xref: /sqlite-3.40.0/src/parse.y (revision fb98dac0)
1 %include {
2 /*
3 ** 2001-09-15
4 **
5 ** The author disclaims copyright to this source code.  In place of
6 ** a legal notice, here is a blessing:
7 **
8 **    May you do good and not evil.
9 **    May you find forgiveness for yourself and forgive others.
10 **    May you share freely, never taking more than you give.
11 **
12 *************************************************************************
13 ** This file contains SQLite's SQL parser.
14 **
15 ** The canonical source code to this file ("parse.y") is a Lemon grammar
16 ** file that specifies the input grammar and actions to take while parsing.
17 ** That input file is processed by Lemon to generate a C-language
18 ** implementation of a parser for the given grammer.  You might be reading
19 ** this comment as part of the translated C-code.  Edits should be made
20 ** to the original parse.y sources.
21 */
22 }
23 
24 // All token codes are small integers with #defines that begin with "TK_"
25 %token_prefix TK_
26 
27 // The type of the data attached to each token is Token.  This is also the
28 // default type for non-terminals.
29 //
30 %token_type {Token}
31 %default_type {Token}
32 
33 // An extra argument to the constructor for the parser, which is available
34 // to all actions.
35 %extra_context {Parse *pParse}
36 
37 // This code runs whenever there is a syntax error
38 //
39 %syntax_error {
40   UNUSED_PARAMETER(yymajor);  /* Silence some compiler warnings */
41   if( TOKEN.z[0] ){
42     sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);
43   }else{
44     sqlite3ErrorMsg(pParse, "incomplete input");
45   }
46 }
47 %stack_overflow {
48   sqlite3ErrorMsg(pParse, "parser stack overflow");
49 }
50 
51 // The name of the generated procedure that implements the parser
52 // is as follows:
53 %name sqlite3Parser
54 
55 // The following text is included near the beginning of the C source
56 // code file that implements the parser.
57 //
58 %include {
59 #include "sqliteInt.h"
60 
61 /*
62 ** Disable all error recovery processing in the parser push-down
63 ** automaton.
64 */
65 #define YYNOERRORRECOVERY 1
66 
67 /*
68 ** Make yytestcase() the same as testcase()
69 */
70 #define yytestcase(X) testcase(X)
71 
72 /*
73 ** Indicate that sqlite3ParserFree() will never be called with a null
74 ** pointer.
75 */
76 #define YYPARSEFREENEVERNULL 1
77 
78 /*
79 ** In the amalgamation, the parse.c file generated by lemon and the
80 ** tokenize.c file are concatenated.  In that case, sqlite3RunParser()
81 ** has access to the the size of the yyParser object and so the parser
82 ** engine can be allocated from stack.  In that case, only the
83 ** sqlite3ParserInit() and sqlite3ParserFinalize() routines are invoked
84 ** and the sqlite3ParserAlloc() and sqlite3ParserFree() routines can be
85 ** omitted.
86 */
87 #ifdef SQLITE_AMALGAMATION
88 # define sqlite3Parser_ENGINEALWAYSONSTACK 1
89 #endif
90 
91 /*
92 ** Alternative datatype for the argument to the malloc() routine passed
93 ** into sqlite3ParserAlloc().  The default is size_t.
94 */
95 #define YYMALLOCARGTYPE  u64
96 
97 /*
98 ** An instance of the following structure describes the event of a
99 ** TRIGGER.  "a" is the event type, one of TK_UPDATE, TK_INSERT,
100 ** TK_DELETE, or TK_INSTEAD.  If the event is of the form
101 **
102 **      UPDATE ON (a,b,c)
103 **
104 ** Then the "b" IdList records the list "a,b,c".
105 */
106 struct TrigEvent { int a; IdList * b; };
107 
108 struct FrameBound     { int eType; Expr *pExpr; };
109 
110 /*
111 ** Disable lookaside memory allocation for objects that might be
112 ** shared across database connections.
113 */
114 static void disableLookaside(Parse *pParse){
115   sqlite3 *db = pParse->db;
116   pParse->disableLookaside++;
117   DisableLookaside;
118 }
119 
120 #if !defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) \
121  && defined(SQLITE_UDL_CAPABLE_PARSER)
122 /*
123 ** Issue an error message if an ORDER BY or LIMIT clause occurs on an
124 ** UPDATE or DELETE statement.
125 */
126 static void updateDeleteLimitError(
127   Parse *pParse,
128   ExprList *pOrderBy,
129   Expr *pLimit
130 ){
131   if( pOrderBy ){
132     sqlite3ErrorMsg(pParse, "syntax error near \"ORDER BY\"");
133   }else{
134     sqlite3ErrorMsg(pParse, "syntax error near \"LIMIT\"");
135   }
136   sqlite3ExprListDelete(pParse->db, pOrderBy);
137   sqlite3ExprDelete(pParse->db, pLimit);
138 }
139 #endif /* SQLITE_ENABLE_UPDATE_DELETE_LIMIT */
140 
141 } // end %include
142 
143 // Input is a single SQL command
144 input ::= cmdlist.
145 cmdlist ::= cmdlist ecmd.
146 cmdlist ::= ecmd.
147 ecmd ::= SEMI.
148 ecmd ::= cmdx SEMI.
149 %ifndef SQLITE_OMIT_EXPLAIN
150 ecmd ::= explain cmdx SEMI.       {NEVER-REDUCE}
151 explain ::= EXPLAIN.              { pParse->explain = 1; }
152 explain ::= EXPLAIN QUERY PLAN.   { pParse->explain = 2; }
153 %endif  SQLITE_OMIT_EXPLAIN
154 cmdx ::= cmd.           { sqlite3FinishCoding(pParse); }
155 
156 ///////////////////// Begin and end transactions. ////////////////////////////
157 //
158 
159 cmd ::= BEGIN transtype(Y) trans_opt.  {sqlite3BeginTransaction(pParse, Y);}
160 trans_opt ::= .
161 trans_opt ::= TRANSACTION.
162 trans_opt ::= TRANSACTION nm.
163 %type transtype {int}
164 transtype(A) ::= .             {A = TK_DEFERRED;}
165 transtype(A) ::= DEFERRED(X).  {A = @X; /*A-overwrites-X*/}
166 transtype(A) ::= IMMEDIATE(X). {A = @X; /*A-overwrites-X*/}
167 transtype(A) ::= EXCLUSIVE(X). {A = @X; /*A-overwrites-X*/}
168 cmd ::= COMMIT|END(X) trans_opt.   {sqlite3EndTransaction(pParse,@X);}
169 cmd ::= ROLLBACK(X) trans_opt.     {sqlite3EndTransaction(pParse,@X);}
170 
171 savepoint_opt ::= SAVEPOINT.
172 savepoint_opt ::= .
173 cmd ::= SAVEPOINT nm(X). {
174   sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X);
175 }
176 cmd ::= RELEASE savepoint_opt nm(X). {
177   sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X);
178 }
179 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). {
180   sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X);
181 }
182 
183 ///////////////////// The CREATE TABLE statement ////////////////////////////
184 //
185 cmd ::= create_table create_table_args.
186 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). {
187    sqlite3StartTable(pParse,&Y,&Z,T,0,0,E);
188 }
189 createkw(A) ::= CREATE(A).  {disableLookaside(pParse);}
190 
191 %type ifnotexists {int}
192 ifnotexists(A) ::= .              {A = 0;}
193 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;}
194 %type temp {int}
195 %ifndef SQLITE_OMIT_TEMPDB
196 temp(A) ::= TEMP.  {A = pParse->db->init.busy==0;}
197 %endif  SQLITE_OMIT_TEMPDB
198 temp(A) ::= .      {A = 0;}
199 create_table_args ::= LP columnlist conslist_opt(X) RP(E) table_option_set(F). {
200   sqlite3EndTable(pParse,&X,&E,F,0);
201 }
202 create_table_args ::= AS select(S). {
203   sqlite3EndTable(pParse,0,0,0,S);
204   sqlite3SelectDelete(pParse->db, S);
205 }
206 %type table_option_set {u32}
207 %type table_option {u32}
208 table_option_set(A) ::= .    {A = 0;}
209 table_option_set(A) ::= table_option(A).
210 table_option_set(A) ::= table_option_set(X) COMMA table_option(Y). {A = X|Y;}
211 table_option(A) ::= WITHOUT nm(X). {
212   if( X.n==5 && sqlite3_strnicmp(X.z,"rowid",5)==0 ){
213     A = TF_WithoutRowid | TF_NoVisibleRowid;
214   }else{
215     A = 0;
216     sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z);
217   }
218 }
219 table_option(A) ::= nm(X). {
220   if( X.n==6 && sqlite3_strnicmp(X.z,"strict",6)==0 ){
221     A = TF_Strict;
222   }else{
223     A = 0;
224     sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z);
225   }
226 }
227 columnlist ::= columnlist COMMA columnname carglist.
228 columnlist ::= columnname carglist.
229 columnname(A) ::= nm(A) typetoken(Y). {sqlite3AddColumn(pParse,A,Y);}
230 
231 // Declare some tokens early in order to influence their values, to
232 // improve performance and reduce the executable size.  The goal here is
233 // to get the "jump" operations in ISNULL through ESCAPE to have numeric
234 // values that are early enough so that all jump operations are clustered
235 // at the beginning.
236 //
237 %token ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST.
238 %token CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL.
239 %token OR AND NOT IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ.
240 %token GT LE LT GE ESCAPE.
241 
242 // The following directive causes tokens ABORT, AFTER, ASC, etc. to
243 // fallback to ID if they will not parse as their original value.
244 // This obviates the need for the "id" nonterminal.
245 //
246 %fallback ID
247   ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW
248   CONFLICT DATABASE DEFERRED DESC DETACH DO
249   EACH END EXCLUSIVE EXPLAIN FAIL FOR
250   IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN
251   QUERY KEY OF OFFSET PRAGMA RAISE RECURSIVE RELEASE REPLACE RESTRICT ROW ROWS
252   ROLLBACK SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL WITH WITHOUT
253   NULLS FIRST LAST
254 %ifdef SQLITE_OMIT_COMPOUND_SELECT
255   EXCEPT INTERSECT UNION
256 %endif SQLITE_OMIT_COMPOUND_SELECT
257 %ifndef SQLITE_OMIT_WINDOWFUNC
258   CURRENT FOLLOWING PARTITION PRECEDING RANGE UNBOUNDED
259   EXCLUDE GROUPS OTHERS TIES
260 %endif SQLITE_OMIT_WINDOWFUNC
261 %ifndef SQLITE_OMIT_GENERATED_COLUMNS
262   GENERATED ALWAYS
263 %endif
264   MATERIALIZED
265   REINDEX RENAME CTIME_KW IF
266   .
267 %wildcard ANY.
268 
269 // Define operator precedence early so that this is the first occurrence
270 // of the operator tokens in the grammer.  Keeping the operators together
271 // causes them to be assigned integer values that are close together,
272 // which keeps parser tables smaller.
273 //
274 // The token values assigned to these symbols is determined by the order
275 // in which lemon first sees them.  It must be the case that ISNULL/NOTNULL,
276 // NE/EQ, GT/LE, and GE/LT are separated by only a single value.  See
277 // the sqlite3ExprIfFalse() routine for additional information on this
278 // constraint.
279 //
280 %left OR.
281 %left AND.
282 %right NOT.
283 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ.
284 %left GT LE LT GE.
285 %right ESCAPE.
286 %left BITAND BITOR LSHIFT RSHIFT.
287 %left PLUS MINUS.
288 %left STAR SLASH REM.
289 %left CONCAT PTR.
290 %left COLLATE.
291 %right BITNOT.
292 %nonassoc ON.
293 
294 // An IDENTIFIER can be a generic identifier, or one of several
295 // keywords.  Any non-standard keyword can also be an identifier.
296 //
297 %token_class id  ID|INDEXED.
298 
299 
300 // And "ids" is an identifer-or-string.
301 //
302 %token_class ids  ID|STRING.
303 
304 // The name of a column or table can be any of the following:
305 //
306 %type nm {Token}
307 nm(A) ::= id(A).
308 nm(A) ::= STRING(A).
309 nm(A) ::= JOIN_KW(A).
310 
311 // A typetoken is really zero or more tokens that form a type name such
312 // as can be found after the column name in a CREATE TABLE statement.
313 // Multiple tokens are concatenated to form the value of the typetoken.
314 //
315 %type typetoken {Token}
316 typetoken(A) ::= .   {A.n = 0; A.z = 0;}
317 typetoken(A) ::= typename(A).
318 typetoken(A) ::= typename(A) LP signed RP(Y). {
319   A.n = (int)(&Y.z[Y.n] - A.z);
320 }
321 typetoken(A) ::= typename(A) LP signed COMMA signed RP(Y). {
322   A.n = (int)(&Y.z[Y.n] - A.z);
323 }
324 %type typename {Token}
325 typename(A) ::= ids(A).
326 typename(A) ::= typename(A) ids(Y). {A.n=Y.n+(int)(Y.z-A.z);}
327 signed ::= plus_num.
328 signed ::= minus_num.
329 
330 // The scanpt non-terminal takes a value which is a pointer to the
331 // input text just past the last token that has been shifted into
332 // the parser.  By surrounding some phrase in the grammar with two
333 // scanpt non-terminals, we can capture the input text for that phrase.
334 // For example:
335 //
336 //      something ::= .... scanpt(A) phrase scanpt(Z).
337 //
338 // The text that is parsed as "phrase" is a string starting at A
339 // and containing (int)(Z-A) characters.  There might be some extra
340 // whitespace on either end of the text, but that can be removed in
341 // post-processing, if needed.
342 //
343 %type scanpt {const char*}
344 scanpt(A) ::= . {
345   assert( yyLookahead!=YYNOCODE );
346   A = yyLookaheadToken.z;
347 }
348 scantok(A) ::= . {
349   assert( yyLookahead!=YYNOCODE );
350   A = yyLookaheadToken;
351 }
352 
353 // "carglist" is a list of additional constraints that come after the
354 // column name and column type in a CREATE TABLE statement.
355 //
356 carglist ::= carglist ccons.
357 carglist ::= .
358 ccons ::= CONSTRAINT nm(X).           {pParse->constraintName = X;}
359 ccons ::= DEFAULT scantok(A) term(X).
360                             {sqlite3AddDefaultValue(pParse,X,A.z,&A.z[A.n]);}
361 ccons ::= DEFAULT LP(A) expr(X) RP(Z).
362                             {sqlite3AddDefaultValue(pParse,X,A.z+1,Z.z);}
363 ccons ::= DEFAULT PLUS(A) scantok(Z) term(X).
364                             {sqlite3AddDefaultValue(pParse,X,A.z,&Z.z[Z.n]);}
365 ccons ::= DEFAULT MINUS(A) scantok(Z) term(X). {
366   Expr *p = sqlite3PExpr(pParse, TK_UMINUS, X, 0);
367   sqlite3AddDefaultValue(pParse,p,A.z,&Z.z[Z.n]);
368 }
369 ccons ::= DEFAULT scantok id(X).       {
370   Expr *p = tokenExpr(pParse, TK_STRING, X);
371   if( p ){
372     sqlite3ExprIdToTrueFalse(p);
373     testcase( p->op==TK_TRUEFALSE && sqlite3ExprTruthValue(p) );
374   }
375     sqlite3AddDefaultValue(pParse,p,X.z,X.z+X.n);
376 }
377 
378 // In addition to the type name, we also care about the primary key and
379 // UNIQUE constraints.
380 //
381 ccons ::= NULL onconf.
382 ccons ::= NOT NULL onconf(R).    {sqlite3AddNotNull(pParse, R);}
383 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I).
384                                  {sqlite3AddPrimaryKey(pParse,0,R,I,Z);}
385 ccons ::= UNIQUE onconf(R).      {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0,
386                                    SQLITE_IDXTYPE_UNIQUE);}
387 ccons ::= CHECK LP(A) expr(X) RP(B).  {sqlite3AddCheckConstraint(pParse,X,A.z,B.z);}
388 ccons ::= REFERENCES nm(T) eidlist_opt(TA) refargs(R).
389                                  {sqlite3CreateForeignKey(pParse,0,&T,TA,R);}
390 ccons ::= defer_subclause(D).    {sqlite3DeferForeignKey(pParse,D);}
391 ccons ::= COLLATE ids(C).        {sqlite3AddCollateType(pParse, &C);}
392 ccons ::= GENERATED ALWAYS AS generated.
393 ccons ::= AS generated.
394 generated ::= LP expr(E) RP.          {sqlite3AddGenerated(pParse,E,0);}
395 generated ::= LP expr(E) RP ID(TYPE). {sqlite3AddGenerated(pParse,E,&TYPE);}
396 
397 // The optional AUTOINCREMENT keyword
398 %type autoinc {int}
399 autoinc(X) ::= .          {X = 0;}
400 autoinc(X) ::= AUTOINCR.  {X = 1;}
401 
402 // The next group of rules parses the arguments to a REFERENCES clause
403 // that determine if the referential integrity checking is deferred or
404 // or immediate and which determine what action to take if a ref-integ
405 // check fails.
406 //
407 %type refargs {int}
408 refargs(A) ::= .                  { A = OE_None*0x0101; /* EV: R-19803-45884 */}
409 refargs(A) ::= refargs(A) refarg(Y). { A = (A & ~Y.mask) | Y.value; }
410 %type refarg {struct {int value; int mask;}}
411 refarg(A) ::= MATCH nm.              { A.value = 0;     A.mask = 0x000000; }
412 refarg(A) ::= ON INSERT refact.      { A.value = 0;     A.mask = 0x000000; }
413 refarg(A) ::= ON DELETE refact(X).   { A.value = X;     A.mask = 0x0000ff; }
414 refarg(A) ::= ON UPDATE refact(X).   { A.value = X<<8;  A.mask = 0x00ff00; }
415 %type refact {int}
416 refact(A) ::= SET NULL.              { A = OE_SetNull;  /* EV: R-33326-45252 */}
417 refact(A) ::= SET DEFAULT.           { A = OE_SetDflt;  /* EV: R-33326-45252 */}
418 refact(A) ::= CASCADE.               { A = OE_Cascade;  /* EV: R-33326-45252 */}
419 refact(A) ::= RESTRICT.              { A = OE_Restrict; /* EV: R-33326-45252 */}
420 refact(A) ::= NO ACTION.             { A = OE_None;     /* EV: R-33326-45252 */}
421 %type defer_subclause {int}
422 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt.     {A = 0;}
423 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X).      {A = X;}
424 %type init_deferred_pred_opt {int}
425 init_deferred_pred_opt(A) ::= .                       {A = 0;}
426 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED.     {A = 1;}
427 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE.    {A = 0;}
428 
429 conslist_opt(A) ::= .                         {A.n = 0; A.z = 0;}
430 conslist_opt(A) ::= COMMA(A) conslist.
431 conslist ::= conslist tconscomma tcons.
432 conslist ::= tcons.
433 tconscomma ::= COMMA.            {pParse->constraintName.n = 0;}
434 tconscomma ::= .
435 tcons ::= CONSTRAINT nm(X).      {pParse->constraintName = X;}
436 tcons ::= PRIMARY KEY LP sortlist(X) autoinc(I) RP onconf(R).
437                                  {sqlite3AddPrimaryKey(pParse,X,R,I,0);}
438 tcons ::= UNIQUE LP sortlist(X) RP onconf(R).
439                                  {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0,
440                                        SQLITE_IDXTYPE_UNIQUE);}
441 tcons ::= CHECK LP(A) expr(E) RP(B) onconf.
442                                  {sqlite3AddCheckConstraint(pParse,E,A.z,B.z);}
443 tcons ::= FOREIGN KEY LP eidlist(FA) RP
444           REFERENCES nm(T) eidlist_opt(TA) refargs(R) defer_subclause_opt(D). {
445     sqlite3CreateForeignKey(pParse, FA, &T, TA, R);
446     sqlite3DeferForeignKey(pParse, D);
447 }
448 %type defer_subclause_opt {int}
449 defer_subclause_opt(A) ::= .                    {A = 0;}
450 defer_subclause_opt(A) ::= defer_subclause(A).
451 
452 // The following is a non-standard extension that allows us to declare the
453 // default behavior when there is a constraint conflict.
454 //
455 %type onconf {int}
456 %type orconf {int}
457 %type resolvetype {int}
458 onconf(A) ::= .                              {A = OE_Default;}
459 onconf(A) ::= ON CONFLICT resolvetype(X).    {A = X;}
460 orconf(A) ::= .                              {A = OE_Default;}
461 orconf(A) ::= OR resolvetype(X).             {A = X;}
462 resolvetype(A) ::= raisetype(A).
463 resolvetype(A) ::= IGNORE.                   {A = OE_Ignore;}
464 resolvetype(A) ::= REPLACE.                  {A = OE_Replace;}
465 
466 ////////////////////////// The DROP TABLE /////////////////////////////////////
467 //
468 cmd ::= DROP TABLE ifexists(E) fullname(X). {
469   sqlite3DropTable(pParse, X, 0, E);
470 }
471 %type ifexists {int}
472 ifexists(A) ::= IF EXISTS.   {A = 1;}
473 ifexists(A) ::= .            {A = 0;}
474 
475 ///////////////////// The CREATE VIEW statement /////////////////////////////
476 //
477 %ifndef SQLITE_OMIT_VIEW
478 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) eidlist_opt(C)
479           AS select(S). {
480   sqlite3CreateView(pParse, &X, &Y, &Z, C, S, T, E);
481 }
482 cmd ::= DROP VIEW ifexists(E) fullname(X). {
483   sqlite3DropTable(pParse, X, 1, E);
484 }
485 %endif  SQLITE_OMIT_VIEW
486 
487 //////////////////////// The SELECT statement /////////////////////////////////
488 //
489 cmd ::= select(X).  {
490   SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0, 0};
491   sqlite3Select(pParse, X, &dest);
492   sqlite3SelectDelete(pParse->db, X);
493 }
494 
495 %type select {Select*}
496 %destructor select {sqlite3SelectDelete(pParse->db, $$);}
497 %type selectnowith {Select*}
498 %destructor selectnowith {sqlite3SelectDelete(pParse->db, $$);}
499 %type oneselect {Select*}
500 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);}
501 
502 %include {
503   /*
504   ** For a compound SELECT statement, make sure p->pPrior->pNext==p for
505   ** all elements in the list.  And make sure list length does not exceed
506   ** SQLITE_LIMIT_COMPOUND_SELECT.
507   */
508   static void parserDoubleLinkSelect(Parse *pParse, Select *p){
509     assert( p!=0 );
510     if( p->pPrior ){
511       Select *pNext = 0, *pLoop = p;
512       int mxSelect, cnt = 1;
513       while(1){
514         pLoop->pNext = pNext;
515         pLoop->selFlags |= SF_Compound;
516         pNext = pLoop;
517         pLoop = pLoop->pPrior;
518         if( pLoop==0 ) break;
519         cnt++;
520         if( pLoop->pOrderBy || pLoop->pLimit ){
521           sqlite3ErrorMsg(pParse,"%s clause should come after %s not before",
522              pLoop->pOrderBy!=0 ? "ORDER BY" : "LIMIT",
523              sqlite3SelectOpName(pNext->op));
524           break;
525         }
526       }
527       if( (p->selFlags & SF_MultiValue)==0 &&
528         (mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT])>0 &&
529         cnt>mxSelect
530       ){
531         sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
532       }
533     }
534   }
535 
536   /* Attach a With object describing the WITH clause to a Select
537   ** object describing the query for which the WITH clause is a prefix.
538   */
539   static Select *attachWithToSelect(Parse *pParse, Select *pSelect, With *pWith){
540     if( pSelect ){
541       pSelect->pWith = pWith;
542       parserDoubleLinkSelect(pParse, pSelect);
543     }else{
544       sqlite3WithDelete(pParse->db, pWith);
545     }
546     return pSelect;
547   }
548 }
549 
550 %ifndef SQLITE_OMIT_CTE
551 select(A) ::= WITH wqlist(W) selectnowith(X). {A = attachWithToSelect(pParse,X,W);}
552 select(A) ::= WITH RECURSIVE wqlist(W) selectnowith(X).
553                                               {A = attachWithToSelect(pParse,X,W);}
554 %endif /* SQLITE_OMIT_CTE */
555 select(A) ::= selectnowith(X). {
556   Select *p = X;
557   if( p ){
558     parserDoubleLinkSelect(pParse, p);
559   }
560   A = p; /*A-overwrites-X*/
561 }
562 
563 selectnowith(A) ::= oneselect(A).
564 %ifndef SQLITE_OMIT_COMPOUND_SELECT
565 selectnowith(A) ::= selectnowith(A) multiselect_op(Y) oneselect(Z).  {
566   Select *pRhs = Z;
567   Select *pLhs = A;
568   if( pRhs && pRhs->pPrior ){
569     SrcList *pFrom;
570     Token x;
571     x.n = 0;
572     parserDoubleLinkSelect(pParse, pRhs);
573     pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0);
574     pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0);
575   }
576   if( pRhs ){
577     pRhs->op = (u8)Y;
578     pRhs->pPrior = pLhs;
579     if( ALWAYS(pLhs) ) pLhs->selFlags &= ~SF_MultiValue;
580     pRhs->selFlags &= ~SF_MultiValue;
581     if( Y!=TK_ALL ) pParse->hasCompound = 1;
582   }else{
583     sqlite3SelectDelete(pParse->db, pLhs);
584   }
585   A = pRhs;
586 }
587 %type multiselect_op {int}
588 multiselect_op(A) ::= UNION(OP).             {A = @OP; /*A-overwrites-OP*/}
589 multiselect_op(A) ::= UNION ALL.             {A = TK_ALL;}
590 multiselect_op(A) ::= EXCEPT|INTERSECT(OP).  {A = @OP; /*A-overwrites-OP*/}
591 %endif SQLITE_OMIT_COMPOUND_SELECT
592 
593 oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y)
594                  groupby_opt(P) having_opt(Q)
595                  orderby_opt(Z) limit_opt(L). {
596   A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L);
597 }
598 %ifndef SQLITE_OMIT_WINDOWFUNC
599 oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y)
600                  groupby_opt(P) having_opt(Q) window_clause(R)
601                  orderby_opt(Z) limit_opt(L). {
602   A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L);
603   if( A ){
604     A->pWinDefn = R;
605   }else{
606     sqlite3WindowListDelete(pParse->db, R);
607   }
608 }
609 %endif
610 
611 
612 oneselect(A) ::= values(A).
613 
614 %type values {Select*}
615 %destructor values {sqlite3SelectDelete(pParse->db, $$);}
616 values(A) ::= VALUES LP nexprlist(X) RP. {
617   A = sqlite3SelectNew(pParse,X,0,0,0,0,0,SF_Values,0);
618 }
619 values(A) ::= values(A) COMMA LP nexprlist(Y) RP. {
620   Select *pRight, *pLeft = A;
621   pRight = sqlite3SelectNew(pParse,Y,0,0,0,0,0,SF_Values|SF_MultiValue,0);
622   if( ALWAYS(pLeft) ) pLeft->selFlags &= ~SF_MultiValue;
623   if( pRight ){
624     pRight->op = TK_ALL;
625     pRight->pPrior = pLeft;
626     A = pRight;
627   }else{
628     A = pLeft;
629   }
630 }
631 
632 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is
633 // present and false (0) if it is not.
634 //
635 %type distinct {int}
636 distinct(A) ::= DISTINCT.   {A = SF_Distinct;}
637 distinct(A) ::= ALL.        {A = SF_All;}
638 distinct(A) ::= .           {A = 0;}
639 
640 // selcollist is a list of expressions that are to become the return
641 // values of the SELECT statement.  The "*" in statements like
642 // "SELECT * FROM ..." is encoded as a special expression with an
643 // opcode of TK_ASTERISK.
644 //
645 %type selcollist {ExprList*}
646 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);}
647 %type sclp {ExprList*}
648 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);}
649 sclp(A) ::= selcollist(A) COMMA.
650 sclp(A) ::= .                                {A = 0;}
651 selcollist(A) ::= sclp(A) scanpt(B) expr(X) scanpt(Z) as(Y).     {
652    A = sqlite3ExprListAppend(pParse, A, X);
653    if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1);
654    sqlite3ExprListSetSpan(pParse,A,B,Z);
655 }
656 selcollist(A) ::= sclp(A) scanpt STAR. {
657   Expr *p = sqlite3Expr(pParse->db, TK_ASTERISK, 0);
658   A = sqlite3ExprListAppend(pParse, A, p);
659 }
660 selcollist(A) ::= sclp(A) scanpt nm(X) DOT STAR. {
661   Expr *pRight = sqlite3PExpr(pParse, TK_ASTERISK, 0, 0);
662   Expr *pLeft = tokenExpr(pParse, TK_ID, X);
663   Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
664   A = sqlite3ExprListAppend(pParse,A, pDot);
665 }
666 
667 // An option "AS <id>" phrase that can follow one of the expressions that
668 // define the result set, or one of the tables in the FROM clause.
669 //
670 %type as {Token}
671 as(X) ::= AS nm(Y).    {X = Y;}
672 as(X) ::= ids(X).
673 as(X) ::= .            {X.n = 0; X.z = 0;}
674 
675 
676 %type seltablist {SrcList*}
677 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);}
678 %type stl_prefix {SrcList*}
679 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);}
680 %type from {SrcList*}
681 %destructor from {sqlite3SrcListDelete(pParse->db, $$);}
682 
683 // A complete FROM clause.
684 //
685 from(A) ::= .                {A = 0;}
686 from(A) ::= FROM seltablist(X). {
687   A = X;
688   sqlite3SrcListShiftJoinType(pParse,A);
689 }
690 
691 // "seltablist" is a "Select Table List" - the content of the FROM clause
692 // in a SELECT statement.  "stl_prefix" is a prefix of this list.
693 //
694 stl_prefix(A) ::= seltablist(A) joinop(Y).    {
695    if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].fg.jointype = (u8)Y;
696 }
697 stl_prefix(A) ::= .                           {A = 0;}
698 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) as(Z) on_using(N). {
699   A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,&N);
700 }
701 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) as(Z) indexed_by(I) on_using(N). {
702   A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,&N);
703   sqlite3SrcListIndexedBy(pParse, A, &I);
704 }
705 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) LP exprlist(E) RP as(Z) on_using(N). {
706   A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,&N);
707   sqlite3SrcListFuncArgs(pParse, A, E);
708 }
709 %ifndef SQLITE_OMIT_SUBQUERY
710   seltablist(A) ::= stl_prefix(A) LP select(S) RP as(Z) on_using(N). {
711     A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,S,&N);
712   }
713   seltablist(A) ::= stl_prefix(A) LP seltablist(F) RP as(Z) on_using(N). {
714     if( A==0 && Z.n==0 && N.pOn==0 && N.pUsing==0 ){
715       A = F;
716     }else if( F->nSrc==1 ){
717       A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,0,&N);
718       if( A ){
719         SrcItem *pNew = &A->a[A->nSrc-1];
720         SrcItem *pOld = F->a;
721         pNew->zName = pOld->zName;
722         pNew->zDatabase = pOld->zDatabase;
723         pNew->pSelect = pOld->pSelect;
724         if( pNew->pSelect && (pNew->pSelect->selFlags & SF_NestedFrom)!=0 ){
725           pNew->fg.isNestedFrom = 1;
726         }
727         if( pOld->fg.isTabFunc ){
728           pNew->u1.pFuncArg = pOld->u1.pFuncArg;
729           pOld->u1.pFuncArg = 0;
730           pOld->fg.isTabFunc = 0;
731           pNew->fg.isTabFunc = 1;
732         }
733         pOld->zName = pOld->zDatabase = 0;
734         pOld->pSelect = 0;
735       }
736       sqlite3SrcListDelete(pParse->db, F);
737     }else{
738       Select *pSubquery;
739       sqlite3SrcListShiftJoinType(pParse,F);
740       pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,SF_NestedFrom,0);
741       A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,pSubquery,&N);
742     }
743   }
744 %endif  SQLITE_OMIT_SUBQUERY
745 
746 %type dbnm {Token}
747 dbnm(A) ::= .          {A.z=0; A.n=0;}
748 dbnm(A) ::= DOT nm(X). {A = X;}
749 
750 %type fullname {SrcList*}
751 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);}
752 fullname(A) ::= nm(X).  {
753   A = sqlite3SrcListAppend(pParse,0,&X,0);
754   if( IN_RENAME_OBJECT && A ) sqlite3RenameTokenMap(pParse, A->a[0].zName, &X);
755 }
756 fullname(A) ::= nm(X) DOT nm(Y). {
757   A = sqlite3SrcListAppend(pParse,0,&X,&Y);
758   if( IN_RENAME_OBJECT && A ) sqlite3RenameTokenMap(pParse, A->a[0].zName, &Y);
759 }
760 
761 %type xfullname {SrcList*}
762 %destructor xfullname {sqlite3SrcListDelete(pParse->db, $$);}
763 xfullname(A) ::= nm(X).
764    {A = sqlite3SrcListAppend(pParse,0,&X,0); /*A-overwrites-X*/}
765 xfullname(A) ::= nm(X) DOT nm(Y).
766    {A = sqlite3SrcListAppend(pParse,0,&X,&Y); /*A-overwrites-X*/}
767 xfullname(A) ::= nm(X) DOT nm(Y) AS nm(Z).  {
768    A = sqlite3SrcListAppend(pParse,0,&X,&Y); /*A-overwrites-X*/
769    if( A ) A->a[0].zAlias = sqlite3NameFromToken(pParse->db, &Z);
770 }
771 xfullname(A) ::= nm(X) AS nm(Z). {
772    A = sqlite3SrcListAppend(pParse,0,&X,0); /*A-overwrites-X*/
773    if( A ) A->a[0].zAlias = sqlite3NameFromToken(pParse->db, &Z);
774 }
775 
776 %type joinop {int}
777 joinop(X) ::= COMMA|JOIN.              { X = JT_INNER; }
778 joinop(X) ::= JOIN_KW(A) JOIN.
779                   {X = sqlite3JoinType(pParse,&A,0,0);  /*X-overwrites-A*/}
780 joinop(X) ::= JOIN_KW(A) nm(B) JOIN.
781                   {X = sqlite3JoinType(pParse,&A,&B,0); /*X-overwrites-A*/}
782 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN.
783                   {X = sqlite3JoinType(pParse,&A,&B,&C);/*X-overwrites-A*/}
784 
785 // There is a parsing abiguity in an upsert statement that uses a
786 // SELECT on the RHS of a the INSERT:
787 //
788 //      INSERT INTO tab SELECT * FROM aaa JOIN bbb ON CONFLICT ...
789 //                                        here ----^^
790 //
791 // When the ON token is encountered, the parser does not know if it is
792 // the beginning of an ON CONFLICT clause, or the beginning of an ON
793 // clause associated with the JOIN.  The conflict is resolved in favor
794 // of the JOIN.  If an ON CONFLICT clause is intended, insert a dummy
795 // WHERE clause in between, like this:
796 //
797 //      INSERT INTO tab SELECT * FROM aaa JOIN bbb WHERE true ON CONFLICT ...
798 //
799 // The [AND] and [OR] precedence marks in the rules for on_using cause the
800 // ON in this context to always be interpreted as belonging to the JOIN.
801 //
802 %type on_using {OnOrUsing}
803 //%destructor on_using {sqlite3ClearOnOrUsing(pParse->db, &$$);}
804 on_using(N) ::= ON expr(E).            {N.pOn = E; N.pUsing = 0;}
805 on_using(N) ::= USING LP idlist(L) RP. {N.pOn = 0; N.pUsing = L;}
806 on_using(N) ::= .                 [OR] {N.pOn = 0; N.pUsing = 0;}
807 
808 // Note that this block abuses the Token type just a little. If there is
809 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If
810 // there is an INDEXED BY clause, then the token is populated as per normal,
811 // with z pointing to the token data and n containing the number of bytes
812 // in the token.
813 //
814 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is
815 // normally illegal. The sqlite3SrcListIndexedBy() function
816 // recognizes and interprets this as a special case.
817 //
818 %type indexed_opt {Token}
819 %type indexed_by  {Token}
820 indexed_opt(A) ::= .                 {A.z=0; A.n=0;}
821 indexed_opt(A) ::= indexed_by(A).
822 indexed_by(A)  ::= INDEXED BY nm(X). {A = X;}
823 indexed_by(A)  ::= NOT INDEXED.      {A.z=0; A.n=1;}
824 
825 %type orderby_opt {ExprList*}
826 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);}
827 
828 // the sortlist non-terminal stores a list of expression where each
829 // expression is optionally followed by ASC or DESC to indicate the
830 // sort order.
831 //
832 %type sortlist {ExprList*}
833 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);}
834 
835 orderby_opt(A) ::= .                          {A = 0;}
836 orderby_opt(A) ::= ORDER BY sortlist(X).      {A = X;}
837 sortlist(A) ::= sortlist(A) COMMA expr(Y) sortorder(Z) nulls(X). {
838   A = sqlite3ExprListAppend(pParse,A,Y);
839   sqlite3ExprListSetSortOrder(A,Z,X);
840 }
841 sortlist(A) ::= expr(Y) sortorder(Z) nulls(X). {
842   A = sqlite3ExprListAppend(pParse,0,Y); /*A-overwrites-Y*/
843   sqlite3ExprListSetSortOrder(A,Z,X);
844 }
845 
846 %type sortorder {int}
847 
848 sortorder(A) ::= ASC.           {A = SQLITE_SO_ASC;}
849 sortorder(A) ::= DESC.          {A = SQLITE_SO_DESC;}
850 sortorder(A) ::= .              {A = SQLITE_SO_UNDEFINED;}
851 
852 %type nulls {int}
853 nulls(A) ::= NULLS FIRST.       {A = SQLITE_SO_ASC;}
854 nulls(A) ::= NULLS LAST.        {A = SQLITE_SO_DESC;}
855 nulls(A) ::= .                  {A = SQLITE_SO_UNDEFINED;}
856 
857 %type groupby_opt {ExprList*}
858 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);}
859 groupby_opt(A) ::= .                      {A = 0;}
860 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;}
861 
862 %type having_opt {Expr*}
863 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);}
864 having_opt(A) ::= .                {A = 0;}
865 having_opt(A) ::= HAVING expr(X).  {A = X;}
866 
867 %type limit_opt {Expr*}
868 
869 // The destructor for limit_opt will never fire in the current grammar.
870 // The limit_opt non-terminal only occurs at the end of a single production
871 // rule for SELECT statements.  As soon as the rule that create the
872 // limit_opt non-terminal reduces, the SELECT statement rule will also
873 // reduce.  So there is never a limit_opt non-terminal on the stack
874 // except as a transient.  So there is never anything to destroy.
875 //
876 //%destructor limit_opt {sqlite3ExprDelete(pParse->db, $$);}
877 limit_opt(A) ::= .       {A = 0;}
878 limit_opt(A) ::= LIMIT expr(X).
879                          {A = sqlite3PExpr(pParse,TK_LIMIT,X,0);}
880 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y).
881                          {A = sqlite3PExpr(pParse,TK_LIMIT,X,Y);}
882 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y).
883                          {A = sqlite3PExpr(pParse,TK_LIMIT,Y,X);}
884 
885 /////////////////////////// The DELETE statement /////////////////////////////
886 //
887 %if SQLITE_ENABLE_UPDATE_DELETE_LIMIT || SQLITE_UDL_CAPABLE_PARSER
888 cmd ::= with DELETE FROM xfullname(X) indexed_opt(I) where_opt_ret(W)
889         orderby_opt(O) limit_opt(L). {
890   sqlite3SrcListIndexedBy(pParse, X, &I);
891 #ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
892   if( O || L ){
893     updateDeleteLimitError(pParse,O,L);
894     O = 0;
895     L = 0;
896   }
897 #endif
898   sqlite3DeleteFrom(pParse,X,W,O,L);
899 }
900 %else
901 cmd ::= with DELETE FROM xfullname(X) indexed_opt(I) where_opt_ret(W). {
902   sqlite3SrcListIndexedBy(pParse, X, &I);
903   sqlite3DeleteFrom(pParse,X,W,0,0);
904 }
905 %endif
906 
907 %type where_opt {Expr*}
908 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);}
909 %type where_opt_ret {Expr*}
910 %destructor where_opt_ret {sqlite3ExprDelete(pParse->db, $$);}
911 
912 where_opt(A) ::= .                    {A = 0;}
913 where_opt(A) ::= WHERE expr(X).       {A = X;}
914 where_opt_ret(A) ::= .                                      {A = 0;}
915 where_opt_ret(A) ::= WHERE expr(X).                         {A = X;}
916 where_opt_ret(A) ::= RETURNING selcollist(X).
917        {sqlite3AddReturning(pParse,X); A = 0;}
918 where_opt_ret(A) ::= WHERE expr(X) RETURNING selcollist(Y).
919        {sqlite3AddReturning(pParse,Y); A = X;}
920 
921 ////////////////////////// The UPDATE command ////////////////////////////////
922 //
923 %if SQLITE_ENABLE_UPDATE_DELETE_LIMIT || SQLITE_UDL_CAPABLE_PARSER
924 cmd ::= with UPDATE orconf(R) xfullname(X) indexed_opt(I) SET setlist(Y) from(F)
925         where_opt_ret(W) orderby_opt(O) limit_opt(L).  {
926   sqlite3SrcListIndexedBy(pParse, X, &I);
927   X = sqlite3SrcListAppendList(pParse, X, F);
928   sqlite3ExprListCheckLength(pParse,Y,"set list");
929 #ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
930   if( O || L ){
931     updateDeleteLimitError(pParse,O,L);
932     O = 0;
933     L = 0;
934   }
935 #endif
936   sqlite3Update(pParse,X,Y,W,R,O,L,0);
937 }
938 %else
939 cmd ::= with UPDATE orconf(R) xfullname(X) indexed_opt(I) SET setlist(Y) from(F)
940         where_opt_ret(W). {
941   sqlite3SrcListIndexedBy(pParse, X, &I);
942   sqlite3ExprListCheckLength(pParse,Y,"set list");
943   if( F ){
944     SrcList *pFromClause = F;
945     if( pFromClause->nSrc>1 ){
946       Select *pSubquery;
947       Token as;
948       pSubquery = sqlite3SelectNew(pParse,0,pFromClause,0,0,0,0,SF_NestedFrom,0);
949       as.n = 0;
950       as.z = 0;
951       pFromClause = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&as,pSubquery,0);
952     }
953     X = sqlite3SrcListAppendList(pParse, X, pFromClause);
954   }
955   sqlite3Update(pParse,X,Y,W,R,0,0,0);
956 }
957 %endif
958 
959 
960 
961 %type setlist {ExprList*}
962 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);}
963 
964 setlist(A) ::= setlist(A) COMMA nm(X) EQ expr(Y). {
965   A = sqlite3ExprListAppend(pParse, A, Y);
966   sqlite3ExprListSetName(pParse, A, &X, 1);
967 }
968 setlist(A) ::= setlist(A) COMMA LP idlist(X) RP EQ expr(Y). {
969   A = sqlite3ExprListAppendVector(pParse, A, X, Y);
970 }
971 setlist(A) ::= nm(X) EQ expr(Y). {
972   A = sqlite3ExprListAppend(pParse, 0, Y);
973   sqlite3ExprListSetName(pParse, A, &X, 1);
974 }
975 setlist(A) ::= LP idlist(X) RP EQ expr(Y). {
976   A = sqlite3ExprListAppendVector(pParse, 0, X, Y);
977 }
978 
979 ////////////////////////// The INSERT command /////////////////////////////////
980 //
981 cmd ::= with insert_cmd(R) INTO xfullname(X) idlist_opt(F) select(S)
982         upsert(U). {
983   sqlite3Insert(pParse, X, S, F, R, U);
984 }
985 cmd ::= with insert_cmd(R) INTO xfullname(X) idlist_opt(F) DEFAULT VALUES returning.
986 {
987   sqlite3Insert(pParse, X, 0, F, R, 0);
988 }
989 
990 %type upsert {Upsert*}
991 
992 // Because upsert only occurs at the tip end of the INSERT rule for cmd,
993 // there is never a case where the value of the upsert pointer will not
994 // be destroyed by the cmd action.  So comment-out the destructor to
995 // avoid unreachable code.
996 //%destructor upsert {sqlite3UpsertDelete(pParse->db,$$);}
997 upsert(A) ::= . { A = 0; }
998 upsert(A) ::= RETURNING selcollist(X).  { A = 0; sqlite3AddReturning(pParse,X); }
999 upsert(A) ::= ON CONFLICT LP sortlist(T) RP where_opt(TW)
1000               DO UPDATE SET setlist(Z) where_opt(W) upsert(N).
1001               { A = sqlite3UpsertNew(pParse->db,T,TW,Z,W,N);}
1002 upsert(A) ::= ON CONFLICT LP sortlist(T) RP where_opt(TW) DO NOTHING upsert(N).
1003               { A = sqlite3UpsertNew(pParse->db,T,TW,0,0,N); }
1004 upsert(A) ::= ON CONFLICT DO NOTHING returning.
1005               { A = sqlite3UpsertNew(pParse->db,0,0,0,0,0); }
1006 upsert(A) ::= ON CONFLICT DO UPDATE SET setlist(Z) where_opt(W) returning.
1007               { A = sqlite3UpsertNew(pParse->db,0,0,Z,W,0);}
1008 
1009 returning ::= RETURNING selcollist(X).  {sqlite3AddReturning(pParse,X);}
1010 returning ::= .
1011 
1012 %type insert_cmd {int}
1013 insert_cmd(A) ::= INSERT orconf(R).   {A = R;}
1014 insert_cmd(A) ::= REPLACE.            {A = OE_Replace;}
1015 
1016 %type idlist_opt {IdList*}
1017 %destructor idlist_opt {sqlite3IdListDelete(pParse->db, $$);}
1018 %type idlist {IdList*}
1019 %destructor idlist {sqlite3IdListDelete(pParse->db, $$);}
1020 
1021 idlist_opt(A) ::= .                       {A = 0;}
1022 idlist_opt(A) ::= LP idlist(X) RP.    {A = X;}
1023 idlist(A) ::= idlist(A) COMMA nm(Y).
1024     {A = sqlite3IdListAppend(pParse,A,&Y);}
1025 idlist(A) ::= nm(Y).
1026     {A = sqlite3IdListAppend(pParse,0,&Y); /*A-overwrites-Y*/}
1027 
1028 /////////////////////////// Expression Processing /////////////////////////////
1029 //
1030 
1031 %type expr {Expr*}
1032 %destructor expr {sqlite3ExprDelete(pParse->db, $$);}
1033 %type term {Expr*}
1034 %destructor term {sqlite3ExprDelete(pParse->db, $$);}
1035 
1036 %include {
1037 
1038   /* Construct a new Expr object from a single token */
1039   static Expr *tokenExpr(Parse *pParse, int op, Token t){
1040     Expr *p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)+t.n+1);
1041     if( p ){
1042       /* memset(p, 0, sizeof(Expr)); */
1043       p->op = (u8)op;
1044       p->affExpr = 0;
1045       p->flags = EP_Leaf;
1046       ExprClearVVAProperties(p);
1047       /* p->iAgg = -1; // Not required */
1048       p->pLeft = p->pRight = 0;
1049       p->pAggInfo = 0;
1050       memset(&p->x, 0, sizeof(p->x));
1051       memset(&p->y, 0, sizeof(p->y));
1052       p->op2 = 0;
1053       p->iTable = 0;
1054       p->iColumn = 0;
1055       p->u.zToken = (char*)&p[1];
1056       memcpy(p->u.zToken, t.z, t.n);
1057       p->u.zToken[t.n] = 0;
1058       p->w.iOfst = (int)(t.z - pParse->zTail);
1059       if( sqlite3Isquote(p->u.zToken[0]) ){
1060         sqlite3DequoteExpr(p);
1061       }
1062 #if SQLITE_MAX_EXPR_DEPTH>0
1063       p->nHeight = 1;
1064 #endif
1065       if( IN_RENAME_OBJECT ){
1066         return (Expr*)sqlite3RenameTokenMap(pParse, (void*)p, &t);
1067       }
1068     }
1069     return p;
1070   }
1071 
1072 }
1073 
1074 expr(A) ::= term(A).
1075 expr(A) ::= LP expr(X) RP. {A = X;}
1076 expr(A) ::= id(X).          {A=tokenExpr(pParse,TK_ID,X); /*A-overwrites-X*/}
1077 expr(A) ::= JOIN_KW(X).     {A=tokenExpr(pParse,TK_ID,X); /*A-overwrites-X*/}
1078 expr(A) ::= nm(X) DOT nm(Y). {
1079   Expr *temp1 = tokenExpr(pParse,TK_ID,X);
1080   Expr *temp2 = tokenExpr(pParse,TK_ID,Y);
1081   A = sqlite3PExpr(pParse, TK_DOT, temp1, temp2);
1082 }
1083 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). {
1084   Expr *temp1 = tokenExpr(pParse,TK_ID,X);
1085   Expr *temp2 = tokenExpr(pParse,TK_ID,Y);
1086   Expr *temp3 = tokenExpr(pParse,TK_ID,Z);
1087   Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3);
1088   if( IN_RENAME_OBJECT ){
1089     sqlite3RenameTokenRemap(pParse, 0, temp1);
1090   }
1091   A = sqlite3PExpr(pParse, TK_DOT, temp1, temp4);
1092 }
1093 term(A) ::= NULL|FLOAT|BLOB(X). {A=tokenExpr(pParse,@X,X); /*A-overwrites-X*/}
1094 term(A) ::= STRING(X).          {A=tokenExpr(pParse,@X,X); /*A-overwrites-X*/}
1095 term(A) ::= INTEGER(X). {
1096   A = sqlite3ExprAlloc(pParse->db, TK_INTEGER, &X, 1);
1097   if( A ) A->w.iOfst = (int)(X.z - pParse->zTail);
1098 }
1099 expr(A) ::= VARIABLE(X).     {
1100   if( !(X.z[0]=='#' && sqlite3Isdigit(X.z[1])) ){
1101     u32 n = X.n;
1102     A = tokenExpr(pParse, TK_VARIABLE, X);
1103     sqlite3ExprAssignVarNumber(pParse, A, n);
1104   }else{
1105     /* When doing a nested parse, one can include terms in an expression
1106     ** that look like this:   #1 #2 ...  These terms refer to registers
1107     ** in the virtual machine.  #N is the N-th register. */
1108     Token t = X; /*A-overwrites-X*/
1109     assert( t.n>=2 );
1110     if( pParse->nested==0 ){
1111       sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &t);
1112       A = 0;
1113     }else{
1114       A = sqlite3PExpr(pParse, TK_REGISTER, 0, 0);
1115       if( A ) sqlite3GetInt32(&t.z[1], &A->iTable);
1116     }
1117   }
1118 }
1119 expr(A) ::= expr(A) COLLATE ids(C). {
1120   A = sqlite3ExprAddCollateToken(pParse, A, &C, 1);
1121 }
1122 %ifndef SQLITE_OMIT_CAST
1123 expr(A) ::= CAST LP expr(E) AS typetoken(T) RP. {
1124   A = sqlite3ExprAlloc(pParse->db, TK_CAST, &T, 1);
1125   sqlite3ExprAttachSubtrees(pParse->db, A, E, 0);
1126 }
1127 %endif  SQLITE_OMIT_CAST
1128 
1129 
1130 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP. {
1131   A = sqlite3ExprFunction(pParse, Y, &X, D);
1132 }
1133 expr(A) ::= id(X) LP STAR RP. {
1134   A = sqlite3ExprFunction(pParse, 0, &X, 0);
1135 }
1136 
1137 %ifndef SQLITE_OMIT_WINDOWFUNC
1138 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP filter_over(Z). {
1139   A = sqlite3ExprFunction(pParse, Y, &X, D);
1140   sqlite3WindowAttach(pParse, A, Z);
1141 }
1142 expr(A) ::= id(X) LP STAR RP filter_over(Z). {
1143   A = sqlite3ExprFunction(pParse, 0, &X, 0);
1144   sqlite3WindowAttach(pParse, A, Z);
1145 }
1146 %endif
1147 
1148 term(A) ::= CTIME_KW(OP). {
1149   A = sqlite3ExprFunction(pParse, 0, &OP, 0);
1150 }
1151 
1152 expr(A) ::= LP nexprlist(X) COMMA expr(Y) RP. {
1153   ExprList *pList = sqlite3ExprListAppend(pParse, X, Y);
1154   A = sqlite3PExpr(pParse, TK_VECTOR, 0, 0);
1155   if( A ){
1156     A->x.pList = pList;
1157     if( ALWAYS(pList->nExpr) ){
1158       A->flags |= pList->a[0].pExpr->flags & EP_Propagate;
1159     }
1160   }else{
1161     sqlite3ExprListDelete(pParse->db, pList);
1162   }
1163 }
1164 
1165 expr(A) ::= expr(A) AND expr(Y).        {A=sqlite3ExprAnd(pParse,A,Y);}
1166 expr(A) ::= expr(A) OR(OP) expr(Y).     {A=sqlite3PExpr(pParse,@OP,A,Y);}
1167 expr(A) ::= expr(A) LT|GT|GE|LE(OP) expr(Y).
1168                                         {A=sqlite3PExpr(pParse,@OP,A,Y);}
1169 expr(A) ::= expr(A) EQ|NE(OP) expr(Y).  {A=sqlite3PExpr(pParse,@OP,A,Y);}
1170 expr(A) ::= expr(A) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y).
1171                                         {A=sqlite3PExpr(pParse,@OP,A,Y);}
1172 expr(A) ::= expr(A) PLUS|MINUS(OP) expr(Y).
1173                                         {A=sqlite3PExpr(pParse,@OP,A,Y);}
1174 expr(A) ::= expr(A) STAR|SLASH|REM(OP) expr(Y).
1175                                         {A=sqlite3PExpr(pParse,@OP,A,Y);}
1176 expr(A) ::= expr(A) CONCAT(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);}
1177 %type likeop {Token}
1178 likeop(A) ::= LIKE_KW|MATCH(A).
1179 likeop(A) ::= NOT LIKE_KW|MATCH(X). {A=X; A.n|=0x80000000; /*A-overwrite-X*/}
1180 expr(A) ::= expr(A) likeop(OP) expr(Y).  [LIKE_KW]  {
1181   ExprList *pList;
1182   int bNot = OP.n & 0x80000000;
1183   OP.n &= 0x7fffffff;
1184   pList = sqlite3ExprListAppend(pParse,0, Y);
1185   pList = sqlite3ExprListAppend(pParse,pList, A);
1186   A = sqlite3ExprFunction(pParse, pList, &OP, 0);
1187   if( bNot ) A = sqlite3PExpr(pParse, TK_NOT, A, 0);
1188   if( A ) A->flags |= EP_InfixFunc;
1189 }
1190 expr(A) ::= expr(A) likeop(OP) expr(Y) ESCAPE expr(E).  [LIKE_KW]  {
1191   ExprList *pList;
1192   int bNot = OP.n & 0x80000000;
1193   OP.n &= 0x7fffffff;
1194   pList = sqlite3ExprListAppend(pParse,0, Y);
1195   pList = sqlite3ExprListAppend(pParse,pList, A);
1196   pList = sqlite3ExprListAppend(pParse,pList, E);
1197   A = sqlite3ExprFunction(pParse, pList, &OP, 0);
1198   if( bNot ) A = sqlite3PExpr(pParse, TK_NOT, A, 0);
1199   if( A ) A->flags |= EP_InfixFunc;
1200 }
1201 
1202 expr(A) ::= expr(A) ISNULL|NOTNULL(E).   {A = sqlite3PExpr(pParse,@E,A,0);}
1203 expr(A) ::= expr(A) NOT NULL.    {A = sqlite3PExpr(pParse,TK_NOTNULL,A,0);}
1204 
1205 %include {
1206   /* A routine to convert a binary TK_IS or TK_ISNOT expression into a
1207   ** unary TK_ISNULL or TK_NOTNULL expression. */
1208   static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){
1209     sqlite3 *db = pParse->db;
1210     if( pA && pY && pY->op==TK_NULL && !IN_RENAME_OBJECT ){
1211       pA->op = (u8)op;
1212       sqlite3ExprDelete(db, pA->pRight);
1213       pA->pRight = 0;
1214     }
1215   }
1216 }
1217 
1218 //    expr1 IS expr2
1219 //    expr1 IS NOT expr2
1220 //
1221 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL.  If expr2
1222 // is any other expression, code as TK_IS or TK_ISNOT.
1223 //
1224 expr(A) ::= expr(A) IS expr(Y).     {
1225   A = sqlite3PExpr(pParse,TK_IS,A,Y);
1226   binaryToUnaryIfNull(pParse, Y, A, TK_ISNULL);
1227 }
1228 expr(A) ::= expr(A) IS NOT expr(Y). {
1229   A = sqlite3PExpr(pParse,TK_ISNOT,A,Y);
1230   binaryToUnaryIfNull(pParse, Y, A, TK_NOTNULL);
1231 }
1232 expr(A) ::= expr(A) IS NOT DISTINCT FROM expr(Y).     {
1233   A = sqlite3PExpr(pParse,TK_IS,A,Y);
1234   binaryToUnaryIfNull(pParse, Y, A, TK_ISNULL);
1235 }
1236 expr(A) ::= expr(A) IS DISTINCT FROM expr(Y). {
1237   A = sqlite3PExpr(pParse,TK_ISNOT,A,Y);
1238   binaryToUnaryIfNull(pParse, Y, A, TK_NOTNULL);
1239 }
1240 
1241 expr(A) ::= NOT(B) expr(X).
1242               {A = sqlite3PExpr(pParse, @B, X, 0);/*A-overwrites-B*/}
1243 expr(A) ::= BITNOT(B) expr(X).
1244               {A = sqlite3PExpr(pParse, @B, X, 0);/*A-overwrites-B*/}
1245 expr(A) ::= PLUS|MINUS(B) expr(X). [BITNOT] {
1246   A = sqlite3PExpr(pParse, @B==TK_PLUS ? TK_UPLUS : TK_UMINUS, X, 0);
1247   /*A-overwrites-B*/
1248 }
1249 
1250 expr(A) ::= expr(B) PTR(C) expr(D). {
1251   ExprList *pList = sqlite3ExprListAppend(pParse, 0, B);
1252   pList = sqlite3ExprListAppend(pParse, pList, D);
1253   A = sqlite3ExprFunction(pParse, pList, &C, 0);
1254 }
1255 
1256 %type between_op {int}
1257 between_op(A) ::= BETWEEN.     {A = 0;}
1258 between_op(A) ::= NOT BETWEEN. {A = 1;}
1259 expr(A) ::= expr(A) between_op(N) expr(X) AND expr(Y). [BETWEEN] {
1260   ExprList *pList = sqlite3ExprListAppend(pParse,0, X);
1261   pList = sqlite3ExprListAppend(pParse,pList, Y);
1262   A = sqlite3PExpr(pParse, TK_BETWEEN, A, 0);
1263   if( A ){
1264     A->x.pList = pList;
1265   }else{
1266     sqlite3ExprListDelete(pParse->db, pList);
1267   }
1268   if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0);
1269 }
1270 %ifndef SQLITE_OMIT_SUBQUERY
1271   %type in_op {int}
1272   in_op(A) ::= IN.      {A = 0;}
1273   in_op(A) ::= NOT IN.  {A = 1;}
1274   expr(A) ::= expr(A) in_op(N) LP exprlist(Y) RP. [IN] {
1275     if( Y==0 ){
1276       /* Expressions of the form
1277       **
1278       **      expr1 IN ()
1279       **      expr1 NOT IN ()
1280       **
1281       ** simplify to constants 0 (false) and 1 (true), respectively,
1282       ** regardless of the value of expr1.
1283       */
1284       sqlite3ExprUnmapAndDelete(pParse, A);
1285       A = sqlite3Expr(pParse->db, TK_STRING, N ? "true" : "false");
1286       if( A ) sqlite3ExprIdToTrueFalse(A);
1287     }else{
1288       Expr *pRHS = Y->a[0].pExpr;
1289       if( Y->nExpr==1 && sqlite3ExprIsConstant(pRHS) && A->op!=TK_VECTOR ){
1290         Y->a[0].pExpr = 0;
1291         sqlite3ExprListDelete(pParse->db, Y);
1292         pRHS = sqlite3PExpr(pParse, TK_UPLUS, pRHS, 0);
1293         A = sqlite3PExpr(pParse, TK_EQ, A, pRHS);
1294       }else{
1295         A = sqlite3PExpr(pParse, TK_IN, A, 0);
1296         if( A==0 ){
1297           sqlite3ExprListDelete(pParse->db, Y);
1298         }else if( A->pLeft->op==TK_VECTOR ){
1299           int nExpr = A->pLeft->x.pList->nExpr;
1300           Select *pSelectRHS = sqlite3ExprListToValues(pParse, nExpr, Y);
1301           if( pSelectRHS ){
1302             parserDoubleLinkSelect(pParse, pSelectRHS);
1303             sqlite3PExprAddSelect(pParse, A, pSelectRHS);
1304           }
1305         }else{
1306           A->x.pList = Y;
1307           sqlite3ExprSetHeightAndFlags(pParse, A);
1308         }
1309       }
1310       if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0);
1311     }
1312   }
1313   expr(A) ::= LP select(X) RP. {
1314     A = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
1315     sqlite3PExprAddSelect(pParse, A, X);
1316   }
1317   expr(A) ::= expr(A) in_op(N) LP select(Y) RP.  [IN] {
1318     A = sqlite3PExpr(pParse, TK_IN, A, 0);
1319     sqlite3PExprAddSelect(pParse, A, Y);
1320     if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0);
1321   }
1322   expr(A) ::= expr(A) in_op(N) nm(Y) dbnm(Z) paren_exprlist(E). [IN] {
1323     SrcList *pSrc = sqlite3SrcListAppend(pParse, 0,&Y,&Z);
1324     Select *pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0);
1325     if( E )  sqlite3SrcListFuncArgs(pParse, pSelect ? pSrc : 0, E);
1326     A = sqlite3PExpr(pParse, TK_IN, A, 0);
1327     sqlite3PExprAddSelect(pParse, A, pSelect);
1328     if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0);
1329   }
1330   expr(A) ::= EXISTS LP select(Y) RP. {
1331     Expr *p;
1332     p = A = sqlite3PExpr(pParse, TK_EXISTS, 0, 0);
1333     sqlite3PExprAddSelect(pParse, p, Y);
1334   }
1335 %endif SQLITE_OMIT_SUBQUERY
1336 
1337 /* CASE expressions */
1338 expr(A) ::= CASE case_operand(X) case_exprlist(Y) case_else(Z) END. {
1339   A = sqlite3PExpr(pParse, TK_CASE, X, 0);
1340   if( A ){
1341     A->x.pList = Z ? sqlite3ExprListAppend(pParse,Y,Z) : Y;
1342     sqlite3ExprSetHeightAndFlags(pParse, A);
1343   }else{
1344     sqlite3ExprListDelete(pParse->db, Y);
1345     sqlite3ExprDelete(pParse->db, Z);
1346   }
1347 }
1348 %type case_exprlist {ExprList*}
1349 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);}
1350 case_exprlist(A) ::= case_exprlist(A) WHEN expr(Y) THEN expr(Z). {
1351   A = sqlite3ExprListAppend(pParse,A, Y);
1352   A = sqlite3ExprListAppend(pParse,A, Z);
1353 }
1354 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). {
1355   A = sqlite3ExprListAppend(pParse,0, Y);
1356   A = sqlite3ExprListAppend(pParse,A, Z);
1357 }
1358 %type case_else {Expr*}
1359 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);}
1360 case_else(A) ::=  ELSE expr(X).         {A = X;}
1361 case_else(A) ::=  .                     {A = 0;}
1362 %type case_operand {Expr*}
1363 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);}
1364 case_operand(A) ::= expr(X).            {A = X; /*A-overwrites-X*/}
1365 case_operand(A) ::= .                   {A = 0;}
1366 
1367 %type exprlist {ExprList*}
1368 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);}
1369 %type nexprlist {ExprList*}
1370 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);}
1371 
1372 exprlist(A) ::= nexprlist(A).
1373 exprlist(A) ::= .                            {A = 0;}
1374 nexprlist(A) ::= nexprlist(A) COMMA expr(Y).
1375     {A = sqlite3ExprListAppend(pParse,A,Y);}
1376 nexprlist(A) ::= expr(Y).
1377     {A = sqlite3ExprListAppend(pParse,0,Y); /*A-overwrites-Y*/}
1378 
1379 %ifndef SQLITE_OMIT_SUBQUERY
1380 /* A paren_exprlist is an optional expression list contained inside
1381 ** of parenthesis */
1382 %type paren_exprlist {ExprList*}
1383 %destructor paren_exprlist {sqlite3ExprListDelete(pParse->db, $$);}
1384 paren_exprlist(A) ::= .   {A = 0;}
1385 paren_exprlist(A) ::= LP exprlist(X) RP.  {A = X;}
1386 %endif SQLITE_OMIT_SUBQUERY
1387 
1388 
1389 ///////////////////////////// The CREATE INDEX command ///////////////////////
1390 //
1391 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D)
1392         ON nm(Y) LP sortlist(Z) RP where_opt(W). {
1393   sqlite3CreateIndex(pParse, &X, &D,
1394                      sqlite3SrcListAppend(pParse,0,&Y,0), Z, U,
1395                       &S, W, SQLITE_SO_ASC, NE, SQLITE_IDXTYPE_APPDEF);
1396   if( IN_RENAME_OBJECT && pParse->pNewIndex ){
1397     sqlite3RenameTokenMap(pParse, pParse->pNewIndex->zName, &Y);
1398   }
1399 }
1400 
1401 %type uniqueflag {int}
1402 uniqueflag(A) ::= UNIQUE.  {A = OE_Abort;}
1403 uniqueflag(A) ::= .        {A = OE_None;}
1404 
1405 
1406 // The eidlist non-terminal (Expression Id List) generates an ExprList
1407 // from a list of identifiers.  The identifier names are in ExprList.a[].zName.
1408 // This list is stored in an ExprList rather than an IdList so that it
1409 // can be easily sent to sqlite3ColumnsExprList().
1410 //
1411 // eidlist is grouped with CREATE INDEX because it used to be the non-terminal
1412 // used for the arguments to an index.  That is just an historical accident.
1413 //
1414 // IMPORTANT COMPATIBILITY NOTE:  Some prior versions of SQLite accepted
1415 // COLLATE clauses and ASC or DESC keywords on ID lists in inappropriate
1416 // places - places that might have been stored in the sqlite_schema table.
1417 // Those extra features were ignored.  But because they might be in some
1418 // (busted) old databases, we need to continue parsing them when loading
1419 // historical schemas.
1420 //
1421 %type eidlist {ExprList*}
1422 %destructor eidlist {sqlite3ExprListDelete(pParse->db, $$);}
1423 %type eidlist_opt {ExprList*}
1424 %destructor eidlist_opt {sqlite3ExprListDelete(pParse->db, $$);}
1425 
1426 %include {
1427   /* Add a single new term to an ExprList that is used to store a
1428   ** list of identifiers.  Report an error if the ID list contains
1429   ** a COLLATE clause or an ASC or DESC keyword, except ignore the
1430   ** error while parsing a legacy schema.
1431   */
1432   static ExprList *parserAddExprIdListTerm(
1433     Parse *pParse,
1434     ExprList *pPrior,
1435     Token *pIdToken,
1436     int hasCollate,
1437     int sortOrder
1438   ){
1439     ExprList *p = sqlite3ExprListAppend(pParse, pPrior, 0);
1440     if( (hasCollate || sortOrder!=SQLITE_SO_UNDEFINED)
1441         && pParse->db->init.busy==0
1442     ){
1443       sqlite3ErrorMsg(pParse, "syntax error after column name \"%.*s\"",
1444                          pIdToken->n, pIdToken->z);
1445     }
1446     sqlite3ExprListSetName(pParse, p, pIdToken, 1);
1447     return p;
1448   }
1449 } // end %include
1450 
1451 eidlist_opt(A) ::= .                         {A = 0;}
1452 eidlist_opt(A) ::= LP eidlist(X) RP.         {A = X;}
1453 eidlist(A) ::= eidlist(A) COMMA nm(Y) collate(C) sortorder(Z).  {
1454   A = parserAddExprIdListTerm(pParse, A, &Y, C, Z);
1455 }
1456 eidlist(A) ::= nm(Y) collate(C) sortorder(Z). {
1457   A = parserAddExprIdListTerm(pParse, 0, &Y, C, Z); /*A-overwrites-Y*/
1458 }
1459 
1460 %type collate {int}
1461 collate(C) ::= .              {C = 0;}
1462 collate(C) ::= COLLATE ids.   {C = 1;}
1463 
1464 
1465 ///////////////////////////// The DROP INDEX command /////////////////////////
1466 //
1467 cmd ::= DROP INDEX ifexists(E) fullname(X).   {sqlite3DropIndex(pParse, X, E);}
1468 
1469 ///////////////////////////// The VACUUM command /////////////////////////////
1470 //
1471 %if !SQLITE_OMIT_VACUUM && !SQLITE_OMIT_ATTACH
1472 %type vinto {Expr*}
1473 %destructor vinto {sqlite3ExprDelete(pParse->db, $$);}
1474 cmd ::= VACUUM vinto(Y).                {sqlite3Vacuum(pParse,0,Y);}
1475 cmd ::= VACUUM nm(X) vinto(Y).          {sqlite3Vacuum(pParse,&X,Y);}
1476 vinto(A) ::= INTO expr(X).              {A = X;}
1477 vinto(A) ::= .                          {A = 0;}
1478 %endif
1479 
1480 ///////////////////////////// The PRAGMA command /////////////////////////////
1481 //
1482 %ifndef SQLITE_OMIT_PRAGMA
1483 cmd ::= PRAGMA nm(X) dbnm(Z).                {sqlite3Pragma(pParse,&X,&Z,0,0);}
1484 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y).    {sqlite3Pragma(pParse,&X,&Z,&Y,0);}
1485 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);}
1486 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y).
1487                                              {sqlite3Pragma(pParse,&X,&Z,&Y,1);}
1488 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP.
1489                                              {sqlite3Pragma(pParse,&X,&Z,&Y,1);}
1490 
1491 nmnum(A) ::= plus_num(A).
1492 nmnum(A) ::= nm(A).
1493 nmnum(A) ::= ON(A).
1494 nmnum(A) ::= DELETE(A).
1495 nmnum(A) ::= DEFAULT(A).
1496 %endif SQLITE_OMIT_PRAGMA
1497 %token_class number INTEGER|FLOAT.
1498 plus_num(A) ::= PLUS number(X).       {A = X;}
1499 plus_num(A) ::= number(A).
1500 minus_num(A) ::= MINUS number(X).     {A = X;}
1501 //////////////////////////// The CREATE TRIGGER command /////////////////////
1502 
1503 %ifndef SQLITE_OMIT_TRIGGER
1504 
1505 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). {
1506   Token all;
1507   all.z = A.z;
1508   all.n = (int)(Z.z - A.z) + Z.n;
1509   sqlite3FinishTrigger(pParse, S, &all);
1510 }
1511 
1512 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z)
1513                     trigger_time(C) trigger_event(D)
1514                     ON fullname(E) foreach_clause when_clause(G). {
1515   sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR);
1516   A = (Z.n==0?B:Z); /*A-overwrites-T*/
1517 }
1518 
1519 %type trigger_time {int}
1520 trigger_time(A) ::= BEFORE|AFTER(X).  { A = @X; /*A-overwrites-X*/ }
1521 trigger_time(A) ::= INSTEAD OF.  { A = TK_INSTEAD;}
1522 trigger_time(A) ::= .            { A = TK_BEFORE; }
1523 
1524 %type trigger_event {struct TrigEvent}
1525 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);}
1526 trigger_event(A) ::= DELETE|INSERT(X).   {A.a = @X; /*A-overwrites-X*/ A.b = 0;}
1527 trigger_event(A) ::= UPDATE(X).          {A.a = @X; /*A-overwrites-X*/ A.b = 0;}
1528 trigger_event(A) ::= UPDATE OF idlist(X).{A.a = TK_UPDATE; A.b = X;}
1529 
1530 foreach_clause ::= .
1531 foreach_clause ::= FOR EACH ROW.
1532 
1533 %type when_clause {Expr*}
1534 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);}
1535 when_clause(A) ::= .             { A = 0; }
1536 when_clause(A) ::= WHEN expr(X). { A = X; }
1537 
1538 %type trigger_cmd_list {TriggerStep*}
1539 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);}
1540 trigger_cmd_list(A) ::= trigger_cmd_list(A) trigger_cmd(X) SEMI. {
1541   assert( A!=0 );
1542   A->pLast->pNext = X;
1543   A->pLast = X;
1544 }
1545 trigger_cmd_list(A) ::= trigger_cmd(A) SEMI. {
1546   assert( A!=0 );
1547   A->pLast = A;
1548 }
1549 
1550 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements
1551 // within a trigger.  The table to INSERT, UPDATE, or DELETE is always in
1552 // the same database as the table that the trigger fires on.
1553 //
1554 %type trnm {Token}
1555 trnm(A) ::= nm(A).
1556 trnm(A) ::= nm DOT nm(X). {
1557   A = X;
1558   sqlite3ErrorMsg(pParse,
1559         "qualified table names are not allowed on INSERT, UPDATE, and DELETE "
1560         "statements within triggers");
1561 }
1562 
1563 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE
1564 // statements within triggers.  We make a specific error message for this
1565 // since it is an exception to the default grammar rules.
1566 //
1567 tridxby ::= .
1568 tridxby ::= INDEXED BY nm. {
1569   sqlite3ErrorMsg(pParse,
1570         "the INDEXED BY clause is not allowed on UPDATE or DELETE statements "
1571         "within triggers");
1572 }
1573 tridxby ::= NOT INDEXED. {
1574   sqlite3ErrorMsg(pParse,
1575         "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements "
1576         "within triggers");
1577 }
1578 
1579 
1580 
1581 %type trigger_cmd {TriggerStep*}
1582 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);}
1583 // UPDATE
1584 trigger_cmd(A) ::=
1585    UPDATE(B) orconf(R) trnm(X) tridxby SET setlist(Y) from(F) where_opt(Z) scanpt(E).
1586    {A = sqlite3TriggerUpdateStep(pParse, &X, F, Y, Z, R, B.z, E);}
1587 
1588 // INSERT
1589 trigger_cmd(A) ::= scanpt(B) insert_cmd(R) INTO
1590                       trnm(X) idlist_opt(F) select(S) upsert(U) scanpt(Z). {
1591    A = sqlite3TriggerInsertStep(pParse,&X,F,S,R,U,B,Z);/*A-overwrites-R*/
1592 }
1593 // DELETE
1594 trigger_cmd(A) ::= DELETE(B) FROM trnm(X) tridxby where_opt(Y) scanpt(E).
1595    {A = sqlite3TriggerDeleteStep(pParse, &X, Y, B.z, E);}
1596 
1597 // SELECT
1598 trigger_cmd(A) ::= scanpt(B) select(X) scanpt(E).
1599    {A = sqlite3TriggerSelectStep(pParse->db, X, B, E); /*A-overwrites-X*/}
1600 
1601 // The special RAISE expression that may occur in trigger programs
1602 expr(A) ::= RAISE LP IGNORE RP.  {
1603   A = sqlite3PExpr(pParse, TK_RAISE, 0, 0);
1604   if( A ){
1605     A->affExpr = OE_Ignore;
1606   }
1607 }
1608 expr(A) ::= RAISE LP raisetype(T) COMMA nm(Z) RP.  {
1609   A = sqlite3ExprAlloc(pParse->db, TK_RAISE, &Z, 1);
1610   if( A ) {
1611     A->affExpr = (char)T;
1612   }
1613 }
1614 %endif  !SQLITE_OMIT_TRIGGER
1615 
1616 %type raisetype {int}
1617 raisetype(A) ::= ROLLBACK.  {A = OE_Rollback;}
1618 raisetype(A) ::= ABORT.     {A = OE_Abort;}
1619 raisetype(A) ::= FAIL.      {A = OE_Fail;}
1620 
1621 
1622 ////////////////////////  DROP TRIGGER statement //////////////////////////////
1623 %ifndef SQLITE_OMIT_TRIGGER
1624 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). {
1625   sqlite3DropTrigger(pParse,X,NOERR);
1626 }
1627 %endif  !SQLITE_OMIT_TRIGGER
1628 
1629 //////////////////////// ATTACH DATABASE file AS name /////////////////////////
1630 %ifndef SQLITE_OMIT_ATTACH
1631 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). {
1632   sqlite3Attach(pParse, F, D, K);
1633 }
1634 cmd ::= DETACH database_kw_opt expr(D). {
1635   sqlite3Detach(pParse, D);
1636 }
1637 
1638 %type key_opt {Expr*}
1639 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);}
1640 key_opt(A) ::= .                     { A = 0; }
1641 key_opt(A) ::= KEY expr(X).          { A = X; }
1642 
1643 database_kw_opt ::= DATABASE.
1644 database_kw_opt ::= .
1645 %endif SQLITE_OMIT_ATTACH
1646 
1647 ////////////////////////// REINDEX collation //////////////////////////////////
1648 %ifndef SQLITE_OMIT_REINDEX
1649 cmd ::= REINDEX.                {sqlite3Reindex(pParse, 0, 0);}
1650 cmd ::= REINDEX nm(X) dbnm(Y).  {sqlite3Reindex(pParse, &X, &Y);}
1651 %endif  SQLITE_OMIT_REINDEX
1652 
1653 /////////////////////////////////// ANALYZE ///////////////////////////////////
1654 %ifndef SQLITE_OMIT_ANALYZE
1655 cmd ::= ANALYZE.                {sqlite3Analyze(pParse, 0, 0);}
1656 cmd ::= ANALYZE nm(X) dbnm(Y).  {sqlite3Analyze(pParse, &X, &Y);}
1657 %endif
1658 
1659 //////////////////////// ALTER TABLE table ... ////////////////////////////////
1660 %ifndef SQLITE_OMIT_ALTERTABLE
1661 %ifndef SQLITE_OMIT_VIRTUALTABLE
1662 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). {
1663   sqlite3AlterRenameTable(pParse,X,&Z);
1664 }
1665 cmd ::= ALTER TABLE add_column_fullname
1666         ADD kwcolumn_opt columnname(Y) carglist. {
1667   Y.n = (int)(pParse->sLastToken.z-Y.z) + pParse->sLastToken.n;
1668   sqlite3AlterFinishAddColumn(pParse, &Y);
1669 }
1670 cmd ::= ALTER TABLE fullname(X) DROP kwcolumn_opt nm(Y). {
1671   sqlite3AlterDropColumn(pParse, X, &Y);
1672 }
1673 
1674 add_column_fullname ::= fullname(X). {
1675   disableLookaside(pParse);
1676   sqlite3AlterBeginAddColumn(pParse, X);
1677 }
1678 cmd ::= ALTER TABLE fullname(X) RENAME kwcolumn_opt nm(Y) TO nm(Z). {
1679   sqlite3AlterRenameColumn(pParse, X, &Y, &Z);
1680 }
1681 
1682 kwcolumn_opt ::= .
1683 kwcolumn_opt ::= COLUMNKW.
1684 
1685 %endif SQLITE_OMIT_VIRTUALTABLE
1686 %endif SQLITE_OMIT_ALTERTABLE
1687 
1688 //////////////////////// CREATE VIRTUAL TABLE ... /////////////////////////////
1689 %ifndef SQLITE_OMIT_VIRTUALTABLE
1690 cmd ::= create_vtab.                       {sqlite3VtabFinishParse(pParse,0);}
1691 cmd ::= create_vtab LP vtabarglist RP(X).  {sqlite3VtabFinishParse(pParse,&X);}
1692 create_vtab ::= createkw VIRTUAL TABLE ifnotexists(E)
1693                 nm(X) dbnm(Y) USING nm(Z). {
1694     sqlite3VtabBeginParse(pParse, &X, &Y, &Z, E);
1695 }
1696 vtabarglist ::= vtabarg.
1697 vtabarglist ::= vtabarglist COMMA vtabarg.
1698 vtabarg ::= .                       {sqlite3VtabArgInit(pParse);}
1699 vtabarg ::= vtabarg vtabargtoken.
1700 vtabargtoken ::= ANY(X).            {sqlite3VtabArgExtend(pParse,&X);}
1701 vtabargtoken ::= lp anylist RP(X).  {sqlite3VtabArgExtend(pParse,&X);}
1702 lp ::= LP(X).                       {sqlite3VtabArgExtend(pParse,&X);}
1703 anylist ::= .
1704 anylist ::= anylist LP anylist RP.
1705 anylist ::= anylist ANY.
1706 %endif  SQLITE_OMIT_VIRTUALTABLE
1707 
1708 
1709 //////////////////////// COMMON TABLE EXPRESSIONS ////////////////////////////
1710 %type wqlist {With*}
1711 %destructor wqlist {sqlite3WithDelete(pParse->db, $$);}
1712 %type wqitem {Cte*}
1713 // %destructor wqitem {sqlite3CteDelete(pParse->db, $$);} // not reachable
1714 
1715 with ::= .
1716 %ifndef SQLITE_OMIT_CTE
1717 with ::= WITH wqlist(W).              { sqlite3WithPush(pParse, W, 1); }
1718 with ::= WITH RECURSIVE wqlist(W).    { sqlite3WithPush(pParse, W, 1); }
1719 
1720 %type wqas {u8}
1721 wqas(A)   ::= AS.                  {A = M10d_Any;}
1722 wqas(A)   ::= AS MATERIALIZED.     {A = M10d_Yes;}
1723 wqas(A)   ::= AS NOT MATERIALIZED. {A = M10d_No;}
1724 wqitem(A) ::= nm(X) eidlist_opt(Y) wqas(M) LP select(Z) RP. {
1725   A = sqlite3CteNew(pParse, &X, Y, Z, M); /*A-overwrites-X*/
1726 }
1727 wqlist(A) ::= wqitem(X). {
1728   A = sqlite3WithAdd(pParse, 0, X); /*A-overwrites-X*/
1729 }
1730 wqlist(A) ::= wqlist(A) COMMA wqitem(X). {
1731   A = sqlite3WithAdd(pParse, A, X);
1732 }
1733 %endif  SQLITE_OMIT_CTE
1734 
1735 //////////////////////// WINDOW FUNCTION EXPRESSIONS /////////////////////////
1736 // These must be at the end of this file. Specifically, the rules that
1737 // introduce tokens WINDOW, OVER and FILTER must appear last. This causes
1738 // the integer values assigned to these tokens to be larger than all other
1739 // tokens that may be output by the tokenizer except TK_SPACE and TK_ILLEGAL.
1740 //
1741 %ifndef SQLITE_OMIT_WINDOWFUNC
1742 %type windowdefn_list {Window*}
1743 %destructor windowdefn_list {sqlite3WindowListDelete(pParse->db, $$);}
1744 windowdefn_list(A) ::= windowdefn(Z). { A = Z; }
1745 windowdefn_list(A) ::= windowdefn_list(Y) COMMA windowdefn(Z). {
1746   assert( Z!=0 );
1747   sqlite3WindowChain(pParse, Z, Y);
1748   Z->pNextWin = Y;
1749   A = Z;
1750 }
1751 
1752 %type windowdefn {Window*}
1753 %destructor windowdefn {sqlite3WindowDelete(pParse->db, $$);}
1754 windowdefn(A) ::= nm(X) AS LP window(Y) RP. {
1755   if( ALWAYS(Y) ){
1756     Y->zName = sqlite3DbStrNDup(pParse->db, X.z, X.n);
1757   }
1758   A = Y;
1759 }
1760 
1761 %type window {Window*}
1762 %destructor window {sqlite3WindowDelete(pParse->db, $$);}
1763 
1764 %type frame_opt {Window*}
1765 %destructor frame_opt {sqlite3WindowDelete(pParse->db, $$);}
1766 
1767 %type part_opt {ExprList*}
1768 %destructor part_opt {sqlite3ExprListDelete(pParse->db, $$);}
1769 
1770 %type filter_clause {Expr*}
1771 %destructor filter_clause {sqlite3ExprDelete(pParse->db, $$);}
1772 
1773 %type over_clause {Window*}
1774 %destructor over_clause {sqlite3WindowDelete(pParse->db, $$);}
1775 
1776 %type filter_over {Window*}
1777 %destructor filter_over {sqlite3WindowDelete(pParse->db, $$);}
1778 
1779 %type range_or_rows {int}
1780 
1781 %type frame_bound {struct FrameBound}
1782 %destructor frame_bound {sqlite3ExprDelete(pParse->db, $$.pExpr);}
1783 %type frame_bound_s {struct FrameBound}
1784 %destructor frame_bound_s {sqlite3ExprDelete(pParse->db, $$.pExpr);}
1785 %type frame_bound_e {struct FrameBound}
1786 %destructor frame_bound_e {sqlite3ExprDelete(pParse->db, $$.pExpr);}
1787 
1788 window(A) ::= PARTITION BY nexprlist(X) orderby_opt(Y) frame_opt(Z). {
1789   A = sqlite3WindowAssemble(pParse, Z, X, Y, 0);
1790 }
1791 window(A) ::= nm(W) PARTITION BY nexprlist(X) orderby_opt(Y) frame_opt(Z). {
1792   A = sqlite3WindowAssemble(pParse, Z, X, Y, &W);
1793 }
1794 window(A) ::= ORDER BY sortlist(Y) frame_opt(Z). {
1795   A = sqlite3WindowAssemble(pParse, Z, 0, Y, 0);
1796 }
1797 window(A) ::= nm(W) ORDER BY sortlist(Y) frame_opt(Z). {
1798   A = sqlite3WindowAssemble(pParse, Z, 0, Y, &W);
1799 }
1800 window(A) ::= frame_opt(Z). {
1801   A = Z;
1802 }
1803 window(A) ::= nm(W) frame_opt(Z). {
1804   A = sqlite3WindowAssemble(pParse, Z, 0, 0, &W);
1805 }
1806 
1807 frame_opt(A) ::= .                             {
1808   A = sqlite3WindowAlloc(pParse, 0, TK_UNBOUNDED, 0, TK_CURRENT, 0, 0);
1809 }
1810 frame_opt(A) ::= range_or_rows(X) frame_bound_s(Y) frame_exclude_opt(Z). {
1811   A = sqlite3WindowAlloc(pParse, X, Y.eType, Y.pExpr, TK_CURRENT, 0, Z);
1812 }
1813 frame_opt(A) ::= range_or_rows(X) BETWEEN frame_bound_s(Y) AND
1814                           frame_bound_e(Z) frame_exclude_opt(W). {
1815   A = sqlite3WindowAlloc(pParse, X, Y.eType, Y.pExpr, Z.eType, Z.pExpr, W);
1816 }
1817 
1818 range_or_rows(A) ::= RANGE|ROWS|GROUPS(X).   {A = @X; /*A-overwrites-X*/}
1819 
1820 frame_bound_s(A) ::= frame_bound(X).         {A = X;}
1821 frame_bound_s(A) ::= UNBOUNDED(X) PRECEDING. {A.eType = @X; A.pExpr = 0;}
1822 frame_bound_e(A) ::= frame_bound(X).         {A = X;}
1823 frame_bound_e(A) ::= UNBOUNDED(X) FOLLOWING. {A.eType = @X; A.pExpr = 0;}
1824 
1825 frame_bound(A) ::= expr(X) PRECEDING|FOLLOWING(Y).
1826                                              {A.eType = @Y; A.pExpr = X;}
1827 frame_bound(A) ::= CURRENT(X) ROW.           {A.eType = @X; A.pExpr = 0;}
1828 
1829 %type frame_exclude_opt {u8}
1830 frame_exclude_opt(A) ::= . {A = 0;}
1831 frame_exclude_opt(A) ::= EXCLUDE frame_exclude(X). {A = X;}
1832 
1833 %type frame_exclude {u8}
1834 frame_exclude(A) ::= NO(X) OTHERS.   {A = @X; /*A-overwrites-X*/}
1835 frame_exclude(A) ::= CURRENT(X) ROW. {A = @X; /*A-overwrites-X*/}
1836 frame_exclude(A) ::= GROUP|TIES(X).  {A = @X; /*A-overwrites-X*/}
1837 
1838 
1839 %type window_clause {Window*}
1840 %destructor window_clause {sqlite3WindowListDelete(pParse->db, $$);}
1841 window_clause(A) ::= WINDOW windowdefn_list(B). { A = B; }
1842 
1843 filter_over(A) ::= filter_clause(F) over_clause(O). {
1844   if( O ){
1845     O->pFilter = F;
1846   }else{
1847     sqlite3ExprDelete(pParse->db, F);
1848   }
1849   A = O;
1850 }
1851 filter_over(A) ::= over_clause(O). {
1852   A = O;
1853 }
1854 filter_over(A) ::= filter_clause(F). {
1855   A = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window));
1856   if( A ){
1857     A->eFrmType = TK_FILTER;
1858     A->pFilter = F;
1859   }else{
1860     sqlite3ExprDelete(pParse->db, F);
1861   }
1862 }
1863 
1864 over_clause(A) ::= OVER LP window(Z) RP. {
1865   A = Z;
1866   assert( A!=0 );
1867 }
1868 over_clause(A) ::= OVER nm(Z). {
1869   A = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window));
1870   if( A ){
1871     A->zName = sqlite3DbStrNDup(pParse->db, Z.z, Z.n);
1872   }
1873 }
1874 
1875 filter_clause(A) ::= FILTER LP WHERE expr(X) RP.  { A = X; }
1876 %endif /* SQLITE_OMIT_WINDOWFUNC */
1877 
1878 /*
1879 ** The code generator needs some extra TK_ token values for tokens that
1880 ** are synthesized and do not actually appear in the grammar:
1881 */
1882 %token
1883   COLUMN          /* Reference to a table column */
1884   AGG_FUNCTION    /* An aggregate function */
1885   AGG_COLUMN      /* An aggregated column */
1886   TRUEFALSE       /* True or false keyword */
1887   ISNOT           /* Combination of IS and NOT */
1888   FUNCTION        /* A function invocation */
1889   UMINUS          /* Unary minus */
1890   UPLUS           /* Unary plus */
1891   TRUTH           /* IS TRUE or IS FALSE or IS NOT TRUE or IS NOT FALSE */
1892   REGISTER        /* Reference to a VDBE register */
1893   VECTOR          /* Vector */
1894   SELECT_COLUMN   /* Choose a single column from a multi-column SELECT */
1895   IF_NULL_ROW     /* the if-null-row operator */
1896   ASTERISK        /* The "*" in count(*) and similar */
1897   SPAN            /* The span operator */
1898   ERROR           /* An expression containing an error */
1899 .
1900 /* There must be no more than 255 tokens defined above.  If this grammar
1901 ** is extended with new rules and tokens, they must either be so few in
1902 ** number that TK_SPAN is no more than 255, or else the new tokens must
1903 ** appear after this line.
1904 */
1905 %include {
1906 #if TK_SPAN>255
1907 # error too many tokens in the grammar
1908 #endif
1909 }
1910 
1911 /*
1912 ** The TK_SPACE and TK_ILLEGAL tokens must be the last two tokens.  The
1913 ** parser depends on this.  Those tokens are not used in any grammar rule.
1914 ** They are only used by the tokenizer.  Declare them last so that they
1915 ** are guaranteed to be the last two tokens
1916 */
1917 %token SPACE ILLEGAL.
1918