xref: /sqlite-3.40.0/src/pcache.c (revision 45f31be8)
1 /*
2 ** 2008 August 05
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file implements that page cache.
13 */
14 #include "sqliteInt.h"
15 
16 /*
17 ** A complete page cache is an instance of this structure.
18 */
19 struct PCache {
20   PgHdr *pDirty, *pDirtyTail;         /* List of dirty pages in LRU order */
21   PgHdr *pSynced;                     /* Last synced page in dirty page list */
22   int nRefSum;                        /* Sum of ref counts over all pages */
23   int szCache;                        /* Configured cache size */
24   int szSpill;                        /* Size before spilling occurs */
25   int szPage;                         /* Size of every page in this cache */
26   int szExtra;                        /* Size of extra space for each page */
27   u8 bPurgeable;                      /* True if pages are on backing store */
28   u8 eCreate;                         /* eCreate value for for xFetch() */
29   int (*xStress)(void*,PgHdr*);       /* Call to try make a page clean */
30   void *pStress;                      /* Argument to xStress */
31   sqlite3_pcache *pCache;             /* Pluggable cache module */
32 };
33 
34 /********************************** Linked List Management ********************/
35 
36 /* Allowed values for second argument to pcacheManageDirtyList() */
37 #define PCACHE_DIRTYLIST_REMOVE   1    /* Remove pPage from dirty list */
38 #define PCACHE_DIRTYLIST_ADD      2    /* Add pPage to the dirty list */
39 #define PCACHE_DIRTYLIST_FRONT    3    /* Move pPage to the front of the list */
40 
41 /*
42 ** Manage pPage's participation on the dirty list.  Bits of the addRemove
43 ** argument determines what operation to do.  The 0x01 bit means first
44 ** remove pPage from the dirty list.  The 0x02 means add pPage back to
45 ** the dirty list.  Doing both moves pPage to the front of the dirty list.
46 */
47 static void pcacheManageDirtyList(PgHdr *pPage, u8 addRemove){
48   PCache *p = pPage->pCache;
49 
50   if( addRemove & PCACHE_DIRTYLIST_REMOVE ){
51     assert( pPage->pDirtyNext || pPage==p->pDirtyTail );
52     assert( pPage->pDirtyPrev || pPage==p->pDirty );
53 
54     /* Update the PCache1.pSynced variable if necessary. */
55     if( p->pSynced==pPage ){
56       PgHdr *pSynced = pPage->pDirtyPrev;
57       while( pSynced && (pSynced->flags&PGHDR_NEED_SYNC) ){
58         pSynced = pSynced->pDirtyPrev;
59       }
60       p->pSynced = pSynced;
61     }
62 
63     if( pPage->pDirtyNext ){
64       pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev;
65     }else{
66       assert( pPage==p->pDirtyTail );
67       p->pDirtyTail = pPage->pDirtyPrev;
68     }
69     if( pPage->pDirtyPrev ){
70       pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext;
71     }else{
72       assert( pPage==p->pDirty );
73       p->pDirty = pPage->pDirtyNext;
74       if( p->pDirty==0 && p->bPurgeable ){
75         assert( p->eCreate==1 );
76         p->eCreate = 2;
77       }
78     }
79     pPage->pDirtyNext = 0;
80     pPage->pDirtyPrev = 0;
81   }
82   if( addRemove & PCACHE_DIRTYLIST_ADD ){
83     assert( pPage->pDirtyNext==0 && pPage->pDirtyPrev==0 && p->pDirty!=pPage );
84 
85     pPage->pDirtyNext = p->pDirty;
86     if( pPage->pDirtyNext ){
87       assert( pPage->pDirtyNext->pDirtyPrev==0 );
88       pPage->pDirtyNext->pDirtyPrev = pPage;
89     }else{
90       p->pDirtyTail = pPage;
91       if( p->bPurgeable ){
92         assert( p->eCreate==2 );
93         p->eCreate = 1;
94       }
95     }
96     p->pDirty = pPage;
97     if( !p->pSynced && 0==(pPage->flags&PGHDR_NEED_SYNC) ){
98       p->pSynced = pPage;
99     }
100   }
101 }
102 
103 /*
104 ** Wrapper around the pluggable caches xUnpin method. If the cache is
105 ** being used for an in-memory database, this function is a no-op.
106 */
107 static void pcacheUnpin(PgHdr *p){
108   if( p->pCache->bPurgeable ){
109     sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0);
110   }
111 }
112 
113 /*
114 ** Compute the number of pages of cache requested.   p->szCache is the
115 ** cache size requested by the "PRAGMA cache_size" statement.
116 */
117 static int numberOfCachePages(PCache *p){
118   if( p->szCache>=0 ){
119     /* IMPLEMENTATION-OF: R-42059-47211 If the argument N is positive then the
120     ** suggested cache size is set to N. */
121     return p->szCache;
122   }else{
123     /* IMPLEMENTATION-OF: R-61436-13639 If the argument N is negative, then
124     ** the number of cache pages is adjusted to use approximately abs(N*1024)
125     ** bytes of memory. */
126     return (int)((-1024*(i64)p->szCache)/(p->szPage+p->szExtra));
127   }
128 }
129 
130 /*************************************************** General Interfaces ******
131 **
132 ** Initialize and shutdown the page cache subsystem. Neither of these
133 ** functions are threadsafe.
134 */
135 int sqlite3PcacheInitialize(void){
136   if( sqlite3GlobalConfig.pcache2.xInit==0 ){
137     /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the
138     ** built-in default page cache is used instead of the application defined
139     ** page cache. */
140     sqlite3PCacheSetDefault();
141   }
142   return sqlite3GlobalConfig.pcache2.xInit(sqlite3GlobalConfig.pcache2.pArg);
143 }
144 void sqlite3PcacheShutdown(void){
145   if( sqlite3GlobalConfig.pcache2.xShutdown ){
146     /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */
147     sqlite3GlobalConfig.pcache2.xShutdown(sqlite3GlobalConfig.pcache2.pArg);
148   }
149 }
150 
151 /*
152 ** Return the size in bytes of a PCache object.
153 */
154 int sqlite3PcacheSize(void){ return sizeof(PCache); }
155 
156 /*
157 ** Create a new PCache object. Storage space to hold the object
158 ** has already been allocated and is passed in as the p pointer.
159 ** The caller discovers how much space needs to be allocated by
160 ** calling sqlite3PcacheSize().
161 */
162 int sqlite3PcacheOpen(
163   int szPage,                  /* Size of every page */
164   int szExtra,                 /* Extra space associated with each page */
165   int bPurgeable,              /* True if pages are on backing store */
166   int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */
167   void *pStress,               /* Argument to xStress */
168   PCache *p                    /* Preallocated space for the PCache */
169 ){
170   memset(p, 0, sizeof(PCache));
171   p->szPage = 1;
172   p->szExtra = szExtra;
173   p->bPurgeable = bPurgeable;
174   p->eCreate = 2;
175   p->xStress = xStress;
176   p->pStress = pStress;
177   p->szCache = 100;
178   p->szSpill = 1;
179   return sqlite3PcacheSetPageSize(p, szPage);
180 }
181 
182 /*
183 ** Change the page size for PCache object. The caller must ensure that there
184 ** are no outstanding page references when this function is called.
185 */
186 int sqlite3PcacheSetPageSize(PCache *pCache, int szPage){
187   assert( pCache->nRefSum==0 && pCache->pDirty==0 );
188   if( pCache->szPage ){
189     sqlite3_pcache *pNew;
190     pNew = sqlite3GlobalConfig.pcache2.xCreate(
191                 szPage, pCache->szExtra + ROUND8(sizeof(PgHdr)),
192                 pCache->bPurgeable
193     );
194     if( pNew==0 ) return SQLITE_NOMEM_BKPT;
195     sqlite3GlobalConfig.pcache2.xCachesize(pNew, numberOfCachePages(pCache));
196     if( pCache->pCache ){
197       sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache);
198     }
199     pCache->pCache = pNew;
200     pCache->szPage = szPage;
201   }
202   return SQLITE_OK;
203 }
204 
205 /*
206 ** Try to obtain a page from the cache.
207 **
208 ** This routine returns a pointer to an sqlite3_pcache_page object if
209 ** such an object is already in cache, or if a new one is created.
210 ** This routine returns a NULL pointer if the object was not in cache
211 ** and could not be created.
212 **
213 ** The createFlags should be 0 to check for existing pages and should
214 ** be 3 (not 1, but 3) to try to create a new page.
215 **
216 ** If the createFlag is 0, then NULL is always returned if the page
217 ** is not already in the cache.  If createFlag is 1, then a new page
218 ** is created only if that can be done without spilling dirty pages
219 ** and without exceeding the cache size limit.
220 **
221 ** The caller needs to invoke sqlite3PcacheFetchFinish() to properly
222 ** initialize the sqlite3_pcache_page object and convert it into a
223 ** PgHdr object.  The sqlite3PcacheFetch() and sqlite3PcacheFetchFinish()
224 ** routines are split this way for performance reasons. When separated
225 ** they can both (usually) operate without having to push values to
226 ** the stack on entry and pop them back off on exit, which saves a
227 ** lot of pushing and popping.
228 */
229 sqlite3_pcache_page *sqlite3PcacheFetch(
230   PCache *pCache,       /* Obtain the page from this cache */
231   Pgno pgno,            /* Page number to obtain */
232   int createFlag        /* If true, create page if it does not exist already */
233 ){
234   int eCreate;
235 
236   assert( pCache!=0 );
237   assert( pCache->pCache!=0 );
238   assert( createFlag==3 || createFlag==0 );
239   assert( pgno>0 );
240 
241   /* eCreate defines what to do if the page does not exist.
242   **    0     Do not allocate a new page.  (createFlag==0)
243   **    1     Allocate a new page if doing so is inexpensive.
244   **          (createFlag==1 AND bPurgeable AND pDirty)
245   **    2     Allocate a new page even it doing so is difficult.
246   **          (createFlag==1 AND !(bPurgeable AND pDirty)
247   */
248   eCreate = createFlag & pCache->eCreate;
249   assert( eCreate==0 || eCreate==1 || eCreate==2 );
250   assert( createFlag==0 || pCache->eCreate==eCreate );
251   assert( createFlag==0 || eCreate==1+(!pCache->bPurgeable||!pCache->pDirty) );
252   return sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate);
253 }
254 
255 /*
256 ** If the sqlite3PcacheFetch() routine is unable to allocate a new
257 ** page because new clean pages are available for reuse and the cache
258 ** size limit has been reached, then this routine can be invoked to
259 ** try harder to allocate a page.  This routine might invoke the stress
260 ** callback to spill dirty pages to the journal.  It will then try to
261 ** allocate the new page and will only fail to allocate a new page on
262 ** an OOM error.
263 **
264 ** This routine should be invoked only after sqlite3PcacheFetch() fails.
265 */
266 int sqlite3PcacheFetchStress(
267   PCache *pCache,                 /* Obtain the page from this cache */
268   Pgno pgno,                      /* Page number to obtain */
269   sqlite3_pcache_page **ppPage    /* Write result here */
270 ){
271   PgHdr *pPg;
272   if( pCache->eCreate==2 ) return 0;
273 
274   if( sqlite3PcachePagecount(pCache)>pCache->szSpill ){
275     /* Find a dirty page to write-out and recycle. First try to find a
276     ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC
277     ** cleared), but if that is not possible settle for any other
278     ** unreferenced dirty page.
279     */
280     for(pPg=pCache->pSynced;
281         pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC));
282         pPg=pPg->pDirtyPrev
283     );
284     pCache->pSynced = pPg;
285     if( !pPg ){
286       for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev);
287     }
288     if( pPg ){
289       int rc;
290 #ifdef SQLITE_LOG_CACHE_SPILL
291       sqlite3_log(SQLITE_FULL,
292                   "spill page %d making room for %d - cache used: %d/%d",
293                   pPg->pgno, pgno,
294                   sqlite3GlobalConfig.pcache.xPagecount(pCache->pCache),
295                 numberOfCachePages(pCache));
296 #endif
297       rc = pCache->xStress(pCache->pStress, pPg);
298       if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){
299         return rc;
300       }
301     }
302   }
303   *ppPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, 2);
304   return *ppPage==0 ? SQLITE_NOMEM_BKPT : SQLITE_OK;
305 }
306 
307 /*
308 ** This is a helper routine for sqlite3PcacheFetchFinish()
309 **
310 ** In the uncommon case where the page being fetched has not been
311 ** initialized, this routine is invoked to do the initialization.
312 ** This routine is broken out into a separate function since it
313 ** requires extra stack manipulation that can be avoided in the common
314 ** case.
315 */
316 static SQLITE_NOINLINE PgHdr *pcacheFetchFinishWithInit(
317   PCache *pCache,             /* Obtain the page from this cache */
318   Pgno pgno,                  /* Page number obtained */
319   sqlite3_pcache_page *pPage  /* Page obtained by prior PcacheFetch() call */
320 ){
321   PgHdr *pPgHdr;
322   assert( pPage!=0 );
323   pPgHdr = (PgHdr*)pPage->pExtra;
324   assert( pPgHdr->pPage==0 );
325   memset(pPgHdr, 0, sizeof(PgHdr));
326   pPgHdr->pPage = pPage;
327   pPgHdr->pData = pPage->pBuf;
328   pPgHdr->pExtra = (void *)&pPgHdr[1];
329   memset(pPgHdr->pExtra, 0, pCache->szExtra);
330   pPgHdr->pCache = pCache;
331   pPgHdr->pgno = pgno;
332   pPgHdr->flags = PGHDR_CLEAN;
333   return sqlite3PcacheFetchFinish(pCache,pgno,pPage);
334 }
335 
336 /*
337 ** This routine converts the sqlite3_pcache_page object returned by
338 ** sqlite3PcacheFetch() into an initialized PgHdr object.  This routine
339 ** must be called after sqlite3PcacheFetch() in order to get a usable
340 ** result.
341 */
342 PgHdr *sqlite3PcacheFetchFinish(
343   PCache *pCache,             /* Obtain the page from this cache */
344   Pgno pgno,                  /* Page number obtained */
345   sqlite3_pcache_page *pPage  /* Page obtained by prior PcacheFetch() call */
346 ){
347   PgHdr *pPgHdr;
348 
349   assert( pPage!=0 );
350   pPgHdr = (PgHdr *)pPage->pExtra;
351 
352   if( !pPgHdr->pPage ){
353     return pcacheFetchFinishWithInit(pCache, pgno, pPage);
354   }
355   pCache->nRefSum++;
356   pPgHdr->nRef++;
357   return pPgHdr;
358 }
359 
360 /*
361 ** Decrement the reference count on a page. If the page is clean and the
362 ** reference count drops to 0, then it is made eligible for recycling.
363 */
364 void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){
365   assert( p->nRef>0 );
366   p->pCache->nRefSum--;
367   if( (--p->nRef)==0 ){
368     if( p->flags&PGHDR_CLEAN ){
369       pcacheUnpin(p);
370     }else if( p->pDirtyPrev!=0 ){
371       /* Move the page to the head of the dirty list. */
372       pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT);
373     }
374   }
375 }
376 
377 /*
378 ** Increase the reference count of a supplied page by 1.
379 */
380 void sqlite3PcacheRef(PgHdr *p){
381   assert(p->nRef>0);
382   p->nRef++;
383   p->pCache->nRefSum++;
384 }
385 
386 /*
387 ** Drop a page from the cache. There must be exactly one reference to the
388 ** page. This function deletes that reference, so after it returns the
389 ** page pointed to by p is invalid.
390 */
391 void sqlite3PcacheDrop(PgHdr *p){
392   assert( p->nRef==1 );
393   if( p->flags&PGHDR_DIRTY ){
394     pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE);
395   }
396   p->pCache->nRefSum--;
397   sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 1);
398 }
399 
400 /*
401 ** Make sure the page is marked as dirty. If it isn't dirty already,
402 ** make it so.
403 */
404 void sqlite3PcacheMakeDirty(PgHdr *p){
405   assert( p->nRef>0 );
406   if( p->flags & (PGHDR_CLEAN|PGHDR_DONT_WRITE) ){
407     p->flags &= ~PGHDR_DONT_WRITE;
408     if( p->flags & PGHDR_CLEAN ){
409       p->flags ^= (PGHDR_DIRTY|PGHDR_CLEAN);
410       assert( (p->flags & (PGHDR_DIRTY|PGHDR_CLEAN))==PGHDR_DIRTY );
411       pcacheManageDirtyList(p, PCACHE_DIRTYLIST_ADD);
412     }
413   }
414 }
415 
416 /*
417 ** Make sure the page is marked as clean. If it isn't clean already,
418 ** make it so.
419 */
420 void sqlite3PcacheMakeClean(PgHdr *p){
421   if( (p->flags & PGHDR_DIRTY) ){
422     assert( (p->flags & PGHDR_CLEAN)==0 );
423     pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE);
424     p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC|PGHDR_WRITEABLE);
425     p->flags |= PGHDR_CLEAN;
426     if( p->nRef==0 ){
427       pcacheUnpin(p);
428     }
429   }
430 }
431 
432 /*
433 ** Make every page in the cache clean.
434 */
435 void sqlite3PcacheCleanAll(PCache *pCache){
436   PgHdr *p;
437   while( (p = pCache->pDirty)!=0 ){
438     sqlite3PcacheMakeClean(p);
439   }
440 }
441 
442 /*
443 ** Clear the PGHDR_NEED_SYNC flag from all dirty pages.
444 */
445 void sqlite3PcacheClearSyncFlags(PCache *pCache){
446   PgHdr *p;
447   for(p=pCache->pDirty; p; p=p->pDirtyNext){
448     p->flags &= ~PGHDR_NEED_SYNC;
449   }
450   pCache->pSynced = pCache->pDirtyTail;
451 }
452 
453 /*
454 ** Change the page number of page p to newPgno.
455 */
456 void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){
457   PCache *pCache = p->pCache;
458   assert( p->nRef>0 );
459   assert( newPgno>0 );
460   sqlite3GlobalConfig.pcache2.xRekey(pCache->pCache, p->pPage, p->pgno,newPgno);
461   p->pgno = newPgno;
462   if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){
463     pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT);
464   }
465 }
466 
467 /*
468 ** Drop every cache entry whose page number is greater than "pgno". The
469 ** caller must ensure that there are no outstanding references to any pages
470 ** other than page 1 with a page number greater than pgno.
471 **
472 ** If there is a reference to page 1 and the pgno parameter passed to this
473 ** function is 0, then the data area associated with page 1 is zeroed, but
474 ** the page object is not dropped.
475 */
476 void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){
477   if( pCache->pCache ){
478     PgHdr *p;
479     PgHdr *pNext;
480     for(p=pCache->pDirty; p; p=pNext){
481       pNext = p->pDirtyNext;
482       /* This routine never gets call with a positive pgno except right
483       ** after sqlite3PcacheCleanAll().  So if there are dirty pages,
484       ** it must be that pgno==0.
485       */
486       assert( p->pgno>0 );
487       if( ALWAYS(p->pgno>pgno) ){
488         assert( p->flags&PGHDR_DIRTY );
489         sqlite3PcacheMakeClean(p);
490       }
491     }
492     if( pgno==0 && pCache->nRefSum ){
493       sqlite3_pcache_page *pPage1;
494       pPage1 = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache,1,0);
495       if( ALWAYS(pPage1) ){  /* Page 1 is always available in cache, because
496                              ** pCache->nRefSum>0 */
497         memset(pPage1->pBuf, 0, pCache->szPage);
498         pgno = 1;
499       }
500     }
501     sqlite3GlobalConfig.pcache2.xTruncate(pCache->pCache, pgno+1);
502   }
503 }
504 
505 /*
506 ** Close a cache.
507 */
508 void sqlite3PcacheClose(PCache *pCache){
509   assert( pCache->pCache!=0 );
510   sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache);
511 }
512 
513 /*
514 ** Discard the contents of the cache.
515 */
516 void sqlite3PcacheClear(PCache *pCache){
517   sqlite3PcacheTruncate(pCache, 0);
518 }
519 
520 /*
521 ** Merge two lists of pages connected by pDirty and in pgno order.
522 ** Do not both fixing the pDirtyPrev pointers.
523 */
524 static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){
525   PgHdr result, *pTail;
526   pTail = &result;
527   while( pA && pB ){
528     if( pA->pgno<pB->pgno ){
529       pTail->pDirty = pA;
530       pTail = pA;
531       pA = pA->pDirty;
532     }else{
533       pTail->pDirty = pB;
534       pTail = pB;
535       pB = pB->pDirty;
536     }
537   }
538   if( pA ){
539     pTail->pDirty = pA;
540   }else if( pB ){
541     pTail->pDirty = pB;
542   }else{
543     pTail->pDirty = 0;
544   }
545   return result.pDirty;
546 }
547 
548 /*
549 ** Sort the list of pages in accending order by pgno.  Pages are
550 ** connected by pDirty pointers.  The pDirtyPrev pointers are
551 ** corrupted by this sort.
552 **
553 ** Since there cannot be more than 2^31 distinct pages in a database,
554 ** there cannot be more than 31 buckets required by the merge sorter.
555 ** One extra bucket is added to catch overflow in case something
556 ** ever changes to make the previous sentence incorrect.
557 */
558 #define N_SORT_BUCKET  32
559 static PgHdr *pcacheSortDirtyList(PgHdr *pIn){
560   PgHdr *a[N_SORT_BUCKET], *p;
561   int i;
562   memset(a, 0, sizeof(a));
563   while( pIn ){
564     p = pIn;
565     pIn = p->pDirty;
566     p->pDirty = 0;
567     for(i=0; ALWAYS(i<N_SORT_BUCKET-1); i++){
568       if( a[i]==0 ){
569         a[i] = p;
570         break;
571       }else{
572         p = pcacheMergeDirtyList(a[i], p);
573         a[i] = 0;
574       }
575     }
576     if( NEVER(i==N_SORT_BUCKET-1) ){
577       /* To get here, there need to be 2^(N_SORT_BUCKET) elements in
578       ** the input list.  But that is impossible.
579       */
580       a[i] = pcacheMergeDirtyList(a[i], p);
581     }
582   }
583   p = a[0];
584   for(i=1; i<N_SORT_BUCKET; i++){
585     p = pcacheMergeDirtyList(p, a[i]);
586   }
587   return p;
588 }
589 
590 /*
591 ** Return a list of all dirty pages in the cache, sorted by page number.
592 */
593 PgHdr *sqlite3PcacheDirtyList(PCache *pCache){
594   PgHdr *p;
595   for(p=pCache->pDirty; p; p=p->pDirtyNext){
596     p->pDirty = p->pDirtyNext;
597   }
598   return pcacheSortDirtyList(pCache->pDirty);
599 }
600 
601 /*
602 ** Return the total number of references to all pages held by the cache.
603 **
604 ** This is not the total number of pages referenced, but the sum of the
605 ** reference count for all pages.
606 */
607 int sqlite3PcacheRefCount(PCache *pCache){
608   return pCache->nRefSum;
609 }
610 
611 /*
612 ** Return the number of references to the page supplied as an argument.
613 */
614 int sqlite3PcachePageRefcount(PgHdr *p){
615   return p->nRef;
616 }
617 
618 /*
619 ** Return the total number of pages in the cache.
620 */
621 int sqlite3PcachePagecount(PCache *pCache){
622   assert( pCache->pCache!=0 );
623   return sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache);
624 }
625 
626 #ifdef SQLITE_TEST
627 /*
628 ** Get the suggested cache-size value.
629 */
630 int sqlite3PcacheGetCachesize(PCache *pCache){
631   return numberOfCachePages(pCache);
632 }
633 #endif
634 
635 /*
636 ** Set the suggested cache-size value.
637 */
638 void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){
639   assert( pCache->pCache!=0 );
640   pCache->szCache = mxPage;
641   sqlite3GlobalConfig.pcache2.xCachesize(pCache->pCache,
642                                          numberOfCachePages(pCache));
643 }
644 
645 /*
646 ** Set the suggested cache-spill value.  Make no changes if if the
647 ** argument is zero.  Return the effective cache-spill size, which will
648 ** be the larger of the szSpill and szCache.
649 */
650 int sqlite3PcacheSetSpillsize(PCache *p, int mxPage){
651   int res;
652   assert( p->pCache!=0 );
653   if( mxPage ){
654     if( mxPage<0 ){
655       mxPage = (int)((-1024*(i64)mxPage)/(p->szPage+p->szExtra));
656     }
657     p->szSpill = mxPage;
658   }
659   res = numberOfCachePages(p);
660   if( res<p->szSpill ) res = p->szSpill;
661   return res;
662 }
663 
664 /*
665 ** Free up as much memory as possible from the page cache.
666 */
667 void sqlite3PcacheShrink(PCache *pCache){
668   assert( pCache->pCache!=0 );
669   sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache);
670 }
671 
672 /*
673 ** Return the size of the header added by this middleware layer
674 ** in the page-cache hierarchy.
675 */
676 int sqlite3HeaderSizePcache(void){ return ROUND8(sizeof(PgHdr)); }
677 
678 
679 #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG)
680 /*
681 ** For all dirty pages currently in the cache, invoke the specified
682 ** callback. This is only used if the SQLITE_CHECK_PAGES macro is
683 ** defined.
684 */
685 void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){
686   PgHdr *pDirty;
687   for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){
688     xIter(pDirty);
689   }
690 }
691 #endif
692