1 %include { 2 /* 3 ** 2001-09-15 4 ** 5 ** The author disclaims copyright to this source code. In place of 6 ** a legal notice, here is a blessing: 7 ** 8 ** May you do good and not evil. 9 ** May you find forgiveness for yourself and forgive others. 10 ** May you share freely, never taking more than you give. 11 ** 12 ************************************************************************* 13 ** This file contains SQLite's SQL parser. 14 ** 15 ** The canonical source code to this file ("parse.y") is a Lemon grammar 16 ** file that specifies the input grammar and actions to take while parsing. 17 ** That input file is processed by Lemon to generate a C-language 18 ** implementation of a parser for the given grammer. You might be reading 19 ** this comment as part of the translated C-code. Edits should be made 20 ** to the original parse.y sources. 21 */ 22 } 23 24 // All token codes are small integers with #defines that begin with "TK_" 25 %token_prefix TK_ 26 27 // The type of the data attached to each token is Token. This is also the 28 // default type for non-terminals. 29 // 30 %token_type {Token} 31 %default_type {Token} 32 33 // An extra argument to the constructor for the parser, which is available 34 // to all actions. 35 %extra_context {Parse *pParse} 36 37 // This code runs whenever there is a syntax error 38 // 39 %syntax_error { 40 UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */ 41 if( TOKEN.z[0] ){ 42 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN); 43 }else{ 44 sqlite3ErrorMsg(pParse, "incomplete input"); 45 } 46 } 47 %stack_overflow { 48 sqlite3ErrorMsg(pParse, "parser stack overflow"); 49 } 50 51 // The name of the generated procedure that implements the parser 52 // is as follows: 53 %name sqlite3Parser 54 55 // The following text is included near the beginning of the C source 56 // code file that implements the parser. 57 // 58 %include { 59 #include "sqliteInt.h" 60 61 /* 62 ** Disable all error recovery processing in the parser push-down 63 ** automaton. 64 */ 65 #define YYNOERRORRECOVERY 1 66 67 /* 68 ** Make yytestcase() the same as testcase() 69 */ 70 #define yytestcase(X) testcase(X) 71 72 /* 73 ** Indicate that sqlite3ParserFree() will never be called with a null 74 ** pointer. 75 */ 76 #define YYPARSEFREENEVERNULL 1 77 78 /* 79 ** In the amalgamation, the parse.c file generated by lemon and the 80 ** tokenize.c file are concatenated. In that case, sqlite3RunParser() 81 ** has access to the the size of the yyParser object and so the parser 82 ** engine can be allocated from stack. In that case, only the 83 ** sqlite3ParserInit() and sqlite3ParserFinalize() routines are invoked 84 ** and the sqlite3ParserAlloc() and sqlite3ParserFree() routines can be 85 ** omitted. 86 */ 87 #ifdef SQLITE_AMALGAMATION 88 # define sqlite3Parser_ENGINEALWAYSONSTACK 1 89 #endif 90 91 /* 92 ** Alternative datatype for the argument to the malloc() routine passed 93 ** into sqlite3ParserAlloc(). The default is size_t. 94 */ 95 #define YYMALLOCARGTYPE u64 96 97 /* 98 ** An instance of the following structure describes the event of a 99 ** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT, 100 ** TK_DELETE, or TK_INSTEAD. If the event is of the form 101 ** 102 ** UPDATE ON (a,b,c) 103 ** 104 ** Then the "b" IdList records the list "a,b,c". 105 */ 106 struct TrigEvent { int a; IdList * b; }; 107 108 struct FrameBound { int eType; Expr *pExpr; }; 109 110 /* 111 ** Disable lookaside memory allocation for objects that might be 112 ** shared across database connections. 113 */ 114 static void disableLookaside(Parse *pParse){ 115 sqlite3 *db = pParse->db; 116 pParse->disableLookaside++; 117 DisableLookaside; 118 } 119 120 #if !defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) \ 121 && defined(SQLITE_UDL_CAPABLE_PARSER) 122 /* 123 ** Issue an error message if an ORDER BY or LIMIT clause occurs on an 124 ** UPDATE or DELETE statement. 125 */ 126 static void updateDeleteLimitError( 127 Parse *pParse, 128 ExprList *pOrderBy, 129 Expr *pLimit 130 ){ 131 if( pOrderBy ){ 132 sqlite3ErrorMsg(pParse, "syntax error near \"ORDER BY\""); 133 }else{ 134 sqlite3ErrorMsg(pParse, "syntax error near \"LIMIT\""); 135 } 136 sqlite3ExprListDelete(pParse->db, pOrderBy); 137 sqlite3ExprDelete(pParse->db, pLimit); 138 } 139 #endif /* SQLITE_ENABLE_UPDATE_DELETE_LIMIT */ 140 141 } // end %include 142 143 // Input is a single SQL command 144 input ::= cmdlist. 145 cmdlist ::= cmdlist ecmd. 146 cmdlist ::= ecmd. 147 ecmd ::= SEMI. 148 ecmd ::= cmdx SEMI. 149 %ifndef SQLITE_OMIT_EXPLAIN 150 ecmd ::= explain cmdx SEMI. {NEVER-REDUCE} 151 explain ::= EXPLAIN. { pParse->explain = 1; } 152 explain ::= EXPLAIN QUERY PLAN. { pParse->explain = 2; } 153 %endif SQLITE_OMIT_EXPLAIN 154 cmdx ::= cmd. { sqlite3FinishCoding(pParse); } 155 156 ///////////////////// Begin and end transactions. //////////////////////////// 157 // 158 159 cmd ::= BEGIN transtype(Y) trans_opt. {sqlite3BeginTransaction(pParse, Y);} 160 trans_opt ::= . 161 trans_opt ::= TRANSACTION. 162 trans_opt ::= TRANSACTION nm. 163 %type transtype {int} 164 transtype(A) ::= . {A = TK_DEFERRED;} 165 transtype(A) ::= DEFERRED(X). {A = @X; /*A-overwrites-X*/} 166 transtype(A) ::= IMMEDIATE(X). {A = @X; /*A-overwrites-X*/} 167 transtype(A) ::= EXCLUSIVE(X). {A = @X; /*A-overwrites-X*/} 168 cmd ::= COMMIT|END(X) trans_opt. {sqlite3EndTransaction(pParse,@X);} 169 cmd ::= ROLLBACK(X) trans_opt. {sqlite3EndTransaction(pParse,@X);} 170 171 savepoint_opt ::= SAVEPOINT. 172 savepoint_opt ::= . 173 cmd ::= SAVEPOINT nm(X). { 174 sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X); 175 } 176 cmd ::= RELEASE savepoint_opt nm(X). { 177 sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X); 178 } 179 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). { 180 sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X); 181 } 182 183 ///////////////////// The CREATE TABLE statement //////////////////////////// 184 // 185 cmd ::= create_table create_table_args. 186 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). { 187 sqlite3StartTable(pParse,&Y,&Z,T,0,0,E); 188 } 189 createkw(A) ::= CREATE(A). {disableLookaside(pParse);} 190 191 %type ifnotexists {int} 192 ifnotexists(A) ::= . {A = 0;} 193 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;} 194 %type temp {int} 195 %ifndef SQLITE_OMIT_TEMPDB 196 temp(A) ::= TEMP. {A = pParse->db->init.busy==0;} 197 %endif SQLITE_OMIT_TEMPDB 198 temp(A) ::= . {A = 0;} 199 create_table_args ::= LP columnlist conslist_opt(X) RP(E) table_option_set(F). { 200 sqlite3EndTable(pParse,&X,&E,F,0); 201 } 202 create_table_args ::= AS select(S). { 203 sqlite3EndTable(pParse,0,0,0,S); 204 sqlite3SelectDelete(pParse->db, S); 205 } 206 %type table_option_set {u32} 207 %type table_option {u32} 208 table_option_set(A) ::= . {A = 0;} 209 table_option_set(A) ::= table_option(A). 210 table_option_set(A) ::= table_option_set(X) COMMA table_option(Y). {A = X|Y;} 211 table_option(A) ::= WITHOUT nm(X). { 212 if( X.n==5 && sqlite3_strnicmp(X.z,"rowid",5)==0 ){ 213 A = TF_WithoutRowid | TF_NoVisibleRowid; 214 }else{ 215 A = 0; 216 sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z); 217 } 218 } 219 table_option(A) ::= nm(X). { 220 if( X.n==6 && sqlite3_strnicmp(X.z,"strict",6)==0 ){ 221 A = TF_Strict; 222 }else{ 223 A = 0; 224 sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z); 225 } 226 } 227 columnlist ::= columnlist COMMA columnname carglist. 228 columnlist ::= columnname carglist. 229 columnname(A) ::= nm(A) typetoken(Y). {sqlite3AddColumn(pParse,A,Y);} 230 231 // Declare some tokens early in order to influence their values, to 232 // improve performance and reduce the executable size. The goal here is 233 // to get the "jump" operations in ISNULL through ESCAPE to have numeric 234 // values that are early enough so that all jump operations are clustered 235 // at the beginning. 236 // 237 %token ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST. 238 %token CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL. 239 %token OR AND NOT IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. 240 %token GT LE LT GE ESCAPE. 241 242 // The following directive causes tokens ABORT, AFTER, ASC, etc. to 243 // fallback to ID if they will not parse as their original value. 244 // This obviates the need for the "id" nonterminal. 245 // 246 %fallback ID 247 ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW 248 CONFLICT DATABASE DEFERRED DESC DETACH DO 249 EACH END EXCLUSIVE EXPLAIN FAIL FOR 250 IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN 251 QUERY KEY OF OFFSET PRAGMA RAISE RECURSIVE RELEASE REPLACE RESTRICT ROW ROWS 252 ROLLBACK SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL WITH WITHOUT 253 NULLS FIRST LAST 254 %ifdef SQLITE_OMIT_COMPOUND_SELECT 255 EXCEPT INTERSECT UNION 256 %endif SQLITE_OMIT_COMPOUND_SELECT 257 %ifndef SQLITE_OMIT_WINDOWFUNC 258 CURRENT FOLLOWING PARTITION PRECEDING RANGE UNBOUNDED 259 EXCLUDE GROUPS OTHERS TIES 260 %endif SQLITE_OMIT_WINDOWFUNC 261 %ifndef SQLITE_OMIT_GENERATED_COLUMNS 262 GENERATED ALWAYS 263 %endif 264 MATERIALIZED 265 REINDEX RENAME CTIME_KW IF 266 . 267 %wildcard ANY. 268 269 // Define operator precedence early so that this is the first occurrence 270 // of the operator tokens in the grammer. Keeping the operators together 271 // causes them to be assigned integer values that are close together, 272 // which keeps parser tables smaller. 273 // 274 // The token values assigned to these symbols is determined by the order 275 // in which lemon first sees them. It must be the case that ISNULL/NOTNULL, 276 // NE/EQ, GT/LE, and GE/LT are separated by only a single value. See 277 // the sqlite3ExprIfFalse() routine for additional information on this 278 // constraint. 279 // 280 %left OR. 281 %left AND. 282 %right NOT. 283 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. 284 %left GT LE LT GE. 285 %right ESCAPE. 286 %left BITAND BITOR LSHIFT RSHIFT. 287 %left PLUS MINUS. 288 %left STAR SLASH REM. 289 %left CONCAT PTR. 290 %left COLLATE. 291 %right BITNOT. 292 %nonassoc ON. 293 294 // An IDENTIFIER can be a generic identifier, or one of several 295 // keywords. Any non-standard keyword can also be an identifier. 296 // 297 %token_class id ID|INDEXED. 298 299 300 // And "ids" is an identifer-or-string. 301 // 302 %token_class ids ID|STRING. 303 304 // The name of a column or table can be any of the following: 305 // 306 %type nm {Token} 307 nm(A) ::= id(A). 308 nm(A) ::= STRING(A). 309 nm(A) ::= JOIN_KW(A). 310 311 // A typetoken is really zero or more tokens that form a type name such 312 // as can be found after the column name in a CREATE TABLE statement. 313 // Multiple tokens are concatenated to form the value of the typetoken. 314 // 315 %type typetoken {Token} 316 typetoken(A) ::= . {A.n = 0; A.z = 0;} 317 typetoken(A) ::= typename(A). 318 typetoken(A) ::= typename(A) LP signed RP(Y). { 319 A.n = (int)(&Y.z[Y.n] - A.z); 320 } 321 typetoken(A) ::= typename(A) LP signed COMMA signed RP(Y). { 322 A.n = (int)(&Y.z[Y.n] - A.z); 323 } 324 %type typename {Token} 325 typename(A) ::= ids(A). 326 typename(A) ::= typename(A) ids(Y). {A.n=Y.n+(int)(Y.z-A.z);} 327 signed ::= plus_num. 328 signed ::= minus_num. 329 330 // The scanpt non-terminal takes a value which is a pointer to the 331 // input text just past the last token that has been shifted into 332 // the parser. By surrounding some phrase in the grammar with two 333 // scanpt non-terminals, we can capture the input text for that phrase. 334 // For example: 335 // 336 // something ::= .... scanpt(A) phrase scanpt(Z). 337 // 338 // The text that is parsed as "phrase" is a string starting at A 339 // and containing (int)(Z-A) characters. There might be some extra 340 // whitespace on either end of the text, but that can be removed in 341 // post-processing, if needed. 342 // 343 %type scanpt {const char*} 344 scanpt(A) ::= . { 345 assert( yyLookahead!=YYNOCODE ); 346 A = yyLookaheadToken.z; 347 } 348 scantok(A) ::= . { 349 assert( yyLookahead!=YYNOCODE ); 350 A = yyLookaheadToken; 351 } 352 353 // "carglist" is a list of additional constraints that come after the 354 // column name and column type in a CREATE TABLE statement. 355 // 356 carglist ::= carglist ccons. 357 carglist ::= . 358 ccons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} 359 ccons ::= DEFAULT scantok(A) term(X). 360 {sqlite3AddDefaultValue(pParse,X,A.z,&A.z[A.n]);} 361 ccons ::= DEFAULT LP(A) expr(X) RP(Z). 362 {sqlite3AddDefaultValue(pParse,X,A.z+1,Z.z);} 363 ccons ::= DEFAULT PLUS(A) scantok(Z) term(X). 364 {sqlite3AddDefaultValue(pParse,X,A.z,&Z.z[Z.n]);} 365 ccons ::= DEFAULT MINUS(A) scantok(Z) term(X). { 366 Expr *p = sqlite3PExpr(pParse, TK_UMINUS, X, 0); 367 sqlite3AddDefaultValue(pParse,p,A.z,&Z.z[Z.n]); 368 } 369 ccons ::= DEFAULT scantok id(X). { 370 Expr *p = tokenExpr(pParse, TK_STRING, X); 371 if( p ){ 372 sqlite3ExprIdToTrueFalse(p); 373 testcase( p->op==TK_TRUEFALSE && sqlite3ExprTruthValue(p) ); 374 } 375 sqlite3AddDefaultValue(pParse,p,X.z,X.z+X.n); 376 } 377 378 // In addition to the type name, we also care about the primary key and 379 // UNIQUE constraints. 380 // 381 ccons ::= NULL onconf. 382 ccons ::= NOT NULL onconf(R). {sqlite3AddNotNull(pParse, R);} 383 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I). 384 {sqlite3AddPrimaryKey(pParse,0,R,I,Z);} 385 ccons ::= UNIQUE onconf(R). {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0, 386 SQLITE_IDXTYPE_UNIQUE);} 387 ccons ::= CHECK LP(A) expr(X) RP(B). {sqlite3AddCheckConstraint(pParse,X,A.z,B.z);} 388 ccons ::= REFERENCES nm(T) eidlist_opt(TA) refargs(R). 389 {sqlite3CreateForeignKey(pParse,0,&T,TA,R);} 390 ccons ::= defer_subclause(D). {sqlite3DeferForeignKey(pParse,D);} 391 ccons ::= COLLATE ids(C). {sqlite3AddCollateType(pParse, &C);} 392 ccons ::= GENERATED ALWAYS AS generated. 393 ccons ::= AS generated. 394 generated ::= LP expr(E) RP. {sqlite3AddGenerated(pParse,E,0);} 395 generated ::= LP expr(E) RP ID(TYPE). {sqlite3AddGenerated(pParse,E,&TYPE);} 396 397 // The optional AUTOINCREMENT keyword 398 %type autoinc {int} 399 autoinc(X) ::= . {X = 0;} 400 autoinc(X) ::= AUTOINCR. {X = 1;} 401 402 // The next group of rules parses the arguments to a REFERENCES clause 403 // that determine if the referential integrity checking is deferred or 404 // or immediate and which determine what action to take if a ref-integ 405 // check fails. 406 // 407 %type refargs {int} 408 refargs(A) ::= . { A = OE_None*0x0101; /* EV: R-19803-45884 */} 409 refargs(A) ::= refargs(A) refarg(Y). { A = (A & ~Y.mask) | Y.value; } 410 %type refarg {struct {int value; int mask;}} 411 refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; } 412 refarg(A) ::= ON INSERT refact. { A.value = 0; A.mask = 0x000000; } 413 refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; } 414 refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; } 415 %type refact {int} 416 refact(A) ::= SET NULL. { A = OE_SetNull; /* EV: R-33326-45252 */} 417 refact(A) ::= SET DEFAULT. { A = OE_SetDflt; /* EV: R-33326-45252 */} 418 refact(A) ::= CASCADE. { A = OE_Cascade; /* EV: R-33326-45252 */} 419 refact(A) ::= RESTRICT. { A = OE_Restrict; /* EV: R-33326-45252 */} 420 refact(A) ::= NO ACTION. { A = OE_None; /* EV: R-33326-45252 */} 421 %type defer_subclause {int} 422 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt. {A = 0;} 423 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;} 424 %type init_deferred_pred_opt {int} 425 init_deferred_pred_opt(A) ::= . {A = 0;} 426 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;} 427 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;} 428 429 conslist_opt(A) ::= . {A.n = 0; A.z = 0;} 430 conslist_opt(A) ::= COMMA(A) conslist. 431 conslist ::= conslist tconscomma tcons. 432 conslist ::= tcons. 433 tconscomma ::= COMMA. {pParse->constraintName.n = 0;} 434 tconscomma ::= . 435 tcons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} 436 tcons ::= PRIMARY KEY LP sortlist(X) autoinc(I) RP onconf(R). 437 {sqlite3AddPrimaryKey(pParse,X,R,I,0);} 438 tcons ::= UNIQUE LP sortlist(X) RP onconf(R). 439 {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0, 440 SQLITE_IDXTYPE_UNIQUE);} 441 tcons ::= CHECK LP(A) expr(E) RP(B) onconf. 442 {sqlite3AddCheckConstraint(pParse,E,A.z,B.z);} 443 tcons ::= FOREIGN KEY LP eidlist(FA) RP 444 REFERENCES nm(T) eidlist_opt(TA) refargs(R) defer_subclause_opt(D). { 445 sqlite3CreateForeignKey(pParse, FA, &T, TA, R); 446 sqlite3DeferForeignKey(pParse, D); 447 } 448 %type defer_subclause_opt {int} 449 defer_subclause_opt(A) ::= . {A = 0;} 450 defer_subclause_opt(A) ::= defer_subclause(A). 451 452 // The following is a non-standard extension that allows us to declare the 453 // default behavior when there is a constraint conflict. 454 // 455 %type onconf {int} 456 %type orconf {int} 457 %type resolvetype {int} 458 onconf(A) ::= . {A = OE_Default;} 459 onconf(A) ::= ON CONFLICT resolvetype(X). {A = X;} 460 orconf(A) ::= . {A = OE_Default;} 461 orconf(A) ::= OR resolvetype(X). {A = X;} 462 resolvetype(A) ::= raisetype(A). 463 resolvetype(A) ::= IGNORE. {A = OE_Ignore;} 464 resolvetype(A) ::= REPLACE. {A = OE_Replace;} 465 466 ////////////////////////// The DROP TABLE ///////////////////////////////////// 467 // 468 cmd ::= DROP TABLE ifexists(E) fullname(X). { 469 sqlite3DropTable(pParse, X, 0, E); 470 } 471 %type ifexists {int} 472 ifexists(A) ::= IF EXISTS. {A = 1;} 473 ifexists(A) ::= . {A = 0;} 474 475 ///////////////////// The CREATE VIEW statement ///////////////////////////// 476 // 477 %ifndef SQLITE_OMIT_VIEW 478 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) eidlist_opt(C) 479 AS select(S). { 480 sqlite3CreateView(pParse, &X, &Y, &Z, C, S, T, E); 481 } 482 cmd ::= DROP VIEW ifexists(E) fullname(X). { 483 sqlite3DropTable(pParse, X, 1, E); 484 } 485 %endif SQLITE_OMIT_VIEW 486 487 //////////////////////// The SELECT statement ///////////////////////////////// 488 // 489 cmd ::= select(X). { 490 SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0, 0}; 491 sqlite3Select(pParse, X, &dest); 492 sqlite3SelectDelete(pParse->db, X); 493 } 494 495 %type select {Select*} 496 %destructor select {sqlite3SelectDelete(pParse->db, $$);} 497 %type selectnowith {Select*} 498 %destructor selectnowith {sqlite3SelectDelete(pParse->db, $$);} 499 %type oneselect {Select*} 500 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);} 501 502 %include { 503 /* 504 ** For a compound SELECT statement, make sure p->pPrior->pNext==p for 505 ** all elements in the list. And make sure list length does not exceed 506 ** SQLITE_LIMIT_COMPOUND_SELECT. 507 */ 508 static void parserDoubleLinkSelect(Parse *pParse, Select *p){ 509 assert( p!=0 ); 510 if( p->pPrior ){ 511 Select *pNext = 0, *pLoop = p; 512 int mxSelect, cnt = 1; 513 while(1){ 514 pLoop->pNext = pNext; 515 pLoop->selFlags |= SF_Compound; 516 pNext = pLoop; 517 pLoop = pLoop->pPrior; 518 if( pLoop==0 ) break; 519 cnt++; 520 if( pLoop->pOrderBy || pLoop->pLimit ){ 521 sqlite3ErrorMsg(pParse,"%s clause should come after %s not before", 522 pLoop->pOrderBy!=0 ? "ORDER BY" : "LIMIT", 523 sqlite3SelectOpName(pNext->op)); 524 break; 525 } 526 } 527 if( (p->selFlags & SF_MultiValue)==0 && 528 (mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT])>0 && 529 cnt>mxSelect 530 ){ 531 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 532 } 533 } 534 } 535 536 /* Attach a With object describing the WITH clause to a Select 537 ** object describing the query for which the WITH clause is a prefix. 538 */ 539 static Select *attachWithToSelect(Parse *pParse, Select *pSelect, With *pWith){ 540 if( pSelect ){ 541 pSelect->pWith = pWith; 542 parserDoubleLinkSelect(pParse, pSelect); 543 }else{ 544 sqlite3WithDelete(pParse->db, pWith); 545 } 546 return pSelect; 547 } 548 } 549 550 %ifndef SQLITE_OMIT_CTE 551 select(A) ::= WITH wqlist(W) selectnowith(X). {A = attachWithToSelect(pParse,X,W);} 552 select(A) ::= WITH RECURSIVE wqlist(W) selectnowith(X). 553 {A = attachWithToSelect(pParse,X,W);} 554 %endif /* SQLITE_OMIT_CTE */ 555 select(A) ::= selectnowith(X). { 556 Select *p = X; 557 if( p ){ 558 parserDoubleLinkSelect(pParse, p); 559 } 560 A = p; /*A-overwrites-X*/ 561 } 562 563 selectnowith(A) ::= oneselect(A). 564 %ifndef SQLITE_OMIT_COMPOUND_SELECT 565 selectnowith(A) ::= selectnowith(A) multiselect_op(Y) oneselect(Z). { 566 Select *pRhs = Z; 567 Select *pLhs = A; 568 if( pRhs && pRhs->pPrior ){ 569 SrcList *pFrom; 570 Token x; 571 x.n = 0; 572 parserDoubleLinkSelect(pParse, pRhs); 573 pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0); 574 pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0); 575 } 576 if( pRhs ){ 577 pRhs->op = (u8)Y; 578 pRhs->pPrior = pLhs; 579 if( ALWAYS(pLhs) ) pLhs->selFlags &= ~SF_MultiValue; 580 pRhs->selFlags &= ~SF_MultiValue; 581 if( Y!=TK_ALL ) pParse->hasCompound = 1; 582 }else{ 583 sqlite3SelectDelete(pParse->db, pLhs); 584 } 585 A = pRhs; 586 } 587 %type multiselect_op {int} 588 multiselect_op(A) ::= UNION(OP). {A = @OP; /*A-overwrites-OP*/} 589 multiselect_op(A) ::= UNION ALL. {A = TK_ALL;} 590 multiselect_op(A) ::= EXCEPT|INTERSECT(OP). {A = @OP; /*A-overwrites-OP*/} 591 %endif SQLITE_OMIT_COMPOUND_SELECT 592 593 oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y) 594 groupby_opt(P) having_opt(Q) 595 orderby_opt(Z) limit_opt(L). { 596 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L); 597 } 598 %ifndef SQLITE_OMIT_WINDOWFUNC 599 oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y) 600 groupby_opt(P) having_opt(Q) window_clause(R) 601 orderby_opt(Z) limit_opt(L). { 602 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L); 603 if( A ){ 604 A->pWinDefn = R; 605 }else{ 606 sqlite3WindowListDelete(pParse->db, R); 607 } 608 } 609 %endif 610 611 612 oneselect(A) ::= values(A). 613 614 %type values {Select*} 615 %destructor values {sqlite3SelectDelete(pParse->db, $$);} 616 values(A) ::= VALUES LP nexprlist(X) RP. { 617 A = sqlite3SelectNew(pParse,X,0,0,0,0,0,SF_Values,0); 618 } 619 values(A) ::= values(A) COMMA LP nexprlist(Y) RP. { 620 Select *pRight, *pLeft = A; 621 pRight = sqlite3SelectNew(pParse,Y,0,0,0,0,0,SF_Values|SF_MultiValue,0); 622 if( ALWAYS(pLeft) ) pLeft->selFlags &= ~SF_MultiValue; 623 if( pRight ){ 624 pRight->op = TK_ALL; 625 pRight->pPrior = pLeft; 626 A = pRight; 627 }else{ 628 A = pLeft; 629 } 630 } 631 632 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is 633 // present and false (0) if it is not. 634 // 635 %type distinct {int} 636 distinct(A) ::= DISTINCT. {A = SF_Distinct;} 637 distinct(A) ::= ALL. {A = SF_All;} 638 distinct(A) ::= . {A = 0;} 639 640 // selcollist is a list of expressions that are to become the return 641 // values of the SELECT statement. The "*" in statements like 642 // "SELECT * FROM ..." is encoded as a special expression with an 643 // opcode of TK_ASTERISK. 644 // 645 %type selcollist {ExprList*} 646 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);} 647 %type sclp {ExprList*} 648 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);} 649 sclp(A) ::= selcollist(A) COMMA. 650 sclp(A) ::= . {A = 0;} 651 selcollist(A) ::= sclp(A) scanpt(B) expr(X) scanpt(Z) as(Y). { 652 A = sqlite3ExprListAppend(pParse, A, X); 653 if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1); 654 sqlite3ExprListSetSpan(pParse,A,B,Z); 655 } 656 selcollist(A) ::= sclp(A) scanpt STAR. { 657 Expr *p = sqlite3Expr(pParse->db, TK_ASTERISK, 0); 658 A = sqlite3ExprListAppend(pParse, A, p); 659 } 660 selcollist(A) ::= sclp(A) scanpt nm(X) DOT STAR. { 661 Expr *pRight = sqlite3PExpr(pParse, TK_ASTERISK, 0, 0); 662 Expr *pLeft = tokenExpr(pParse, TK_ID, X); 663 Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 664 A = sqlite3ExprListAppend(pParse,A, pDot); 665 } 666 667 // An option "AS <id>" phrase that can follow one of the expressions that 668 // define the result set, or one of the tables in the FROM clause. 669 // 670 %type as {Token} 671 as(X) ::= AS nm(Y). {X = Y;} 672 as(X) ::= ids(X). 673 as(X) ::= . {X.n = 0; X.z = 0;} 674 675 676 %type seltablist {SrcList*} 677 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);} 678 %type stl_prefix {SrcList*} 679 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);} 680 %type from {SrcList*} 681 %destructor from {sqlite3SrcListDelete(pParse->db, $$);} 682 683 // A complete FROM clause. 684 // 685 from(A) ::= . {A = 0;} 686 from(A) ::= FROM seltablist(X). { 687 A = X; 688 sqlite3SrcListShiftJoinType(pParse,A); 689 } 690 691 // "seltablist" is a "Select Table List" - the content of the FROM clause 692 // in a SELECT statement. "stl_prefix" is a prefix of this list. 693 // 694 stl_prefix(A) ::= seltablist(A) joinop(Y). { 695 if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].fg.jointype = (u8)Y; 696 } 697 stl_prefix(A) ::= . {A = 0;} 698 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) as(Z) on_using(N). { 699 A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,&N); 700 } 701 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) as(Z) indexed_by(I) on_using(N). { 702 A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,&N); 703 sqlite3SrcListIndexedBy(pParse, A, &I); 704 } 705 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) LP exprlist(E) RP as(Z) on_using(N). { 706 A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,&N); 707 sqlite3SrcListFuncArgs(pParse, A, E); 708 } 709 %ifndef SQLITE_OMIT_SUBQUERY 710 seltablist(A) ::= stl_prefix(A) LP select(S) RP as(Z) on_using(N). { 711 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,S,&N); 712 } 713 seltablist(A) ::= stl_prefix(A) LP seltablist(F) RP as(Z) on_using(N). { 714 if( A==0 && Z.n==0 && N.pOn==0 && N.pUsing==0 ){ 715 A = F; 716 }else if( F->nSrc==1 ){ 717 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,0,&N); 718 if( A ){ 719 SrcItem *pNew = &A->a[A->nSrc-1]; 720 SrcItem *pOld = F->a; 721 pNew->zName = pOld->zName; 722 pNew->zDatabase = pOld->zDatabase; 723 pNew->pSelect = pOld->pSelect; 724 if( pOld->fg.isTabFunc ){ 725 pNew->u1.pFuncArg = pOld->u1.pFuncArg; 726 pOld->u1.pFuncArg = 0; 727 pOld->fg.isTabFunc = 0; 728 pNew->fg.isTabFunc = 1; 729 } 730 pOld->zName = pOld->zDatabase = 0; 731 pOld->pSelect = 0; 732 } 733 sqlite3SrcListDelete(pParse->db, F); 734 }else{ 735 Select *pSubquery; 736 sqlite3SrcListShiftJoinType(pParse,F); 737 pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,SF_NestedFrom,0); 738 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,pSubquery,&N); 739 } 740 } 741 %endif SQLITE_OMIT_SUBQUERY 742 743 %type dbnm {Token} 744 dbnm(A) ::= . {A.z=0; A.n=0;} 745 dbnm(A) ::= DOT nm(X). {A = X;} 746 747 %type fullname {SrcList*} 748 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);} 749 fullname(A) ::= nm(X). { 750 A = sqlite3SrcListAppend(pParse,0,&X,0); 751 if( IN_RENAME_OBJECT && A ) sqlite3RenameTokenMap(pParse, A->a[0].zName, &X); 752 } 753 fullname(A) ::= nm(X) DOT nm(Y). { 754 A = sqlite3SrcListAppend(pParse,0,&X,&Y); 755 if( IN_RENAME_OBJECT && A ) sqlite3RenameTokenMap(pParse, A->a[0].zName, &Y); 756 } 757 758 %type xfullname {SrcList*} 759 %destructor xfullname {sqlite3SrcListDelete(pParse->db, $$);} 760 xfullname(A) ::= nm(X). 761 {A = sqlite3SrcListAppend(pParse,0,&X,0); /*A-overwrites-X*/} 762 xfullname(A) ::= nm(X) DOT nm(Y). 763 {A = sqlite3SrcListAppend(pParse,0,&X,&Y); /*A-overwrites-X*/} 764 xfullname(A) ::= nm(X) DOT nm(Y) AS nm(Z). { 765 A = sqlite3SrcListAppend(pParse,0,&X,&Y); /*A-overwrites-X*/ 766 if( A ) A->a[0].zAlias = sqlite3NameFromToken(pParse->db, &Z); 767 } 768 xfullname(A) ::= nm(X) AS nm(Z). { 769 A = sqlite3SrcListAppend(pParse,0,&X,0); /*A-overwrites-X*/ 770 if( A ) A->a[0].zAlias = sqlite3NameFromToken(pParse->db, &Z); 771 } 772 773 %type joinop {int} 774 joinop(X) ::= COMMA|JOIN. { X = JT_INNER; } 775 joinop(X) ::= JOIN_KW(A) JOIN. 776 {X = sqlite3JoinType(pParse,&A,0,0); /*X-overwrites-A*/} 777 joinop(X) ::= JOIN_KW(A) nm(B) JOIN. 778 {X = sqlite3JoinType(pParse,&A,&B,0); /*X-overwrites-A*/} 779 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN. 780 {X = sqlite3JoinType(pParse,&A,&B,&C);/*X-overwrites-A*/} 781 782 // There is a parsing abiguity in an upsert statement that uses a 783 // SELECT on the RHS of a the INSERT: 784 // 785 // INSERT INTO tab SELECT * FROM aaa JOIN bbb ON CONFLICT ... 786 // here ----^^ 787 // 788 // When the ON token is encountered, the parser does not know if it is 789 // the beginning of an ON CONFLICT clause, or the beginning of an ON 790 // clause associated with the JOIN. The conflict is resolved in favor 791 // of the JOIN. If an ON CONFLICT clause is intended, insert a dummy 792 // WHERE clause in between, like this: 793 // 794 // INSERT INTO tab SELECT * FROM aaa JOIN bbb WHERE true ON CONFLICT ... 795 // 796 // The [AND] and [OR] precedence marks in the rules for on_using cause the 797 // ON in this context to always be interpreted as belonging to the JOIN. 798 // 799 %type on_using {OnOrUsing} 800 //%destructor on_using {sqlite3ClearOnOrUsing(pParse->db, &$$);} 801 on_using(N) ::= ON expr(E). {N.pOn = E; N.pUsing = 0;} 802 on_using(N) ::= USING LP idlist(L) RP. {N.pOn = 0; N.pUsing = L;} 803 on_using(N) ::= . [OR] {N.pOn = 0; N.pUsing = 0;} 804 805 // Note that this block abuses the Token type just a little. If there is 806 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If 807 // there is an INDEXED BY clause, then the token is populated as per normal, 808 // with z pointing to the token data and n containing the number of bytes 809 // in the token. 810 // 811 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is 812 // normally illegal. The sqlite3SrcListIndexedBy() function 813 // recognizes and interprets this as a special case. 814 // 815 %type indexed_opt {Token} 816 %type indexed_by {Token} 817 indexed_opt(A) ::= . {A.z=0; A.n=0;} 818 indexed_opt(A) ::= indexed_by(A). 819 indexed_by(A) ::= INDEXED BY nm(X). {A = X;} 820 indexed_by(A) ::= NOT INDEXED. {A.z=0; A.n=1;} 821 822 %type orderby_opt {ExprList*} 823 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);} 824 825 // the sortlist non-terminal stores a list of expression where each 826 // expression is optionally followed by ASC or DESC to indicate the 827 // sort order. 828 // 829 %type sortlist {ExprList*} 830 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);} 831 832 orderby_opt(A) ::= . {A = 0;} 833 orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;} 834 sortlist(A) ::= sortlist(A) COMMA expr(Y) sortorder(Z) nulls(X). { 835 A = sqlite3ExprListAppend(pParse,A,Y); 836 sqlite3ExprListSetSortOrder(A,Z,X); 837 } 838 sortlist(A) ::= expr(Y) sortorder(Z) nulls(X). { 839 A = sqlite3ExprListAppend(pParse,0,Y); /*A-overwrites-Y*/ 840 sqlite3ExprListSetSortOrder(A,Z,X); 841 } 842 843 %type sortorder {int} 844 845 sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;} 846 sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;} 847 sortorder(A) ::= . {A = SQLITE_SO_UNDEFINED;} 848 849 %type nulls {int} 850 nulls(A) ::= NULLS FIRST. {A = SQLITE_SO_ASC;} 851 nulls(A) ::= NULLS LAST. {A = SQLITE_SO_DESC;} 852 nulls(A) ::= . {A = SQLITE_SO_UNDEFINED;} 853 854 %type groupby_opt {ExprList*} 855 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);} 856 groupby_opt(A) ::= . {A = 0;} 857 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;} 858 859 %type having_opt {Expr*} 860 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);} 861 having_opt(A) ::= . {A = 0;} 862 having_opt(A) ::= HAVING expr(X). {A = X;} 863 864 %type limit_opt {Expr*} 865 866 // The destructor for limit_opt will never fire in the current grammar. 867 // The limit_opt non-terminal only occurs at the end of a single production 868 // rule for SELECT statements. As soon as the rule that create the 869 // limit_opt non-terminal reduces, the SELECT statement rule will also 870 // reduce. So there is never a limit_opt non-terminal on the stack 871 // except as a transient. So there is never anything to destroy. 872 // 873 //%destructor limit_opt {sqlite3ExprDelete(pParse->db, $$);} 874 limit_opt(A) ::= . {A = 0;} 875 limit_opt(A) ::= LIMIT expr(X). 876 {A = sqlite3PExpr(pParse,TK_LIMIT,X,0);} 877 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y). 878 {A = sqlite3PExpr(pParse,TK_LIMIT,X,Y);} 879 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y). 880 {A = sqlite3PExpr(pParse,TK_LIMIT,Y,X);} 881 882 /////////////////////////// The DELETE statement ///////////////////////////// 883 // 884 %if SQLITE_ENABLE_UPDATE_DELETE_LIMIT || SQLITE_UDL_CAPABLE_PARSER 885 cmd ::= with DELETE FROM xfullname(X) indexed_opt(I) where_opt_ret(W) 886 orderby_opt(O) limit_opt(L). { 887 sqlite3SrcListIndexedBy(pParse, X, &I); 888 #ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 889 if( O || L ){ 890 updateDeleteLimitError(pParse,O,L); 891 O = 0; 892 L = 0; 893 } 894 #endif 895 sqlite3DeleteFrom(pParse,X,W,O,L); 896 } 897 %else 898 cmd ::= with DELETE FROM xfullname(X) indexed_opt(I) where_opt_ret(W). { 899 sqlite3SrcListIndexedBy(pParse, X, &I); 900 sqlite3DeleteFrom(pParse,X,W,0,0); 901 } 902 %endif 903 904 %type where_opt {Expr*} 905 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);} 906 %type where_opt_ret {Expr*} 907 %destructor where_opt_ret {sqlite3ExprDelete(pParse->db, $$);} 908 909 where_opt(A) ::= . {A = 0;} 910 where_opt(A) ::= WHERE expr(X). {A = X;} 911 where_opt_ret(A) ::= . {A = 0;} 912 where_opt_ret(A) ::= WHERE expr(X). {A = X;} 913 where_opt_ret(A) ::= RETURNING selcollist(X). 914 {sqlite3AddReturning(pParse,X); A = 0;} 915 where_opt_ret(A) ::= WHERE expr(X) RETURNING selcollist(Y). 916 {sqlite3AddReturning(pParse,Y); A = X;} 917 918 ////////////////////////// The UPDATE command //////////////////////////////// 919 // 920 %if SQLITE_ENABLE_UPDATE_DELETE_LIMIT || SQLITE_UDL_CAPABLE_PARSER 921 cmd ::= with UPDATE orconf(R) xfullname(X) indexed_opt(I) SET setlist(Y) from(F) 922 where_opt_ret(W) orderby_opt(O) limit_opt(L). { 923 sqlite3SrcListIndexedBy(pParse, X, &I); 924 X = sqlite3SrcListAppendList(pParse, X, F); 925 sqlite3ExprListCheckLength(pParse,Y,"set list"); 926 #ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 927 if( O || L ){ 928 updateDeleteLimitError(pParse,O,L); 929 O = 0; 930 L = 0; 931 } 932 #endif 933 sqlite3Update(pParse,X,Y,W,R,O,L,0); 934 } 935 %else 936 cmd ::= with UPDATE orconf(R) xfullname(X) indexed_opt(I) SET setlist(Y) from(F) 937 where_opt_ret(W). { 938 sqlite3SrcListIndexedBy(pParse, X, &I); 939 sqlite3ExprListCheckLength(pParse,Y,"set list"); 940 X = sqlite3SrcListAppendList(pParse, X, F); 941 sqlite3Update(pParse,X,Y,W,R,0,0,0); 942 } 943 %endif 944 945 946 947 %type setlist {ExprList*} 948 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);} 949 950 setlist(A) ::= setlist(A) COMMA nm(X) EQ expr(Y). { 951 A = sqlite3ExprListAppend(pParse, A, Y); 952 sqlite3ExprListSetName(pParse, A, &X, 1); 953 } 954 setlist(A) ::= setlist(A) COMMA LP idlist(X) RP EQ expr(Y). { 955 A = sqlite3ExprListAppendVector(pParse, A, X, Y); 956 } 957 setlist(A) ::= nm(X) EQ expr(Y). { 958 A = sqlite3ExprListAppend(pParse, 0, Y); 959 sqlite3ExprListSetName(pParse, A, &X, 1); 960 } 961 setlist(A) ::= LP idlist(X) RP EQ expr(Y). { 962 A = sqlite3ExprListAppendVector(pParse, 0, X, Y); 963 } 964 965 ////////////////////////// The INSERT command ///////////////////////////////// 966 // 967 cmd ::= with insert_cmd(R) INTO xfullname(X) idlist_opt(F) select(S) 968 upsert(U). { 969 sqlite3Insert(pParse, X, S, F, R, U); 970 } 971 cmd ::= with insert_cmd(R) INTO xfullname(X) idlist_opt(F) DEFAULT VALUES returning. 972 { 973 sqlite3Insert(pParse, X, 0, F, R, 0); 974 } 975 976 %type upsert {Upsert*} 977 978 // Because upsert only occurs at the tip end of the INSERT rule for cmd, 979 // there is never a case where the value of the upsert pointer will not 980 // be destroyed by the cmd action. So comment-out the destructor to 981 // avoid unreachable code. 982 //%destructor upsert {sqlite3UpsertDelete(pParse->db,$$);} 983 upsert(A) ::= . { A = 0; } 984 upsert(A) ::= RETURNING selcollist(X). { A = 0; sqlite3AddReturning(pParse,X); } 985 upsert(A) ::= ON CONFLICT LP sortlist(T) RP where_opt(TW) 986 DO UPDATE SET setlist(Z) where_opt(W) upsert(N). 987 { A = sqlite3UpsertNew(pParse->db,T,TW,Z,W,N);} 988 upsert(A) ::= ON CONFLICT LP sortlist(T) RP where_opt(TW) DO NOTHING upsert(N). 989 { A = sqlite3UpsertNew(pParse->db,T,TW,0,0,N); } 990 upsert(A) ::= ON CONFLICT DO NOTHING returning. 991 { A = sqlite3UpsertNew(pParse->db,0,0,0,0,0); } 992 upsert(A) ::= ON CONFLICT DO UPDATE SET setlist(Z) where_opt(W) returning. 993 { A = sqlite3UpsertNew(pParse->db,0,0,Z,W,0);} 994 995 returning ::= RETURNING selcollist(X). {sqlite3AddReturning(pParse,X);} 996 returning ::= . 997 998 %type insert_cmd {int} 999 insert_cmd(A) ::= INSERT orconf(R). {A = R;} 1000 insert_cmd(A) ::= REPLACE. {A = OE_Replace;} 1001 1002 %type idlist_opt {IdList*} 1003 %destructor idlist_opt {sqlite3IdListDelete(pParse->db, $$);} 1004 %type idlist {IdList*} 1005 %destructor idlist {sqlite3IdListDelete(pParse->db, $$);} 1006 1007 idlist_opt(A) ::= . {A = 0;} 1008 idlist_opt(A) ::= LP idlist(X) RP. {A = X;} 1009 idlist(A) ::= idlist(A) COMMA nm(Y). 1010 {A = sqlite3IdListAppend(pParse,A,&Y);} 1011 idlist(A) ::= nm(Y). 1012 {A = sqlite3IdListAppend(pParse,0,&Y); /*A-overwrites-Y*/} 1013 1014 /////////////////////////// Expression Processing ///////////////////////////// 1015 // 1016 1017 %type expr {Expr*} 1018 %destructor expr {sqlite3ExprDelete(pParse->db, $$);} 1019 %type term {Expr*} 1020 %destructor term {sqlite3ExprDelete(pParse->db, $$);} 1021 1022 %include { 1023 1024 /* Construct a new Expr object from a single token */ 1025 static Expr *tokenExpr(Parse *pParse, int op, Token t){ 1026 Expr *p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)+t.n+1); 1027 if( p ){ 1028 /* memset(p, 0, sizeof(Expr)); */ 1029 p->op = (u8)op; 1030 p->affExpr = 0; 1031 p->flags = EP_Leaf; 1032 ExprClearVVAProperties(p); 1033 /* p->iAgg = -1; // Not required */ 1034 p->pLeft = p->pRight = 0; 1035 p->pAggInfo = 0; 1036 memset(&p->x, 0, sizeof(p->x)); 1037 memset(&p->y, 0, sizeof(p->y)); 1038 p->op2 = 0; 1039 p->iTable = 0; 1040 p->iColumn = 0; 1041 p->u.zToken = (char*)&p[1]; 1042 memcpy(p->u.zToken, t.z, t.n); 1043 p->u.zToken[t.n] = 0; 1044 p->w.iOfst = (int)(t.z - pParse->zTail); 1045 if( sqlite3Isquote(p->u.zToken[0]) ){ 1046 sqlite3DequoteExpr(p); 1047 } 1048 #if SQLITE_MAX_EXPR_DEPTH>0 1049 p->nHeight = 1; 1050 #endif 1051 if( IN_RENAME_OBJECT ){ 1052 return (Expr*)sqlite3RenameTokenMap(pParse, (void*)p, &t); 1053 } 1054 } 1055 return p; 1056 } 1057 1058 } 1059 1060 expr(A) ::= term(A). 1061 expr(A) ::= LP expr(X) RP. {A = X;} 1062 expr(A) ::= id(X). {A=tokenExpr(pParse,TK_ID,X); /*A-overwrites-X*/} 1063 expr(A) ::= JOIN_KW(X). {A=tokenExpr(pParse,TK_ID,X); /*A-overwrites-X*/} 1064 expr(A) ::= nm(X) DOT nm(Y). { 1065 Expr *temp1 = tokenExpr(pParse,TK_ID,X); 1066 Expr *temp2 = tokenExpr(pParse,TK_ID,Y); 1067 A = sqlite3PExpr(pParse, TK_DOT, temp1, temp2); 1068 } 1069 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). { 1070 Expr *temp1 = tokenExpr(pParse,TK_ID,X); 1071 Expr *temp2 = tokenExpr(pParse,TK_ID,Y); 1072 Expr *temp3 = tokenExpr(pParse,TK_ID,Z); 1073 Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3); 1074 if( IN_RENAME_OBJECT ){ 1075 sqlite3RenameTokenRemap(pParse, 0, temp1); 1076 } 1077 A = sqlite3PExpr(pParse, TK_DOT, temp1, temp4); 1078 } 1079 term(A) ::= NULL|FLOAT|BLOB(X). {A=tokenExpr(pParse,@X,X); /*A-overwrites-X*/} 1080 term(A) ::= STRING(X). {A=tokenExpr(pParse,@X,X); /*A-overwrites-X*/} 1081 term(A) ::= INTEGER(X). { 1082 A = sqlite3ExprAlloc(pParse->db, TK_INTEGER, &X, 1); 1083 if( A ) A->w.iOfst = (int)(X.z - pParse->zTail); 1084 } 1085 expr(A) ::= VARIABLE(X). { 1086 if( !(X.z[0]=='#' && sqlite3Isdigit(X.z[1])) ){ 1087 u32 n = X.n; 1088 A = tokenExpr(pParse, TK_VARIABLE, X); 1089 sqlite3ExprAssignVarNumber(pParse, A, n); 1090 }else{ 1091 /* When doing a nested parse, one can include terms in an expression 1092 ** that look like this: #1 #2 ... These terms refer to registers 1093 ** in the virtual machine. #N is the N-th register. */ 1094 Token t = X; /*A-overwrites-X*/ 1095 assert( t.n>=2 ); 1096 if( pParse->nested==0 ){ 1097 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &t); 1098 A = 0; 1099 }else{ 1100 A = sqlite3PExpr(pParse, TK_REGISTER, 0, 0); 1101 if( A ) sqlite3GetInt32(&t.z[1], &A->iTable); 1102 } 1103 } 1104 } 1105 expr(A) ::= expr(A) COLLATE ids(C). { 1106 A = sqlite3ExprAddCollateToken(pParse, A, &C, 1); 1107 } 1108 %ifndef SQLITE_OMIT_CAST 1109 expr(A) ::= CAST LP expr(E) AS typetoken(T) RP. { 1110 A = sqlite3ExprAlloc(pParse->db, TK_CAST, &T, 1); 1111 sqlite3ExprAttachSubtrees(pParse->db, A, E, 0); 1112 } 1113 %endif SQLITE_OMIT_CAST 1114 1115 1116 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP. { 1117 A = sqlite3ExprFunction(pParse, Y, &X, D); 1118 } 1119 expr(A) ::= id(X) LP STAR RP. { 1120 A = sqlite3ExprFunction(pParse, 0, &X, 0); 1121 } 1122 1123 %ifndef SQLITE_OMIT_WINDOWFUNC 1124 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP filter_over(Z). { 1125 A = sqlite3ExprFunction(pParse, Y, &X, D); 1126 sqlite3WindowAttach(pParse, A, Z); 1127 } 1128 expr(A) ::= id(X) LP STAR RP filter_over(Z). { 1129 A = sqlite3ExprFunction(pParse, 0, &X, 0); 1130 sqlite3WindowAttach(pParse, A, Z); 1131 } 1132 %endif 1133 1134 term(A) ::= CTIME_KW(OP). { 1135 A = sqlite3ExprFunction(pParse, 0, &OP, 0); 1136 } 1137 1138 expr(A) ::= LP nexprlist(X) COMMA expr(Y) RP. { 1139 ExprList *pList = sqlite3ExprListAppend(pParse, X, Y); 1140 A = sqlite3PExpr(pParse, TK_VECTOR, 0, 0); 1141 if( A ){ 1142 A->x.pList = pList; 1143 if( ALWAYS(pList->nExpr) ){ 1144 A->flags |= pList->a[0].pExpr->flags & EP_Propagate; 1145 } 1146 }else{ 1147 sqlite3ExprListDelete(pParse->db, pList); 1148 } 1149 } 1150 1151 expr(A) ::= expr(A) AND expr(Y). {A=sqlite3ExprAnd(pParse,A,Y);} 1152 expr(A) ::= expr(A) OR(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 1153 expr(A) ::= expr(A) LT|GT|GE|LE(OP) expr(Y). 1154 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1155 expr(A) ::= expr(A) EQ|NE(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 1156 expr(A) ::= expr(A) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y). 1157 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1158 expr(A) ::= expr(A) PLUS|MINUS(OP) expr(Y). 1159 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1160 expr(A) ::= expr(A) STAR|SLASH|REM(OP) expr(Y). 1161 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1162 expr(A) ::= expr(A) CONCAT(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 1163 %type likeop {Token} 1164 likeop(A) ::= LIKE_KW|MATCH(A). 1165 likeop(A) ::= NOT LIKE_KW|MATCH(X). {A=X; A.n|=0x80000000; /*A-overwrite-X*/} 1166 expr(A) ::= expr(A) likeop(OP) expr(Y). [LIKE_KW] { 1167 ExprList *pList; 1168 int bNot = OP.n & 0x80000000; 1169 OP.n &= 0x7fffffff; 1170 pList = sqlite3ExprListAppend(pParse,0, Y); 1171 pList = sqlite3ExprListAppend(pParse,pList, A); 1172 A = sqlite3ExprFunction(pParse, pList, &OP, 0); 1173 if( bNot ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1174 if( A ) A->flags |= EP_InfixFunc; 1175 } 1176 expr(A) ::= expr(A) likeop(OP) expr(Y) ESCAPE expr(E). [LIKE_KW] { 1177 ExprList *pList; 1178 int bNot = OP.n & 0x80000000; 1179 OP.n &= 0x7fffffff; 1180 pList = sqlite3ExprListAppend(pParse,0, Y); 1181 pList = sqlite3ExprListAppend(pParse,pList, A); 1182 pList = sqlite3ExprListAppend(pParse,pList, E); 1183 A = sqlite3ExprFunction(pParse, pList, &OP, 0); 1184 if( bNot ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1185 if( A ) A->flags |= EP_InfixFunc; 1186 } 1187 1188 expr(A) ::= expr(A) ISNULL|NOTNULL(E). {A = sqlite3PExpr(pParse,@E,A,0);} 1189 expr(A) ::= expr(A) NOT NULL. {A = sqlite3PExpr(pParse,TK_NOTNULL,A,0);} 1190 1191 %include { 1192 /* A routine to convert a binary TK_IS or TK_ISNOT expression into a 1193 ** unary TK_ISNULL or TK_NOTNULL expression. */ 1194 static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){ 1195 sqlite3 *db = pParse->db; 1196 if( pA && pY && pY->op==TK_NULL && !IN_RENAME_OBJECT ){ 1197 pA->op = (u8)op; 1198 sqlite3ExprDelete(db, pA->pRight); 1199 pA->pRight = 0; 1200 } 1201 } 1202 } 1203 1204 // expr1 IS expr2 1205 // expr1 IS NOT expr2 1206 // 1207 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL. If expr2 1208 // is any other expression, code as TK_IS or TK_ISNOT. 1209 // 1210 expr(A) ::= expr(A) IS expr(Y). { 1211 A = sqlite3PExpr(pParse,TK_IS,A,Y); 1212 binaryToUnaryIfNull(pParse, Y, A, TK_ISNULL); 1213 } 1214 expr(A) ::= expr(A) IS NOT expr(Y). { 1215 A = sqlite3PExpr(pParse,TK_ISNOT,A,Y); 1216 binaryToUnaryIfNull(pParse, Y, A, TK_NOTNULL); 1217 } 1218 1219 expr(A) ::= NOT(B) expr(X). 1220 {A = sqlite3PExpr(pParse, @B, X, 0);/*A-overwrites-B*/} 1221 expr(A) ::= BITNOT(B) expr(X). 1222 {A = sqlite3PExpr(pParse, @B, X, 0);/*A-overwrites-B*/} 1223 expr(A) ::= PLUS|MINUS(B) expr(X). [BITNOT] { 1224 A = sqlite3PExpr(pParse, @B==TK_PLUS ? TK_UPLUS : TK_UMINUS, X, 0); 1225 /*A-overwrites-B*/ 1226 } 1227 1228 expr(A) ::= expr(B) PTR(C) expr(D). { 1229 ExprList *pList = sqlite3ExprListAppend(pParse, 0, B); 1230 pList = sqlite3ExprListAppend(pParse, pList, D); 1231 A = sqlite3ExprFunction(pParse, pList, &C, 0); 1232 } 1233 1234 %type between_op {int} 1235 between_op(A) ::= BETWEEN. {A = 0;} 1236 between_op(A) ::= NOT BETWEEN. {A = 1;} 1237 expr(A) ::= expr(A) between_op(N) expr(X) AND expr(Y). [BETWEEN] { 1238 ExprList *pList = sqlite3ExprListAppend(pParse,0, X); 1239 pList = sqlite3ExprListAppend(pParse,pList, Y); 1240 A = sqlite3PExpr(pParse, TK_BETWEEN, A, 0); 1241 if( A ){ 1242 A->x.pList = pList; 1243 }else{ 1244 sqlite3ExprListDelete(pParse->db, pList); 1245 } 1246 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1247 } 1248 %ifndef SQLITE_OMIT_SUBQUERY 1249 %type in_op {int} 1250 in_op(A) ::= IN. {A = 0;} 1251 in_op(A) ::= NOT IN. {A = 1;} 1252 expr(A) ::= expr(A) in_op(N) LP exprlist(Y) RP. [IN] { 1253 if( Y==0 ){ 1254 /* Expressions of the form 1255 ** 1256 ** expr1 IN () 1257 ** expr1 NOT IN () 1258 ** 1259 ** simplify to constants 0 (false) and 1 (true), respectively, 1260 ** regardless of the value of expr1. 1261 */ 1262 sqlite3ExprUnmapAndDelete(pParse, A); 1263 A = sqlite3Expr(pParse->db, TK_INTEGER, N ? "1" : "0"); 1264 }else{ 1265 Expr *pRHS = Y->a[0].pExpr; 1266 if( Y->nExpr==1 && sqlite3ExprIsConstant(pRHS) && A->op!=TK_VECTOR ){ 1267 Y->a[0].pExpr = 0; 1268 sqlite3ExprListDelete(pParse->db, Y); 1269 pRHS = sqlite3PExpr(pParse, TK_UPLUS, pRHS, 0); 1270 A = sqlite3PExpr(pParse, TK_EQ, A, pRHS); 1271 }else{ 1272 A = sqlite3PExpr(pParse, TK_IN, A, 0); 1273 if( A==0 ){ 1274 sqlite3ExprListDelete(pParse->db, Y); 1275 }else if( A->pLeft->op==TK_VECTOR ){ 1276 int nExpr = A->pLeft->x.pList->nExpr; 1277 Select *pSelectRHS = sqlite3ExprListToValues(pParse, nExpr, Y); 1278 if( pSelectRHS ){ 1279 parserDoubleLinkSelect(pParse, pSelectRHS); 1280 sqlite3PExprAddSelect(pParse, A, pSelectRHS); 1281 } 1282 }else{ 1283 A->x.pList = Y; 1284 sqlite3ExprSetHeightAndFlags(pParse, A); 1285 } 1286 } 1287 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1288 } 1289 } 1290 expr(A) ::= LP select(X) RP. { 1291 A = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 1292 sqlite3PExprAddSelect(pParse, A, X); 1293 } 1294 expr(A) ::= expr(A) in_op(N) LP select(Y) RP. [IN] { 1295 A = sqlite3PExpr(pParse, TK_IN, A, 0); 1296 sqlite3PExprAddSelect(pParse, A, Y); 1297 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1298 } 1299 expr(A) ::= expr(A) in_op(N) nm(Y) dbnm(Z) paren_exprlist(E). [IN] { 1300 SrcList *pSrc = sqlite3SrcListAppend(pParse, 0,&Y,&Z); 1301 Select *pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0); 1302 if( E ) sqlite3SrcListFuncArgs(pParse, pSelect ? pSrc : 0, E); 1303 A = sqlite3PExpr(pParse, TK_IN, A, 0); 1304 sqlite3PExprAddSelect(pParse, A, pSelect); 1305 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1306 } 1307 expr(A) ::= EXISTS LP select(Y) RP. { 1308 Expr *p; 1309 p = A = sqlite3PExpr(pParse, TK_EXISTS, 0, 0); 1310 sqlite3PExprAddSelect(pParse, p, Y); 1311 } 1312 %endif SQLITE_OMIT_SUBQUERY 1313 1314 /* CASE expressions */ 1315 expr(A) ::= CASE case_operand(X) case_exprlist(Y) case_else(Z) END. { 1316 A = sqlite3PExpr(pParse, TK_CASE, X, 0); 1317 if( A ){ 1318 A->x.pList = Z ? sqlite3ExprListAppend(pParse,Y,Z) : Y; 1319 sqlite3ExprSetHeightAndFlags(pParse, A); 1320 }else{ 1321 sqlite3ExprListDelete(pParse->db, Y); 1322 sqlite3ExprDelete(pParse->db, Z); 1323 } 1324 } 1325 %type case_exprlist {ExprList*} 1326 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1327 case_exprlist(A) ::= case_exprlist(A) WHEN expr(Y) THEN expr(Z). { 1328 A = sqlite3ExprListAppend(pParse,A, Y); 1329 A = sqlite3ExprListAppend(pParse,A, Z); 1330 } 1331 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). { 1332 A = sqlite3ExprListAppend(pParse,0, Y); 1333 A = sqlite3ExprListAppend(pParse,A, Z); 1334 } 1335 %type case_else {Expr*} 1336 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);} 1337 case_else(A) ::= ELSE expr(X). {A = X;} 1338 case_else(A) ::= . {A = 0;} 1339 %type case_operand {Expr*} 1340 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);} 1341 case_operand(A) ::= expr(X). {A = X; /*A-overwrites-X*/} 1342 case_operand(A) ::= . {A = 0;} 1343 1344 %type exprlist {ExprList*} 1345 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1346 %type nexprlist {ExprList*} 1347 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);} 1348 1349 exprlist(A) ::= nexprlist(A). 1350 exprlist(A) ::= . {A = 0;} 1351 nexprlist(A) ::= nexprlist(A) COMMA expr(Y). 1352 {A = sqlite3ExprListAppend(pParse,A,Y);} 1353 nexprlist(A) ::= expr(Y). 1354 {A = sqlite3ExprListAppend(pParse,0,Y); /*A-overwrites-Y*/} 1355 1356 %ifndef SQLITE_OMIT_SUBQUERY 1357 /* A paren_exprlist is an optional expression list contained inside 1358 ** of parenthesis */ 1359 %type paren_exprlist {ExprList*} 1360 %destructor paren_exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1361 paren_exprlist(A) ::= . {A = 0;} 1362 paren_exprlist(A) ::= LP exprlist(X) RP. {A = X;} 1363 %endif SQLITE_OMIT_SUBQUERY 1364 1365 1366 ///////////////////////////// The CREATE INDEX command /////////////////////// 1367 // 1368 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D) 1369 ON nm(Y) LP sortlist(Z) RP where_opt(W). { 1370 sqlite3CreateIndex(pParse, &X, &D, 1371 sqlite3SrcListAppend(pParse,0,&Y,0), Z, U, 1372 &S, W, SQLITE_SO_ASC, NE, SQLITE_IDXTYPE_APPDEF); 1373 if( IN_RENAME_OBJECT && pParse->pNewIndex ){ 1374 sqlite3RenameTokenMap(pParse, pParse->pNewIndex->zName, &Y); 1375 } 1376 } 1377 1378 %type uniqueflag {int} 1379 uniqueflag(A) ::= UNIQUE. {A = OE_Abort;} 1380 uniqueflag(A) ::= . {A = OE_None;} 1381 1382 1383 // The eidlist non-terminal (Expression Id List) generates an ExprList 1384 // from a list of identifiers. The identifier names are in ExprList.a[].zName. 1385 // This list is stored in an ExprList rather than an IdList so that it 1386 // can be easily sent to sqlite3ColumnsExprList(). 1387 // 1388 // eidlist is grouped with CREATE INDEX because it used to be the non-terminal 1389 // used for the arguments to an index. That is just an historical accident. 1390 // 1391 // IMPORTANT COMPATIBILITY NOTE: Some prior versions of SQLite accepted 1392 // COLLATE clauses and ASC or DESC keywords on ID lists in inappropriate 1393 // places - places that might have been stored in the sqlite_schema table. 1394 // Those extra features were ignored. But because they might be in some 1395 // (busted) old databases, we need to continue parsing them when loading 1396 // historical schemas. 1397 // 1398 %type eidlist {ExprList*} 1399 %destructor eidlist {sqlite3ExprListDelete(pParse->db, $$);} 1400 %type eidlist_opt {ExprList*} 1401 %destructor eidlist_opt {sqlite3ExprListDelete(pParse->db, $$);} 1402 1403 %include { 1404 /* Add a single new term to an ExprList that is used to store a 1405 ** list of identifiers. Report an error if the ID list contains 1406 ** a COLLATE clause or an ASC or DESC keyword, except ignore the 1407 ** error while parsing a legacy schema. 1408 */ 1409 static ExprList *parserAddExprIdListTerm( 1410 Parse *pParse, 1411 ExprList *pPrior, 1412 Token *pIdToken, 1413 int hasCollate, 1414 int sortOrder 1415 ){ 1416 ExprList *p = sqlite3ExprListAppend(pParse, pPrior, 0); 1417 if( (hasCollate || sortOrder!=SQLITE_SO_UNDEFINED) 1418 && pParse->db->init.busy==0 1419 ){ 1420 sqlite3ErrorMsg(pParse, "syntax error after column name \"%.*s\"", 1421 pIdToken->n, pIdToken->z); 1422 } 1423 sqlite3ExprListSetName(pParse, p, pIdToken, 1); 1424 return p; 1425 } 1426 } // end %include 1427 1428 eidlist_opt(A) ::= . {A = 0;} 1429 eidlist_opt(A) ::= LP eidlist(X) RP. {A = X;} 1430 eidlist(A) ::= eidlist(A) COMMA nm(Y) collate(C) sortorder(Z). { 1431 A = parserAddExprIdListTerm(pParse, A, &Y, C, Z); 1432 } 1433 eidlist(A) ::= nm(Y) collate(C) sortorder(Z). { 1434 A = parserAddExprIdListTerm(pParse, 0, &Y, C, Z); /*A-overwrites-Y*/ 1435 } 1436 1437 %type collate {int} 1438 collate(C) ::= . {C = 0;} 1439 collate(C) ::= COLLATE ids. {C = 1;} 1440 1441 1442 ///////////////////////////// The DROP INDEX command ///////////////////////// 1443 // 1444 cmd ::= DROP INDEX ifexists(E) fullname(X). {sqlite3DropIndex(pParse, X, E);} 1445 1446 ///////////////////////////// The VACUUM command ///////////////////////////// 1447 // 1448 %if !SQLITE_OMIT_VACUUM && !SQLITE_OMIT_ATTACH 1449 %type vinto {Expr*} 1450 %destructor vinto {sqlite3ExprDelete(pParse->db, $$);} 1451 cmd ::= VACUUM vinto(Y). {sqlite3Vacuum(pParse,0,Y);} 1452 cmd ::= VACUUM nm(X) vinto(Y). {sqlite3Vacuum(pParse,&X,Y);} 1453 vinto(A) ::= INTO expr(X). {A = X;} 1454 vinto(A) ::= . {A = 0;} 1455 %endif 1456 1457 ///////////////////////////// The PRAGMA command ///////////////////////////// 1458 // 1459 %ifndef SQLITE_OMIT_PRAGMA 1460 cmd ::= PRAGMA nm(X) dbnm(Z). {sqlite3Pragma(pParse,&X,&Z,0,0);} 1461 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1462 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1463 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y). 1464 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1465 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP. 1466 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1467 1468 nmnum(A) ::= plus_num(A). 1469 nmnum(A) ::= nm(A). 1470 nmnum(A) ::= ON(A). 1471 nmnum(A) ::= DELETE(A). 1472 nmnum(A) ::= DEFAULT(A). 1473 %endif SQLITE_OMIT_PRAGMA 1474 %token_class number INTEGER|FLOAT. 1475 plus_num(A) ::= PLUS number(X). {A = X;} 1476 plus_num(A) ::= number(A). 1477 minus_num(A) ::= MINUS number(X). {A = X;} 1478 //////////////////////////// The CREATE TRIGGER command ///////////////////// 1479 1480 %ifndef SQLITE_OMIT_TRIGGER 1481 1482 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). { 1483 Token all; 1484 all.z = A.z; 1485 all.n = (int)(Z.z - A.z) + Z.n; 1486 sqlite3FinishTrigger(pParse, S, &all); 1487 } 1488 1489 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z) 1490 trigger_time(C) trigger_event(D) 1491 ON fullname(E) foreach_clause when_clause(G). { 1492 sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR); 1493 A = (Z.n==0?B:Z); /*A-overwrites-T*/ 1494 } 1495 1496 %type trigger_time {int} 1497 trigger_time(A) ::= BEFORE|AFTER(X). { A = @X; /*A-overwrites-X*/ } 1498 trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;} 1499 trigger_time(A) ::= . { A = TK_BEFORE; } 1500 1501 %type trigger_event {struct TrigEvent} 1502 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);} 1503 trigger_event(A) ::= DELETE|INSERT(X). {A.a = @X; /*A-overwrites-X*/ A.b = 0;} 1504 trigger_event(A) ::= UPDATE(X). {A.a = @X; /*A-overwrites-X*/ A.b = 0;} 1505 trigger_event(A) ::= UPDATE OF idlist(X).{A.a = TK_UPDATE; A.b = X;} 1506 1507 foreach_clause ::= . 1508 foreach_clause ::= FOR EACH ROW. 1509 1510 %type when_clause {Expr*} 1511 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);} 1512 when_clause(A) ::= . { A = 0; } 1513 when_clause(A) ::= WHEN expr(X). { A = X; } 1514 1515 %type trigger_cmd_list {TriggerStep*} 1516 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);} 1517 trigger_cmd_list(A) ::= trigger_cmd_list(A) trigger_cmd(X) SEMI. { 1518 assert( A!=0 ); 1519 A->pLast->pNext = X; 1520 A->pLast = X; 1521 } 1522 trigger_cmd_list(A) ::= trigger_cmd(A) SEMI. { 1523 assert( A!=0 ); 1524 A->pLast = A; 1525 } 1526 1527 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements 1528 // within a trigger. The table to INSERT, UPDATE, or DELETE is always in 1529 // the same database as the table that the trigger fires on. 1530 // 1531 %type trnm {Token} 1532 trnm(A) ::= nm(A). 1533 trnm(A) ::= nm DOT nm(X). { 1534 A = X; 1535 sqlite3ErrorMsg(pParse, 1536 "qualified table names are not allowed on INSERT, UPDATE, and DELETE " 1537 "statements within triggers"); 1538 } 1539 1540 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE 1541 // statements within triggers. We make a specific error message for this 1542 // since it is an exception to the default grammar rules. 1543 // 1544 tridxby ::= . 1545 tridxby ::= INDEXED BY nm. { 1546 sqlite3ErrorMsg(pParse, 1547 "the INDEXED BY clause is not allowed on UPDATE or DELETE statements " 1548 "within triggers"); 1549 } 1550 tridxby ::= NOT INDEXED. { 1551 sqlite3ErrorMsg(pParse, 1552 "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements " 1553 "within triggers"); 1554 } 1555 1556 1557 1558 %type trigger_cmd {TriggerStep*} 1559 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);} 1560 // UPDATE 1561 trigger_cmd(A) ::= 1562 UPDATE(B) orconf(R) trnm(X) tridxby SET setlist(Y) from(F) where_opt(Z) scanpt(E). 1563 {A = sqlite3TriggerUpdateStep(pParse, &X, F, Y, Z, R, B.z, E);} 1564 1565 // INSERT 1566 trigger_cmd(A) ::= scanpt(B) insert_cmd(R) INTO 1567 trnm(X) idlist_opt(F) select(S) upsert(U) scanpt(Z). { 1568 A = sqlite3TriggerInsertStep(pParse,&X,F,S,R,U,B,Z);/*A-overwrites-R*/ 1569 } 1570 // DELETE 1571 trigger_cmd(A) ::= DELETE(B) FROM trnm(X) tridxby where_opt(Y) scanpt(E). 1572 {A = sqlite3TriggerDeleteStep(pParse, &X, Y, B.z, E);} 1573 1574 // SELECT 1575 trigger_cmd(A) ::= scanpt(B) select(X) scanpt(E). 1576 {A = sqlite3TriggerSelectStep(pParse->db, X, B, E); /*A-overwrites-X*/} 1577 1578 // The special RAISE expression that may occur in trigger programs 1579 expr(A) ::= RAISE LP IGNORE RP. { 1580 A = sqlite3PExpr(pParse, TK_RAISE, 0, 0); 1581 if( A ){ 1582 A->affExpr = OE_Ignore; 1583 } 1584 } 1585 expr(A) ::= RAISE LP raisetype(T) COMMA nm(Z) RP. { 1586 A = sqlite3ExprAlloc(pParse->db, TK_RAISE, &Z, 1); 1587 if( A ) { 1588 A->affExpr = (char)T; 1589 } 1590 } 1591 %endif !SQLITE_OMIT_TRIGGER 1592 1593 %type raisetype {int} 1594 raisetype(A) ::= ROLLBACK. {A = OE_Rollback;} 1595 raisetype(A) ::= ABORT. {A = OE_Abort;} 1596 raisetype(A) ::= FAIL. {A = OE_Fail;} 1597 1598 1599 //////////////////////// DROP TRIGGER statement ////////////////////////////// 1600 %ifndef SQLITE_OMIT_TRIGGER 1601 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). { 1602 sqlite3DropTrigger(pParse,X,NOERR); 1603 } 1604 %endif !SQLITE_OMIT_TRIGGER 1605 1606 //////////////////////// ATTACH DATABASE file AS name ///////////////////////// 1607 %ifndef SQLITE_OMIT_ATTACH 1608 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). { 1609 sqlite3Attach(pParse, F, D, K); 1610 } 1611 cmd ::= DETACH database_kw_opt expr(D). { 1612 sqlite3Detach(pParse, D); 1613 } 1614 1615 %type key_opt {Expr*} 1616 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);} 1617 key_opt(A) ::= . { A = 0; } 1618 key_opt(A) ::= KEY expr(X). { A = X; } 1619 1620 database_kw_opt ::= DATABASE. 1621 database_kw_opt ::= . 1622 %endif SQLITE_OMIT_ATTACH 1623 1624 ////////////////////////// REINDEX collation ////////////////////////////////// 1625 %ifndef SQLITE_OMIT_REINDEX 1626 cmd ::= REINDEX. {sqlite3Reindex(pParse, 0, 0);} 1627 cmd ::= REINDEX nm(X) dbnm(Y). {sqlite3Reindex(pParse, &X, &Y);} 1628 %endif SQLITE_OMIT_REINDEX 1629 1630 /////////////////////////////////// ANALYZE /////////////////////////////////// 1631 %ifndef SQLITE_OMIT_ANALYZE 1632 cmd ::= ANALYZE. {sqlite3Analyze(pParse, 0, 0);} 1633 cmd ::= ANALYZE nm(X) dbnm(Y). {sqlite3Analyze(pParse, &X, &Y);} 1634 %endif 1635 1636 //////////////////////// ALTER TABLE table ... //////////////////////////////// 1637 %ifndef SQLITE_OMIT_ALTERTABLE 1638 %ifndef SQLITE_OMIT_VIRTUALTABLE 1639 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). { 1640 sqlite3AlterRenameTable(pParse,X,&Z); 1641 } 1642 cmd ::= ALTER TABLE add_column_fullname 1643 ADD kwcolumn_opt columnname(Y) carglist. { 1644 Y.n = (int)(pParse->sLastToken.z-Y.z) + pParse->sLastToken.n; 1645 sqlite3AlterFinishAddColumn(pParse, &Y); 1646 } 1647 cmd ::= ALTER TABLE fullname(X) DROP kwcolumn_opt nm(Y). { 1648 sqlite3AlterDropColumn(pParse, X, &Y); 1649 } 1650 1651 add_column_fullname ::= fullname(X). { 1652 disableLookaside(pParse); 1653 sqlite3AlterBeginAddColumn(pParse, X); 1654 } 1655 cmd ::= ALTER TABLE fullname(X) RENAME kwcolumn_opt nm(Y) TO nm(Z). { 1656 sqlite3AlterRenameColumn(pParse, X, &Y, &Z); 1657 } 1658 1659 kwcolumn_opt ::= . 1660 kwcolumn_opt ::= COLUMNKW. 1661 1662 %endif SQLITE_OMIT_VIRTUALTABLE 1663 %endif SQLITE_OMIT_ALTERTABLE 1664 1665 //////////////////////// CREATE VIRTUAL TABLE ... ///////////////////////////// 1666 %ifndef SQLITE_OMIT_VIRTUALTABLE 1667 cmd ::= create_vtab. {sqlite3VtabFinishParse(pParse,0);} 1668 cmd ::= create_vtab LP vtabarglist RP(X). {sqlite3VtabFinishParse(pParse,&X);} 1669 create_vtab ::= createkw VIRTUAL TABLE ifnotexists(E) 1670 nm(X) dbnm(Y) USING nm(Z). { 1671 sqlite3VtabBeginParse(pParse, &X, &Y, &Z, E); 1672 } 1673 vtabarglist ::= vtabarg. 1674 vtabarglist ::= vtabarglist COMMA vtabarg. 1675 vtabarg ::= . {sqlite3VtabArgInit(pParse);} 1676 vtabarg ::= vtabarg vtabargtoken. 1677 vtabargtoken ::= ANY(X). {sqlite3VtabArgExtend(pParse,&X);} 1678 vtabargtoken ::= lp anylist RP(X). {sqlite3VtabArgExtend(pParse,&X);} 1679 lp ::= LP(X). {sqlite3VtabArgExtend(pParse,&X);} 1680 anylist ::= . 1681 anylist ::= anylist LP anylist RP. 1682 anylist ::= anylist ANY. 1683 %endif SQLITE_OMIT_VIRTUALTABLE 1684 1685 1686 //////////////////////// COMMON TABLE EXPRESSIONS //////////////////////////// 1687 %type wqlist {With*} 1688 %destructor wqlist {sqlite3WithDelete(pParse->db, $$);} 1689 %type wqitem {Cte*} 1690 // %destructor wqitem {sqlite3CteDelete(pParse->db, $$);} // not reachable 1691 1692 with ::= . 1693 %ifndef SQLITE_OMIT_CTE 1694 with ::= WITH wqlist(W). { sqlite3WithPush(pParse, W, 1); } 1695 with ::= WITH RECURSIVE wqlist(W). { sqlite3WithPush(pParse, W, 1); } 1696 1697 %type wqas {u8} 1698 wqas(A) ::= AS. {A = M10d_Any;} 1699 wqas(A) ::= AS MATERIALIZED. {A = M10d_Yes;} 1700 wqas(A) ::= AS NOT MATERIALIZED. {A = M10d_No;} 1701 wqitem(A) ::= nm(X) eidlist_opt(Y) wqas(M) LP select(Z) RP. { 1702 A = sqlite3CteNew(pParse, &X, Y, Z, M); /*A-overwrites-X*/ 1703 } 1704 wqlist(A) ::= wqitem(X). { 1705 A = sqlite3WithAdd(pParse, 0, X); /*A-overwrites-X*/ 1706 } 1707 wqlist(A) ::= wqlist(A) COMMA wqitem(X). { 1708 A = sqlite3WithAdd(pParse, A, X); 1709 } 1710 %endif SQLITE_OMIT_CTE 1711 1712 //////////////////////// WINDOW FUNCTION EXPRESSIONS ///////////////////////// 1713 // These must be at the end of this file. Specifically, the rules that 1714 // introduce tokens WINDOW, OVER and FILTER must appear last. This causes 1715 // the integer values assigned to these tokens to be larger than all other 1716 // tokens that may be output by the tokenizer except TK_SPACE and TK_ILLEGAL. 1717 // 1718 %ifndef SQLITE_OMIT_WINDOWFUNC 1719 %type windowdefn_list {Window*} 1720 %destructor windowdefn_list {sqlite3WindowListDelete(pParse->db, $$);} 1721 windowdefn_list(A) ::= windowdefn(Z). { A = Z; } 1722 windowdefn_list(A) ::= windowdefn_list(Y) COMMA windowdefn(Z). { 1723 assert( Z!=0 ); 1724 sqlite3WindowChain(pParse, Z, Y); 1725 Z->pNextWin = Y; 1726 A = Z; 1727 } 1728 1729 %type windowdefn {Window*} 1730 %destructor windowdefn {sqlite3WindowDelete(pParse->db, $$);} 1731 windowdefn(A) ::= nm(X) AS LP window(Y) RP. { 1732 if( ALWAYS(Y) ){ 1733 Y->zName = sqlite3DbStrNDup(pParse->db, X.z, X.n); 1734 } 1735 A = Y; 1736 } 1737 1738 %type window {Window*} 1739 %destructor window {sqlite3WindowDelete(pParse->db, $$);} 1740 1741 %type frame_opt {Window*} 1742 %destructor frame_opt {sqlite3WindowDelete(pParse->db, $$);} 1743 1744 %type part_opt {ExprList*} 1745 %destructor part_opt {sqlite3ExprListDelete(pParse->db, $$);} 1746 1747 %type filter_clause {Expr*} 1748 %destructor filter_clause {sqlite3ExprDelete(pParse->db, $$);} 1749 1750 %type over_clause {Window*} 1751 %destructor over_clause {sqlite3WindowDelete(pParse->db, $$);} 1752 1753 %type filter_over {Window*} 1754 %destructor filter_over {sqlite3WindowDelete(pParse->db, $$);} 1755 1756 %type range_or_rows {int} 1757 1758 %type frame_bound {struct FrameBound} 1759 %destructor frame_bound {sqlite3ExprDelete(pParse->db, $$.pExpr);} 1760 %type frame_bound_s {struct FrameBound} 1761 %destructor frame_bound_s {sqlite3ExprDelete(pParse->db, $$.pExpr);} 1762 %type frame_bound_e {struct FrameBound} 1763 %destructor frame_bound_e {sqlite3ExprDelete(pParse->db, $$.pExpr);} 1764 1765 window(A) ::= PARTITION BY nexprlist(X) orderby_opt(Y) frame_opt(Z). { 1766 A = sqlite3WindowAssemble(pParse, Z, X, Y, 0); 1767 } 1768 window(A) ::= nm(W) PARTITION BY nexprlist(X) orderby_opt(Y) frame_opt(Z). { 1769 A = sqlite3WindowAssemble(pParse, Z, X, Y, &W); 1770 } 1771 window(A) ::= ORDER BY sortlist(Y) frame_opt(Z). { 1772 A = sqlite3WindowAssemble(pParse, Z, 0, Y, 0); 1773 } 1774 window(A) ::= nm(W) ORDER BY sortlist(Y) frame_opt(Z). { 1775 A = sqlite3WindowAssemble(pParse, Z, 0, Y, &W); 1776 } 1777 window(A) ::= frame_opt(Z). { 1778 A = Z; 1779 } 1780 window(A) ::= nm(W) frame_opt(Z). { 1781 A = sqlite3WindowAssemble(pParse, Z, 0, 0, &W); 1782 } 1783 1784 frame_opt(A) ::= . { 1785 A = sqlite3WindowAlloc(pParse, 0, TK_UNBOUNDED, 0, TK_CURRENT, 0, 0); 1786 } 1787 frame_opt(A) ::= range_or_rows(X) frame_bound_s(Y) frame_exclude_opt(Z). { 1788 A = sqlite3WindowAlloc(pParse, X, Y.eType, Y.pExpr, TK_CURRENT, 0, Z); 1789 } 1790 frame_opt(A) ::= range_or_rows(X) BETWEEN frame_bound_s(Y) AND 1791 frame_bound_e(Z) frame_exclude_opt(W). { 1792 A = sqlite3WindowAlloc(pParse, X, Y.eType, Y.pExpr, Z.eType, Z.pExpr, W); 1793 } 1794 1795 range_or_rows(A) ::= RANGE|ROWS|GROUPS(X). {A = @X; /*A-overwrites-X*/} 1796 1797 frame_bound_s(A) ::= frame_bound(X). {A = X;} 1798 frame_bound_s(A) ::= UNBOUNDED(X) PRECEDING. {A.eType = @X; A.pExpr = 0;} 1799 frame_bound_e(A) ::= frame_bound(X). {A = X;} 1800 frame_bound_e(A) ::= UNBOUNDED(X) FOLLOWING. {A.eType = @X; A.pExpr = 0;} 1801 1802 frame_bound(A) ::= expr(X) PRECEDING|FOLLOWING(Y). 1803 {A.eType = @Y; A.pExpr = X;} 1804 frame_bound(A) ::= CURRENT(X) ROW. {A.eType = @X; A.pExpr = 0;} 1805 1806 %type frame_exclude_opt {u8} 1807 frame_exclude_opt(A) ::= . {A = 0;} 1808 frame_exclude_opt(A) ::= EXCLUDE frame_exclude(X). {A = X;} 1809 1810 %type frame_exclude {u8} 1811 frame_exclude(A) ::= NO(X) OTHERS. {A = @X; /*A-overwrites-X*/} 1812 frame_exclude(A) ::= CURRENT(X) ROW. {A = @X; /*A-overwrites-X*/} 1813 frame_exclude(A) ::= GROUP|TIES(X). {A = @X; /*A-overwrites-X*/} 1814 1815 1816 %type window_clause {Window*} 1817 %destructor window_clause {sqlite3WindowListDelete(pParse->db, $$);} 1818 window_clause(A) ::= WINDOW windowdefn_list(B). { A = B; } 1819 1820 filter_over(A) ::= filter_clause(F) over_clause(O). { 1821 if( O ){ 1822 O->pFilter = F; 1823 }else{ 1824 sqlite3ExprDelete(pParse->db, F); 1825 } 1826 A = O; 1827 } 1828 filter_over(A) ::= over_clause(O). { 1829 A = O; 1830 } 1831 filter_over(A) ::= filter_clause(F). { 1832 A = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); 1833 if( A ){ 1834 A->eFrmType = TK_FILTER; 1835 A->pFilter = F; 1836 }else{ 1837 sqlite3ExprDelete(pParse->db, F); 1838 } 1839 } 1840 1841 over_clause(A) ::= OVER LP window(Z) RP. { 1842 A = Z; 1843 assert( A!=0 ); 1844 } 1845 over_clause(A) ::= OVER nm(Z). { 1846 A = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); 1847 if( A ){ 1848 A->zName = sqlite3DbStrNDup(pParse->db, Z.z, Z.n); 1849 } 1850 } 1851 1852 filter_clause(A) ::= FILTER LP WHERE expr(X) RP. { A = X; } 1853 %endif /* SQLITE_OMIT_WINDOWFUNC */ 1854 1855 /* 1856 ** The code generator needs some extra TK_ token values for tokens that 1857 ** are synthesized and do not actually appear in the grammar: 1858 */ 1859 %token 1860 COLUMN /* Reference to a table column */ 1861 AGG_FUNCTION /* An aggregate function */ 1862 AGG_COLUMN /* An aggregated column */ 1863 TRUEFALSE /* True or false keyword */ 1864 ISNOT /* Combination of IS and NOT */ 1865 FUNCTION /* A function invocation */ 1866 UMINUS /* Unary minus */ 1867 UPLUS /* Unary plus */ 1868 TRUTH /* IS TRUE or IS FALSE or IS NOT TRUE or IS NOT FALSE */ 1869 REGISTER /* Reference to a VDBE register */ 1870 VECTOR /* Vector */ 1871 SELECT_COLUMN /* Choose a single column from a multi-column SELECT */ 1872 IF_NULL_ROW /* the if-null-row operator */ 1873 ASTERISK /* The "*" in count(*) and similar */ 1874 SPAN /* The span operator */ 1875 ERROR /* An expression containing an error */ 1876 . 1877 /* There must be no more than 255 tokens defined above. If this grammar 1878 ** is extended with new rules and tokens, they must either be so few in 1879 ** number that TK_SPAN is no more than 255, or else the new tokens must 1880 ** appear after this line. 1881 */ 1882 %include { 1883 #if TK_SPAN>255 1884 # error too many tokens in the grammar 1885 #endif 1886 } 1887 1888 /* 1889 ** The TK_SPACE and TK_ILLEGAL tokens must be the last two tokens. The 1890 ** parser depends on this. Those tokens are not used in any grammar rule. 1891 ** They are only used by the tokenizer. Declare them last so that they 1892 ** are guaranteed to be the last two tokens 1893 */ 1894 %token SPACE ILLEGAL. 1895