1 /* 2 ** 2008 August 05 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file implements that page cache. 13 */ 14 #include "sqliteInt.h" 15 16 /* 17 ** A complete page cache is an instance of this structure. 18 */ 19 struct PCache { 20 PgHdr *pDirty, *pDirtyTail; /* List of dirty pages in LRU order */ 21 PgHdr *pSynced; /* Last synced page in dirty page list */ 22 int nRef; /* Number of referenced pages */ 23 int szCache; /* Configured cache size */ 24 int szPage; /* Size of every page in this cache */ 25 int szExtra; /* Size of extra space for each page */ 26 u8 bPurgeable; /* True if pages are on backing store */ 27 u8 eCreate; /* eCreate value for for xFetch() */ 28 int (*xStress)(void*,PgHdr*); /* Call to try make a page clean */ 29 void *pStress; /* Argument to xStress */ 30 sqlite3_pcache *pCache; /* Pluggable cache module */ 31 }; 32 33 /********************************** Linked List Management ********************/ 34 35 /* Allowed values for second argument to pcacheManageDirtyList() */ 36 #define PCACHE_DIRTYLIST_REMOVE 1 /* Remove pPage from dirty list */ 37 #define PCACHE_DIRTYLIST_ADD 2 /* Add pPage to the dirty list */ 38 #define PCACHE_DIRTYLIST_FRONT 3 /* Move pPage to the front of the list */ 39 40 /* 41 ** Manage pPage's participation on the dirty list. Bits of the addRemove 42 ** argument determines what operation to do. The 0x01 bit means first 43 ** remove pPage from the dirty list. The 0x02 means add pPage back to 44 ** the dirty list. Doing both moves pPage to the front of the dirty list. 45 */ 46 static void pcacheManageDirtyList(PgHdr *pPage, u8 addRemove){ 47 PCache *p = pPage->pCache; 48 49 if( addRemove & PCACHE_DIRTYLIST_REMOVE ){ 50 assert( pPage->pDirtyNext || pPage==p->pDirtyTail ); 51 assert( pPage->pDirtyPrev || pPage==p->pDirty ); 52 53 /* Update the PCache1.pSynced variable if necessary. */ 54 if( p->pSynced==pPage ){ 55 PgHdr *pSynced = pPage->pDirtyPrev; 56 while( pSynced && (pSynced->flags&PGHDR_NEED_SYNC) ){ 57 pSynced = pSynced->pDirtyPrev; 58 } 59 p->pSynced = pSynced; 60 } 61 62 if( pPage->pDirtyNext ){ 63 pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev; 64 }else{ 65 assert( pPage==p->pDirtyTail ); 66 p->pDirtyTail = pPage->pDirtyPrev; 67 } 68 if( pPage->pDirtyPrev ){ 69 pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext; 70 }else{ 71 assert( pPage==p->pDirty ); 72 p->pDirty = pPage->pDirtyNext; 73 if( p->pDirty==0 && p->bPurgeable ){ 74 assert( p->eCreate==1 ); 75 p->eCreate = 2; 76 } 77 } 78 pPage->pDirtyNext = 0; 79 pPage->pDirtyPrev = 0; 80 } 81 if( addRemove & PCACHE_DIRTYLIST_ADD ){ 82 assert( pPage->pDirtyNext==0 && pPage->pDirtyPrev==0 && p->pDirty!=pPage ); 83 84 pPage->pDirtyNext = p->pDirty; 85 if( pPage->pDirtyNext ){ 86 assert( pPage->pDirtyNext->pDirtyPrev==0 ); 87 pPage->pDirtyNext->pDirtyPrev = pPage; 88 }else{ 89 p->pDirtyTail = pPage; 90 if( p->bPurgeable ){ 91 assert( p->eCreate==2 ); 92 p->eCreate = 1; 93 } 94 } 95 p->pDirty = pPage; 96 if( !p->pSynced && 0==(pPage->flags&PGHDR_NEED_SYNC) ){ 97 p->pSynced = pPage; 98 } 99 } 100 } 101 102 /* 103 ** Wrapper around the pluggable caches xUnpin method. If the cache is 104 ** being used for an in-memory database, this function is a no-op. 105 */ 106 static void pcacheUnpin(PgHdr *p){ 107 if( p->pCache->bPurgeable ){ 108 sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0); 109 } 110 } 111 112 /* 113 ** Compute the number of pages of cache requested. p->szCache is the 114 ** cache size requested by the "PRAGMA cache_size" statement. 115 ** 116 ** 117 */ 118 static int numberOfCachePages(PCache *p){ 119 if( p->szCache>=0 ){ 120 /* IMPLEMENTATION-OF: R-42059-47211 If the argument N is positive then the 121 ** suggested cache size is set to N. */ 122 return p->szCache; 123 }else{ 124 /* IMPLEMENTATION-OF: R-61436-13639 If the argument N is negative, then 125 ** the number of cache pages is adjusted to use approximately abs(N*1024) 126 ** bytes of memory. */ 127 return (int)((-1024*(i64)p->szCache)/(p->szPage+p->szExtra)); 128 } 129 } 130 131 /*************************************************** General Interfaces ****** 132 ** 133 ** Initialize and shutdown the page cache subsystem. Neither of these 134 ** functions are threadsafe. 135 */ 136 int sqlite3PcacheInitialize(void){ 137 if( sqlite3GlobalConfig.pcache2.xInit==0 ){ 138 /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the 139 ** built-in default page cache is used instead of the application defined 140 ** page cache. */ 141 sqlite3PCacheSetDefault(); 142 } 143 return sqlite3GlobalConfig.pcache2.xInit(sqlite3GlobalConfig.pcache2.pArg); 144 } 145 void sqlite3PcacheShutdown(void){ 146 if( sqlite3GlobalConfig.pcache2.xShutdown ){ 147 /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */ 148 sqlite3GlobalConfig.pcache2.xShutdown(sqlite3GlobalConfig.pcache2.pArg); 149 } 150 } 151 152 /* 153 ** Return the size in bytes of a PCache object. 154 */ 155 int sqlite3PcacheSize(void){ return sizeof(PCache); } 156 157 /* 158 ** Create a new PCache object. Storage space to hold the object 159 ** has already been allocated and is passed in as the p pointer. 160 ** The caller discovers how much space needs to be allocated by 161 ** calling sqlite3PcacheSize(). 162 */ 163 int sqlite3PcacheOpen( 164 int szPage, /* Size of every page */ 165 int szExtra, /* Extra space associated with each page */ 166 int bPurgeable, /* True if pages are on backing store */ 167 int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */ 168 void *pStress, /* Argument to xStress */ 169 PCache *p /* Preallocated space for the PCache */ 170 ){ 171 memset(p, 0, sizeof(PCache)); 172 p->szPage = 1; 173 p->szExtra = szExtra; 174 p->bPurgeable = bPurgeable; 175 p->eCreate = 2; 176 p->xStress = xStress; 177 p->pStress = pStress; 178 p->szCache = 100; 179 return sqlite3PcacheSetPageSize(p, szPage); 180 } 181 182 /* 183 ** Change the page size for PCache object. The caller must ensure that there 184 ** are no outstanding page references when this function is called. 185 */ 186 int sqlite3PcacheSetPageSize(PCache *pCache, int szPage){ 187 assert( pCache->nRef==0 && pCache->pDirty==0 ); 188 if( pCache->szPage ){ 189 sqlite3_pcache *pNew; 190 pNew = sqlite3GlobalConfig.pcache2.xCreate( 191 szPage, pCache->szExtra + ROUND8(sizeof(PgHdr)), 192 pCache->bPurgeable 193 ); 194 if( pNew==0 ) return SQLITE_NOMEM; 195 sqlite3GlobalConfig.pcache2.xCachesize(pNew, numberOfCachePages(pCache)); 196 if( pCache->pCache ){ 197 sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); 198 } 199 pCache->pCache = pNew; 200 pCache->szPage = szPage; 201 } 202 return SQLITE_OK; 203 } 204 205 /* 206 ** Try to obtain a page from the cache. 207 ** 208 ** This routine returns a pointer to an sqlite3_pcache_page object if 209 ** such an object is already in cache, or if a new one is created. 210 ** This routine returns a NULL pointer if the object was not in cache 211 ** and could not be created. 212 ** 213 ** The createFlags should be 0 to check for existing pages and should 214 ** be 3 (not 1, but 3) to try to create a new page. 215 ** 216 ** If the createFlag is 0, then NULL is always returned if the page 217 ** is not already in the cache. If createFlag is 1, then a new page 218 ** is created only if that can be done without spilling dirty pages 219 ** and without exceeding the cache size limit. 220 ** 221 ** The caller needs to invoke sqlite3PcacheFetchFinish() to properly 222 ** initialize the sqlite3_pcache_page object and convert it into a 223 ** PgHdr object. The sqlite3PcacheFetch() and sqlite3PcacheFetchFinish() 224 ** routines are split this way for performance reasons. When separated 225 ** they can both (usually) operate without having to push values to 226 ** the stack on entry and pop them back off on exit, which saves a 227 ** lot of pushing and popping. 228 */ 229 sqlite3_pcache_page *sqlite3PcacheFetch( 230 PCache *pCache, /* Obtain the page from this cache */ 231 Pgno pgno, /* Page number to obtain */ 232 int createFlag /* If true, create page if it does not exist already */ 233 ){ 234 int eCreate; 235 236 assert( pCache!=0 ); 237 assert( pCache->pCache!=0 ); 238 assert( createFlag==3 || createFlag==0 ); 239 assert( pgno>0 ); 240 241 /* eCreate defines what to do if the page does not exist. 242 ** 0 Do not allocate a new page. (createFlag==0) 243 ** 1 Allocate a new page if doing so is inexpensive. 244 ** (createFlag==1 AND bPurgeable AND pDirty) 245 ** 2 Allocate a new page even it doing so is difficult. 246 ** (createFlag==1 AND !(bPurgeable AND pDirty) 247 */ 248 eCreate = createFlag & pCache->eCreate; 249 assert( eCreate==0 || eCreate==1 || eCreate==2 ); 250 assert( createFlag==0 || pCache->eCreate==eCreate ); 251 assert( createFlag==0 || eCreate==1+(!pCache->bPurgeable||!pCache->pDirty) ); 252 return sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate); 253 } 254 255 /* 256 ** If the sqlite3PcacheFetch() routine is unable to allocate a new 257 ** page because new clean pages are available for reuse and the cache 258 ** size limit has been reached, then this routine can be invoked to 259 ** try harder to allocate a page. This routine might invoke the stress 260 ** callback to spill dirty pages to the journal. It will then try to 261 ** allocate the new page and will only fail to allocate a new page on 262 ** an OOM error. 263 ** 264 ** This routine should be invoked only after sqlite3PcacheFetch() fails. 265 */ 266 int sqlite3PcacheFetchStress( 267 PCache *pCache, /* Obtain the page from this cache */ 268 Pgno pgno, /* Page number to obtain */ 269 sqlite3_pcache_page **ppPage /* Write result here */ 270 ){ 271 PgHdr *pPg; 272 if( pCache->eCreate==2 ) return 0; 273 274 275 /* Find a dirty page to write-out and recycle. First try to find a 276 ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC 277 ** cleared), but if that is not possible settle for any other 278 ** unreferenced dirty page. 279 */ 280 for(pPg=pCache->pSynced; 281 pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC)); 282 pPg=pPg->pDirtyPrev 283 ); 284 pCache->pSynced = pPg; 285 if( !pPg ){ 286 for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev); 287 } 288 if( pPg ){ 289 int rc; 290 #ifdef SQLITE_LOG_CACHE_SPILL 291 sqlite3_log(SQLITE_FULL, 292 "spill page %d making room for %d - cache used: %d/%d", 293 pPg->pgno, pgno, 294 sqlite3GlobalConfig.pcache.xPagecount(pCache->pCache), 295 numberOfCachePages(pCache)); 296 #endif 297 rc = pCache->xStress(pCache->pStress, pPg); 298 if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){ 299 return rc; 300 } 301 } 302 *ppPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, 2); 303 return *ppPage==0 ? SQLITE_NOMEM : SQLITE_OK; 304 } 305 306 /* 307 ** This is a helper routine for sqlite3PcacheFetchFinish() 308 ** 309 ** In the uncommon case where the page being fetched has not been 310 ** initialized, this routine is invoked to do the initialization. 311 ** This routine is broken out into a separate function since it 312 ** requires extra stack manipulation that can be avoided in the common 313 ** case. 314 */ 315 static SQLITE_NOINLINE PgHdr *pcacheFetchFinishWithInit( 316 PCache *pCache, /* Obtain the page from this cache */ 317 Pgno pgno, /* Page number obtained */ 318 sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ 319 ){ 320 PgHdr *pPgHdr; 321 assert( pPage!=0 ); 322 pPgHdr = (PgHdr*)pPage->pExtra; 323 assert( pPgHdr->pPage==0 ); 324 memset(pPgHdr, 0, sizeof(PgHdr)); 325 pPgHdr->pPage = pPage; 326 pPgHdr->pData = pPage->pBuf; 327 pPgHdr->pExtra = (void *)&pPgHdr[1]; 328 memset(pPgHdr->pExtra, 0, pCache->szExtra); 329 pPgHdr->pCache = pCache; 330 pPgHdr->pgno = pgno; 331 pPgHdr->flags = PGHDR_CLEAN; 332 return sqlite3PcacheFetchFinish(pCache,pgno,pPage); 333 } 334 335 /* 336 ** This routine converts the sqlite3_pcache_page object returned by 337 ** sqlite3PcacheFetch() into an initialized PgHdr object. This routine 338 ** must be called after sqlite3PcacheFetch() in order to get a usable 339 ** result. 340 */ 341 PgHdr *sqlite3PcacheFetchFinish( 342 PCache *pCache, /* Obtain the page from this cache */ 343 Pgno pgno, /* Page number obtained */ 344 sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ 345 ){ 346 PgHdr *pPgHdr; 347 348 assert( pPage!=0 ); 349 pPgHdr = (PgHdr *)pPage->pExtra; 350 351 if( !pPgHdr->pPage ){ 352 return pcacheFetchFinishWithInit(pCache, pgno, pPage); 353 } 354 if( 0==pPgHdr->nRef ){ 355 pCache->nRef++; 356 } 357 pPgHdr->nRef++; 358 return pPgHdr; 359 } 360 361 /* 362 ** Decrement the reference count on a page. If the page is clean and the 363 ** reference count drops to 0, then it is made eligible for recycling. 364 */ 365 void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){ 366 assert( p->nRef>0 ); 367 p->nRef--; 368 if( p->nRef==0 ){ 369 p->pCache->nRef--; 370 if( p->flags&PGHDR_CLEAN ){ 371 pcacheUnpin(p); 372 }else if( p->pDirtyPrev!=0 ){ 373 /* Move the page to the head of the dirty list. */ 374 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); 375 } 376 } 377 } 378 379 /* 380 ** Increase the reference count of a supplied page by 1. 381 */ 382 void sqlite3PcacheRef(PgHdr *p){ 383 assert(p->nRef>0); 384 p->nRef++; 385 } 386 387 /* 388 ** Drop a page from the cache. There must be exactly one reference to the 389 ** page. This function deletes that reference, so after it returns the 390 ** page pointed to by p is invalid. 391 */ 392 void sqlite3PcacheDrop(PgHdr *p){ 393 assert( p->nRef==1 ); 394 if( p->flags&PGHDR_DIRTY ){ 395 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); 396 } 397 p->pCache->nRef--; 398 sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 1); 399 } 400 401 /* 402 ** Make sure the page is marked as dirty. If it isn't dirty already, 403 ** make it so. 404 */ 405 void sqlite3PcacheMakeDirty(PgHdr *p){ 406 assert( p->nRef>0 ); 407 if( p->flags & (PGHDR_CLEAN|PGHDR_DONT_WRITE) ){ 408 p->flags &= ~PGHDR_DONT_WRITE; 409 if( p->flags & PGHDR_CLEAN ){ 410 p->flags ^= (PGHDR_DIRTY|PGHDR_CLEAN); 411 assert( (p->flags & (PGHDR_DIRTY|PGHDR_CLEAN))==PGHDR_DIRTY ); 412 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_ADD); 413 } 414 } 415 } 416 417 /* 418 ** Make sure the page is marked as clean. If it isn't clean already, 419 ** make it so. 420 */ 421 void sqlite3PcacheMakeClean(PgHdr *p){ 422 if( (p->flags & PGHDR_DIRTY) ){ 423 assert( (p->flags & PGHDR_CLEAN)==0 ); 424 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); 425 p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC|PGHDR_WRITEABLE); 426 p->flags |= PGHDR_CLEAN; 427 if( p->nRef==0 ){ 428 pcacheUnpin(p); 429 } 430 } 431 } 432 433 /* 434 ** Make every page in the cache clean. 435 */ 436 void sqlite3PcacheCleanAll(PCache *pCache){ 437 PgHdr *p; 438 while( (p = pCache->pDirty)!=0 ){ 439 sqlite3PcacheMakeClean(p); 440 } 441 } 442 443 /* 444 ** Clear the PGHDR_NEED_SYNC flag from all dirty pages. 445 */ 446 void sqlite3PcacheClearSyncFlags(PCache *pCache){ 447 PgHdr *p; 448 for(p=pCache->pDirty; p; p=p->pDirtyNext){ 449 p->flags &= ~PGHDR_NEED_SYNC; 450 } 451 pCache->pSynced = pCache->pDirtyTail; 452 } 453 454 /* 455 ** Change the page number of page p to newPgno. 456 */ 457 void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){ 458 PCache *pCache = p->pCache; 459 assert( p->nRef>0 ); 460 assert( newPgno>0 ); 461 sqlite3GlobalConfig.pcache2.xRekey(pCache->pCache, p->pPage, p->pgno,newPgno); 462 p->pgno = newPgno; 463 if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){ 464 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); 465 } 466 } 467 468 /* 469 ** Drop every cache entry whose page number is greater than "pgno". The 470 ** caller must ensure that there are no outstanding references to any pages 471 ** other than page 1 with a page number greater than pgno. 472 ** 473 ** If there is a reference to page 1 and the pgno parameter passed to this 474 ** function is 0, then the data area associated with page 1 is zeroed, but 475 ** the page object is not dropped. 476 */ 477 void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){ 478 if( pCache->pCache ){ 479 PgHdr *p; 480 PgHdr *pNext; 481 for(p=pCache->pDirty; p; p=pNext){ 482 pNext = p->pDirtyNext; 483 /* This routine never gets call with a positive pgno except right 484 ** after sqlite3PcacheCleanAll(). So if there are dirty pages, 485 ** it must be that pgno==0. 486 */ 487 assert( p->pgno>0 ); 488 if( ALWAYS(p->pgno>pgno) ){ 489 assert( p->flags&PGHDR_DIRTY ); 490 sqlite3PcacheMakeClean(p); 491 } 492 } 493 if( pgno==0 && pCache->nRef ){ 494 sqlite3_pcache_page *pPage1; 495 pPage1 = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache,1,0); 496 if( ALWAYS(pPage1) ){ /* Page 1 is always available in cache, because 497 ** pCache->nRef>0 */ 498 memset(pPage1->pBuf, 0, pCache->szPage); 499 pgno = 1; 500 } 501 } 502 sqlite3GlobalConfig.pcache2.xTruncate(pCache->pCache, pgno+1); 503 } 504 } 505 506 /* 507 ** Close a cache. 508 */ 509 void sqlite3PcacheClose(PCache *pCache){ 510 assert( pCache->pCache!=0 ); 511 sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); 512 } 513 514 /* 515 ** Discard the contents of the cache. 516 */ 517 void sqlite3PcacheClear(PCache *pCache){ 518 sqlite3PcacheTruncate(pCache, 0); 519 } 520 521 /* 522 ** Merge two lists of pages connected by pDirty and in pgno order. 523 ** Do not both fixing the pDirtyPrev pointers. 524 */ 525 static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){ 526 PgHdr result, *pTail; 527 pTail = &result; 528 while( pA && pB ){ 529 if( pA->pgno<pB->pgno ){ 530 pTail->pDirty = pA; 531 pTail = pA; 532 pA = pA->pDirty; 533 }else{ 534 pTail->pDirty = pB; 535 pTail = pB; 536 pB = pB->pDirty; 537 } 538 } 539 if( pA ){ 540 pTail->pDirty = pA; 541 }else if( pB ){ 542 pTail->pDirty = pB; 543 }else{ 544 pTail->pDirty = 0; 545 } 546 return result.pDirty; 547 } 548 549 /* 550 ** Sort the list of pages in accending order by pgno. Pages are 551 ** connected by pDirty pointers. The pDirtyPrev pointers are 552 ** corrupted by this sort. 553 ** 554 ** Since there cannot be more than 2^31 distinct pages in a database, 555 ** there cannot be more than 31 buckets required by the merge sorter. 556 ** One extra bucket is added to catch overflow in case something 557 ** ever changes to make the previous sentence incorrect. 558 */ 559 #define N_SORT_BUCKET 32 560 static PgHdr *pcacheSortDirtyList(PgHdr *pIn){ 561 PgHdr *a[N_SORT_BUCKET], *p; 562 int i; 563 memset(a, 0, sizeof(a)); 564 while( pIn ){ 565 p = pIn; 566 pIn = p->pDirty; 567 p->pDirty = 0; 568 for(i=0; ALWAYS(i<N_SORT_BUCKET-1); i++){ 569 if( a[i]==0 ){ 570 a[i] = p; 571 break; 572 }else{ 573 p = pcacheMergeDirtyList(a[i], p); 574 a[i] = 0; 575 } 576 } 577 if( NEVER(i==N_SORT_BUCKET-1) ){ 578 /* To get here, there need to be 2^(N_SORT_BUCKET) elements in 579 ** the input list. But that is impossible. 580 */ 581 a[i] = pcacheMergeDirtyList(a[i], p); 582 } 583 } 584 p = a[0]; 585 for(i=1; i<N_SORT_BUCKET; i++){ 586 p = pcacheMergeDirtyList(p, a[i]); 587 } 588 return p; 589 } 590 591 /* 592 ** Return a list of all dirty pages in the cache, sorted by page number. 593 */ 594 PgHdr *sqlite3PcacheDirtyList(PCache *pCache){ 595 PgHdr *p; 596 for(p=pCache->pDirty; p; p=p->pDirtyNext){ 597 p->pDirty = p->pDirtyNext; 598 } 599 return pcacheSortDirtyList(pCache->pDirty); 600 } 601 602 /* 603 ** Return the total number of referenced pages held by the cache. 604 */ 605 int sqlite3PcacheRefCount(PCache *pCache){ 606 return pCache->nRef; 607 } 608 609 /* 610 ** Return the number of references to the page supplied as an argument. 611 */ 612 int sqlite3PcachePageRefcount(PgHdr *p){ 613 return p->nRef; 614 } 615 616 /* 617 ** Return the total number of pages in the cache. 618 */ 619 int sqlite3PcachePagecount(PCache *pCache){ 620 assert( pCache->pCache!=0 ); 621 return sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache); 622 } 623 624 #ifdef SQLITE_TEST 625 /* 626 ** Get the suggested cache-size value. 627 */ 628 int sqlite3PcacheGetCachesize(PCache *pCache){ 629 return numberOfCachePages(pCache); 630 } 631 #endif 632 633 /* 634 ** Set the suggested cache-size value. 635 */ 636 void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){ 637 assert( pCache->pCache!=0 ); 638 pCache->szCache = mxPage; 639 sqlite3GlobalConfig.pcache2.xCachesize(pCache->pCache, 640 numberOfCachePages(pCache)); 641 } 642 643 /* 644 ** Free up as much memory as possible from the page cache. 645 */ 646 void sqlite3PcacheShrink(PCache *pCache){ 647 assert( pCache->pCache!=0 ); 648 sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache); 649 } 650 651 /* 652 ** Return the size of the header added by this middleware layer 653 ** in the page-cache hierarchy. 654 */ 655 int sqlite3HeaderSizePcache(void){ return ROUND8(sizeof(PgHdr)); } 656 657 658 #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG) 659 /* 660 ** For all dirty pages currently in the cache, invoke the specified 661 ** callback. This is only used if the SQLITE_CHECK_PAGES macro is 662 ** defined. 663 */ 664 void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){ 665 PgHdr *pDirty; 666 for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){ 667 xIter(pDirty); 668 } 669 } 670 #endif 671