define N_SORT_BUCKET 32 769 static PgHdr *pcacheSortDirtyList(PgHdr *pIn){ 770 PgHdr *a[N_SORT_BUCKET], *p; 771 int i; 772 memset(a, 0, sizeof(a)); 773 while( pIn ){ 774 p = pIn; 775 pIn = p->pDirty; 776 p->pDirty = 0; 777 for(i=0; ALWAYS(i<N_SORT_BUCKET-1); i++){ 778 if( a[i]==0 ){ 779 a[i] = p; 780 break; 781 }else{ 782 p = pcacheMergeDirtyList(a[i], p); 783 a[i] = 0; 784 } 785 } 786 if( NEVER(i==N_SORT_BUCKET-1) ){ 787 /* To get here, there need to be 2^(N_SORT_BUCKET) elements in 788 ** the input list. But that is impossible. 789 */ 790 a[i] = pcacheMergeDirtyList(a[i], p); 791 } 792 } 793 p = a[0]; 794 for(i=1; i<N_SORT_BUCKET; i++){ 795 if( a[i]==0 ) continue; 796 p = p ? pcacheMergeDirtyList(p, a[i]) : a[i]; 797 } 798 return p; 799 } 800 801 /* 802 ** Return a list of all dirty pages in the cache, sorted by page number. 803 */ 804 PgHdr *sqlite3PcacheDirtyList(PCache *pCache){ 805 PgHdr *p; 806 for(p=pCache->pDirty; p; p=p->pDirtyNext){ 807 p->pDirty = p->pDirtyNext; 808 } 809 return pcacheSortDirtyList(pCache->pDirty); 810 } 811 812 /* 813 ** Return the total number of references to all pages held by the cache. 814 ** 815 ** This is not the total number of pages referenced, but the sum of the 816 ** reference count for all pages. 817 */ 818 int sqlite3PcacheRefCount(PCache *pCache){ 819 return pCache->nRefSum; 820 } 821 822 /* 823 ** Return the number of references to the page supplied as an argument. 824 */ 825 int sqlite3PcachePageRefcount(PgHdr *p){ 826 return p->nRef; 827 } 828 829 /* 830 ** Return the total number of pages in the cache. 831 */ 832 int sqlite3PcachePagecount(PCache *pCache){ 833 assert( pCache->pCache!=0 ); 834 return sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache); 835 } 836 837 #ifdef SQLITE_TEST 838 /* 839 ** Get the suggested cache-size value. 840 */ 841 int sqlite3PcacheGetCachesize(PCache *pCache){ 842 return numberOfCachePages(pCache); 843 } 844 #endif 845 846 /* 847 ** Set the suggested cache-size value. 848 */ 849 void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){ 850 assert( pCache->pCache!=0 ); 851 pCache->szCache = mxPage; 852 sqlite3GlobalConfig.pcache2.xCachesize(pCache->pCache, 853 numberOfCachePages(pCache)); 854 } 855 856 /* 857 ** Set the suggested cache-spill value. Make no changes if if the 858 ** argument is zero. Return the effective cache-spill size, which will 859 ** be the larger of the szSpill and szCache. 860 */ 861 int sqlite3PcacheSetSpillsize(PCache *p, int mxPage){ 862 int res; 863 assert( p->pCache!=0 ); 864 if( mxPage ){ 865 if( mxPage<0 ){ 866 mxPage = (int)((-1024*(i64)mxPage)/(p->szPage+p->szExtra)); 867 } 868 p->szSpill = mxPage; 869 } 870 res = numberOfCachePages(p); 871 if( res<p->szSpill ) res = p->szSpill; 872 return res; 873 } 874 875 /* 876 ** Free up as much memory as possible from the page cache. 877 */ 878 void sqlite3PcacheShrink(PCache *pCache){ 879 assert( pCache->pCache!=0 ); 880 sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache); 881 } 882 883 /* 884 ** Return the size of the header added by this middleware layer 885 ** in the page-cache hierarchy. 886 */ 887 int sqlite3HeaderSizePcache(void){ return ROUND8(sizeof(PgHdr)); } 888 889 /* 890 ** Return the number of dirty pages currently in the cache, as a percentage 891 ** of the configured cache size. 892 */ 893 int sqlite3PCachePercentDirty(PCache *pCache){ 894 PgHdr *pDirty; 895 int nDirty = 0; 896 int nCache = numberOfCachePages(pCache); 897 for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext) nDirty++; 898 return nCache ? (int)(((i64)nDirty * 100) / nCache) : 0; 899 } 900 901 #ifdef SQLITE_DIRECT_OVERFLOW_READ 902 /* 903 ** Return true if there are one or more dirty pages in the cache. Else false. 904 */ 905 int sqlite3PCacheIsDirty(PCache *pCache){ 906 return (pCache->pDirty!=0); 907 } 908 #endif 909 910 #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG) 911 /* 912 ** For all dirty pages currently in the cache, invoke the specified 913 ** callback. This is only used if the SQLITE_CHECK_PAGES macro is 914 ** defined. 915 */ 916 void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){ 917 PgHdr *pDirty; 918 for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){ 919 xIter(pDirty); 920 } 921 } 922 #endif 923