1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains SQLite's grammar for SQL. Process this file 13 ** using the lemon parser generator to generate C code that runs 14 ** the parser. Lemon will also generate a header file containing 15 ** numeric codes for all of the tokens. 16 ** 17 ** @(#) $Id: parse.y,v 1.286 2009/08/10 03:57:58 shane Exp $ 18 */ 19 20 // All token codes are small integers with #defines that begin with "TK_" 21 %token_prefix TK_ 22 23 // The type of the data attached to each token is Token. This is also the 24 // default type for non-terminals. 25 // 26 %token_type {Token} 27 %default_type {Token} 28 29 // The generated parser function takes a 4th argument as follows: 30 %extra_argument {Parse *pParse} 31 32 // This code runs whenever there is a syntax error 33 // 34 %syntax_error { 35 UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */ 36 assert( TOKEN.z[0] ); /* The tokenizer always gives us a token */ 37 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN); 38 pParse->parseError = 1; 39 } 40 %stack_overflow { 41 UNUSED_PARAMETER(yypMinor); /* Silence some compiler warnings */ 42 sqlite3ErrorMsg(pParse, "parser stack overflow"); 43 pParse->parseError = 1; 44 } 45 46 // The name of the generated procedure that implements the parser 47 // is as follows: 48 %name sqlite3Parser 49 50 // The following text is included near the beginning of the C source 51 // code file that implements the parser. 52 // 53 %include { 54 #include "sqliteInt.h" 55 56 /* 57 ** Disable all error recovery processing in the parser push-down 58 ** automaton. 59 */ 60 #define YYNOERRORRECOVERY 1 61 62 /* 63 ** Make yytestcase() the same as testcase() 64 */ 65 #define yytestcase(X) testcase(X) 66 67 /* 68 ** An instance of this structure holds information about the 69 ** LIMIT clause of a SELECT statement. 70 */ 71 struct LimitVal { 72 Expr *pLimit; /* The LIMIT expression. NULL if there is no limit */ 73 Expr *pOffset; /* The OFFSET expression. NULL if there is none */ 74 }; 75 76 /* 77 ** An instance of this structure is used to store the LIKE, 78 ** GLOB, NOT LIKE, and NOT GLOB operators. 79 */ 80 struct LikeOp { 81 Token eOperator; /* "like" or "glob" or "regexp" */ 82 int not; /* True if the NOT keyword is present */ 83 }; 84 85 /* 86 ** An instance of the following structure describes the event of a 87 ** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT, 88 ** TK_DELETE, or TK_INSTEAD. If the event is of the form 89 ** 90 ** UPDATE ON (a,b,c) 91 ** 92 ** Then the "b" IdList records the list "a,b,c". 93 */ 94 struct TrigEvent { int a; IdList * b; }; 95 96 /* 97 ** An instance of this structure holds the ATTACH key and the key type. 98 */ 99 struct AttachKey { int type; Token key; }; 100 101 } // end %include 102 103 // Input is a single SQL command 104 input ::= cmdlist. 105 cmdlist ::= cmdlist ecmd. 106 cmdlist ::= ecmd. 107 ecmd ::= SEMI. 108 ecmd ::= explain cmdx SEMI. 109 explain ::= . { sqlite3BeginParse(pParse, 0); } 110 %ifndef SQLITE_OMIT_EXPLAIN 111 explain ::= EXPLAIN. { sqlite3BeginParse(pParse, 1); } 112 explain ::= EXPLAIN QUERY PLAN. { sqlite3BeginParse(pParse, 2); } 113 %endif SQLITE_OMIT_EXPLAIN 114 cmdx ::= cmd. { sqlite3FinishCoding(pParse); } 115 116 ///////////////////// Begin and end transactions. //////////////////////////// 117 // 118 119 cmd ::= BEGIN transtype(Y) trans_opt. {sqlite3BeginTransaction(pParse, Y);} 120 trans_opt ::= . 121 trans_opt ::= TRANSACTION. 122 trans_opt ::= TRANSACTION nm. 123 %type transtype {int} 124 transtype(A) ::= . {A = TK_DEFERRED;} 125 transtype(A) ::= DEFERRED(X). {A = @X;} 126 transtype(A) ::= IMMEDIATE(X). {A = @X;} 127 transtype(A) ::= EXCLUSIVE(X). {A = @X;} 128 cmd ::= COMMIT trans_opt. {sqlite3CommitTransaction(pParse);} 129 cmd ::= END trans_opt. {sqlite3CommitTransaction(pParse);} 130 cmd ::= ROLLBACK trans_opt. {sqlite3RollbackTransaction(pParse);} 131 132 savepoint_opt ::= SAVEPOINT. 133 savepoint_opt ::= . 134 cmd ::= SAVEPOINT nm(X). { 135 sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X); 136 } 137 cmd ::= RELEASE savepoint_opt nm(X). { 138 sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X); 139 } 140 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). { 141 sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X); 142 } 143 144 ///////////////////// The CREATE TABLE statement //////////////////////////// 145 // 146 cmd ::= create_table create_table_args. 147 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). { 148 sqlite3StartTable(pParse,&Y,&Z,T,0,0,E); 149 } 150 createkw(A) ::= CREATE(X). { 151 pParse->db->lookaside.bEnabled = 0; 152 A = X; 153 } 154 %type ifnotexists {int} 155 ifnotexists(A) ::= . {A = 0;} 156 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;} 157 %type temp {int} 158 %ifndef SQLITE_OMIT_TEMPDB 159 temp(A) ::= TEMP. {A = 1;} 160 %endif SQLITE_OMIT_TEMPDB 161 temp(A) ::= . {A = 0;} 162 create_table_args ::= LP columnlist conslist_opt(X) RP(Y). { 163 sqlite3EndTable(pParse,&X,&Y,0); 164 } 165 create_table_args ::= AS select(S). { 166 sqlite3EndTable(pParse,0,0,S); 167 sqlite3SelectDelete(pParse->db, S); 168 } 169 columnlist ::= columnlist COMMA column. 170 columnlist ::= column. 171 172 // A "column" is a complete description of a single column in a 173 // CREATE TABLE statement. This includes the column name, its 174 // datatype, and other keywords such as PRIMARY KEY, UNIQUE, REFERENCES, 175 // NOT NULL and so forth. 176 // 177 column(A) ::= columnid(X) type carglist. { 178 A.z = X.z; 179 A.n = (int)(pParse->sLastToken.z-X.z) + pParse->sLastToken.n; 180 } 181 columnid(A) ::= nm(X). { 182 sqlite3AddColumn(pParse,&X); 183 A = X; 184 } 185 186 187 // An IDENTIFIER can be a generic identifier, or one of several 188 // keywords. Any non-standard keyword can also be an identifier. 189 // 190 %type id {Token} 191 id(A) ::= ID(X). {A = X;} 192 id(A) ::= INDEXED(X). {A = X;} 193 194 // The following directive causes tokens ABORT, AFTER, ASC, etc. to 195 // fallback to ID if they will not parse as their original value. 196 // This obviates the need for the "id" nonterminal. 197 // 198 %fallback ID 199 ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW 200 CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL FOR 201 IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN 202 QUERY KEY OF OFFSET PRAGMA RAISE RELEASE REPLACE RESTRICT ROW ROLLBACK 203 SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL 204 %ifdef SQLITE_OMIT_COMPOUND_SELECT 205 EXCEPT INTERSECT UNION 206 %endif SQLITE_OMIT_COMPOUND_SELECT 207 REINDEX RENAME CTIME_KW IF 208 . 209 %wildcard ANY. 210 211 // Define operator precedence early so that this is the first occurance 212 // of the operator tokens in the grammer. Keeping the operators together 213 // causes them to be assigned integer values that are close together, 214 // which keeps parser tables smaller. 215 // 216 // The token values assigned to these symbols is determined by the order 217 // in which lemon first sees them. It must be the case that ISNULL/NOTNULL, 218 // NE/EQ, GT/LE, and GE/LT are separated by only a single value. See 219 // the sqlite3ExprIfFalse() routine for additional information on this 220 // constraint. 221 // 222 %left OR. 223 %left AND. 224 %right NOT. 225 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. 226 %left GT LE LT GE. 227 %right ESCAPE. 228 %left BITAND BITOR LSHIFT RSHIFT. 229 %left PLUS MINUS. 230 %left STAR SLASH REM. 231 %left CONCAT. 232 %left COLLATE. 233 %right BITNOT. 234 235 // And "ids" is an identifer-or-string. 236 // 237 %type ids {Token} 238 ids(A) ::= ID|STRING(X). {A = X;} 239 240 // The name of a column or table can be any of the following: 241 // 242 %type nm {Token} 243 nm(A) ::= id(X). {A = X;} 244 nm(A) ::= STRING(X). {A = X;} 245 nm(A) ::= JOIN_KW(X). {A = X;} 246 247 // A typetoken is really one or more tokens that form a type name such 248 // as can be found after the column name in a CREATE TABLE statement. 249 // Multiple tokens are concatenated to form the value of the typetoken. 250 // 251 %type typetoken {Token} 252 type ::= . 253 type ::= typetoken(X). {sqlite3AddColumnType(pParse,&X);} 254 typetoken(A) ::= typename(X). {A = X;} 255 typetoken(A) ::= typename(X) LP signed RP(Y). { 256 A.z = X.z; 257 A.n = (int)(&Y.z[Y.n] - X.z); 258 } 259 typetoken(A) ::= typename(X) LP signed COMMA signed RP(Y). { 260 A.z = X.z; 261 A.n = (int)(&Y.z[Y.n] - X.z); 262 } 263 %type typename {Token} 264 typename(A) ::= ids(X). {A = X;} 265 typename(A) ::= typename(X) ids(Y). {A.z=X.z; A.n=Y.n+(int)(Y.z-X.z);} 266 signed ::= plus_num. 267 signed ::= minus_num. 268 269 // "carglist" is a list of additional constraints that come after the 270 // column name and column type in a CREATE TABLE statement. 271 // 272 carglist ::= carglist carg. 273 carglist ::= . 274 carg ::= CONSTRAINT nm ccons. 275 carg ::= ccons. 276 ccons ::= DEFAULT term(X). {sqlite3AddDefaultValue(pParse,&X);} 277 ccons ::= DEFAULT LP expr(X) RP. {sqlite3AddDefaultValue(pParse,&X);} 278 ccons ::= DEFAULT PLUS term(X). {sqlite3AddDefaultValue(pParse,&X);} 279 ccons ::= DEFAULT MINUS(A) term(X). { 280 ExprSpan v; 281 v.pExpr = sqlite3PExpr(pParse, TK_UMINUS, X.pExpr, 0, 0); 282 v.zStart = A.z; 283 v.zEnd = X.zEnd; 284 sqlite3AddDefaultValue(pParse,&v); 285 } 286 ccons ::= DEFAULT id(X). { 287 ExprSpan v; 288 spanExpr(&v, pParse, TK_STRING, &X); 289 sqlite3AddDefaultValue(pParse,&v); 290 } 291 292 // In addition to the type name, we also care about the primary key and 293 // UNIQUE constraints. 294 // 295 ccons ::= NULL onconf. 296 ccons ::= NOT NULL onconf(R). {sqlite3AddNotNull(pParse, R);} 297 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I). 298 {sqlite3AddPrimaryKey(pParse,0,R,I,Z);} 299 ccons ::= UNIQUE onconf(R). {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0);} 300 ccons ::= CHECK LP expr(X) RP. {sqlite3AddCheckConstraint(pParse,X.pExpr);} 301 ccons ::= REFERENCES nm(T) idxlist_opt(TA) refargs(R). 302 {sqlite3CreateForeignKey(pParse,0,&T,TA,R);} 303 ccons ::= defer_subclause(D). {sqlite3DeferForeignKey(pParse,D);} 304 ccons ::= COLLATE ids(C). {sqlite3AddCollateType(pParse, &C);} 305 306 // The optional AUTOINCREMENT keyword 307 %type autoinc {int} 308 autoinc(X) ::= . {X = 0;} 309 autoinc(X) ::= AUTOINCR. {X = 1;} 310 311 // The next group of rules parses the arguments to a REFERENCES clause 312 // that determine if the referential integrity checking is deferred or 313 // or immediate and which determine what action to take if a ref-integ 314 // check fails. 315 // 316 %type refargs {int} 317 refargs(A) ::= . { A = OE_None * 0x000101; } 318 refargs(A) ::= refargs(X) refarg(Y). { A = (X & ~Y.mask) | Y.value; } 319 %type refarg {struct {int value; int mask;}} 320 refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; } 321 refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; } 322 refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; } 323 %type refact {int} 324 refact(A) ::= SET NULL. { A = OE_SetNull; } 325 refact(A) ::= SET DEFAULT. { A = OE_SetDflt; } 326 refact(A) ::= CASCADE. { A = OE_Cascade; } 327 refact(A) ::= RESTRICT. { A = OE_Restrict; } 328 refact(A) ::= NO ACTION. { A = OE_None; } 329 %type defer_subclause {int} 330 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt. {A = 0;} 331 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;} 332 %type init_deferred_pred_opt {int} 333 init_deferred_pred_opt(A) ::= . {A = 0;} 334 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;} 335 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;} 336 337 // For the time being, the only constraint we care about is the primary 338 // key and UNIQUE. Both create indices. 339 // 340 conslist_opt(A) ::= . {A.n = 0; A.z = 0;} 341 conslist_opt(A) ::= COMMA(X) conslist. {A = X;} 342 conslist ::= conslist COMMA tcons. 343 conslist ::= conslist tcons. 344 conslist ::= tcons. 345 tcons ::= CONSTRAINT nm. 346 tcons ::= PRIMARY KEY LP idxlist(X) autoinc(I) RP onconf(R). 347 {sqlite3AddPrimaryKey(pParse,X,R,I,0);} 348 tcons ::= UNIQUE LP idxlist(X) RP onconf(R). 349 {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0);} 350 tcons ::= CHECK LP expr(E) RP onconf. 351 {sqlite3AddCheckConstraint(pParse,E.pExpr);} 352 tcons ::= FOREIGN KEY LP idxlist(FA) RP 353 REFERENCES nm(T) idxlist_opt(TA) refargs(R) defer_subclause_opt(D). { 354 sqlite3CreateForeignKey(pParse, FA, &T, TA, R); 355 sqlite3DeferForeignKey(pParse, D); 356 } 357 %type defer_subclause_opt {int} 358 defer_subclause_opt(A) ::= . {A = 0;} 359 defer_subclause_opt(A) ::= defer_subclause(X). {A = X;} 360 361 // The following is a non-standard extension that allows us to declare the 362 // default behavior when there is a constraint conflict. 363 // 364 %type onconf {int} 365 %type orconf {u8} 366 %type resolvetype {int} 367 onconf(A) ::= . {A = OE_Default;} 368 onconf(A) ::= ON CONFLICT resolvetype(X). {A = X;} 369 orconf(A) ::= . {A = OE_Default;} 370 orconf(A) ::= OR resolvetype(X). {A = (u8)X;} 371 resolvetype(A) ::= raisetype(X). {A = X;} 372 resolvetype(A) ::= IGNORE. {A = OE_Ignore;} 373 resolvetype(A) ::= REPLACE. {A = OE_Replace;} 374 375 ////////////////////////// The DROP TABLE ///////////////////////////////////// 376 // 377 cmd ::= DROP TABLE ifexists(E) fullname(X). { 378 sqlite3DropTable(pParse, X, 0, E); 379 } 380 %type ifexists {int} 381 ifexists(A) ::= IF EXISTS. {A = 1;} 382 ifexists(A) ::= . {A = 0;} 383 384 ///////////////////// The CREATE VIEW statement ///////////////////////////// 385 // 386 %ifndef SQLITE_OMIT_VIEW 387 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) AS select(S). { 388 sqlite3CreateView(pParse, &X, &Y, &Z, S, T, E); 389 } 390 cmd ::= DROP VIEW ifexists(E) fullname(X). { 391 sqlite3DropTable(pParse, X, 1, E); 392 } 393 %endif SQLITE_OMIT_VIEW 394 395 //////////////////////// The SELECT statement ///////////////////////////////// 396 // 397 cmd ::= select(X). { 398 SelectDest dest = {SRT_Output, 0, 0, 0, 0}; 399 sqlite3Select(pParse, X, &dest); 400 sqlite3SelectDelete(pParse->db, X); 401 } 402 403 %type select {Select*} 404 %destructor select {sqlite3SelectDelete(pParse->db, $$);} 405 %type oneselect {Select*} 406 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);} 407 408 select(A) ::= oneselect(X). {A = X;} 409 %ifndef SQLITE_OMIT_COMPOUND_SELECT 410 select(A) ::= select(X) multiselect_op(Y) oneselect(Z). { 411 if( Z ){ 412 Z->op = (u8)Y; 413 Z->pPrior = X; 414 }else{ 415 sqlite3SelectDelete(pParse->db, X); 416 } 417 A = Z; 418 } 419 %type multiselect_op {int} 420 multiselect_op(A) ::= UNION(OP). {A = @OP;} 421 multiselect_op(A) ::= UNION ALL. {A = TK_ALL;} 422 multiselect_op(A) ::= EXCEPT|INTERSECT(OP). {A = @OP;} 423 %endif SQLITE_OMIT_COMPOUND_SELECT 424 oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y) 425 groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). { 426 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L.pLimit,L.pOffset); 427 } 428 429 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is 430 // present and false (0) if it is not. 431 // 432 %type distinct {int} 433 distinct(A) ::= DISTINCT. {A = 1;} 434 distinct(A) ::= ALL. {A = 0;} 435 distinct(A) ::= . {A = 0;} 436 437 // selcollist is a list of expressions that are to become the return 438 // values of the SELECT statement. The "*" in statements like 439 // "SELECT * FROM ..." is encoded as a special expression with an 440 // opcode of TK_ALL. 441 // 442 %type selcollist {ExprList*} 443 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);} 444 %type sclp {ExprList*} 445 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);} 446 sclp(A) ::= selcollist(X) COMMA. {A = X;} 447 sclp(A) ::= . {A = 0;} 448 selcollist(A) ::= sclp(P) expr(X) as(Y). { 449 A = sqlite3ExprListAppend(pParse, P, X.pExpr); 450 if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1); 451 sqlite3ExprListSetSpan(pParse,A,&X); 452 } 453 selcollist(A) ::= sclp(P) STAR. { 454 Expr *p = sqlite3Expr(pParse->db, TK_ALL, 0); 455 A = sqlite3ExprListAppend(pParse, P, p); 456 } 457 selcollist(A) ::= sclp(P) nm(X) DOT STAR(Y). { 458 Expr *pRight = sqlite3PExpr(pParse, TK_ALL, 0, 0, &Y); 459 Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); 460 Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 461 A = sqlite3ExprListAppend(pParse,P, pDot); 462 } 463 464 // An option "AS <id>" phrase that can follow one of the expressions that 465 // define the result set, or one of the tables in the FROM clause. 466 // 467 %type as {Token} 468 as(X) ::= AS nm(Y). {X = Y;} 469 as(X) ::= ids(Y). {X = Y;} 470 as(X) ::= . {X.n = 0;} 471 472 473 %type seltablist {SrcList*} 474 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);} 475 %type stl_prefix {SrcList*} 476 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);} 477 %type from {SrcList*} 478 %destructor from {sqlite3SrcListDelete(pParse->db, $$);} 479 480 // A complete FROM clause. 481 // 482 from(A) ::= . {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));} 483 from(A) ::= FROM seltablist(X). { 484 A = X; 485 sqlite3SrcListShiftJoinType(A); 486 } 487 488 // "seltablist" is a "Select Table List" - the content of the FROM clause 489 // in a SELECT statement. "stl_prefix" is a prefix of this list. 490 // 491 stl_prefix(A) ::= seltablist(X) joinop(Y). { 492 A = X; 493 if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].jointype = (u8)Y; 494 } 495 stl_prefix(A) ::= . {A = 0;} 496 seltablist(A) ::= stl_prefix(X) nm(Y) dbnm(D) as(Z) indexed_opt(I) on_opt(N) using_opt(U). { 497 A = sqlite3SrcListAppendFromTerm(pParse,X,&Y,&D,&Z,0,N,U); 498 sqlite3SrcListIndexedBy(pParse, A, &I); 499 } 500 %ifndef SQLITE_OMIT_SUBQUERY 501 seltablist(A) ::= stl_prefix(X) LP select(S) RP 502 as(Z) on_opt(N) using_opt(U). { 503 A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,S,N,U); 504 } 505 seltablist(A) ::= stl_prefix(X) LP seltablist(F) RP 506 as(Z) on_opt(N) using_opt(U). { 507 if( X==0 && Z.n==0 && N==0 && U==0 ){ 508 A = F; 509 }else{ 510 Select *pSubquery; 511 sqlite3SrcListShiftJoinType(F); 512 pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,0,0,0); 513 A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,pSubquery,N,U); 514 } 515 } 516 517 // A seltablist_paren nonterminal represents anything in a FROM that 518 // is contained inside parentheses. This can be either a subquery or 519 // a grouping of table and subqueries. 520 // 521 // %type seltablist_paren {Select*} 522 // %destructor seltablist_paren {sqlite3SelectDelete(pParse->db, $$);} 523 // seltablist_paren(A) ::= select(S). {A = S;} 524 // seltablist_paren(A) ::= seltablist(F). { 525 // sqlite3SrcListShiftJoinType(F); 526 // A = sqlite3SelectNew(pParse,0,F,0,0,0,0,0,0,0); 527 // } 528 %endif SQLITE_OMIT_SUBQUERY 529 530 %type dbnm {Token} 531 dbnm(A) ::= . {A.z=0; A.n=0;} 532 dbnm(A) ::= DOT nm(X). {A = X;} 533 534 %type fullname {SrcList*} 535 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);} 536 fullname(A) ::= nm(X) dbnm(Y). {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y);} 537 538 %type joinop {int} 539 %type joinop2 {int} 540 joinop(X) ::= COMMA|JOIN. { X = JT_INNER; } 541 joinop(X) ::= JOIN_KW(A) JOIN. { X = sqlite3JoinType(pParse,&A,0,0); } 542 joinop(X) ::= JOIN_KW(A) nm(B) JOIN. { X = sqlite3JoinType(pParse,&A,&B,0); } 543 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN. 544 { X = sqlite3JoinType(pParse,&A,&B,&C); } 545 546 %type on_opt {Expr*} 547 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);} 548 on_opt(N) ::= ON expr(E). {N = E.pExpr;} 549 on_opt(N) ::= . {N = 0;} 550 551 // Note that this block abuses the Token type just a little. If there is 552 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If 553 // there is an INDEXED BY clause, then the token is populated as per normal, 554 // with z pointing to the token data and n containing the number of bytes 555 // in the token. 556 // 557 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is 558 // normally illegal. The sqlite3SrcListIndexedBy() function 559 // recognizes and interprets this as a special case. 560 // 561 %type indexed_opt {Token} 562 indexed_opt(A) ::= . {A.z=0; A.n=0;} 563 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;} 564 indexed_opt(A) ::= NOT INDEXED. {A.z=0; A.n=1;} 565 566 %type using_opt {IdList*} 567 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);} 568 using_opt(U) ::= USING LP inscollist(L) RP. {U = L;} 569 using_opt(U) ::= . {U = 0;} 570 571 572 %type orderby_opt {ExprList*} 573 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);} 574 %type sortlist {ExprList*} 575 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);} 576 %type sortitem {Expr*} 577 %destructor sortitem {sqlite3ExprDelete(pParse->db, $$);} 578 579 orderby_opt(A) ::= . {A = 0;} 580 orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;} 581 sortlist(A) ::= sortlist(X) COMMA sortitem(Y) sortorder(Z). { 582 A = sqlite3ExprListAppend(pParse,X,Y); 583 if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; 584 } 585 sortlist(A) ::= sortitem(Y) sortorder(Z). { 586 A = sqlite3ExprListAppend(pParse,0,Y); 587 if( A && ALWAYS(A->a) ) A->a[0].sortOrder = (u8)Z; 588 } 589 sortitem(A) ::= expr(X). {A = X.pExpr;} 590 591 %type sortorder {int} 592 593 sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;} 594 sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;} 595 sortorder(A) ::= . {A = SQLITE_SO_ASC;} 596 597 %type groupby_opt {ExprList*} 598 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);} 599 groupby_opt(A) ::= . {A = 0;} 600 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;} 601 602 %type having_opt {Expr*} 603 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);} 604 having_opt(A) ::= . {A = 0;} 605 having_opt(A) ::= HAVING expr(X). {A = X.pExpr;} 606 607 %type limit_opt {struct LimitVal} 608 609 // The destructor for limit_opt will never fire in the current grammar. 610 // The limit_opt non-terminal only occurs at the end of a single production 611 // rule for SELECT statements. As soon as the rule that create the 612 // limit_opt non-terminal reduces, the SELECT statement rule will also 613 // reduce. So there is never a limit_opt non-terminal on the stack 614 // except as a transient. So there is never anything to destroy. 615 // 616 //%destructor limit_opt { 617 // sqlite3ExprDelete(pParse->db, $$.pLimit); 618 // sqlite3ExprDelete(pParse->db, $$.pOffset); 619 //} 620 limit_opt(A) ::= . {A.pLimit = 0; A.pOffset = 0;} 621 limit_opt(A) ::= LIMIT expr(X). {A.pLimit = X.pExpr; A.pOffset = 0;} 622 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y). 623 {A.pLimit = X.pExpr; A.pOffset = Y.pExpr;} 624 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y). 625 {A.pOffset = X.pExpr; A.pLimit = Y.pExpr;} 626 627 /////////////////////////// The DELETE statement ///////////////////////////// 628 // 629 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 630 cmd ::= DELETE FROM fullname(X) indexed_opt(I) where_opt(W) 631 orderby_opt(O) limit_opt(L). { 632 sqlite3SrcListIndexedBy(pParse, X, &I); 633 W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "DELETE"); 634 sqlite3DeleteFrom(pParse,X,W); 635 } 636 %endif 637 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 638 cmd ::= DELETE FROM fullname(X) indexed_opt(I) where_opt(W). { 639 sqlite3SrcListIndexedBy(pParse, X, &I); 640 sqlite3DeleteFrom(pParse,X,W); 641 } 642 %endif 643 644 %type where_opt {Expr*} 645 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);} 646 647 where_opt(A) ::= . {A = 0;} 648 where_opt(A) ::= WHERE expr(X). {A = X.pExpr;} 649 650 ////////////////////////// The UPDATE command //////////////////////////////// 651 // 652 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 653 cmd ::= UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) where_opt(W) orderby_opt(O) limit_opt(L). { 654 sqlite3SrcListIndexedBy(pParse, X, &I); 655 sqlite3ExprListCheckLength(pParse,Y,"set list"); 656 W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "UPDATE"); 657 sqlite3Update(pParse,X,Y,W,R); 658 } 659 %endif 660 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 661 cmd ::= UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) where_opt(W). { 662 sqlite3SrcListIndexedBy(pParse, X, &I); 663 sqlite3ExprListCheckLength(pParse,Y,"set list"); 664 sqlite3Update(pParse,X,Y,W,R); 665 } 666 %endif 667 668 %type setlist {ExprList*} 669 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);} 670 671 setlist(A) ::= setlist(Z) COMMA nm(X) EQ expr(Y). { 672 A = sqlite3ExprListAppend(pParse, Z, Y.pExpr); 673 sqlite3ExprListSetName(pParse, A, &X, 1); 674 } 675 setlist(A) ::= nm(X) EQ expr(Y). { 676 A = sqlite3ExprListAppend(pParse, 0, Y.pExpr); 677 sqlite3ExprListSetName(pParse, A, &X, 1); 678 } 679 680 ////////////////////////// The INSERT command ///////////////////////////////// 681 // 682 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) 683 VALUES LP itemlist(Y) RP. 684 {sqlite3Insert(pParse, X, Y, 0, F, R);} 685 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) select(S). 686 {sqlite3Insert(pParse, X, 0, S, F, R);} 687 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) DEFAULT VALUES. 688 {sqlite3Insert(pParse, X, 0, 0, F, R);} 689 690 %type insert_cmd {u8} 691 insert_cmd(A) ::= INSERT orconf(R). {A = R;} 692 insert_cmd(A) ::= REPLACE. {A = OE_Replace;} 693 694 695 %type itemlist {ExprList*} 696 %destructor itemlist {sqlite3ExprListDelete(pParse->db, $$);} 697 698 itemlist(A) ::= itemlist(X) COMMA expr(Y). 699 {A = sqlite3ExprListAppend(pParse,X,Y.pExpr);} 700 itemlist(A) ::= expr(X). 701 {A = sqlite3ExprListAppend(pParse,0,X.pExpr);} 702 703 %type inscollist_opt {IdList*} 704 %destructor inscollist_opt {sqlite3IdListDelete(pParse->db, $$);} 705 %type inscollist {IdList*} 706 %destructor inscollist {sqlite3IdListDelete(pParse->db, $$);} 707 708 inscollist_opt(A) ::= . {A = 0;} 709 inscollist_opt(A) ::= LP inscollist(X) RP. {A = X;} 710 inscollist(A) ::= inscollist(X) COMMA nm(Y). 711 {A = sqlite3IdListAppend(pParse->db,X,&Y);} 712 inscollist(A) ::= nm(Y). 713 {A = sqlite3IdListAppend(pParse->db,0,&Y);} 714 715 /////////////////////////// Expression Processing ///////////////////////////// 716 // 717 718 %type expr {ExprSpan} 719 %destructor expr {sqlite3ExprDelete(pParse->db, $$.pExpr);} 720 %type term {ExprSpan} 721 %destructor term {sqlite3ExprDelete(pParse->db, $$.pExpr);} 722 723 %include { 724 /* This is a utility routine used to set the ExprSpan.zStart and 725 ** ExprSpan.zEnd values of pOut so that the span covers the complete 726 ** range of text beginning with pStart and going to the end of pEnd. 727 */ 728 static void spanSet(ExprSpan *pOut, Token *pStart, Token *pEnd){ 729 pOut->zStart = pStart->z; 730 pOut->zEnd = &pEnd->z[pEnd->n]; 731 } 732 733 /* Construct a new Expr object from a single identifier. Use the 734 ** new Expr to populate pOut. Set the span of pOut to be the identifier 735 ** that created the expression. 736 */ 737 static void spanExpr(ExprSpan *pOut, Parse *pParse, int op, Token *pValue){ 738 pOut->pExpr = sqlite3PExpr(pParse, op, 0, 0, pValue); 739 pOut->zStart = pValue->z; 740 pOut->zEnd = &pValue->z[pValue->n]; 741 } 742 } 743 744 expr(A) ::= term(X). {A = X;} 745 expr(A) ::= LP(B) expr(X) RP(E). {A.pExpr = X.pExpr; spanSet(&A,&B,&E);} 746 term(A) ::= NULL(X). {spanExpr(&A, pParse, @X, &X);} 747 expr(A) ::= id(X). {spanExpr(&A, pParse, TK_ID, &X);} 748 expr(A) ::= JOIN_KW(X). {spanExpr(&A, pParse, TK_ID, &X);} 749 expr(A) ::= nm(X) DOT nm(Y). { 750 Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); 751 Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y); 752 A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0); 753 spanSet(&A,&X,&Y); 754 } 755 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). { 756 Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); 757 Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y); 758 Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Z); 759 Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0); 760 A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0); 761 spanSet(&A,&X,&Z); 762 } 763 term(A) ::= INTEGER|FLOAT|BLOB(X). {spanExpr(&A, pParse, @X, &X);} 764 term(A) ::= STRING(X). {spanExpr(&A, pParse, @X, &X);} 765 expr(A) ::= REGISTER(X). { 766 /* When doing a nested parse, one can include terms in an expression 767 ** that look like this: #1 #2 ... These terms refer to registers 768 ** in the virtual machine. #N is the N-th register. */ 769 if( pParse->nested==0 ){ 770 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &X); 771 A.pExpr = 0; 772 }else{ 773 A.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, &X); 774 if( A.pExpr ) sqlite3GetInt32(&X.z[1], &A.pExpr->iTable); 775 } 776 spanSet(&A, &X, &X); 777 } 778 expr(A) ::= VARIABLE(X). { 779 spanExpr(&A, pParse, TK_VARIABLE, &X); 780 sqlite3ExprAssignVarNumber(pParse, A.pExpr); 781 spanSet(&A, &X, &X); 782 } 783 expr(A) ::= expr(E) COLLATE ids(C). { 784 A.pExpr = sqlite3ExprSetColl(pParse, E.pExpr, &C); 785 A.zStart = E.zStart; 786 A.zEnd = &C.z[C.n]; 787 } 788 %ifndef SQLITE_OMIT_CAST 789 expr(A) ::= CAST(X) LP expr(E) AS typetoken(T) RP(Y). { 790 A.pExpr = sqlite3PExpr(pParse, TK_CAST, E.pExpr, 0, &T); 791 spanSet(&A,&X,&Y); 792 } 793 %endif SQLITE_OMIT_CAST 794 expr(A) ::= ID(X) LP distinct(D) exprlist(Y) RP(E). { 795 if( Y && Y->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 796 sqlite3ErrorMsg(pParse, "too many arguments on function %T", &X); 797 } 798 A.pExpr = sqlite3ExprFunction(pParse, Y, &X); 799 spanSet(&A,&X,&E); 800 if( D && A.pExpr ){ 801 A.pExpr->flags |= EP_Distinct; 802 } 803 } 804 expr(A) ::= ID(X) LP STAR RP(E). { 805 A.pExpr = sqlite3ExprFunction(pParse, 0, &X); 806 spanSet(&A,&X,&E); 807 } 808 term(A) ::= CTIME_KW(OP). { 809 /* The CURRENT_TIME, CURRENT_DATE, and CURRENT_TIMESTAMP values are 810 ** treated as functions that return constants */ 811 A.pExpr = sqlite3ExprFunction(pParse, 0,&OP); 812 if( A.pExpr ){ 813 A.pExpr->op = TK_CONST_FUNC; 814 } 815 spanSet(&A, &OP, &OP); 816 } 817 818 %include { 819 /* This routine constructs a binary expression node out of two ExprSpan 820 ** objects and uses the result to populate a new ExprSpan object. 821 */ 822 static void spanBinaryExpr( 823 ExprSpan *pOut, /* Write the result here */ 824 Parse *pParse, /* The parsing context. Errors accumulate here */ 825 int op, /* The binary operation */ 826 ExprSpan *pLeft, /* The left operand */ 827 ExprSpan *pRight /* The right operand */ 828 ){ 829 pOut->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr, 0); 830 pOut->zStart = pLeft->zStart; 831 pOut->zEnd = pRight->zEnd; 832 } 833 } 834 835 expr(A) ::= expr(X) AND(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 836 expr(A) ::= expr(X) OR(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 837 expr(A) ::= expr(X) LT|GT|GE|LE(OP) expr(Y). 838 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 839 expr(A) ::= expr(X) EQ|NE(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 840 expr(A) ::= expr(X) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y). 841 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 842 expr(A) ::= expr(X) PLUS|MINUS(OP) expr(Y). 843 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 844 expr(A) ::= expr(X) STAR|SLASH|REM(OP) expr(Y). 845 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 846 expr(A) ::= expr(X) CONCAT(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 847 %type likeop {struct LikeOp} 848 likeop(A) ::= LIKE_KW(X). {A.eOperator = X; A.not = 0;} 849 likeop(A) ::= NOT LIKE_KW(X). {A.eOperator = X; A.not = 1;} 850 likeop(A) ::= MATCH(X). {A.eOperator = X; A.not = 0;} 851 likeop(A) ::= NOT MATCH(X). {A.eOperator = X; A.not = 1;} 852 %type escape {ExprSpan} 853 %destructor escape {sqlite3ExprDelete(pParse->db, $$.pExpr);} 854 escape(X) ::= ESCAPE expr(A). [ESCAPE] {X = A;} 855 escape(X) ::= . [ESCAPE] {memset(&X,0,sizeof(X));} 856 expr(A) ::= expr(X) likeop(OP) expr(Y) escape(E). [LIKE_KW] { 857 ExprList *pList; 858 pList = sqlite3ExprListAppend(pParse,0, Y.pExpr); 859 pList = sqlite3ExprListAppend(pParse,pList, X.pExpr); 860 if( E.pExpr ){ 861 pList = sqlite3ExprListAppend(pParse,pList, E.pExpr); 862 } 863 A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator); 864 if( OP.not ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 865 A.zStart = X.zStart; 866 A.zEnd = Y.zEnd; 867 if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc; 868 } 869 870 %include { 871 /* Construct an expression node for a unary postfix operator 872 */ 873 static void spanUnaryPostfix( 874 ExprSpan *pOut, /* Write the new expression node here */ 875 Parse *pParse, /* Parsing context to record errors */ 876 int op, /* The operator */ 877 ExprSpan *pOperand, /* The operand */ 878 Token *pPostOp /* The operand token for setting the span */ 879 ){ 880 pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0); 881 pOut->zStart = pOperand->zStart; 882 pOut->zEnd = &pPostOp->z[pPostOp->n]; 883 } 884 } 885 886 expr(A) ::= expr(X) ISNULL|NOTNULL(E). {spanUnaryPostfix(&A,pParse,@E,&X,&E);} 887 expr(A) ::= expr(X) NOT NULL(E). {spanUnaryPostfix(&A,pParse,TK_NOTNULL,&X,&E);} 888 889 // expr1 IS expr2 890 // expr1 IS NOT expr2 891 // 892 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL. If expr2 893 // is any other expression, code as TK_IS or TK_ISNOT. 894 // 895 expr(A) ::= expr(X) IS expr(Y). { 896 spanBinaryExpr(&A,pParse,TK_IS,&X,&Y); 897 if( pParse->db->mallocFailed==0 && Y.pExpr->op==TK_NULL ){ 898 A.pExpr->op = TK_ISNULL; 899 } 900 } 901 expr(A) ::= expr(X) IS NOT expr(Y). { 902 spanBinaryExpr(&A,pParse,TK_ISNOT,&X,&Y); 903 if( pParse->db->mallocFailed==0 && Y.pExpr->op==TK_NULL ){ 904 A.pExpr->op = TK_NOTNULL; 905 } 906 } 907 908 %include { 909 /* Construct an expression node for a unary prefix operator 910 */ 911 static void spanUnaryPrefix( 912 ExprSpan *pOut, /* Write the new expression node here */ 913 Parse *pParse, /* Parsing context to record errors */ 914 int op, /* The operator */ 915 ExprSpan *pOperand, /* The operand */ 916 Token *pPreOp /* The operand token for setting the span */ 917 ){ 918 pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0); 919 pOut->zStart = pPreOp->z; 920 pOut->zEnd = pOperand->zEnd; 921 } 922 } 923 924 925 926 expr(A) ::= NOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);} 927 expr(A) ::= BITNOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);} 928 expr(A) ::= MINUS(B) expr(X). [BITNOT] 929 {spanUnaryPrefix(&A,pParse,TK_UMINUS,&X,&B);} 930 expr(A) ::= PLUS(B) expr(X). [BITNOT] 931 {spanUnaryPrefix(&A,pParse,TK_UPLUS,&X,&B);} 932 933 %type between_op {int} 934 between_op(A) ::= BETWEEN. {A = 0;} 935 between_op(A) ::= NOT BETWEEN. {A = 1;} 936 expr(A) ::= expr(W) between_op(N) expr(X) AND expr(Y). [BETWEEN] { 937 ExprList *pList = sqlite3ExprListAppend(pParse,0, X.pExpr); 938 pList = sqlite3ExprListAppend(pParse,pList, Y.pExpr); 939 A.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, W.pExpr, 0, 0); 940 if( A.pExpr ){ 941 A.pExpr->x.pList = pList; 942 }else{ 943 sqlite3ExprListDelete(pParse->db, pList); 944 } 945 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 946 A.zStart = W.zStart; 947 A.zEnd = Y.zEnd; 948 } 949 %ifndef SQLITE_OMIT_SUBQUERY 950 %type in_op {int} 951 in_op(A) ::= IN. {A = 0;} 952 in_op(A) ::= NOT IN. {A = 1;} 953 expr(A) ::= expr(X) in_op(N) LP exprlist(Y) RP(E). [IN] { 954 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); 955 if( A.pExpr ){ 956 A.pExpr->x.pList = Y; 957 sqlite3ExprSetHeight(pParse, A.pExpr); 958 }else{ 959 sqlite3ExprListDelete(pParse->db, Y); 960 } 961 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 962 A.zStart = X.zStart; 963 A.zEnd = &E.z[E.n]; 964 } 965 expr(A) ::= LP(B) select(X) RP(E). { 966 A.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0); 967 if( A.pExpr ){ 968 A.pExpr->x.pSelect = X; 969 ExprSetProperty(A.pExpr, EP_xIsSelect); 970 sqlite3ExprSetHeight(pParse, A.pExpr); 971 }else{ 972 sqlite3SelectDelete(pParse->db, X); 973 } 974 A.zStart = B.z; 975 A.zEnd = &E.z[E.n]; 976 } 977 expr(A) ::= expr(X) in_op(N) LP select(Y) RP(E). [IN] { 978 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); 979 if( A.pExpr ){ 980 A.pExpr->x.pSelect = Y; 981 ExprSetProperty(A.pExpr, EP_xIsSelect); 982 sqlite3ExprSetHeight(pParse, A.pExpr); 983 }else{ 984 sqlite3SelectDelete(pParse->db, Y); 985 } 986 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 987 A.zStart = X.zStart; 988 A.zEnd = &E.z[E.n]; 989 } 990 expr(A) ::= expr(X) in_op(N) nm(Y) dbnm(Z). [IN] { 991 SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z); 992 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); 993 if( A.pExpr ){ 994 A.pExpr->x.pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0); 995 ExprSetProperty(A.pExpr, EP_xIsSelect); 996 sqlite3ExprSetHeight(pParse, A.pExpr); 997 }else{ 998 sqlite3SrcListDelete(pParse->db, pSrc); 999 } 1000 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 1001 A.zStart = X.zStart; 1002 A.zEnd = Z.z ? &Z.z[Z.n] : &Y.z[Y.n]; 1003 } 1004 expr(A) ::= EXISTS(B) LP select(Y) RP(E). { 1005 Expr *p = A.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0); 1006 if( p ){ 1007 p->x.pSelect = Y; 1008 ExprSetProperty(p, EP_xIsSelect); 1009 sqlite3ExprSetHeight(pParse, p); 1010 }else{ 1011 sqlite3SelectDelete(pParse->db, Y); 1012 } 1013 A.zStart = B.z; 1014 A.zEnd = &E.z[E.n]; 1015 } 1016 %endif SQLITE_OMIT_SUBQUERY 1017 1018 /* CASE expressions */ 1019 expr(A) ::= CASE(C) case_operand(X) case_exprlist(Y) case_else(Z) END(E). { 1020 A.pExpr = sqlite3PExpr(pParse, TK_CASE, X, Z, 0); 1021 if( A.pExpr ){ 1022 A.pExpr->x.pList = Y; 1023 sqlite3ExprSetHeight(pParse, A.pExpr); 1024 }else{ 1025 sqlite3ExprListDelete(pParse->db, Y); 1026 } 1027 A.zStart = C.z; 1028 A.zEnd = &E.z[E.n]; 1029 } 1030 %type case_exprlist {ExprList*} 1031 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1032 case_exprlist(A) ::= case_exprlist(X) WHEN expr(Y) THEN expr(Z). { 1033 A = sqlite3ExprListAppend(pParse,X, Y.pExpr); 1034 A = sqlite3ExprListAppend(pParse,A, Z.pExpr); 1035 } 1036 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). { 1037 A = sqlite3ExprListAppend(pParse,0, Y.pExpr); 1038 A = sqlite3ExprListAppend(pParse,A, Z.pExpr); 1039 } 1040 %type case_else {Expr*} 1041 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);} 1042 case_else(A) ::= ELSE expr(X). {A = X.pExpr;} 1043 case_else(A) ::= . {A = 0;} 1044 %type case_operand {Expr*} 1045 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);} 1046 case_operand(A) ::= expr(X). {A = X.pExpr;} 1047 case_operand(A) ::= . {A = 0;} 1048 1049 %type exprlist {ExprList*} 1050 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1051 %type nexprlist {ExprList*} 1052 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);} 1053 1054 exprlist(A) ::= nexprlist(X). {A = X;} 1055 exprlist(A) ::= . {A = 0;} 1056 nexprlist(A) ::= nexprlist(X) COMMA expr(Y). 1057 {A = sqlite3ExprListAppend(pParse,X,Y.pExpr);} 1058 nexprlist(A) ::= expr(Y). 1059 {A = sqlite3ExprListAppend(pParse,0,Y.pExpr);} 1060 1061 1062 ///////////////////////////// The CREATE INDEX command /////////////////////// 1063 // 1064 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D) 1065 ON nm(Y) LP idxlist(Z) RP(E). { 1066 sqlite3CreateIndex(pParse, &X, &D, 1067 sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U, 1068 &S, &E, SQLITE_SO_ASC, NE); 1069 } 1070 1071 %type uniqueflag {int} 1072 uniqueflag(A) ::= UNIQUE. {A = OE_Abort;} 1073 uniqueflag(A) ::= . {A = OE_None;} 1074 1075 %type idxlist {ExprList*} 1076 %destructor idxlist {sqlite3ExprListDelete(pParse->db, $$);} 1077 %type idxlist_opt {ExprList*} 1078 %destructor idxlist_opt {sqlite3ExprListDelete(pParse->db, $$);} 1079 1080 idxlist_opt(A) ::= . {A = 0;} 1081 idxlist_opt(A) ::= LP idxlist(X) RP. {A = X;} 1082 idxlist(A) ::= idxlist(X) COMMA nm(Y) collate(C) sortorder(Z). { 1083 Expr *p = 0; 1084 if( C.n>0 ){ 1085 p = sqlite3Expr(pParse->db, TK_COLUMN, 0); 1086 sqlite3ExprSetColl(pParse, p, &C); 1087 } 1088 A = sqlite3ExprListAppend(pParse,X, p); 1089 sqlite3ExprListSetName(pParse,A,&Y,1); 1090 sqlite3ExprListCheckLength(pParse, A, "index"); 1091 if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; 1092 } 1093 idxlist(A) ::= nm(Y) collate(C) sortorder(Z). { 1094 Expr *p = 0; 1095 if( C.n>0 ){ 1096 p = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0); 1097 sqlite3ExprSetColl(pParse, p, &C); 1098 } 1099 A = sqlite3ExprListAppend(pParse,0, p); 1100 sqlite3ExprListSetName(pParse, A, &Y, 1); 1101 sqlite3ExprListCheckLength(pParse, A, "index"); 1102 if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; 1103 } 1104 1105 %type collate {Token} 1106 collate(C) ::= . {C.z = 0; C.n = 0;} 1107 collate(C) ::= COLLATE ids(X). {C = X;} 1108 1109 1110 ///////////////////////////// The DROP INDEX command ///////////////////////// 1111 // 1112 cmd ::= DROP INDEX ifexists(E) fullname(X). {sqlite3DropIndex(pParse, X, E);} 1113 1114 ///////////////////////////// The VACUUM command ///////////////////////////// 1115 // 1116 %ifndef SQLITE_OMIT_VACUUM 1117 %ifndef SQLITE_OMIT_ATTACH 1118 cmd ::= VACUUM. {sqlite3Vacuum(pParse);} 1119 cmd ::= VACUUM nm. {sqlite3Vacuum(pParse);} 1120 %endif SQLITE_OMIT_ATTACH 1121 %endif SQLITE_OMIT_VACUUM 1122 1123 ///////////////////////////// The PRAGMA command ///////////////////////////// 1124 // 1125 %ifndef SQLITE_OMIT_PRAGMA 1126 cmd ::= PRAGMA nm(X) dbnm(Z). {sqlite3Pragma(pParse,&X,&Z,0,0);} 1127 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1128 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1129 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y). 1130 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1131 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP. 1132 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1133 1134 nmnum(A) ::= plus_num(X). {A = X;} 1135 nmnum(A) ::= nm(X). {A = X;} 1136 nmnum(A) ::= ON(X). {A = X;} 1137 nmnum(A) ::= DELETE(X). {A = X;} 1138 nmnum(A) ::= DEFAULT(X). {A = X;} 1139 %endif SQLITE_OMIT_PRAGMA 1140 plus_num(A) ::= plus_opt number(X). {A = X;} 1141 minus_num(A) ::= MINUS number(X). {A = X;} 1142 number(A) ::= INTEGER|FLOAT(X). {A = X;} 1143 plus_opt ::= PLUS. 1144 plus_opt ::= . 1145 1146 //////////////////////////// The CREATE TRIGGER command ///////////////////// 1147 1148 %ifndef SQLITE_OMIT_TRIGGER 1149 1150 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). { 1151 Token all; 1152 all.z = A.z; 1153 all.n = (int)(Z.z - A.z) + Z.n; 1154 sqlite3FinishTrigger(pParse, S, &all); 1155 } 1156 1157 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z) 1158 trigger_time(C) trigger_event(D) 1159 ON fullname(E) foreach_clause when_clause(G). { 1160 sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR); 1161 A = (Z.n==0?B:Z); 1162 } 1163 1164 %type trigger_time {int} 1165 trigger_time(A) ::= BEFORE. { A = TK_BEFORE; } 1166 trigger_time(A) ::= AFTER. { A = TK_AFTER; } 1167 trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;} 1168 trigger_time(A) ::= . { A = TK_BEFORE; } 1169 1170 %type trigger_event {struct TrigEvent} 1171 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);} 1172 trigger_event(A) ::= DELETE|INSERT(OP). {A.a = @OP; A.b = 0;} 1173 trigger_event(A) ::= UPDATE(OP). {A.a = @OP; A.b = 0;} 1174 trigger_event(A) ::= UPDATE OF inscollist(X). {A.a = TK_UPDATE; A.b = X;} 1175 1176 foreach_clause ::= . 1177 foreach_clause ::= FOR EACH ROW. 1178 1179 %type when_clause {Expr*} 1180 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);} 1181 when_clause(A) ::= . { A = 0; } 1182 when_clause(A) ::= WHEN expr(X). { A = X.pExpr; } 1183 1184 %type trigger_cmd_list {TriggerStep*} 1185 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);} 1186 trigger_cmd_list(A) ::= trigger_cmd_list(Y) trigger_cmd(X) SEMI. { 1187 assert( Y!=0 ); 1188 Y->pLast->pNext = X; 1189 Y->pLast = X; 1190 A = Y; 1191 } 1192 trigger_cmd_list(A) ::= trigger_cmd(X) SEMI. { 1193 assert( X!=0 ); 1194 X->pLast = X; 1195 A = X; 1196 } 1197 1198 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements 1199 // within a trigger. The table to INSERT, UPDATE, or DELETE is always in 1200 // the same database as the table that the trigger fires on. 1201 // 1202 %type trnm {Token} 1203 trnm(A) ::= nm(X). {A = X;} 1204 trnm(A) ::= nm DOT nm(X). { 1205 A = X; 1206 sqlite3ErrorMsg(pParse, 1207 "qualified table names are not allowed on INSERT, UPDATE, and DELETE " 1208 "statements within triggers"); 1209 } 1210 1211 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE 1212 // statements within triggers. We make a specific error message for this 1213 // since it is an exception to the default grammar rules. 1214 // 1215 tridxby ::= . 1216 tridxby ::= INDEXED BY nm. { 1217 sqlite3ErrorMsg(pParse, 1218 "the INDEXED BY clause is not allowed on UPDATE or DELETE statements " 1219 "within triggers"); 1220 } 1221 tridxby ::= NOT INDEXED. { 1222 sqlite3ErrorMsg(pParse, 1223 "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements " 1224 "within triggers"); 1225 } 1226 1227 1228 1229 %type trigger_cmd {TriggerStep*} 1230 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);} 1231 // UPDATE 1232 trigger_cmd(A) ::= 1233 UPDATE orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z). 1234 { A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R); } 1235 1236 // INSERT 1237 trigger_cmd(A) ::= 1238 insert_cmd(R) INTO trnm(X) inscollist_opt(F) VALUES LP itemlist(Y) RP. 1239 {A = sqlite3TriggerInsertStep(pParse->db, &X, F, Y, 0, R);} 1240 1241 trigger_cmd(A) ::= insert_cmd(R) INTO trnm(X) inscollist_opt(F) select(S). 1242 {A = sqlite3TriggerInsertStep(pParse->db, &X, F, 0, S, R);} 1243 1244 // DELETE 1245 trigger_cmd(A) ::= DELETE FROM trnm(X) tridxby where_opt(Y). 1246 {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y);} 1247 1248 // SELECT 1249 trigger_cmd(A) ::= select(X). {A = sqlite3TriggerSelectStep(pParse->db, X); } 1250 1251 // The special RAISE expression that may occur in trigger programs 1252 expr(A) ::= RAISE(X) LP IGNORE RP(Y). { 1253 A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0); 1254 if( A.pExpr ){ 1255 A.pExpr->affinity = OE_Ignore; 1256 } 1257 A.zStart = X.z; 1258 A.zEnd = &Y.z[Y.n]; 1259 } 1260 expr(A) ::= RAISE(X) LP raisetype(T) COMMA nm(Z) RP(Y). { 1261 A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &Z); 1262 if( A.pExpr ) { 1263 A.pExpr->affinity = (char)T; 1264 } 1265 A.zStart = X.z; 1266 A.zEnd = &Y.z[Y.n]; 1267 } 1268 %endif !SQLITE_OMIT_TRIGGER 1269 1270 %type raisetype {int} 1271 raisetype(A) ::= ROLLBACK. {A = OE_Rollback;} 1272 raisetype(A) ::= ABORT. {A = OE_Abort;} 1273 raisetype(A) ::= FAIL. {A = OE_Fail;} 1274 1275 1276 //////////////////////// DROP TRIGGER statement ////////////////////////////// 1277 %ifndef SQLITE_OMIT_TRIGGER 1278 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). { 1279 sqlite3DropTrigger(pParse,X,NOERR); 1280 } 1281 %endif !SQLITE_OMIT_TRIGGER 1282 1283 //////////////////////// ATTACH DATABASE file AS name ///////////////////////// 1284 %ifndef SQLITE_OMIT_ATTACH 1285 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). { 1286 sqlite3Attach(pParse, F.pExpr, D.pExpr, K); 1287 } 1288 cmd ::= DETACH database_kw_opt expr(D). { 1289 sqlite3Detach(pParse, D.pExpr); 1290 } 1291 1292 %type key_opt {Expr*} 1293 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);} 1294 key_opt(A) ::= . { A = 0; } 1295 key_opt(A) ::= KEY expr(X). { A = X.pExpr; } 1296 1297 database_kw_opt ::= DATABASE. 1298 database_kw_opt ::= . 1299 %endif SQLITE_OMIT_ATTACH 1300 1301 ////////////////////////// REINDEX collation ////////////////////////////////// 1302 %ifndef SQLITE_OMIT_REINDEX 1303 cmd ::= REINDEX. {sqlite3Reindex(pParse, 0, 0);} 1304 cmd ::= REINDEX nm(X) dbnm(Y). {sqlite3Reindex(pParse, &X, &Y);} 1305 %endif SQLITE_OMIT_REINDEX 1306 1307 /////////////////////////////////// ANALYZE /////////////////////////////////// 1308 %ifndef SQLITE_OMIT_ANALYZE 1309 cmd ::= ANALYZE. {sqlite3Analyze(pParse, 0, 0);} 1310 cmd ::= ANALYZE nm(X) dbnm(Y). {sqlite3Analyze(pParse, &X, &Y);} 1311 %endif 1312 1313 //////////////////////// ALTER TABLE table ... //////////////////////////////// 1314 %ifndef SQLITE_OMIT_ALTERTABLE 1315 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). { 1316 sqlite3AlterRenameTable(pParse,X,&Z); 1317 } 1318 cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column(Y). { 1319 sqlite3AlterFinishAddColumn(pParse, &Y); 1320 } 1321 add_column_fullname ::= fullname(X). { 1322 pParse->db->lookaside.bEnabled = 0; 1323 sqlite3AlterBeginAddColumn(pParse, X); 1324 } 1325 kwcolumn_opt ::= . 1326 kwcolumn_opt ::= COLUMNKW. 1327 %endif SQLITE_OMIT_ALTERTABLE 1328 1329 //////////////////////// CREATE VIRTUAL TABLE ... ///////////////////////////// 1330 %ifndef SQLITE_OMIT_VIRTUALTABLE 1331 cmd ::= create_vtab. {sqlite3VtabFinishParse(pParse,0);} 1332 cmd ::= create_vtab LP vtabarglist RP(X). {sqlite3VtabFinishParse(pParse,&X);} 1333 create_vtab ::= createkw VIRTUAL TABLE nm(X) dbnm(Y) USING nm(Z). { 1334 sqlite3VtabBeginParse(pParse, &X, &Y, &Z); 1335 } 1336 vtabarglist ::= vtabarg. 1337 vtabarglist ::= vtabarglist COMMA vtabarg. 1338 vtabarg ::= . {sqlite3VtabArgInit(pParse);} 1339 vtabarg ::= vtabarg vtabargtoken. 1340 vtabargtoken ::= ANY(X). {sqlite3VtabArgExtend(pParse,&X);} 1341 vtabargtoken ::= lp anylist RP(X). {sqlite3VtabArgExtend(pParse,&X);} 1342 lp ::= LP(X). {sqlite3VtabArgExtend(pParse,&X);} 1343 anylist ::= . 1344 anylist ::= anylist LP anylist RP. 1345 anylist ::= anylist ANY. 1346 %endif SQLITE_OMIT_VIRTUALTABLE 1347