1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains SQLite's grammar for SQL. Process this file 13 ** using the lemon parser generator to generate C code that runs 14 ** the parser. Lemon will also generate a header file containing 15 ** numeric codes for all of the tokens. 16 */ 17 18 // All token codes are small integers with #defines that begin with "TK_" 19 %token_prefix TK_ 20 21 // The type of the data attached to each token is Token. This is also the 22 // default type for non-terminals. 23 // 24 %token_type {Token} 25 %default_type {Token} 26 27 // An extra argument to the constructor for the parser, which is available 28 // to all actions. 29 %extra_context {Parse *pParse} 30 31 // This code runs whenever there is a syntax error 32 // 33 %syntax_error { 34 UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */ 35 if( TOKEN.z[0] ){ 36 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN); 37 }else{ 38 sqlite3ErrorMsg(pParse, "incomplete input"); 39 } 40 } 41 %stack_overflow { 42 sqlite3ErrorMsg(pParse, "parser stack overflow"); 43 } 44 45 // The name of the generated procedure that implements the parser 46 // is as follows: 47 %name sqlite3Parser 48 49 // The following text is included near the beginning of the C source 50 // code file that implements the parser. 51 // 52 %include { 53 #include "sqliteInt.h" 54 55 /* 56 ** Disable all error recovery processing in the parser push-down 57 ** automaton. 58 */ 59 #define YYNOERRORRECOVERY 1 60 61 /* 62 ** Make yytestcase() the same as testcase() 63 */ 64 #define yytestcase(X) testcase(X) 65 66 /* 67 ** Indicate that sqlite3ParserFree() will never be called with a null 68 ** pointer. 69 */ 70 #define YYPARSEFREENEVERNULL 1 71 72 /* 73 ** In the amalgamation, the parse.c file generated by lemon and the 74 ** tokenize.c file are concatenated. In that case, sqlite3RunParser() 75 ** has access to the the size of the yyParser object and so the parser 76 ** engine can be allocated from stack. In that case, only the 77 ** sqlite3ParserInit() and sqlite3ParserFinalize() routines are invoked 78 ** and the sqlite3ParserAlloc() and sqlite3ParserFree() routines can be 79 ** omitted. 80 */ 81 #ifdef SQLITE_AMALGAMATION 82 # define sqlite3Parser_ENGINEALWAYSONSTACK 1 83 #endif 84 85 /* 86 ** Alternative datatype for the argument to the malloc() routine passed 87 ** into sqlite3ParserAlloc(). The default is size_t. 88 */ 89 #define YYMALLOCARGTYPE u64 90 91 /* 92 ** An instance of the following structure describes the event of a 93 ** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT, 94 ** TK_DELETE, or TK_INSTEAD. If the event is of the form 95 ** 96 ** UPDATE ON (a,b,c) 97 ** 98 ** Then the "b" IdList records the list "a,b,c". 99 */ 100 struct TrigEvent { int a; IdList * b; }; 101 102 /* 103 ** Disable lookaside memory allocation for objects that might be 104 ** shared across database connections. 105 */ 106 static void disableLookaside(Parse *pParse){ 107 pParse->disableLookaside++; 108 pParse->db->lookaside.bDisable++; 109 } 110 111 } // end %include 112 113 // Input is a single SQL command 114 input ::= cmdlist. 115 cmdlist ::= cmdlist ecmd. 116 cmdlist ::= ecmd. 117 ecmd ::= SEMI. 118 ecmd ::= cmdx SEMI. 119 %ifndef SQLITE_OMIT_EXPLAIN 120 ecmd ::= explain cmdx. 121 explain ::= EXPLAIN. { pParse->explain = 1; } 122 explain ::= EXPLAIN QUERY PLAN. { pParse->explain = 2; } 123 %endif SQLITE_OMIT_EXPLAIN 124 cmdx ::= cmd. { sqlite3FinishCoding(pParse); } 125 126 ///////////////////// Begin and end transactions. //////////////////////////// 127 // 128 129 cmd ::= BEGIN transtype(Y) trans_opt. {sqlite3BeginTransaction(pParse, Y);} 130 trans_opt ::= . 131 trans_opt ::= TRANSACTION. 132 trans_opt ::= TRANSACTION nm. 133 %type transtype {int} 134 transtype(A) ::= . {A = TK_DEFERRED;} 135 transtype(A) ::= DEFERRED(X). {A = @X; /*A-overwrites-X*/} 136 transtype(A) ::= IMMEDIATE(X). {A = @X; /*A-overwrites-X*/} 137 transtype(A) ::= EXCLUSIVE(X). {A = @X; /*A-overwrites-X*/} 138 cmd ::= COMMIT|END(X) trans_opt. {sqlite3EndTransaction(pParse,@X);} 139 cmd ::= ROLLBACK(X) trans_opt. {sqlite3EndTransaction(pParse,@X);} 140 141 savepoint_opt ::= SAVEPOINT. 142 savepoint_opt ::= . 143 cmd ::= SAVEPOINT nm(X). { 144 sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X); 145 } 146 cmd ::= RELEASE savepoint_opt nm(X). { 147 sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X); 148 } 149 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). { 150 sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X); 151 } 152 153 ///////////////////// The CREATE TABLE statement //////////////////////////// 154 // 155 cmd ::= create_table create_table_args. 156 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). { 157 sqlite3StartTable(pParse,&Y,&Z,T,0,0,E); 158 } 159 createkw(A) ::= CREATE(A). {disableLookaside(pParse);} 160 161 %type ifnotexists {int} 162 ifnotexists(A) ::= . {A = 0;} 163 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;} 164 %type temp {int} 165 %ifndef SQLITE_OMIT_TEMPDB 166 temp(A) ::= TEMP. {A = 1;} 167 %endif SQLITE_OMIT_TEMPDB 168 temp(A) ::= . {A = 0;} 169 create_table_args ::= LP columnlist conslist_opt(X) RP(E) table_options(F). { 170 sqlite3EndTable(pParse,&X,&E,F,0); 171 } 172 create_table_args ::= AS select(S). { 173 sqlite3EndTable(pParse,0,0,0,S); 174 sqlite3SelectDelete(pParse->db, S); 175 } 176 %type table_options {int} 177 table_options(A) ::= . {A = 0;} 178 table_options(A) ::= WITHOUT nm(X). { 179 if( X.n==5 && sqlite3_strnicmp(X.z,"rowid",5)==0 ){ 180 A = TF_WithoutRowid | TF_NoVisibleRowid; 181 }else{ 182 A = 0; 183 sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z); 184 } 185 } 186 columnlist ::= columnlist COMMA columnname carglist. 187 columnlist ::= columnname carglist. 188 columnname(A) ::= nm(A) typetoken(Y). {sqlite3AddColumn(pParse,&A,&Y);} 189 190 // Declare some tokens early in order to influence their values, to 191 // improve performance and reduce the executable size. The goal here is 192 // to get the "jump" operations in ISNULL through ESCAPE to have numeric 193 // values that are early enough so that all jump operations are clustered 194 // at the beginning, but also so that the comparison tokens NE through GE 195 // are as large as possible so that they are near to FUNCTION, which is a 196 // token synthesized by addopcodes.tcl. 197 // 198 %token ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST. 199 %token CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL. 200 %token OR AND NOT IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. 201 %token GT LE LT GE ESCAPE. 202 203 // The following directive causes tokens ABORT, AFTER, ASC, etc. to 204 // fallback to ID if they will not parse as their original value. 205 // This obviates the need for the "id" nonterminal. 206 // 207 %fallback ID 208 ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW 209 CONFLICT DATABASE DEFERRED DESC DETACH DO 210 EACH END EXCLUSIVE EXPLAIN FAIL FOR 211 IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN 212 QUERY KEY OF OFFSET PRAGMA RAISE RECURSIVE RELEASE REPLACE RESTRICT ROW 213 ROLLBACK SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL WITH WITHOUT 214 %ifdef SQLITE_OMIT_COMPOUND_SELECT 215 EXCEPT INTERSECT UNION 216 %endif SQLITE_OMIT_COMPOUND_SELECT 217 REINDEX RENAME CTIME_KW IF 218 . 219 %wildcard ANY. 220 221 // Define operator precedence early so that this is the first occurrence 222 // of the operator tokens in the grammer. Keeping the operators together 223 // causes them to be assigned integer values that are close together, 224 // which keeps parser tables smaller. 225 // 226 // The token values assigned to these symbols is determined by the order 227 // in which lemon first sees them. It must be the case that ISNULL/NOTNULL, 228 // NE/EQ, GT/LE, and GE/LT are separated by only a single value. See 229 // the sqlite3ExprIfFalse() routine for additional information on this 230 // constraint. 231 // 232 %left OR. 233 %left AND. 234 %right NOT. 235 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. 236 %left GT LE LT GE. 237 %right ESCAPE. 238 %left BITAND BITOR LSHIFT RSHIFT. 239 %left PLUS MINUS. 240 %left STAR SLASH REM. 241 %left CONCAT. 242 %left COLLATE. 243 %right BITNOT. 244 %nonassoc ON. 245 246 // An IDENTIFIER can be a generic identifier, or one of several 247 // keywords. Any non-standard keyword can also be an identifier. 248 // 249 %token_class id ID|INDEXED. 250 251 252 // And "ids" is an identifer-or-string. 253 // 254 %token_class ids ID|STRING. 255 256 // The name of a column or table can be any of the following: 257 // 258 %type nm {Token} 259 nm(A) ::= id(A). 260 nm(A) ::= STRING(A). 261 nm(A) ::= JOIN_KW(A). 262 263 // A typetoken is really zero or more tokens that form a type name such 264 // as can be found after the column name in a CREATE TABLE statement. 265 // Multiple tokens are concatenated to form the value of the typetoken. 266 // 267 %type typetoken {Token} 268 typetoken(A) ::= . {A.n = 0; A.z = 0;} 269 typetoken(A) ::= typename(A). 270 typetoken(A) ::= typename(A) LP signed RP(Y). { 271 A.n = (int)(&Y.z[Y.n] - A.z); 272 } 273 typetoken(A) ::= typename(A) LP signed COMMA signed RP(Y). { 274 A.n = (int)(&Y.z[Y.n] - A.z); 275 } 276 %type typename {Token} 277 typename(A) ::= ids(A). 278 typename(A) ::= typename(A) ids(Y). {A.n=Y.n+(int)(Y.z-A.z);} 279 signed ::= plus_num. 280 signed ::= minus_num. 281 282 // The scanpt non-terminal takes a value which is a pointer to the 283 // input text just past the last token that has been shifted into 284 // the parser. By surrounding some phrase in the grammar with two 285 // scanpt non-terminals, we can capture the input text for that phrase. 286 // For example: 287 // 288 // something ::= .... scanpt(A) phrase scanpt(Z). 289 // 290 // The text that is parsed as "phrase" is a string starting at A 291 // and containing (int)(Z-A) characters. There might be some extra 292 // whitespace on either end of the text, but that can be removed in 293 // post-processing, if needed. 294 // 295 %type scanpt {const char*} 296 scanpt(A) ::= . { 297 assert( yyLookahead!=YYNOCODE ); 298 A = yyLookaheadToken.z; 299 } 300 301 // "carglist" is a list of additional constraints that come after the 302 // column name and column type in a CREATE TABLE statement. 303 // 304 carglist ::= carglist ccons. 305 carglist ::= . 306 ccons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} 307 ccons ::= DEFAULT scanpt(A) term(X) scanpt(Z). 308 {sqlite3AddDefaultValue(pParse,X,A,Z);} 309 ccons ::= DEFAULT LP(A) expr(X) RP(Z). 310 {sqlite3AddDefaultValue(pParse,X,A.z+1,Z.z);} 311 ccons ::= DEFAULT PLUS(A) term(X) scanpt(Z). 312 {sqlite3AddDefaultValue(pParse,X,A.z,Z);} 313 ccons ::= DEFAULT MINUS(A) term(X) scanpt(Z). { 314 Expr *p = sqlite3PExpr(pParse, TK_UMINUS, X, 0); 315 sqlite3AddDefaultValue(pParse,p,A.z,Z); 316 } 317 ccons ::= DEFAULT scanpt id(X). { 318 Expr *p = tokenExpr(pParse, TK_STRING, X); 319 if( p ){ 320 sqlite3ExprIdToTrueFalse(p); 321 testcase( p->op==TK_TRUEFALSE && sqlite3ExprTruthValue(p) ); 322 } 323 sqlite3AddDefaultValue(pParse,p,X.z,X.z+X.n); 324 } 325 326 // In addition to the type name, we also care about the primary key and 327 // UNIQUE constraints. 328 // 329 ccons ::= NULL onconf. 330 ccons ::= NOT NULL onconf(R). {sqlite3AddNotNull(pParse, R);} 331 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I). 332 {sqlite3AddPrimaryKey(pParse,0,R,I,Z);} 333 ccons ::= UNIQUE onconf(R). {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0, 334 SQLITE_IDXTYPE_UNIQUE);} 335 ccons ::= CHECK LP expr(X) RP. {sqlite3AddCheckConstraint(pParse,X);} 336 ccons ::= REFERENCES nm(T) eidlist_opt(TA) refargs(R). 337 {sqlite3CreateForeignKey(pParse,0,&T,TA,R);} 338 ccons ::= defer_subclause(D). {sqlite3DeferForeignKey(pParse,D);} 339 ccons ::= COLLATE ids(C). {sqlite3AddCollateType(pParse, &C);} 340 341 // The optional AUTOINCREMENT keyword 342 %type autoinc {int} 343 autoinc(X) ::= . {X = 0;} 344 autoinc(X) ::= AUTOINCR. {X = 1;} 345 346 // The next group of rules parses the arguments to a REFERENCES clause 347 // that determine if the referential integrity checking is deferred or 348 // or immediate and which determine what action to take if a ref-integ 349 // check fails. 350 // 351 %type refargs {int} 352 refargs(A) ::= . { A = OE_None*0x0101; /* EV: R-19803-45884 */} 353 refargs(A) ::= refargs(A) refarg(Y). { A = (A & ~Y.mask) | Y.value; } 354 %type refarg {struct {int value; int mask;}} 355 refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; } 356 refarg(A) ::= ON INSERT refact. { A.value = 0; A.mask = 0x000000; } 357 refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; } 358 refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; } 359 %type refact {int} 360 refact(A) ::= SET NULL. { A = OE_SetNull; /* EV: R-33326-45252 */} 361 refact(A) ::= SET DEFAULT. { A = OE_SetDflt; /* EV: R-33326-45252 */} 362 refact(A) ::= CASCADE. { A = OE_Cascade; /* EV: R-33326-45252 */} 363 refact(A) ::= RESTRICT. { A = OE_Restrict; /* EV: R-33326-45252 */} 364 refact(A) ::= NO ACTION. { A = OE_None; /* EV: R-33326-45252 */} 365 %type defer_subclause {int} 366 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt. {A = 0;} 367 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;} 368 %type init_deferred_pred_opt {int} 369 init_deferred_pred_opt(A) ::= . {A = 0;} 370 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;} 371 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;} 372 373 conslist_opt(A) ::= . {A.n = 0; A.z = 0;} 374 conslist_opt(A) ::= COMMA(A) conslist. 375 conslist ::= conslist tconscomma tcons. 376 conslist ::= tcons. 377 tconscomma ::= COMMA. {pParse->constraintName.n = 0;} 378 tconscomma ::= . 379 tcons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} 380 tcons ::= PRIMARY KEY LP sortlist(X) autoinc(I) RP onconf(R). 381 {sqlite3AddPrimaryKey(pParse,X,R,I,0);} 382 tcons ::= UNIQUE LP sortlist(X) RP onconf(R). 383 {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0, 384 SQLITE_IDXTYPE_UNIQUE);} 385 tcons ::= CHECK LP expr(E) RP onconf. 386 {sqlite3AddCheckConstraint(pParse,E);} 387 tcons ::= FOREIGN KEY LP eidlist(FA) RP 388 REFERENCES nm(T) eidlist_opt(TA) refargs(R) defer_subclause_opt(D). { 389 sqlite3CreateForeignKey(pParse, FA, &T, TA, R); 390 sqlite3DeferForeignKey(pParse, D); 391 } 392 %type defer_subclause_opt {int} 393 defer_subclause_opt(A) ::= . {A = 0;} 394 defer_subclause_opt(A) ::= defer_subclause(A). 395 396 // The following is a non-standard extension that allows us to declare the 397 // default behavior when there is a constraint conflict. 398 // 399 %type onconf {int} 400 %type orconf {int} 401 %type resolvetype {int} 402 onconf(A) ::= . {A = OE_Default;} 403 onconf(A) ::= ON CONFLICT resolvetype(X). {A = X;} 404 orconf(A) ::= . {A = OE_Default;} 405 orconf(A) ::= OR resolvetype(X). {A = X;} 406 resolvetype(A) ::= raisetype(A). 407 resolvetype(A) ::= IGNORE. {A = OE_Ignore;} 408 resolvetype(A) ::= REPLACE. {A = OE_Replace;} 409 410 ////////////////////////// The DROP TABLE ///////////////////////////////////// 411 // 412 cmd ::= DROP TABLE ifexists(E) fullname(X). { 413 sqlite3DropTable(pParse, X, 0, E); 414 } 415 %type ifexists {int} 416 ifexists(A) ::= IF EXISTS. {A = 1;} 417 ifexists(A) ::= . {A = 0;} 418 419 ///////////////////// The CREATE VIEW statement ///////////////////////////// 420 // 421 %ifndef SQLITE_OMIT_VIEW 422 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) eidlist_opt(C) 423 AS select(S). { 424 sqlite3CreateView(pParse, &X, &Y, &Z, C, S, T, E); 425 } 426 cmd ::= DROP VIEW ifexists(E) fullname(X). { 427 sqlite3DropTable(pParse, X, 1, E); 428 } 429 %endif SQLITE_OMIT_VIEW 430 431 //////////////////////// The SELECT statement ///////////////////////////////// 432 // 433 cmd ::= select(X). { 434 SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0}; 435 sqlite3Select(pParse, X, &dest); 436 sqlite3SelectDelete(pParse->db, X); 437 } 438 439 %type select {Select*} 440 %destructor select {sqlite3SelectDelete(pParse->db, $$);} 441 %type selectnowith {Select*} 442 %destructor selectnowith {sqlite3SelectDelete(pParse->db, $$);} 443 %type oneselect {Select*} 444 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);} 445 446 %include { 447 /* 448 ** For a compound SELECT statement, make sure p->pPrior->pNext==p for 449 ** all elements in the list. And make sure list length does not exceed 450 ** SQLITE_LIMIT_COMPOUND_SELECT. 451 */ 452 static void parserDoubleLinkSelect(Parse *pParse, Select *p){ 453 if( p->pPrior ){ 454 Select *pNext = 0, *pLoop; 455 int mxSelect, cnt = 0; 456 for(pLoop=p; pLoop; pNext=pLoop, pLoop=pLoop->pPrior, cnt++){ 457 pLoop->pNext = pNext; 458 pLoop->selFlags |= SF_Compound; 459 } 460 if( (p->selFlags & SF_MultiValue)==0 && 461 (mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT])>0 && 462 cnt>mxSelect 463 ){ 464 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 465 } 466 } 467 } 468 } 469 470 select(A) ::= WITH wqlist(W) selectnowith(X). { 471 Select *p = X; 472 if( p ){ 473 p->pWith = W; 474 parserDoubleLinkSelect(pParse, p); 475 }else{ 476 sqlite3WithDelete(pParse->db, W); 477 } 478 A = p; 479 } 480 select(A) ::= WITH RECURSIVE wqlist(W) selectnowith(X). { 481 Select *p = X; 482 if( p ){ 483 p->pWith = W; 484 parserDoubleLinkSelect(pParse, p); 485 }else{ 486 sqlite3WithDelete(pParse->db, W); 487 } 488 A = p; 489 } 490 select(A) ::= selectnowith(X). { 491 Select *p = X; 492 if( p ){ 493 parserDoubleLinkSelect(pParse, p); 494 } 495 A = p; /*A-overwrites-X*/ 496 } 497 498 selectnowith(A) ::= oneselect(A). 499 %ifndef SQLITE_OMIT_COMPOUND_SELECT 500 selectnowith(A) ::= selectnowith(A) multiselect_op(Y) oneselect(Z). { 501 Select *pRhs = Z; 502 Select *pLhs = A; 503 if( pRhs && pRhs->pPrior ){ 504 SrcList *pFrom; 505 Token x; 506 x.n = 0; 507 parserDoubleLinkSelect(pParse, pRhs); 508 pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0); 509 pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0); 510 } 511 if( pRhs ){ 512 pRhs->op = (u8)Y; 513 pRhs->pPrior = pLhs; 514 if( ALWAYS(pLhs) ) pLhs->selFlags &= ~SF_MultiValue; 515 pRhs->selFlags &= ~SF_MultiValue; 516 if( Y!=TK_ALL ) pParse->hasCompound = 1; 517 }else{ 518 sqlite3SelectDelete(pParse->db, pLhs); 519 } 520 A = pRhs; 521 } 522 %type multiselect_op {int} 523 multiselect_op(A) ::= UNION(OP). {A = @OP; /*A-overwrites-OP*/} 524 multiselect_op(A) ::= UNION ALL. {A = TK_ALL;} 525 multiselect_op(A) ::= EXCEPT|INTERSECT(OP). {A = @OP; /*A-overwrites-OP*/} 526 %endif SQLITE_OMIT_COMPOUND_SELECT 527 oneselect(A) ::= SELECT(S) distinct(D) selcollist(W) from(X) where_opt(Y) 528 groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). { 529 #if SELECTTRACE_ENABLED 530 Token s = S; /*A-overwrites-S*/ 531 #endif 532 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L); 533 #if SELECTTRACE_ENABLED 534 /* Populate the Select.zSelName[] string that is used to help with 535 ** query planner debugging, to differentiate between multiple Select 536 ** objects in a complex query. 537 ** 538 ** If the SELECT keyword is immediately followed by a C-style comment 539 ** then extract the first few alphanumeric characters from within that 540 ** comment to be the zSelName value. Otherwise, the label is #N where 541 ** is an integer that is incremented with each SELECT statement seen. 542 */ 543 if( A!=0 ){ 544 const char *z = s.z+6; 545 int i; 546 sqlite3_snprintf(sizeof(A->zSelName), A->zSelName,"#%d",++pParse->nSelect); 547 while( z[0]==' ' ) z++; 548 if( z[0]=='/' && z[1]=='*' ){ 549 z += 2; 550 while( z[0]==' ' ) z++; 551 for(i=0; sqlite3Isalnum(z[i]); i++){} 552 sqlite3_snprintf(sizeof(A->zSelName), A->zSelName, "%.*s", i, z); 553 } 554 } 555 #endif /* SELECTRACE_ENABLED */ 556 } 557 oneselect(A) ::= values(A). 558 559 %type values {Select*} 560 %destructor values {sqlite3SelectDelete(pParse->db, $$);} 561 values(A) ::= VALUES LP nexprlist(X) RP. { 562 A = sqlite3SelectNew(pParse,X,0,0,0,0,0,SF_Values,0); 563 } 564 values(A) ::= values(A) COMMA LP exprlist(Y) RP. { 565 Select *pRight, *pLeft = A; 566 pRight = sqlite3SelectNew(pParse,Y,0,0,0,0,0,SF_Values|SF_MultiValue,0); 567 if( ALWAYS(pLeft) ) pLeft->selFlags &= ~SF_MultiValue; 568 if( pRight ){ 569 pRight->op = TK_ALL; 570 pRight->pPrior = pLeft; 571 A = pRight; 572 }else{ 573 A = pLeft; 574 } 575 } 576 577 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is 578 // present and false (0) if it is not. 579 // 580 %type distinct {int} 581 distinct(A) ::= DISTINCT. {A = SF_Distinct;} 582 distinct(A) ::= ALL. {A = SF_All;} 583 distinct(A) ::= . {A = 0;} 584 585 // selcollist is a list of expressions that are to become the return 586 // values of the SELECT statement. The "*" in statements like 587 // "SELECT * FROM ..." is encoded as a special expression with an 588 // opcode of TK_ASTERISK. 589 // 590 %type selcollist {ExprList*} 591 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);} 592 %type sclp {ExprList*} 593 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);} 594 sclp(A) ::= selcollist(A) COMMA. 595 sclp(A) ::= . {A = 0;} 596 selcollist(A) ::= sclp(A) scanpt(B) expr(X) scanpt(Z) as(Y). { 597 A = sqlite3ExprListAppend(pParse, A, X); 598 if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1); 599 sqlite3ExprListSetSpan(pParse,A,B,Z); 600 } 601 selcollist(A) ::= sclp(A) scanpt STAR. { 602 Expr *p = sqlite3Expr(pParse->db, TK_ASTERISK, 0); 603 A = sqlite3ExprListAppend(pParse, A, p); 604 } 605 selcollist(A) ::= sclp(A) scanpt nm(X) DOT STAR. { 606 Expr *pRight = sqlite3PExpr(pParse, TK_ASTERISK, 0, 0); 607 Expr *pLeft = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1); 608 Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 609 A = sqlite3ExprListAppend(pParse,A, pDot); 610 } 611 612 // An option "AS <id>" phrase that can follow one of the expressions that 613 // define the result set, or one of the tables in the FROM clause. 614 // 615 %type as {Token} 616 as(X) ::= AS nm(Y). {X = Y;} 617 as(X) ::= ids(X). 618 as(X) ::= . {X.n = 0; X.z = 0;} 619 620 621 %type seltablist {SrcList*} 622 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);} 623 %type stl_prefix {SrcList*} 624 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);} 625 %type from {SrcList*} 626 %destructor from {sqlite3SrcListDelete(pParse->db, $$);} 627 628 // A complete FROM clause. 629 // 630 from(A) ::= . {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));} 631 from(A) ::= FROM seltablist(X). { 632 A = X; 633 sqlite3SrcListShiftJoinType(A); 634 } 635 636 // "seltablist" is a "Select Table List" - the content of the FROM clause 637 // in a SELECT statement. "stl_prefix" is a prefix of this list. 638 // 639 stl_prefix(A) ::= seltablist(A) joinop(Y). { 640 if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].fg.jointype = (u8)Y; 641 } 642 stl_prefix(A) ::= . {A = 0;} 643 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) as(Z) indexed_opt(I) 644 on_opt(N) using_opt(U). { 645 A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U); 646 sqlite3SrcListIndexedBy(pParse, A, &I); 647 } 648 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) LP exprlist(E) RP as(Z) 649 on_opt(N) using_opt(U). { 650 A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U); 651 sqlite3SrcListFuncArgs(pParse, A, E); 652 } 653 %ifndef SQLITE_OMIT_SUBQUERY 654 seltablist(A) ::= stl_prefix(A) LP select(S) RP 655 as(Z) on_opt(N) using_opt(U). { 656 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,S,N,U); 657 } 658 seltablist(A) ::= stl_prefix(A) LP seltablist(F) RP 659 as(Z) on_opt(N) using_opt(U). { 660 if( A==0 && Z.n==0 && N==0 && U==0 ){ 661 A = F; 662 }else if( F->nSrc==1 ){ 663 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,0,N,U); 664 if( A ){ 665 struct SrcList_item *pNew = &A->a[A->nSrc-1]; 666 struct SrcList_item *pOld = F->a; 667 pNew->zName = pOld->zName; 668 pNew->zDatabase = pOld->zDatabase; 669 pNew->pSelect = pOld->pSelect; 670 pOld->zName = pOld->zDatabase = 0; 671 pOld->pSelect = 0; 672 } 673 sqlite3SrcListDelete(pParse->db, F); 674 }else{ 675 Select *pSubquery; 676 sqlite3SrcListShiftJoinType(F); 677 pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,SF_NestedFrom,0); 678 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,pSubquery,N,U); 679 } 680 } 681 %endif SQLITE_OMIT_SUBQUERY 682 683 %type dbnm {Token} 684 dbnm(A) ::= . {A.z=0; A.n=0;} 685 dbnm(A) ::= DOT nm(X). {A = X;} 686 687 %type fullname {SrcList*} 688 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);} 689 fullname(A) ::= nm(X). 690 {A = sqlite3SrcListAppend(pParse->db,0,&X,0); /*A-overwrites-X*/} 691 fullname(A) ::= nm(X) DOT nm(Y). 692 {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y); /*A-overwrites-X*/} 693 694 %type xfullname {SrcList*} 695 %destructor xfullname {sqlite3SrcListDelete(pParse->db, $$);} 696 xfullname(A) ::= nm(X). 697 {A = sqlite3SrcListAppend(pParse->db,0,&X,0); /*A-overwrites-X*/} 698 xfullname(A) ::= nm(X) DOT nm(Y). 699 {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y); /*A-overwrites-X*/} 700 xfullname(A) ::= nm(X) DOT nm(Y) AS nm(Z). { 701 A = sqlite3SrcListAppend(pParse->db,0,&X,&Y); /*A-overwrites-X*/ 702 if( A ) A->a[0].zAlias = sqlite3NameFromToken(pParse->db, &Z); 703 } 704 xfullname(A) ::= nm(X) AS nm(Z). { 705 A = sqlite3SrcListAppend(pParse->db,0,&X,0); /*A-overwrites-X*/ 706 if( A ) A->a[0].zAlias = sqlite3NameFromToken(pParse->db, &Z); 707 } 708 709 %type joinop {int} 710 joinop(X) ::= COMMA|JOIN. { X = JT_INNER; } 711 joinop(X) ::= JOIN_KW(A) JOIN. 712 {X = sqlite3JoinType(pParse,&A,0,0); /*X-overwrites-A*/} 713 joinop(X) ::= JOIN_KW(A) nm(B) JOIN. 714 {X = sqlite3JoinType(pParse,&A,&B,0); /*X-overwrites-A*/} 715 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN. 716 {X = sqlite3JoinType(pParse,&A,&B,&C);/*X-overwrites-A*/} 717 718 // There is a parsing abiguity in an upsert statement that uses a 719 // SELECT on the RHS of a the INSERT: 720 // 721 // INSERT INTO tab SELECT * FROM aaa JOIN bbb ON CONFLICT ... 722 // here ----^^ 723 // 724 // When the ON token is encountered, the parser does not know if it is 725 // the beginning of an ON CONFLICT clause, or the beginning of an ON 726 // clause associated with the JOIN. The conflict is resolved in favor 727 // of the JOIN. If an ON CONFLICT clause is intended, insert a dummy 728 // WHERE clause in between, like this: 729 // 730 // INSERT INTO tab SELECT * FROM aaa JOIN bbb WHERE true ON CONFLICT ... 731 // 732 // The [AND] and [OR] precedence marks in the rules for on_opt cause the 733 // ON in this context to always be interpreted as belonging to the JOIN. 734 // 735 %type on_opt {Expr*} 736 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);} 737 on_opt(N) ::= ON expr(E). {N = E;} 738 on_opt(N) ::= . [OR] {N = 0;} 739 740 // Note that this block abuses the Token type just a little. If there is 741 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If 742 // there is an INDEXED BY clause, then the token is populated as per normal, 743 // with z pointing to the token data and n containing the number of bytes 744 // in the token. 745 // 746 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is 747 // normally illegal. The sqlite3SrcListIndexedBy() function 748 // recognizes and interprets this as a special case. 749 // 750 %type indexed_opt {Token} 751 indexed_opt(A) ::= . {A.z=0; A.n=0;} 752 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;} 753 indexed_opt(A) ::= NOT INDEXED. {A.z=0; A.n=1;} 754 755 %type using_opt {IdList*} 756 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);} 757 using_opt(U) ::= USING LP idlist(L) RP. {U = L;} 758 using_opt(U) ::= . {U = 0;} 759 760 761 %type orderby_opt {ExprList*} 762 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);} 763 764 // the sortlist non-terminal stores a list of expression where each 765 // expression is optionally followed by ASC or DESC to indicate the 766 // sort order. 767 // 768 %type sortlist {ExprList*} 769 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);} 770 771 orderby_opt(A) ::= . {A = 0;} 772 orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;} 773 sortlist(A) ::= sortlist(A) COMMA expr(Y) sortorder(Z). { 774 A = sqlite3ExprListAppend(pParse,A,Y); 775 sqlite3ExprListSetSortOrder(A,Z); 776 } 777 sortlist(A) ::= expr(Y) sortorder(Z). { 778 A = sqlite3ExprListAppend(pParse,0,Y); /*A-overwrites-Y*/ 779 sqlite3ExprListSetSortOrder(A,Z); 780 } 781 782 %type sortorder {int} 783 784 sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;} 785 sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;} 786 sortorder(A) ::= . {A = SQLITE_SO_UNDEFINED;} 787 788 %type groupby_opt {ExprList*} 789 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);} 790 groupby_opt(A) ::= . {A = 0;} 791 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;} 792 793 %type having_opt {Expr*} 794 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);} 795 having_opt(A) ::= . {A = 0;} 796 having_opt(A) ::= HAVING expr(X). {A = X;} 797 798 %type limit_opt {Expr*} 799 800 // The destructor for limit_opt will never fire in the current grammar. 801 // The limit_opt non-terminal only occurs at the end of a single production 802 // rule for SELECT statements. As soon as the rule that create the 803 // limit_opt non-terminal reduces, the SELECT statement rule will also 804 // reduce. So there is never a limit_opt non-terminal on the stack 805 // except as a transient. So there is never anything to destroy. 806 // 807 //%destructor limit_opt {sqlite3ExprDelete(pParse->db, $$);} 808 limit_opt(A) ::= . {A = 0;} 809 limit_opt(A) ::= LIMIT expr(X). 810 {A = sqlite3PExpr(pParse,TK_LIMIT,X,0);} 811 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y). 812 {A = sqlite3PExpr(pParse,TK_LIMIT,X,Y);} 813 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y). 814 {A = sqlite3PExpr(pParse,TK_LIMIT,Y,X);} 815 816 /////////////////////////// The DELETE statement ///////////////////////////// 817 // 818 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 819 cmd ::= with DELETE FROM xfullname(X) indexed_opt(I) where_opt(W) 820 orderby_opt(O) limit_opt(L). { 821 sqlite3SrcListIndexedBy(pParse, X, &I); 822 sqlite3DeleteFrom(pParse,X,W,O,L); 823 } 824 %endif 825 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 826 cmd ::= with DELETE FROM xfullname(X) indexed_opt(I) where_opt(W). { 827 sqlite3SrcListIndexedBy(pParse, X, &I); 828 sqlite3DeleteFrom(pParse,X,W,0,0); 829 } 830 %endif 831 832 %type where_opt {Expr*} 833 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);} 834 835 where_opt(A) ::= . {A = 0;} 836 where_opt(A) ::= WHERE expr(X). {A = X;} 837 838 ////////////////////////// The UPDATE command //////////////////////////////// 839 // 840 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 841 cmd ::= with UPDATE orconf(R) xfullname(X) indexed_opt(I) SET setlist(Y) 842 where_opt(W) orderby_opt(O) limit_opt(L). { 843 sqlite3SrcListIndexedBy(pParse, X, &I); 844 sqlite3ExprListCheckLength(pParse,Y,"set list"); 845 sqlite3Update(pParse,X,Y,W,R,O,L,0); 846 } 847 %endif 848 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 849 cmd ::= with UPDATE orconf(R) xfullname(X) indexed_opt(I) SET setlist(Y) 850 where_opt(W). { 851 sqlite3SrcListIndexedBy(pParse, X, &I); 852 sqlite3ExprListCheckLength(pParse,Y,"set list"); 853 sqlite3Update(pParse,X,Y,W,R,0,0,0); 854 } 855 %endif 856 857 %type setlist {ExprList*} 858 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);} 859 860 setlist(A) ::= setlist(A) COMMA nm(X) EQ expr(Y). { 861 A = sqlite3ExprListAppend(pParse, A, Y); 862 sqlite3ExprListSetName(pParse, A, &X, 1); 863 } 864 setlist(A) ::= setlist(A) COMMA LP idlist(X) RP EQ expr(Y). { 865 A = sqlite3ExprListAppendVector(pParse, A, X, Y); 866 } 867 setlist(A) ::= nm(X) EQ expr(Y). { 868 A = sqlite3ExprListAppend(pParse, 0, Y); 869 sqlite3ExprListSetName(pParse, A, &X, 1); 870 } 871 setlist(A) ::= LP idlist(X) RP EQ expr(Y). { 872 A = sqlite3ExprListAppendVector(pParse, 0, X, Y); 873 } 874 875 ////////////////////////// The INSERT command ///////////////////////////////// 876 // 877 cmd ::= with insert_cmd(R) INTO xfullname(X) idlist_opt(F) select(S) 878 upsert(U). { 879 sqlite3Insert(pParse, X, S, F, R, U); 880 } 881 cmd ::= with insert_cmd(R) INTO xfullname(X) idlist_opt(F) DEFAULT VALUES. 882 { 883 sqlite3Insert(pParse, X, 0, F, R, 0); 884 } 885 886 %type upsert {Upsert*} 887 888 // Because upsert only occurs at the tip end of the INSERT rule for cmd, 889 // there is never a case where the value of the upsert pointer will not 890 // be destroyed by the cmd action. So comment-out the destructor to 891 // avoid unreachable code. 892 //%destructor upsert {sqlite3UpsertDelete(pParse->db,$$);} 893 upsert(A) ::= . { A = 0; } 894 upsert(A) ::= ON CONFLICT LP sortlist(T) RP where_opt(TW) 895 DO UPDATE SET setlist(Z) where_opt(W). 896 { A = sqlite3UpsertNew(pParse->db,T,TW,Z,W);} 897 upsert(A) ::= ON CONFLICT LP sortlist(T) RP where_opt(TW) DO NOTHING. 898 { A = sqlite3UpsertNew(pParse->db,T,TW,0,0); } 899 upsert(A) ::= ON CONFLICT DO NOTHING. 900 { A = sqlite3UpsertNew(pParse->db,0,0,0,0); } 901 902 %type insert_cmd {int} 903 insert_cmd(A) ::= INSERT orconf(R). {A = R;} 904 insert_cmd(A) ::= REPLACE. {A = OE_Replace;} 905 906 %type idlist_opt {IdList*} 907 %destructor idlist_opt {sqlite3IdListDelete(pParse->db, $$);} 908 %type idlist {IdList*} 909 %destructor idlist {sqlite3IdListDelete(pParse->db, $$);} 910 911 idlist_opt(A) ::= . {A = 0;} 912 idlist_opt(A) ::= LP idlist(X) RP. {A = X;} 913 idlist(A) ::= idlist(A) COMMA nm(Y). 914 {A = sqlite3IdListAppend(pParse->db,A,&Y);} 915 idlist(A) ::= nm(Y). 916 {A = sqlite3IdListAppend(pParse->db,0,&Y); /*A-overwrites-Y*/} 917 918 /////////////////////////// Expression Processing ///////////////////////////// 919 // 920 921 %type expr {Expr*} 922 %destructor expr {sqlite3ExprDelete(pParse->db, $$);} 923 %type term {Expr*} 924 %destructor term {sqlite3ExprDelete(pParse->db, $$);} 925 926 %include { 927 928 /* Construct a new Expr object from a single identifier. Use the 929 ** new Expr to populate pOut. Set the span of pOut to be the identifier 930 ** that created the expression. 931 */ 932 static Expr *tokenExpr(Parse *pParse, int op, Token t){ 933 Expr *p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)+t.n+1); 934 if( p ){ 935 memset(p, 0, sizeof(Expr)); 936 p->op = (u8)op; 937 p->flags = EP_Leaf; 938 p->iAgg = -1; 939 p->u.zToken = (char*)&p[1]; 940 memcpy(p->u.zToken, t.z, t.n); 941 p->u.zToken[t.n] = 0; 942 if( sqlite3Isquote(p->u.zToken[0]) ){ 943 if( p->u.zToken[0]=='"' ) p->flags |= EP_DblQuoted; 944 sqlite3Dequote(p->u.zToken); 945 } 946 #if SQLITE_MAX_EXPR_DEPTH>0 947 p->nHeight = 1; 948 #endif 949 } 950 return p; 951 } 952 } 953 954 expr(A) ::= term(A). 955 expr(A) ::= LP expr(X) RP. {A = X;} 956 expr(A) ::= id(X). {A=tokenExpr(pParse,TK_ID,X); /*A-overwrites-X*/} 957 expr(A) ::= JOIN_KW(X). {A=tokenExpr(pParse,TK_ID,X); /*A-overwrites-X*/} 958 expr(A) ::= nm(X) DOT nm(Y). { 959 Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1); 960 Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1); 961 A = sqlite3PExpr(pParse, TK_DOT, temp1, temp2); 962 } 963 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). { 964 Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1); 965 Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1); 966 Expr *temp3 = sqlite3ExprAlloc(pParse->db, TK_ID, &Z, 1); 967 Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3); 968 A = sqlite3PExpr(pParse, TK_DOT, temp1, temp4); 969 } 970 term(A) ::= NULL|FLOAT|BLOB(X). {A=tokenExpr(pParse,@X,X); /*A-overwrites-X*/} 971 term(A) ::= STRING(X). {A=tokenExpr(pParse,@X,X); /*A-overwrites-X*/} 972 term(A) ::= INTEGER(X). { 973 A = sqlite3ExprAlloc(pParse->db, TK_INTEGER, &X, 1); 974 } 975 expr(A) ::= VARIABLE(X). { 976 if( !(X.z[0]=='#' && sqlite3Isdigit(X.z[1])) ){ 977 u32 n = X.n; 978 A = tokenExpr(pParse, TK_VARIABLE, X); 979 sqlite3ExprAssignVarNumber(pParse, A, n); 980 }else{ 981 /* When doing a nested parse, one can include terms in an expression 982 ** that look like this: #1 #2 ... These terms refer to registers 983 ** in the virtual machine. #N is the N-th register. */ 984 Token t = X; /*A-overwrites-X*/ 985 assert( t.n>=2 ); 986 if( pParse->nested==0 ){ 987 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &t); 988 A = 0; 989 }else{ 990 A = sqlite3PExpr(pParse, TK_REGISTER, 0, 0); 991 if( A ) sqlite3GetInt32(&t.z[1], &A->iTable); 992 } 993 } 994 } 995 expr(A) ::= expr(A) COLLATE ids(C). { 996 A = sqlite3ExprAddCollateToken(pParse, A, &C, 1); 997 } 998 %ifndef SQLITE_OMIT_CAST 999 expr(A) ::= CAST LP expr(E) AS typetoken(T) RP. { 1000 A = sqlite3ExprAlloc(pParse->db, TK_CAST, &T, 1); 1001 sqlite3ExprAttachSubtrees(pParse->db, A, E, 0); 1002 } 1003 %endif SQLITE_OMIT_CAST 1004 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP. { 1005 if( Y && Y->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 1006 sqlite3ErrorMsg(pParse, "too many arguments on function %T", &X); 1007 } 1008 A = sqlite3ExprFunction(pParse, Y, &X); 1009 if( D==SF_Distinct && A ){ 1010 A->flags |= EP_Distinct; 1011 } 1012 } 1013 expr(A) ::= id(X) LP STAR RP. { 1014 A = sqlite3ExprFunction(pParse, 0, &X); 1015 } 1016 term(A) ::= CTIME_KW(OP). { 1017 A = sqlite3ExprFunction(pParse, 0, &OP); 1018 } 1019 1020 expr(A) ::= LP nexprlist(X) COMMA expr(Y) RP. { 1021 ExprList *pList = sqlite3ExprListAppend(pParse, X, Y); 1022 A = sqlite3PExpr(pParse, TK_VECTOR, 0, 0); 1023 if( A ){ 1024 A->x.pList = pList; 1025 }else{ 1026 sqlite3ExprListDelete(pParse->db, pList); 1027 } 1028 } 1029 1030 expr(A) ::= expr(A) AND(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 1031 expr(A) ::= expr(A) OR(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 1032 expr(A) ::= expr(A) LT|GT|GE|LE(OP) expr(Y). 1033 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1034 expr(A) ::= expr(A) EQ|NE(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 1035 expr(A) ::= expr(A) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y). 1036 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1037 expr(A) ::= expr(A) PLUS|MINUS(OP) expr(Y). 1038 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1039 expr(A) ::= expr(A) STAR|SLASH|REM(OP) expr(Y). 1040 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1041 expr(A) ::= expr(A) CONCAT(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 1042 %type likeop {Token} 1043 likeop(A) ::= LIKE_KW|MATCH(A). 1044 likeop(A) ::= NOT LIKE_KW|MATCH(X). {A=X; A.n|=0x80000000; /*A-overwrite-X*/} 1045 expr(A) ::= expr(A) likeop(OP) expr(Y). [LIKE_KW] { 1046 ExprList *pList; 1047 int bNot = OP.n & 0x80000000; 1048 OP.n &= 0x7fffffff; 1049 pList = sqlite3ExprListAppend(pParse,0, Y); 1050 pList = sqlite3ExprListAppend(pParse,pList, A); 1051 A = sqlite3ExprFunction(pParse, pList, &OP); 1052 if( bNot ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1053 if( A ) A->flags |= EP_InfixFunc; 1054 } 1055 expr(A) ::= expr(A) likeop(OP) expr(Y) ESCAPE expr(E). [LIKE_KW] { 1056 ExprList *pList; 1057 int bNot = OP.n & 0x80000000; 1058 OP.n &= 0x7fffffff; 1059 pList = sqlite3ExprListAppend(pParse,0, Y); 1060 pList = sqlite3ExprListAppend(pParse,pList, A); 1061 pList = sqlite3ExprListAppend(pParse,pList, E); 1062 A = sqlite3ExprFunction(pParse, pList, &OP); 1063 if( bNot ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1064 if( A ) A->flags |= EP_InfixFunc; 1065 } 1066 1067 expr(A) ::= expr(A) ISNULL|NOTNULL(E). {A = sqlite3PExpr(pParse,@E,A,0);} 1068 expr(A) ::= expr(A) NOT NULL. {A = sqlite3PExpr(pParse,TK_NOTNULL,A,0);} 1069 1070 %include { 1071 /* A routine to convert a binary TK_IS or TK_ISNOT expression into a 1072 ** unary TK_ISNULL or TK_NOTNULL expression. */ 1073 static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){ 1074 sqlite3 *db = pParse->db; 1075 if( pA && pY && pY->op==TK_NULL ){ 1076 pA->op = (u8)op; 1077 sqlite3ExprDelete(db, pA->pRight); 1078 pA->pRight = 0; 1079 } 1080 } 1081 } 1082 1083 // expr1 IS expr2 1084 // expr1 IS NOT expr2 1085 // 1086 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL. If expr2 1087 // is any other expression, code as TK_IS or TK_ISNOT. 1088 // 1089 expr(A) ::= expr(A) IS expr(Y). { 1090 A = sqlite3PExpr(pParse,TK_IS,A,Y); 1091 binaryToUnaryIfNull(pParse, Y, A, TK_ISNULL); 1092 } 1093 expr(A) ::= expr(A) IS NOT expr(Y). { 1094 A = sqlite3PExpr(pParse,TK_ISNOT,A,Y); 1095 binaryToUnaryIfNull(pParse, Y, A, TK_NOTNULL); 1096 } 1097 1098 expr(A) ::= NOT(B) expr(X). 1099 {A = sqlite3PExpr(pParse, @B, X, 0);/*A-overwrites-B*/} 1100 expr(A) ::= BITNOT(B) expr(X). 1101 {A = sqlite3PExpr(pParse, @B, X, 0);/*A-overwrites-B*/} 1102 expr(A) ::= MINUS expr(X). [BITNOT] 1103 {A = sqlite3PExpr(pParse, TK_UMINUS, X, 0);} 1104 expr(A) ::= PLUS expr(X). [BITNOT] 1105 {A = sqlite3PExpr(pParse, TK_UPLUS, X, 0);} 1106 1107 %type between_op {int} 1108 between_op(A) ::= BETWEEN. {A = 0;} 1109 between_op(A) ::= NOT BETWEEN. {A = 1;} 1110 expr(A) ::= expr(A) between_op(N) expr(X) AND expr(Y). [BETWEEN] { 1111 ExprList *pList = sqlite3ExprListAppend(pParse,0, X); 1112 pList = sqlite3ExprListAppend(pParse,pList, Y); 1113 A = sqlite3PExpr(pParse, TK_BETWEEN, A, 0); 1114 if( A ){ 1115 A->x.pList = pList; 1116 }else{ 1117 sqlite3ExprListDelete(pParse->db, pList); 1118 } 1119 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1120 } 1121 %ifndef SQLITE_OMIT_SUBQUERY 1122 %type in_op {int} 1123 in_op(A) ::= IN. {A = 0;} 1124 in_op(A) ::= NOT IN. {A = 1;} 1125 expr(A) ::= expr(A) in_op(N) LP exprlist(Y) RP. [IN] { 1126 if( Y==0 ){ 1127 /* Expressions of the form 1128 ** 1129 ** expr1 IN () 1130 ** expr1 NOT IN () 1131 ** 1132 ** simplify to constants 0 (false) and 1 (true), respectively, 1133 ** regardless of the value of expr1. 1134 */ 1135 sqlite3ExprDelete(pParse->db, A); 1136 A = sqlite3ExprAlloc(pParse->db, TK_INTEGER,&sqlite3IntTokens[N],1); 1137 }else if( Y->nExpr==1 ){ 1138 /* Expressions of the form: 1139 ** 1140 ** expr1 IN (?1) 1141 ** expr1 NOT IN (?2) 1142 ** 1143 ** with exactly one value on the RHS can be simplified to something 1144 ** like this: 1145 ** 1146 ** expr1 == ?1 1147 ** expr1 <> ?2 1148 ** 1149 ** But, the RHS of the == or <> is marked with the EP_Generic flag 1150 ** so that it may not contribute to the computation of comparison 1151 ** affinity or the collating sequence to use for comparison. Otherwise, 1152 ** the semantics would be subtly different from IN or NOT IN. 1153 */ 1154 Expr *pRHS = Y->a[0].pExpr; 1155 Y->a[0].pExpr = 0; 1156 sqlite3ExprListDelete(pParse->db, Y); 1157 /* pRHS cannot be NULL because a malloc error would have been detected 1158 ** before now and control would have never reached this point */ 1159 if( ALWAYS(pRHS) ){ 1160 pRHS->flags &= ~EP_Collate; 1161 pRHS->flags |= EP_Generic; 1162 } 1163 A = sqlite3PExpr(pParse, N ? TK_NE : TK_EQ, A, pRHS); 1164 }else{ 1165 A = sqlite3PExpr(pParse, TK_IN, A, 0); 1166 if( A ){ 1167 A->x.pList = Y; 1168 sqlite3ExprSetHeightAndFlags(pParse, A); 1169 }else{ 1170 sqlite3ExprListDelete(pParse->db, Y); 1171 } 1172 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1173 } 1174 } 1175 expr(A) ::= LP select(X) RP. { 1176 A = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 1177 sqlite3PExprAddSelect(pParse, A, X); 1178 } 1179 expr(A) ::= expr(A) in_op(N) LP select(Y) RP. [IN] { 1180 A = sqlite3PExpr(pParse, TK_IN, A, 0); 1181 sqlite3PExprAddSelect(pParse, A, Y); 1182 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1183 } 1184 expr(A) ::= expr(A) in_op(N) nm(Y) dbnm(Z) paren_exprlist(E). [IN] { 1185 SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z); 1186 Select *pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0); 1187 if( E ) sqlite3SrcListFuncArgs(pParse, pSelect ? pSrc : 0, E); 1188 A = sqlite3PExpr(pParse, TK_IN, A, 0); 1189 sqlite3PExprAddSelect(pParse, A, pSelect); 1190 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1191 } 1192 expr(A) ::= EXISTS LP select(Y) RP. { 1193 Expr *p; 1194 p = A = sqlite3PExpr(pParse, TK_EXISTS, 0, 0); 1195 sqlite3PExprAddSelect(pParse, p, Y); 1196 } 1197 %endif SQLITE_OMIT_SUBQUERY 1198 1199 /* CASE expressions */ 1200 expr(A) ::= CASE case_operand(X) case_exprlist(Y) case_else(Z) END. { 1201 A = sqlite3PExpr(pParse, TK_CASE, X, 0); 1202 if( A ){ 1203 A->x.pList = Z ? sqlite3ExprListAppend(pParse,Y,Z) : Y; 1204 sqlite3ExprSetHeightAndFlags(pParse, A); 1205 }else{ 1206 sqlite3ExprListDelete(pParse->db, Y); 1207 sqlite3ExprDelete(pParse->db, Z); 1208 } 1209 } 1210 %type case_exprlist {ExprList*} 1211 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1212 case_exprlist(A) ::= case_exprlist(A) WHEN expr(Y) THEN expr(Z). { 1213 A = sqlite3ExprListAppend(pParse,A, Y); 1214 A = sqlite3ExprListAppend(pParse,A, Z); 1215 } 1216 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). { 1217 A = sqlite3ExprListAppend(pParse,0, Y); 1218 A = sqlite3ExprListAppend(pParse,A, Z); 1219 } 1220 %type case_else {Expr*} 1221 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);} 1222 case_else(A) ::= ELSE expr(X). {A = X;} 1223 case_else(A) ::= . {A = 0;} 1224 %type case_operand {Expr*} 1225 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);} 1226 case_operand(A) ::= expr(X). {A = X; /*A-overwrites-X*/} 1227 case_operand(A) ::= . {A = 0;} 1228 1229 %type exprlist {ExprList*} 1230 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1231 %type nexprlist {ExprList*} 1232 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);} 1233 1234 exprlist(A) ::= nexprlist(A). 1235 exprlist(A) ::= . {A = 0;} 1236 nexprlist(A) ::= nexprlist(A) COMMA expr(Y). 1237 {A = sqlite3ExprListAppend(pParse,A,Y);} 1238 nexprlist(A) ::= expr(Y). 1239 {A = sqlite3ExprListAppend(pParse,0,Y); /*A-overwrites-Y*/} 1240 1241 %ifndef SQLITE_OMIT_SUBQUERY 1242 /* A paren_exprlist is an optional expression list contained inside 1243 ** of parenthesis */ 1244 %type paren_exprlist {ExprList*} 1245 %destructor paren_exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1246 paren_exprlist(A) ::= . {A = 0;} 1247 paren_exprlist(A) ::= LP exprlist(X) RP. {A = X;} 1248 %endif SQLITE_OMIT_SUBQUERY 1249 1250 1251 ///////////////////////////// The CREATE INDEX command /////////////////////// 1252 // 1253 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D) 1254 ON nm(Y) LP sortlist(Z) RP where_opt(W). { 1255 sqlite3CreateIndex(pParse, &X, &D, 1256 sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U, 1257 &S, W, SQLITE_SO_ASC, NE, SQLITE_IDXTYPE_APPDEF); 1258 } 1259 1260 %type uniqueflag {int} 1261 uniqueflag(A) ::= UNIQUE. {A = OE_Abort;} 1262 uniqueflag(A) ::= . {A = OE_None;} 1263 1264 1265 // The eidlist non-terminal (Expression Id List) generates an ExprList 1266 // from a list of identifiers. The identifier names are in ExprList.a[].zName. 1267 // This list is stored in an ExprList rather than an IdList so that it 1268 // can be easily sent to sqlite3ColumnsExprList(). 1269 // 1270 // eidlist is grouped with CREATE INDEX because it used to be the non-terminal 1271 // used for the arguments to an index. That is just an historical accident. 1272 // 1273 // IMPORTANT COMPATIBILITY NOTE: Some prior versions of SQLite accepted 1274 // COLLATE clauses and ASC or DESC keywords on ID lists in inappropriate 1275 // places - places that might have been stored in the sqlite_master schema. 1276 // Those extra features were ignored. But because they might be in some 1277 // (busted) old databases, we need to continue parsing them when loading 1278 // historical schemas. 1279 // 1280 %type eidlist {ExprList*} 1281 %destructor eidlist {sqlite3ExprListDelete(pParse->db, $$);} 1282 %type eidlist_opt {ExprList*} 1283 %destructor eidlist_opt {sqlite3ExprListDelete(pParse->db, $$);} 1284 1285 %include { 1286 /* Add a single new term to an ExprList that is used to store a 1287 ** list of identifiers. Report an error if the ID list contains 1288 ** a COLLATE clause or an ASC or DESC keyword, except ignore the 1289 ** error while parsing a legacy schema. 1290 */ 1291 static ExprList *parserAddExprIdListTerm( 1292 Parse *pParse, 1293 ExprList *pPrior, 1294 Token *pIdToken, 1295 int hasCollate, 1296 int sortOrder 1297 ){ 1298 ExprList *p = sqlite3ExprListAppend(pParse, pPrior, 0); 1299 if( (hasCollate || sortOrder!=SQLITE_SO_UNDEFINED) 1300 && pParse->db->init.busy==0 1301 ){ 1302 sqlite3ErrorMsg(pParse, "syntax error after column name \"%.*s\"", 1303 pIdToken->n, pIdToken->z); 1304 } 1305 sqlite3ExprListSetName(pParse, p, pIdToken, 1); 1306 return p; 1307 } 1308 } // end %include 1309 1310 eidlist_opt(A) ::= . {A = 0;} 1311 eidlist_opt(A) ::= LP eidlist(X) RP. {A = X;} 1312 eidlist(A) ::= eidlist(A) COMMA nm(Y) collate(C) sortorder(Z). { 1313 A = parserAddExprIdListTerm(pParse, A, &Y, C, Z); 1314 } 1315 eidlist(A) ::= nm(Y) collate(C) sortorder(Z). { 1316 A = parserAddExprIdListTerm(pParse, 0, &Y, C, Z); /*A-overwrites-Y*/ 1317 } 1318 1319 %type collate {int} 1320 collate(C) ::= . {C = 0;} 1321 collate(C) ::= COLLATE ids. {C = 1;} 1322 1323 1324 ///////////////////////////// The DROP INDEX command ///////////////////////// 1325 // 1326 cmd ::= DROP INDEX ifexists(E) fullname(X). {sqlite3DropIndex(pParse, X, E);} 1327 1328 ///////////////////////////// The VACUUM command ///////////////////////////// 1329 // 1330 %ifndef SQLITE_OMIT_VACUUM 1331 %ifndef SQLITE_OMIT_ATTACH 1332 cmd ::= VACUUM. {sqlite3Vacuum(pParse,0);} 1333 cmd ::= VACUUM nm(X). {sqlite3Vacuum(pParse,&X);} 1334 %endif SQLITE_OMIT_ATTACH 1335 %endif SQLITE_OMIT_VACUUM 1336 1337 ///////////////////////////// The PRAGMA command ///////////////////////////// 1338 // 1339 %ifndef SQLITE_OMIT_PRAGMA 1340 cmd ::= PRAGMA nm(X) dbnm(Z). {sqlite3Pragma(pParse,&X,&Z,0,0);} 1341 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1342 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1343 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y). 1344 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1345 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP. 1346 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1347 1348 nmnum(A) ::= plus_num(A). 1349 nmnum(A) ::= nm(A). 1350 nmnum(A) ::= ON(A). 1351 nmnum(A) ::= DELETE(A). 1352 nmnum(A) ::= DEFAULT(A). 1353 %endif SQLITE_OMIT_PRAGMA 1354 %token_class number INTEGER|FLOAT. 1355 plus_num(A) ::= PLUS number(X). {A = X;} 1356 plus_num(A) ::= number(A). 1357 minus_num(A) ::= MINUS number(X). {A = X;} 1358 //////////////////////////// The CREATE TRIGGER command ///////////////////// 1359 1360 %ifndef SQLITE_OMIT_TRIGGER 1361 1362 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). { 1363 Token all; 1364 all.z = A.z; 1365 all.n = (int)(Z.z - A.z) + Z.n; 1366 sqlite3FinishTrigger(pParse, S, &all); 1367 } 1368 1369 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z) 1370 trigger_time(C) trigger_event(D) 1371 ON fullname(E) foreach_clause when_clause(G). { 1372 sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR); 1373 A = (Z.n==0?B:Z); /*A-overwrites-T*/ 1374 } 1375 1376 %type trigger_time {int} 1377 trigger_time(A) ::= BEFORE|AFTER(X). { A = @X; /*A-overwrites-X*/ } 1378 trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;} 1379 trigger_time(A) ::= . { A = TK_BEFORE; } 1380 1381 %type trigger_event {struct TrigEvent} 1382 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);} 1383 trigger_event(A) ::= DELETE|INSERT(X). {A.a = @X; /*A-overwrites-X*/ A.b = 0;} 1384 trigger_event(A) ::= UPDATE(X). {A.a = @X; /*A-overwrites-X*/ A.b = 0;} 1385 trigger_event(A) ::= UPDATE OF idlist(X).{A.a = TK_UPDATE; A.b = X;} 1386 1387 foreach_clause ::= . 1388 foreach_clause ::= FOR EACH ROW. 1389 1390 %type when_clause {Expr*} 1391 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);} 1392 when_clause(A) ::= . { A = 0; } 1393 when_clause(A) ::= WHEN expr(X). { A = X; } 1394 1395 %type trigger_cmd_list {TriggerStep*} 1396 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);} 1397 trigger_cmd_list(A) ::= trigger_cmd_list(A) trigger_cmd(X) SEMI. { 1398 assert( A!=0 ); 1399 A->pLast->pNext = X; 1400 A->pLast = X; 1401 } 1402 trigger_cmd_list(A) ::= trigger_cmd(A) SEMI. { 1403 assert( A!=0 ); 1404 A->pLast = A; 1405 } 1406 1407 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements 1408 // within a trigger. The table to INSERT, UPDATE, or DELETE is always in 1409 // the same database as the table that the trigger fires on. 1410 // 1411 %type trnm {Token} 1412 trnm(A) ::= nm(A). 1413 trnm(A) ::= nm DOT nm(X). { 1414 A = X; 1415 sqlite3ErrorMsg(pParse, 1416 "qualified table names are not allowed on INSERT, UPDATE, and DELETE " 1417 "statements within triggers"); 1418 } 1419 1420 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE 1421 // statements within triggers. We make a specific error message for this 1422 // since it is an exception to the default grammar rules. 1423 // 1424 tridxby ::= . 1425 tridxby ::= INDEXED BY nm. { 1426 sqlite3ErrorMsg(pParse, 1427 "the INDEXED BY clause is not allowed on UPDATE or DELETE statements " 1428 "within triggers"); 1429 } 1430 tridxby ::= NOT INDEXED. { 1431 sqlite3ErrorMsg(pParse, 1432 "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements " 1433 "within triggers"); 1434 } 1435 1436 1437 1438 %type trigger_cmd {TriggerStep*} 1439 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);} 1440 // UPDATE 1441 trigger_cmd(A) ::= 1442 UPDATE(B) orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z) scanpt(E). 1443 {A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R, B.z, E);} 1444 1445 // INSERT 1446 trigger_cmd(A) ::= scanpt(B) insert_cmd(R) INTO 1447 trnm(X) idlist_opt(F) select(S) upsert(U) scanpt(Z). { 1448 A = sqlite3TriggerInsertStep(pParse->db,&X,F,S,R,U,B,Z);/*A-overwrites-R*/ 1449 } 1450 // DELETE 1451 trigger_cmd(A) ::= DELETE(B) FROM trnm(X) tridxby where_opt(Y) scanpt(E). 1452 {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y, B.z, E);} 1453 1454 // SELECT 1455 trigger_cmd(A) ::= scanpt(B) select(X) scanpt(E). 1456 {A = sqlite3TriggerSelectStep(pParse->db, X, B, E); /*A-overwrites-X*/} 1457 1458 // The special RAISE expression that may occur in trigger programs 1459 expr(A) ::= RAISE LP IGNORE RP. { 1460 A = sqlite3PExpr(pParse, TK_RAISE, 0, 0); 1461 if( A ){ 1462 A->affinity = OE_Ignore; 1463 } 1464 } 1465 expr(A) ::= RAISE LP raisetype(T) COMMA nm(Z) RP. { 1466 A = sqlite3ExprAlloc(pParse->db, TK_RAISE, &Z, 1); 1467 if( A ) { 1468 A->affinity = (char)T; 1469 } 1470 } 1471 %endif !SQLITE_OMIT_TRIGGER 1472 1473 %type raisetype {int} 1474 raisetype(A) ::= ROLLBACK. {A = OE_Rollback;} 1475 raisetype(A) ::= ABORT. {A = OE_Abort;} 1476 raisetype(A) ::= FAIL. {A = OE_Fail;} 1477 1478 1479 //////////////////////// DROP TRIGGER statement ////////////////////////////// 1480 %ifndef SQLITE_OMIT_TRIGGER 1481 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). { 1482 sqlite3DropTrigger(pParse,X,NOERR); 1483 } 1484 %endif !SQLITE_OMIT_TRIGGER 1485 1486 //////////////////////// ATTACH DATABASE file AS name ///////////////////////// 1487 %ifndef SQLITE_OMIT_ATTACH 1488 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). { 1489 sqlite3Attach(pParse, F, D, K); 1490 } 1491 cmd ::= DETACH database_kw_opt expr(D). { 1492 sqlite3Detach(pParse, D); 1493 } 1494 1495 %type key_opt {Expr*} 1496 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);} 1497 key_opt(A) ::= . { A = 0; } 1498 key_opt(A) ::= KEY expr(X). { A = X; } 1499 1500 database_kw_opt ::= DATABASE. 1501 database_kw_opt ::= . 1502 %endif SQLITE_OMIT_ATTACH 1503 1504 ////////////////////////// REINDEX collation ////////////////////////////////// 1505 %ifndef SQLITE_OMIT_REINDEX 1506 cmd ::= REINDEX. {sqlite3Reindex(pParse, 0, 0);} 1507 cmd ::= REINDEX nm(X) dbnm(Y). {sqlite3Reindex(pParse, &X, &Y);} 1508 %endif SQLITE_OMIT_REINDEX 1509 1510 /////////////////////////////////// ANALYZE /////////////////////////////////// 1511 %ifndef SQLITE_OMIT_ANALYZE 1512 cmd ::= ANALYZE. {sqlite3Analyze(pParse, 0, 0);} 1513 cmd ::= ANALYZE nm(X) dbnm(Y). {sqlite3Analyze(pParse, &X, &Y);} 1514 %endif 1515 1516 //////////////////////// ALTER TABLE table ... //////////////////////////////// 1517 %ifndef SQLITE_OMIT_ALTERTABLE 1518 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). { 1519 sqlite3AlterRenameTable(pParse,X,&Z); 1520 } 1521 cmd ::= ALTER TABLE add_column_fullname 1522 ADD kwcolumn_opt columnname(Y) carglist. { 1523 Y.n = (int)(pParse->sLastToken.z-Y.z) + pParse->sLastToken.n; 1524 sqlite3AlterFinishAddColumn(pParse, &Y); 1525 } 1526 add_column_fullname ::= fullname(X). { 1527 disableLookaside(pParse); 1528 sqlite3AlterBeginAddColumn(pParse, X); 1529 } 1530 kwcolumn_opt ::= . 1531 kwcolumn_opt ::= COLUMNKW. 1532 %endif SQLITE_OMIT_ALTERTABLE 1533 1534 //////////////////////// CREATE VIRTUAL TABLE ... ///////////////////////////// 1535 %ifndef SQLITE_OMIT_VIRTUALTABLE 1536 cmd ::= create_vtab. {sqlite3VtabFinishParse(pParse,0);} 1537 cmd ::= create_vtab LP vtabarglist RP(X). {sqlite3VtabFinishParse(pParse,&X);} 1538 create_vtab ::= createkw VIRTUAL TABLE ifnotexists(E) 1539 nm(X) dbnm(Y) USING nm(Z). { 1540 sqlite3VtabBeginParse(pParse, &X, &Y, &Z, E); 1541 } 1542 vtabarglist ::= vtabarg. 1543 vtabarglist ::= vtabarglist COMMA vtabarg. 1544 vtabarg ::= . {sqlite3VtabArgInit(pParse);} 1545 vtabarg ::= vtabarg vtabargtoken. 1546 vtabargtoken ::= ANY(X). {sqlite3VtabArgExtend(pParse,&X);} 1547 vtabargtoken ::= lp anylist RP(X). {sqlite3VtabArgExtend(pParse,&X);} 1548 lp ::= LP(X). {sqlite3VtabArgExtend(pParse,&X);} 1549 anylist ::= . 1550 anylist ::= anylist LP anylist RP. 1551 anylist ::= anylist ANY. 1552 %endif SQLITE_OMIT_VIRTUALTABLE 1553 1554 1555 //////////////////////// COMMON TABLE EXPRESSIONS //////////////////////////// 1556 %type wqlist {With*} 1557 %destructor wqlist {sqlite3WithDelete(pParse->db, $$);} 1558 1559 with ::= . 1560 %ifndef SQLITE_OMIT_CTE 1561 with ::= WITH wqlist(W). { sqlite3WithPush(pParse, W, 1); } 1562 with ::= WITH RECURSIVE wqlist(W). { sqlite3WithPush(pParse, W, 1); } 1563 1564 wqlist(A) ::= nm(X) eidlist_opt(Y) AS LP select(Z) RP. { 1565 A = sqlite3WithAdd(pParse, 0, &X, Y, Z); /*A-overwrites-X*/ 1566 } 1567 wqlist(A) ::= wqlist(A) COMMA nm(X) eidlist_opt(Y) AS LP select(Z) RP. { 1568 A = sqlite3WithAdd(pParse, A, &X, Y, Z); 1569 } 1570 %endif SQLITE_OMIT_CTE 1571