1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains SQLite's grammar for SQL. Process this file 13 ** using the lemon parser generator to generate C code that runs 14 ** the parser. Lemon will also generate a header file containing 15 ** numeric codes for all of the tokens. 16 */ 17 18 // All token codes are small integers with #defines that begin with "TK_" 19 %token_prefix TK_ 20 21 // The type of the data attached to each token is Token. This is also the 22 // default type for non-terminals. 23 // 24 %token_type {Token} 25 %default_type {Token} 26 27 // The generated parser function takes a 4th argument as follows: 28 %extra_argument {Parse *pParse} 29 30 // This code runs whenever there is a syntax error 31 // 32 %syntax_error { 33 UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */ 34 assert( TOKEN.z[0] ); /* The tokenizer always gives us a token */ 35 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN); 36 } 37 %stack_overflow { 38 UNUSED_PARAMETER(yypMinor); /* Silence some compiler warnings */ 39 sqlite3ErrorMsg(pParse, "parser stack overflow"); 40 } 41 42 // The name of the generated procedure that implements the parser 43 // is as follows: 44 %name sqlite3Parser 45 46 // The following text is included near the beginning of the C source 47 // code file that implements the parser. 48 // 49 %include { 50 #include "sqliteInt.h" 51 52 /* 53 ** Disable all error recovery processing in the parser push-down 54 ** automaton. 55 */ 56 #define YYNOERRORRECOVERY 1 57 58 /* 59 ** Make yytestcase() the same as testcase() 60 */ 61 #define yytestcase(X) testcase(X) 62 63 /* 64 ** An instance of this structure holds information about the 65 ** LIMIT clause of a SELECT statement. 66 */ 67 struct LimitVal { 68 Expr *pLimit; /* The LIMIT expression. NULL if there is no limit */ 69 Expr *pOffset; /* The OFFSET expression. NULL if there is none */ 70 }; 71 72 /* 73 ** An instance of this structure is used to store the LIKE, 74 ** GLOB, NOT LIKE, and NOT GLOB operators. 75 */ 76 struct LikeOp { 77 Token eOperator; /* "like" or "glob" or "regexp" */ 78 int bNot; /* True if the NOT keyword is present */ 79 }; 80 81 /* 82 ** An instance of the following structure describes the event of a 83 ** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT, 84 ** TK_DELETE, or TK_INSTEAD. If the event is of the form 85 ** 86 ** UPDATE ON (a,b,c) 87 ** 88 ** Then the "b" IdList records the list "a,b,c". 89 */ 90 struct TrigEvent { int a; IdList * b; }; 91 92 /* 93 ** An instance of this structure holds the ATTACH key and the key type. 94 */ 95 struct AttachKey { int type; Token key; }; 96 97 /* 98 ** One or more VALUES claues 99 */ 100 struct ValueList { 101 ExprList *pList; 102 Select *pSelect; 103 }; 104 105 } // end %include 106 107 // Input is a single SQL command 108 input ::= cmdlist. 109 cmdlist ::= cmdlist ecmd. 110 cmdlist ::= ecmd. 111 ecmd ::= SEMI. 112 ecmd ::= explain cmdx SEMI. 113 explain ::= . { sqlite3BeginParse(pParse, 0); } 114 %ifndef SQLITE_OMIT_EXPLAIN 115 explain ::= EXPLAIN. { sqlite3BeginParse(pParse, 1); } 116 explain ::= EXPLAIN QUERY PLAN. { sqlite3BeginParse(pParse, 2); } 117 %endif SQLITE_OMIT_EXPLAIN 118 cmdx ::= cmd. { sqlite3FinishCoding(pParse); } 119 120 ///////////////////// Begin and end transactions. //////////////////////////// 121 // 122 123 cmd ::= BEGIN transtype(Y) trans_opt. {sqlite3BeginTransaction(pParse, Y);} 124 trans_opt ::= . 125 trans_opt ::= TRANSACTION. 126 trans_opt ::= TRANSACTION nm. 127 %type transtype {int} 128 transtype(A) ::= . {A = TK_DEFERRED;} 129 transtype(A) ::= DEFERRED(X). {A = @X;} 130 transtype(A) ::= IMMEDIATE(X). {A = @X;} 131 transtype(A) ::= EXCLUSIVE(X). {A = @X;} 132 cmd ::= COMMIT trans_opt. {sqlite3CommitTransaction(pParse);} 133 cmd ::= END trans_opt. {sqlite3CommitTransaction(pParse);} 134 cmd ::= ROLLBACK trans_opt. {sqlite3RollbackTransaction(pParse);} 135 136 savepoint_opt ::= SAVEPOINT. 137 savepoint_opt ::= . 138 cmd ::= SAVEPOINT nm(X). { 139 sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X); 140 } 141 cmd ::= RELEASE savepoint_opt nm(X). { 142 sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X); 143 } 144 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). { 145 sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X); 146 } 147 148 ///////////////////// The CREATE TABLE statement //////////////////////////// 149 // 150 cmd ::= create_table create_table_args. 151 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). { 152 sqlite3StartTable(pParse,&Y,&Z,T,0,0,E); 153 } 154 createkw(A) ::= CREATE(X). { 155 pParse->db->lookaside.bEnabled = 0; 156 A = X; 157 } 158 %type ifnotexists {int} 159 ifnotexists(A) ::= . {A = 0;} 160 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;} 161 %type temp {int} 162 %ifndef SQLITE_OMIT_TEMPDB 163 temp(A) ::= TEMP. {A = 1;} 164 %endif SQLITE_OMIT_TEMPDB 165 temp(A) ::= . {A = 0;} 166 create_table_args ::= LP columnlist conslist_opt(X) RP(Y). { 167 sqlite3EndTable(pParse,&X,&Y,0); 168 } 169 create_table_args ::= AS select(S). { 170 sqlite3EndTable(pParse,0,0,S); 171 sqlite3SelectDelete(pParse->db, S); 172 } 173 columnlist ::= columnlist COMMA column. 174 columnlist ::= column. 175 176 // A "column" is a complete description of a single column in a 177 // CREATE TABLE statement. This includes the column name, its 178 // datatype, and other keywords such as PRIMARY KEY, UNIQUE, REFERENCES, 179 // NOT NULL and so forth. 180 // 181 column(A) ::= columnid(X) type carglist. { 182 A.z = X.z; 183 A.n = (int)(pParse->sLastToken.z-X.z) + pParse->sLastToken.n; 184 } 185 columnid(A) ::= nm(X). { 186 sqlite3AddColumn(pParse,&X); 187 A = X; 188 pParse->constraintName.n = 0; 189 } 190 191 192 // An IDENTIFIER can be a generic identifier, or one of several 193 // keywords. Any non-standard keyword can also be an identifier. 194 // 195 %type id {Token} 196 id(A) ::= ID(X). {A = X;} 197 id(A) ::= INDEXED(X). {A = X;} 198 199 // The following directive causes tokens ABORT, AFTER, ASC, etc. to 200 // fallback to ID if they will not parse as their original value. 201 // This obviates the need for the "id" nonterminal. 202 // 203 %fallback ID 204 ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW 205 CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL FOR 206 IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN 207 QUERY KEY OF OFFSET PRAGMA RAISE RELEASE REPLACE RESTRICT ROW ROLLBACK 208 SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL 209 %ifdef SQLITE_OMIT_COMPOUND_SELECT 210 EXCEPT INTERSECT UNION 211 %endif SQLITE_OMIT_COMPOUND_SELECT 212 REINDEX RENAME CTIME_KW IF 213 . 214 %wildcard ANY. 215 216 // Define operator precedence early so that this is the first occurance 217 // of the operator tokens in the grammer. Keeping the operators together 218 // causes them to be assigned integer values that are close together, 219 // which keeps parser tables smaller. 220 // 221 // The token values assigned to these symbols is determined by the order 222 // in which lemon first sees them. It must be the case that ISNULL/NOTNULL, 223 // NE/EQ, GT/LE, and GE/LT are separated by only a single value. See 224 // the sqlite3ExprIfFalse() routine for additional information on this 225 // constraint. 226 // 227 %left OR. 228 %left AND. 229 %right NOT. 230 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. 231 %left GT LE LT GE. 232 %right ESCAPE. 233 %left BITAND BITOR LSHIFT RSHIFT. 234 %left PLUS MINUS. 235 %left STAR SLASH REM. 236 %left CONCAT. 237 %left COLLATE. 238 %right BITNOT. 239 240 // And "ids" is an identifer-or-string. 241 // 242 %type ids {Token} 243 ids(A) ::= ID|STRING(X). {A = X;} 244 245 // The name of a column or table can be any of the following: 246 // 247 %type nm {Token} 248 nm(A) ::= id(X). {A = X;} 249 nm(A) ::= STRING(X). {A = X;} 250 nm(A) ::= JOIN_KW(X). {A = X;} 251 252 // A typetoken is really one or more tokens that form a type name such 253 // as can be found after the column name in a CREATE TABLE statement. 254 // Multiple tokens are concatenated to form the value of the typetoken. 255 // 256 %type typetoken {Token} 257 type ::= . 258 type ::= typetoken(X). {sqlite3AddColumnType(pParse,&X);} 259 typetoken(A) ::= typename(X). {A = X;} 260 typetoken(A) ::= typename(X) LP signed RP(Y). { 261 A.z = X.z; 262 A.n = (int)(&Y.z[Y.n] - X.z); 263 } 264 typetoken(A) ::= typename(X) LP signed COMMA signed RP(Y). { 265 A.z = X.z; 266 A.n = (int)(&Y.z[Y.n] - X.z); 267 } 268 %type typename {Token} 269 typename(A) ::= ids(X). {A = X;} 270 typename(A) ::= typename(X) ids(Y). {A.z=X.z; A.n=Y.n+(int)(Y.z-X.z);} 271 signed ::= plus_num. 272 signed ::= minus_num. 273 274 // "carglist" is a list of additional constraints that come after the 275 // column name and column type in a CREATE TABLE statement. 276 // 277 carglist ::= carglist ccons. 278 carglist ::= . 279 ccons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} 280 ccons ::= DEFAULT term(X). {sqlite3AddDefaultValue(pParse,&X);} 281 ccons ::= DEFAULT LP expr(X) RP. {sqlite3AddDefaultValue(pParse,&X);} 282 ccons ::= DEFAULT PLUS term(X). {sqlite3AddDefaultValue(pParse,&X);} 283 ccons ::= DEFAULT MINUS(A) term(X). { 284 ExprSpan v; 285 v.pExpr = sqlite3PExpr(pParse, TK_UMINUS, X.pExpr, 0, 0); 286 v.zStart = A.z; 287 v.zEnd = X.zEnd; 288 sqlite3AddDefaultValue(pParse,&v); 289 } 290 ccons ::= DEFAULT id(X). { 291 ExprSpan v; 292 spanExpr(&v, pParse, TK_STRING, &X); 293 sqlite3AddDefaultValue(pParse,&v); 294 } 295 296 // In addition to the type name, we also care about the primary key and 297 // UNIQUE constraints. 298 // 299 ccons ::= NULL onconf. 300 ccons ::= NOT NULL onconf(R). {sqlite3AddNotNull(pParse, R);} 301 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I). 302 {sqlite3AddPrimaryKey(pParse,0,R,I,Z);} 303 ccons ::= UNIQUE onconf(R). {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0);} 304 ccons ::= CHECK LP expr(X) RP. {sqlite3AddCheckConstraint(pParse,X.pExpr);} 305 ccons ::= REFERENCES nm(T) idxlist_opt(TA) refargs(R). 306 {sqlite3CreateForeignKey(pParse,0,&T,TA,R);} 307 ccons ::= defer_subclause(D). {sqlite3DeferForeignKey(pParse,D);} 308 ccons ::= COLLATE ids(C). {sqlite3AddCollateType(pParse, &C);} 309 310 // The optional AUTOINCREMENT keyword 311 %type autoinc {int} 312 autoinc(X) ::= . {X = 0;} 313 autoinc(X) ::= AUTOINCR. {X = 1;} 314 315 // The next group of rules parses the arguments to a REFERENCES clause 316 // that determine if the referential integrity checking is deferred or 317 // or immediate and which determine what action to take if a ref-integ 318 // check fails. 319 // 320 %type refargs {int} 321 refargs(A) ::= . { A = OE_None*0x0101; /* EV: R-19803-45884 */} 322 refargs(A) ::= refargs(X) refarg(Y). { A = (X & ~Y.mask) | Y.value; } 323 %type refarg {struct {int value; int mask;}} 324 refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; } 325 refarg(A) ::= ON INSERT refact. { A.value = 0; A.mask = 0x000000; } 326 refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; } 327 refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; } 328 %type refact {int} 329 refact(A) ::= SET NULL. { A = OE_SetNull; /* EV: R-33326-45252 */} 330 refact(A) ::= SET DEFAULT. { A = OE_SetDflt; /* EV: R-33326-45252 */} 331 refact(A) ::= CASCADE. { A = OE_Cascade; /* EV: R-33326-45252 */} 332 refact(A) ::= RESTRICT. { A = OE_Restrict; /* EV: R-33326-45252 */} 333 refact(A) ::= NO ACTION. { A = OE_None; /* EV: R-33326-45252 */} 334 %type defer_subclause {int} 335 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt. {A = 0;} 336 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;} 337 %type init_deferred_pred_opt {int} 338 init_deferred_pred_opt(A) ::= . {A = 0;} 339 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;} 340 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;} 341 342 conslist_opt(A) ::= . {A.n = 0; A.z = 0;} 343 conslist_opt(A) ::= COMMA(X) conslist. {A = X;} 344 conslist ::= conslist tconscomma tcons. 345 conslist ::= tcons. 346 tconscomma ::= COMMA. {pParse->constraintName.n = 0;} 347 tconscomma ::= . 348 tcons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} 349 tcons ::= PRIMARY KEY LP idxlist(X) autoinc(I) RP onconf(R). 350 {sqlite3AddPrimaryKey(pParse,X,R,I,0);} 351 tcons ::= UNIQUE LP idxlist(X) RP onconf(R). 352 {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0);} 353 tcons ::= CHECK LP expr(E) RP onconf. 354 {sqlite3AddCheckConstraint(pParse,E.pExpr);} 355 tcons ::= FOREIGN KEY LP idxlist(FA) RP 356 REFERENCES nm(T) idxlist_opt(TA) refargs(R) defer_subclause_opt(D). { 357 sqlite3CreateForeignKey(pParse, FA, &T, TA, R); 358 sqlite3DeferForeignKey(pParse, D); 359 } 360 %type defer_subclause_opt {int} 361 defer_subclause_opt(A) ::= . {A = 0;} 362 defer_subclause_opt(A) ::= defer_subclause(X). {A = X;} 363 364 // The following is a non-standard extension that allows us to declare the 365 // default behavior when there is a constraint conflict. 366 // 367 %type onconf {int} 368 %type orconf {u8} 369 %type resolvetype {int} 370 onconf(A) ::= . {A = OE_Default;} 371 onconf(A) ::= ON CONFLICT resolvetype(X). {A = X;} 372 orconf(A) ::= . {A = OE_Default;} 373 orconf(A) ::= OR resolvetype(X). {A = (u8)X;} 374 resolvetype(A) ::= raisetype(X). {A = X;} 375 resolvetype(A) ::= IGNORE. {A = OE_Ignore;} 376 resolvetype(A) ::= REPLACE. {A = OE_Replace;} 377 378 ////////////////////////// The DROP TABLE ///////////////////////////////////// 379 // 380 cmd ::= DROP TABLE ifexists(E) fullname(X). { 381 sqlite3DropTable(pParse, X, 0, E); 382 } 383 %type ifexists {int} 384 ifexists(A) ::= IF EXISTS. {A = 1;} 385 ifexists(A) ::= . {A = 0;} 386 387 ///////////////////// The CREATE VIEW statement ///////////////////////////// 388 // 389 %ifndef SQLITE_OMIT_VIEW 390 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) AS select(S). { 391 sqlite3CreateView(pParse, &X, &Y, &Z, S, T, E); 392 } 393 cmd ::= DROP VIEW ifexists(E) fullname(X). { 394 sqlite3DropTable(pParse, X, 1, E); 395 } 396 %endif SQLITE_OMIT_VIEW 397 398 //////////////////////// The SELECT statement ///////////////////////////////// 399 // 400 cmd ::= select(X). { 401 SelectDest dest = {SRT_Output, 0, 0, 0, 0}; 402 sqlite3Select(pParse, X, &dest); 403 sqlite3ExplainBegin(pParse->pVdbe); 404 sqlite3ExplainSelect(pParse->pVdbe, X); 405 sqlite3ExplainFinish(pParse->pVdbe); 406 sqlite3SelectDelete(pParse->db, X); 407 } 408 409 %type select {Select*} 410 %destructor select {sqlite3SelectDelete(pParse->db, $$);} 411 %type oneselect {Select*} 412 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);} 413 414 select(A) ::= oneselect(X). {A = X;} 415 %ifndef SQLITE_OMIT_COMPOUND_SELECT 416 select(A) ::= select(X) multiselect_op(Y) oneselect(Z). { 417 if( Z ){ 418 Z->op = (u8)Y; 419 Z->pPrior = X; 420 }else{ 421 sqlite3SelectDelete(pParse->db, X); 422 } 423 A = Z; 424 } 425 %type multiselect_op {int} 426 multiselect_op(A) ::= UNION(OP). {A = @OP;} 427 multiselect_op(A) ::= UNION ALL. {A = TK_ALL;} 428 multiselect_op(A) ::= EXCEPT|INTERSECT(OP). {A = @OP;} 429 %endif SQLITE_OMIT_COMPOUND_SELECT 430 oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y) 431 groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). { 432 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L.pLimit,L.pOffset); 433 } 434 435 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is 436 // present and false (0) if it is not. 437 // 438 %type distinct {u16} 439 distinct(A) ::= DISTINCT. {A = SF_Distinct;} 440 distinct(A) ::= ALL. {A = 0;} 441 distinct(A) ::= . {A = 0;} 442 443 // selcollist is a list of expressions that are to become the return 444 // values of the SELECT statement. The "*" in statements like 445 // "SELECT * FROM ..." is encoded as a special expression with an 446 // opcode of TK_ALL. 447 // 448 %type selcollist {ExprList*} 449 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);} 450 %type sclp {ExprList*} 451 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);} 452 sclp(A) ::= selcollist(X) COMMA. {A = X;} 453 sclp(A) ::= . {A = 0;} 454 selcollist(A) ::= sclp(P) expr(X) as(Y). { 455 A = sqlite3ExprListAppend(pParse, P, X.pExpr); 456 if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1); 457 sqlite3ExprListSetSpan(pParse,A,&X); 458 } 459 selcollist(A) ::= sclp(P) STAR. { 460 Expr *p = sqlite3Expr(pParse->db, TK_ALL, 0); 461 A = sqlite3ExprListAppend(pParse, P, p); 462 } 463 selcollist(A) ::= sclp(P) nm(X) DOT STAR(Y). { 464 Expr *pRight = sqlite3PExpr(pParse, TK_ALL, 0, 0, &Y); 465 Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); 466 Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 467 A = sqlite3ExprListAppend(pParse,P, pDot); 468 } 469 470 // An option "AS <id>" phrase that can follow one of the expressions that 471 // define the result set, or one of the tables in the FROM clause. 472 // 473 %type as {Token} 474 as(X) ::= AS nm(Y). {X = Y;} 475 as(X) ::= ids(Y). {X = Y;} 476 as(X) ::= . {X.n = 0;} 477 478 479 %type seltablist {SrcList*} 480 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);} 481 %type stl_prefix {SrcList*} 482 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);} 483 %type from {SrcList*} 484 %destructor from {sqlite3SrcListDelete(pParse->db, $$);} 485 486 // A complete FROM clause. 487 // 488 from(A) ::= . {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));} 489 from(A) ::= FROM seltablist(X). { 490 A = X; 491 sqlite3SrcListShiftJoinType(A); 492 } 493 494 // "seltablist" is a "Select Table List" - the content of the FROM clause 495 // in a SELECT statement. "stl_prefix" is a prefix of this list. 496 // 497 stl_prefix(A) ::= seltablist(X) joinop(Y). { 498 A = X; 499 if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].jointype = (u8)Y; 500 } 501 stl_prefix(A) ::= . {A = 0;} 502 seltablist(A) ::= stl_prefix(X) nm(Y) dbnm(D) as(Z) indexed_opt(I) 503 on_opt(N) using_opt(U). { 504 A = sqlite3SrcListAppendFromTerm(pParse,X,&Y,&D,&Z,0,N,U); 505 sqlite3SrcListIndexedBy(pParse, A, &I); 506 } 507 %ifndef SQLITE_OMIT_SUBQUERY 508 seltablist(A) ::= stl_prefix(X) LP select(S) RP 509 as(Z) on_opt(N) using_opt(U). { 510 A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,S,N,U); 511 } 512 seltablist(A) ::= stl_prefix(X) LP seltablist(F) RP 513 as(Z) on_opt(N) using_opt(U). { 514 if( X==0 && Z.n==0 && N==0 && U==0 ){ 515 A = F; 516 }else if( F->nSrc==1 ){ 517 A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,0,N,U); 518 if( A ){ 519 struct SrcList_item *pNew = &A->a[A->nSrc-1]; 520 struct SrcList_item *pOld = F->a; 521 pNew->zName = pOld->zName; 522 pNew->zDatabase = pOld->zDatabase; 523 pNew->pSelect = pOld->pSelect; 524 pOld->zName = pOld->zDatabase = 0; 525 pOld->pSelect = 0; 526 } 527 sqlite3SrcListDelete(pParse->db, F); 528 }else{ 529 Select *pSubquery; 530 sqlite3SrcListShiftJoinType(F); 531 pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,SF_NestedFrom,0,0); 532 A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,pSubquery,N,U); 533 } 534 } 535 %endif SQLITE_OMIT_SUBQUERY 536 537 %type dbnm {Token} 538 dbnm(A) ::= . {A.z=0; A.n=0;} 539 dbnm(A) ::= DOT nm(X). {A = X;} 540 541 %type fullname {SrcList*} 542 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);} 543 fullname(A) ::= nm(X) dbnm(Y). {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y);} 544 545 %type joinop {int} 546 %type joinop2 {int} 547 joinop(X) ::= COMMA|JOIN. { X = JT_INNER; } 548 joinop(X) ::= JOIN_KW(A) JOIN. { X = sqlite3JoinType(pParse,&A,0,0); } 549 joinop(X) ::= JOIN_KW(A) nm(B) JOIN. { X = sqlite3JoinType(pParse,&A,&B,0); } 550 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN. 551 { X = sqlite3JoinType(pParse,&A,&B,&C); } 552 553 %type on_opt {Expr*} 554 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);} 555 on_opt(N) ::= ON expr(E). {N = E.pExpr;} 556 on_opt(N) ::= . {N = 0;} 557 558 // Note that this block abuses the Token type just a little. If there is 559 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If 560 // there is an INDEXED BY clause, then the token is populated as per normal, 561 // with z pointing to the token data and n containing the number of bytes 562 // in the token. 563 // 564 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is 565 // normally illegal. The sqlite3SrcListIndexedBy() function 566 // recognizes and interprets this as a special case. 567 // 568 %type indexed_opt {Token} 569 indexed_opt(A) ::= . {A.z=0; A.n=0;} 570 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;} 571 indexed_opt(A) ::= NOT INDEXED. {A.z=0; A.n=1;} 572 573 %type using_opt {IdList*} 574 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);} 575 using_opt(U) ::= USING LP inscollist(L) RP. {U = L;} 576 using_opt(U) ::= . {U = 0;} 577 578 579 %type orderby_opt {ExprList*} 580 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);} 581 %type sortlist {ExprList*} 582 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);} 583 584 orderby_opt(A) ::= . {A = 0;} 585 orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;} 586 sortlist(A) ::= sortlist(X) COMMA expr(Y) sortorder(Z). { 587 A = sqlite3ExprListAppend(pParse,X,Y.pExpr); 588 if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; 589 } 590 sortlist(A) ::= expr(Y) sortorder(Z). { 591 A = sqlite3ExprListAppend(pParse,0,Y.pExpr); 592 if( A && ALWAYS(A->a) ) A->a[0].sortOrder = (u8)Z; 593 } 594 595 %type sortorder {int} 596 597 sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;} 598 sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;} 599 sortorder(A) ::= . {A = SQLITE_SO_ASC;} 600 601 %type groupby_opt {ExprList*} 602 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);} 603 groupby_opt(A) ::= . {A = 0;} 604 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;} 605 606 %type having_opt {Expr*} 607 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);} 608 having_opt(A) ::= . {A = 0;} 609 having_opt(A) ::= HAVING expr(X). {A = X.pExpr;} 610 611 %type limit_opt {struct LimitVal} 612 613 // The destructor for limit_opt will never fire in the current grammar. 614 // The limit_opt non-terminal only occurs at the end of a single production 615 // rule for SELECT statements. As soon as the rule that create the 616 // limit_opt non-terminal reduces, the SELECT statement rule will also 617 // reduce. So there is never a limit_opt non-terminal on the stack 618 // except as a transient. So there is never anything to destroy. 619 // 620 //%destructor limit_opt { 621 // sqlite3ExprDelete(pParse->db, $$.pLimit); 622 // sqlite3ExprDelete(pParse->db, $$.pOffset); 623 //} 624 limit_opt(A) ::= . {A.pLimit = 0; A.pOffset = 0;} 625 limit_opt(A) ::= LIMIT expr(X). {A.pLimit = X.pExpr; A.pOffset = 0;} 626 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y). 627 {A.pLimit = X.pExpr; A.pOffset = Y.pExpr;} 628 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y). 629 {A.pOffset = X.pExpr; A.pLimit = Y.pExpr;} 630 631 /////////////////////////// The DELETE statement ///////////////////////////// 632 // 633 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 634 cmd ::= DELETE FROM fullname(X) indexed_opt(I) where_opt(W) 635 orderby_opt(O) limit_opt(L). { 636 sqlite3SrcListIndexedBy(pParse, X, &I); 637 W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "DELETE"); 638 sqlite3DeleteFrom(pParse,X,W); 639 } 640 %endif 641 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 642 cmd ::= DELETE FROM fullname(X) indexed_opt(I) where_opt(W). { 643 sqlite3SrcListIndexedBy(pParse, X, &I); 644 sqlite3DeleteFrom(pParse,X,W); 645 } 646 %endif 647 648 %type where_opt {Expr*} 649 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);} 650 651 where_opt(A) ::= . {A = 0;} 652 where_opt(A) ::= WHERE expr(X). {A = X.pExpr;} 653 654 ////////////////////////// The UPDATE command //////////////////////////////// 655 // 656 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 657 cmd ::= UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) where_opt(W) 658 orderby_opt(O) limit_opt(L). { 659 sqlite3SrcListIndexedBy(pParse, X, &I); 660 sqlite3ExprListCheckLength(pParse,Y,"set list"); 661 W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "UPDATE"); 662 sqlite3Update(pParse,X,Y,W,R); 663 } 664 %endif 665 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 666 cmd ::= UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) 667 where_opt(W). { 668 sqlite3SrcListIndexedBy(pParse, X, &I); 669 sqlite3ExprListCheckLength(pParse,Y,"set list"); 670 sqlite3Update(pParse,X,Y,W,R); 671 } 672 %endif 673 674 %type setlist {ExprList*} 675 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);} 676 677 setlist(A) ::= setlist(Z) COMMA nm(X) EQ expr(Y). { 678 A = sqlite3ExprListAppend(pParse, Z, Y.pExpr); 679 sqlite3ExprListSetName(pParse, A, &X, 1); 680 } 681 setlist(A) ::= nm(X) EQ expr(Y). { 682 A = sqlite3ExprListAppend(pParse, 0, Y.pExpr); 683 sqlite3ExprListSetName(pParse, A, &X, 1); 684 } 685 686 ////////////////////////// The INSERT command ///////////////////////////////// 687 // 688 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) valuelist(Y). 689 {sqlite3Insert(pParse, X, Y.pList, Y.pSelect, F, R);} 690 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) select(S). 691 {sqlite3Insert(pParse, X, 0, S, F, R);} 692 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) DEFAULT VALUES. 693 {sqlite3Insert(pParse, X, 0, 0, F, R);} 694 695 %type insert_cmd {u8} 696 insert_cmd(A) ::= INSERT orconf(R). {A = R;} 697 insert_cmd(A) ::= REPLACE. {A = OE_Replace;} 698 699 // A ValueList is either a single VALUES clause or a comma-separated list 700 // of VALUES clauses. If it is a single VALUES clause then the 701 // ValueList.pList field points to the expression list of that clause. 702 // If it is a list of VALUES clauses, then those clauses are transformed 703 // into a set of SELECT statements without FROM clauses and connected by 704 // UNION ALL and the ValueList.pSelect points to the right-most SELECT in 705 // that compound. 706 %type valuelist {struct ValueList} 707 %destructor valuelist { 708 sqlite3ExprListDelete(pParse->db, $$.pList); 709 sqlite3SelectDelete(pParse->db, $$.pSelect); 710 } 711 valuelist(A) ::= VALUES LP nexprlist(X) RP. { 712 A.pList = X; 713 A.pSelect = 0; 714 } 715 716 // Since a list of VALUEs is inplemented as a compound SELECT, we have 717 // to disable the value list option if compound SELECTs are disabled. 718 %ifndef SQLITE_OMIT_COMPOUND_SELECT 719 valuelist(A) ::= valuelist(X) COMMA LP exprlist(Y) RP. { 720 Select *pRight = sqlite3SelectNew(pParse, Y, 0, 0, 0, 0, 0, 0, 0, 0); 721 if( X.pList ){ 722 X.pSelect = sqlite3SelectNew(pParse, X.pList, 0, 0, 0, 0, 0, 0, 0, 0); 723 X.pList = 0; 724 } 725 A.pList = 0; 726 if( X.pSelect==0 || pRight==0 ){ 727 sqlite3SelectDelete(pParse->db, pRight); 728 sqlite3SelectDelete(pParse->db, X.pSelect); 729 A.pSelect = 0; 730 }else{ 731 pRight->op = TK_ALL; 732 pRight->pPrior = X.pSelect; 733 pRight->selFlags |= SF_Values; 734 pRight->pPrior->selFlags |= SF_Values; 735 A.pSelect = pRight; 736 } 737 } 738 %endif SQLITE_OMIT_COMPOUND_SELECT 739 740 %type inscollist_opt {IdList*} 741 %destructor inscollist_opt {sqlite3IdListDelete(pParse->db, $$);} 742 %type inscollist {IdList*} 743 %destructor inscollist {sqlite3IdListDelete(pParse->db, $$);} 744 745 inscollist_opt(A) ::= . {A = 0;} 746 inscollist_opt(A) ::= LP inscollist(X) RP. {A = X;} 747 inscollist(A) ::= inscollist(X) COMMA nm(Y). 748 {A = sqlite3IdListAppend(pParse->db,X,&Y);} 749 inscollist(A) ::= nm(Y). 750 {A = sqlite3IdListAppend(pParse->db,0,&Y);} 751 752 /////////////////////////// Expression Processing ///////////////////////////// 753 // 754 755 %type expr {ExprSpan} 756 %destructor expr {sqlite3ExprDelete(pParse->db, $$.pExpr);} 757 %type term {ExprSpan} 758 %destructor term {sqlite3ExprDelete(pParse->db, $$.pExpr);} 759 760 %include { 761 /* This is a utility routine used to set the ExprSpan.zStart and 762 ** ExprSpan.zEnd values of pOut so that the span covers the complete 763 ** range of text beginning with pStart and going to the end of pEnd. 764 */ 765 static void spanSet(ExprSpan *pOut, Token *pStart, Token *pEnd){ 766 pOut->zStart = pStart->z; 767 pOut->zEnd = &pEnd->z[pEnd->n]; 768 } 769 770 /* Construct a new Expr object from a single identifier. Use the 771 ** new Expr to populate pOut. Set the span of pOut to be the identifier 772 ** that created the expression. 773 */ 774 static void spanExpr(ExprSpan *pOut, Parse *pParse, int op, Token *pValue){ 775 pOut->pExpr = sqlite3PExpr(pParse, op, 0, 0, pValue); 776 pOut->zStart = pValue->z; 777 pOut->zEnd = &pValue->z[pValue->n]; 778 } 779 } 780 781 expr(A) ::= term(X). {A = X;} 782 expr(A) ::= LP(B) expr(X) RP(E). {A.pExpr = X.pExpr; spanSet(&A,&B,&E);} 783 term(A) ::= NULL(X). {spanExpr(&A, pParse, @X, &X);} 784 expr(A) ::= id(X). {spanExpr(&A, pParse, TK_ID, &X);} 785 expr(A) ::= JOIN_KW(X). {spanExpr(&A, pParse, TK_ID, &X);} 786 expr(A) ::= nm(X) DOT nm(Y). { 787 Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); 788 Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y); 789 A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0); 790 spanSet(&A,&X,&Y); 791 } 792 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). { 793 Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); 794 Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y); 795 Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Z); 796 Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0); 797 A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0); 798 spanSet(&A,&X,&Z); 799 } 800 term(A) ::= INTEGER|FLOAT|BLOB(X). {spanExpr(&A, pParse, @X, &X);} 801 term(A) ::= STRING(X). {spanExpr(&A, pParse, @X, &X);} 802 expr(A) ::= REGISTER(X). { 803 /* When doing a nested parse, one can include terms in an expression 804 ** that look like this: #1 #2 ... These terms refer to registers 805 ** in the virtual machine. #N is the N-th register. */ 806 if( pParse->nested==0 ){ 807 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &X); 808 A.pExpr = 0; 809 }else{ 810 A.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, &X); 811 if( A.pExpr ) sqlite3GetInt32(&X.z[1], &A.pExpr->iTable); 812 } 813 spanSet(&A, &X, &X); 814 } 815 expr(A) ::= VARIABLE(X). { 816 spanExpr(&A, pParse, TK_VARIABLE, &X); 817 sqlite3ExprAssignVarNumber(pParse, A.pExpr); 818 spanSet(&A, &X, &X); 819 } 820 expr(A) ::= expr(E) COLLATE ids(C). { 821 A.pExpr = sqlite3ExprAddCollateToken(pParse, E.pExpr, &C); 822 A.zStart = E.zStart; 823 A.zEnd = &C.z[C.n]; 824 } 825 %ifndef SQLITE_OMIT_CAST 826 expr(A) ::= CAST(X) LP expr(E) AS typetoken(T) RP(Y). { 827 A.pExpr = sqlite3PExpr(pParse, TK_CAST, E.pExpr, 0, &T); 828 spanSet(&A,&X,&Y); 829 } 830 %endif SQLITE_OMIT_CAST 831 expr(A) ::= ID(X) LP distinct(D) exprlist(Y) RP(E). { 832 if( Y && Y->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 833 sqlite3ErrorMsg(pParse, "too many arguments on function %T", &X); 834 } 835 A.pExpr = sqlite3ExprFunction(pParse, Y, &X); 836 spanSet(&A,&X,&E); 837 if( D && A.pExpr ){ 838 A.pExpr->flags |= EP_Distinct; 839 } 840 } 841 expr(A) ::= ID(X) LP STAR RP(E). { 842 A.pExpr = sqlite3ExprFunction(pParse, 0, &X); 843 spanSet(&A,&X,&E); 844 } 845 term(A) ::= CTIME_KW(OP). { 846 /* The CURRENT_TIME, CURRENT_DATE, and CURRENT_TIMESTAMP values are 847 ** treated as functions that return constants */ 848 A.pExpr = sqlite3ExprFunction(pParse, 0,&OP); 849 if( A.pExpr ){ 850 A.pExpr->op = TK_CONST_FUNC; 851 } 852 spanSet(&A, &OP, &OP); 853 } 854 855 %include { 856 /* This routine constructs a binary expression node out of two ExprSpan 857 ** objects and uses the result to populate a new ExprSpan object. 858 */ 859 static void spanBinaryExpr( 860 ExprSpan *pOut, /* Write the result here */ 861 Parse *pParse, /* The parsing context. Errors accumulate here */ 862 int op, /* The binary operation */ 863 ExprSpan *pLeft, /* The left operand */ 864 ExprSpan *pRight /* The right operand */ 865 ){ 866 pOut->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr, 0); 867 pOut->zStart = pLeft->zStart; 868 pOut->zEnd = pRight->zEnd; 869 } 870 } 871 872 expr(A) ::= expr(X) AND(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 873 expr(A) ::= expr(X) OR(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 874 expr(A) ::= expr(X) LT|GT|GE|LE(OP) expr(Y). 875 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 876 expr(A) ::= expr(X) EQ|NE(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 877 expr(A) ::= expr(X) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y). 878 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 879 expr(A) ::= expr(X) PLUS|MINUS(OP) expr(Y). 880 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 881 expr(A) ::= expr(X) STAR|SLASH|REM(OP) expr(Y). 882 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 883 expr(A) ::= expr(X) CONCAT(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 884 %type likeop {struct LikeOp} 885 likeop(A) ::= LIKE_KW(X). {A.eOperator = X; A.bNot = 0;} 886 likeop(A) ::= NOT LIKE_KW(X). {A.eOperator = X; A.bNot = 1;} 887 likeop(A) ::= MATCH(X). {A.eOperator = X; A.bNot = 0;} 888 likeop(A) ::= NOT MATCH(X). {A.eOperator = X; A.bNot = 1;} 889 expr(A) ::= expr(X) likeop(OP) expr(Y). [LIKE_KW] { 890 ExprList *pList; 891 pList = sqlite3ExprListAppend(pParse,0, Y.pExpr); 892 pList = sqlite3ExprListAppend(pParse,pList, X.pExpr); 893 A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator); 894 if( OP.bNot ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 895 A.zStart = X.zStart; 896 A.zEnd = Y.zEnd; 897 if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc; 898 } 899 expr(A) ::= expr(X) likeop(OP) expr(Y) ESCAPE expr(E). [LIKE_KW] { 900 ExprList *pList; 901 pList = sqlite3ExprListAppend(pParse,0, Y.pExpr); 902 pList = sqlite3ExprListAppend(pParse,pList, X.pExpr); 903 pList = sqlite3ExprListAppend(pParse,pList, E.pExpr); 904 A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator); 905 if( OP.bNot ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 906 A.zStart = X.zStart; 907 A.zEnd = E.zEnd; 908 if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc; 909 } 910 911 %include { 912 /* Construct an expression node for a unary postfix operator 913 */ 914 static void spanUnaryPostfix( 915 ExprSpan *pOut, /* Write the new expression node here */ 916 Parse *pParse, /* Parsing context to record errors */ 917 int op, /* The operator */ 918 ExprSpan *pOperand, /* The operand */ 919 Token *pPostOp /* The operand token for setting the span */ 920 ){ 921 pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0); 922 pOut->zStart = pOperand->zStart; 923 pOut->zEnd = &pPostOp->z[pPostOp->n]; 924 } 925 } 926 927 expr(A) ::= expr(X) ISNULL|NOTNULL(E). {spanUnaryPostfix(&A,pParse,@E,&X,&E);} 928 expr(A) ::= expr(X) NOT NULL(E). {spanUnaryPostfix(&A,pParse,TK_NOTNULL,&X,&E);} 929 930 %include { 931 /* A routine to convert a binary TK_IS or TK_ISNOT expression into a 932 ** unary TK_ISNULL or TK_NOTNULL expression. */ 933 static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){ 934 sqlite3 *db = pParse->db; 935 if( db->mallocFailed==0 && pY->op==TK_NULL ){ 936 pA->op = (u8)op; 937 sqlite3ExprDelete(db, pA->pRight); 938 pA->pRight = 0; 939 } 940 } 941 } 942 943 // expr1 IS expr2 944 // expr1 IS NOT expr2 945 // 946 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL. If expr2 947 // is any other expression, code as TK_IS or TK_ISNOT. 948 // 949 expr(A) ::= expr(X) IS expr(Y). { 950 spanBinaryExpr(&A,pParse,TK_IS,&X,&Y); 951 binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_ISNULL); 952 } 953 expr(A) ::= expr(X) IS NOT expr(Y). { 954 spanBinaryExpr(&A,pParse,TK_ISNOT,&X,&Y); 955 binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_NOTNULL); 956 } 957 958 %include { 959 /* Construct an expression node for a unary prefix operator 960 */ 961 static void spanUnaryPrefix( 962 ExprSpan *pOut, /* Write the new expression node here */ 963 Parse *pParse, /* Parsing context to record errors */ 964 int op, /* The operator */ 965 ExprSpan *pOperand, /* The operand */ 966 Token *pPreOp /* The operand token for setting the span */ 967 ){ 968 pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0); 969 pOut->zStart = pPreOp->z; 970 pOut->zEnd = pOperand->zEnd; 971 } 972 } 973 974 975 976 expr(A) ::= NOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);} 977 expr(A) ::= BITNOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);} 978 expr(A) ::= MINUS(B) expr(X). [BITNOT] 979 {spanUnaryPrefix(&A,pParse,TK_UMINUS,&X,&B);} 980 expr(A) ::= PLUS(B) expr(X). [BITNOT] 981 {spanUnaryPrefix(&A,pParse,TK_UPLUS,&X,&B);} 982 983 %type between_op {int} 984 between_op(A) ::= BETWEEN. {A = 0;} 985 between_op(A) ::= NOT BETWEEN. {A = 1;} 986 expr(A) ::= expr(W) between_op(N) expr(X) AND expr(Y). [BETWEEN] { 987 ExprList *pList = sqlite3ExprListAppend(pParse,0, X.pExpr); 988 pList = sqlite3ExprListAppend(pParse,pList, Y.pExpr); 989 A.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, W.pExpr, 0, 0); 990 if( A.pExpr ){ 991 A.pExpr->x.pList = pList; 992 }else{ 993 sqlite3ExprListDelete(pParse->db, pList); 994 } 995 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 996 A.zStart = W.zStart; 997 A.zEnd = Y.zEnd; 998 } 999 %ifndef SQLITE_OMIT_SUBQUERY 1000 %type in_op {int} 1001 in_op(A) ::= IN. {A = 0;} 1002 in_op(A) ::= NOT IN. {A = 1;} 1003 expr(A) ::= expr(X) in_op(N) LP exprlist(Y) RP(E). [IN] { 1004 if( Y==0 ){ 1005 /* Expressions of the form 1006 ** 1007 ** expr1 IN () 1008 ** expr1 NOT IN () 1009 ** 1010 ** simplify to constants 0 (false) and 1 (true), respectively, 1011 ** regardless of the value of expr1. 1012 */ 1013 A.pExpr = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &sqlite3IntTokens[N]); 1014 sqlite3ExprDelete(pParse->db, X.pExpr); 1015 }else{ 1016 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); 1017 if( A.pExpr ){ 1018 A.pExpr->x.pList = Y; 1019 sqlite3ExprSetHeight(pParse, A.pExpr); 1020 }else{ 1021 sqlite3ExprListDelete(pParse->db, Y); 1022 } 1023 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 1024 } 1025 A.zStart = X.zStart; 1026 A.zEnd = &E.z[E.n]; 1027 } 1028 expr(A) ::= LP(B) select(X) RP(E). { 1029 A.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0); 1030 if( A.pExpr ){ 1031 A.pExpr->x.pSelect = X; 1032 ExprSetProperty(A.pExpr, EP_xIsSelect); 1033 sqlite3ExprSetHeight(pParse, A.pExpr); 1034 }else{ 1035 sqlite3SelectDelete(pParse->db, X); 1036 } 1037 A.zStart = B.z; 1038 A.zEnd = &E.z[E.n]; 1039 } 1040 expr(A) ::= expr(X) in_op(N) LP select(Y) RP(E). [IN] { 1041 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); 1042 if( A.pExpr ){ 1043 A.pExpr->x.pSelect = Y; 1044 ExprSetProperty(A.pExpr, EP_xIsSelect); 1045 sqlite3ExprSetHeight(pParse, A.pExpr); 1046 }else{ 1047 sqlite3SelectDelete(pParse->db, Y); 1048 } 1049 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 1050 A.zStart = X.zStart; 1051 A.zEnd = &E.z[E.n]; 1052 } 1053 expr(A) ::= expr(X) in_op(N) nm(Y) dbnm(Z). [IN] { 1054 SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z); 1055 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); 1056 if( A.pExpr ){ 1057 A.pExpr->x.pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0); 1058 ExprSetProperty(A.pExpr, EP_xIsSelect); 1059 sqlite3ExprSetHeight(pParse, A.pExpr); 1060 }else{ 1061 sqlite3SrcListDelete(pParse->db, pSrc); 1062 } 1063 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 1064 A.zStart = X.zStart; 1065 A.zEnd = Z.z ? &Z.z[Z.n] : &Y.z[Y.n]; 1066 } 1067 expr(A) ::= EXISTS(B) LP select(Y) RP(E). { 1068 Expr *p = A.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0); 1069 if( p ){ 1070 p->x.pSelect = Y; 1071 ExprSetProperty(p, EP_xIsSelect); 1072 sqlite3ExprSetHeight(pParse, p); 1073 }else{ 1074 sqlite3SelectDelete(pParse->db, Y); 1075 } 1076 A.zStart = B.z; 1077 A.zEnd = &E.z[E.n]; 1078 } 1079 %endif SQLITE_OMIT_SUBQUERY 1080 1081 /* CASE expressions */ 1082 expr(A) ::= CASE(C) case_operand(X) case_exprlist(Y) case_else(Z) END(E). { 1083 A.pExpr = sqlite3PExpr(pParse, TK_CASE, X, Z, 0); 1084 if( A.pExpr ){ 1085 A.pExpr->x.pList = Y; 1086 sqlite3ExprSetHeight(pParse, A.pExpr); 1087 }else{ 1088 sqlite3ExprListDelete(pParse->db, Y); 1089 } 1090 A.zStart = C.z; 1091 A.zEnd = &E.z[E.n]; 1092 } 1093 %type case_exprlist {ExprList*} 1094 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1095 case_exprlist(A) ::= case_exprlist(X) WHEN expr(Y) THEN expr(Z). { 1096 A = sqlite3ExprListAppend(pParse,X, Y.pExpr); 1097 A = sqlite3ExprListAppend(pParse,A, Z.pExpr); 1098 } 1099 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). { 1100 A = sqlite3ExprListAppend(pParse,0, Y.pExpr); 1101 A = sqlite3ExprListAppend(pParse,A, Z.pExpr); 1102 } 1103 %type case_else {Expr*} 1104 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);} 1105 case_else(A) ::= ELSE expr(X). {A = X.pExpr;} 1106 case_else(A) ::= . {A = 0;} 1107 %type case_operand {Expr*} 1108 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);} 1109 case_operand(A) ::= expr(X). {A = X.pExpr;} 1110 case_operand(A) ::= . {A = 0;} 1111 1112 %type exprlist {ExprList*} 1113 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1114 %type nexprlist {ExprList*} 1115 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);} 1116 1117 exprlist(A) ::= nexprlist(X). {A = X;} 1118 exprlist(A) ::= . {A = 0;} 1119 nexprlist(A) ::= nexprlist(X) COMMA expr(Y). 1120 {A = sqlite3ExprListAppend(pParse,X,Y.pExpr);} 1121 nexprlist(A) ::= expr(Y). 1122 {A = sqlite3ExprListAppend(pParse,0,Y.pExpr);} 1123 1124 1125 ///////////////////////////// The CREATE INDEX command /////////////////////// 1126 // 1127 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D) 1128 ON nm(Y) LP idxlist(Z) RP(E). { 1129 sqlite3CreateIndex(pParse, &X, &D, 1130 sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U, 1131 &S, &E, SQLITE_SO_ASC, NE); 1132 } 1133 1134 %type uniqueflag {int} 1135 uniqueflag(A) ::= UNIQUE. {A = OE_Abort;} 1136 uniqueflag(A) ::= . {A = OE_None;} 1137 1138 %type idxlist {ExprList*} 1139 %destructor idxlist {sqlite3ExprListDelete(pParse->db, $$);} 1140 %type idxlist_opt {ExprList*} 1141 %destructor idxlist_opt {sqlite3ExprListDelete(pParse->db, $$);} 1142 1143 idxlist_opt(A) ::= . {A = 0;} 1144 idxlist_opt(A) ::= LP idxlist(X) RP. {A = X;} 1145 idxlist(A) ::= idxlist(X) COMMA nm(Y) collate(C) sortorder(Z). { 1146 Expr *p = sqlite3ExprAddCollateToken(pParse, 0, &C); 1147 A = sqlite3ExprListAppend(pParse,X, p); 1148 sqlite3ExprListSetName(pParse,A,&Y,1); 1149 sqlite3ExprListCheckLength(pParse, A, "index"); 1150 if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; 1151 } 1152 idxlist(A) ::= nm(Y) collate(C) sortorder(Z). { 1153 Expr *p = sqlite3ExprAddCollateToken(pParse, 0, &C); 1154 A = sqlite3ExprListAppend(pParse,0, p); 1155 sqlite3ExprListSetName(pParse, A, &Y, 1); 1156 sqlite3ExprListCheckLength(pParse, A, "index"); 1157 if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; 1158 } 1159 1160 %type collate {Token} 1161 collate(C) ::= . {C.z = 0; C.n = 0;} 1162 collate(C) ::= COLLATE ids(X). {C = X;} 1163 1164 1165 ///////////////////////////// The DROP INDEX command ///////////////////////// 1166 // 1167 cmd ::= DROP INDEX ifexists(E) fullname(X). {sqlite3DropIndex(pParse, X, E);} 1168 1169 ///////////////////////////// The VACUUM command ///////////////////////////// 1170 // 1171 %ifndef SQLITE_OMIT_VACUUM 1172 %ifndef SQLITE_OMIT_ATTACH 1173 cmd ::= VACUUM. {sqlite3Vacuum(pParse);} 1174 cmd ::= VACUUM nm. {sqlite3Vacuum(pParse);} 1175 %endif SQLITE_OMIT_ATTACH 1176 %endif SQLITE_OMIT_VACUUM 1177 1178 ///////////////////////////// The PRAGMA command ///////////////////////////// 1179 // 1180 %ifndef SQLITE_OMIT_PRAGMA 1181 cmd ::= PRAGMA nm(X) dbnm(Z). {sqlite3Pragma(pParse,&X,&Z,0,0);} 1182 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1183 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1184 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y). 1185 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1186 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP. 1187 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1188 1189 nmnum(A) ::= plus_num(X). {A = X;} 1190 nmnum(A) ::= nm(X). {A = X;} 1191 nmnum(A) ::= ON(X). {A = X;} 1192 nmnum(A) ::= DELETE(X). {A = X;} 1193 nmnum(A) ::= DEFAULT(X). {A = X;} 1194 %endif SQLITE_OMIT_PRAGMA 1195 plus_num(A) ::= PLUS number(X). {A = X;} 1196 plus_num(A) ::= number(X). {A = X;} 1197 minus_num(A) ::= MINUS number(X). {A = X;} 1198 number(A) ::= INTEGER|FLOAT(X). {A = X;} 1199 1200 //////////////////////////// The CREATE TRIGGER command ///////////////////// 1201 1202 %ifndef SQLITE_OMIT_TRIGGER 1203 1204 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). { 1205 Token all; 1206 all.z = A.z; 1207 all.n = (int)(Z.z - A.z) + Z.n; 1208 sqlite3FinishTrigger(pParse, S, &all); 1209 } 1210 1211 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z) 1212 trigger_time(C) trigger_event(D) 1213 ON fullname(E) foreach_clause when_clause(G). { 1214 sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR); 1215 A = (Z.n==0?B:Z); 1216 } 1217 1218 %type trigger_time {int} 1219 trigger_time(A) ::= BEFORE. { A = TK_BEFORE; } 1220 trigger_time(A) ::= AFTER. { A = TK_AFTER; } 1221 trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;} 1222 trigger_time(A) ::= . { A = TK_BEFORE; } 1223 1224 %type trigger_event {struct TrigEvent} 1225 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);} 1226 trigger_event(A) ::= DELETE|INSERT(OP). {A.a = @OP; A.b = 0;} 1227 trigger_event(A) ::= UPDATE(OP). {A.a = @OP; A.b = 0;} 1228 trigger_event(A) ::= UPDATE OF inscollist(X). {A.a = TK_UPDATE; A.b = X;} 1229 1230 foreach_clause ::= . 1231 foreach_clause ::= FOR EACH ROW. 1232 1233 %type when_clause {Expr*} 1234 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);} 1235 when_clause(A) ::= . { A = 0; } 1236 when_clause(A) ::= WHEN expr(X). { A = X.pExpr; } 1237 1238 %type trigger_cmd_list {TriggerStep*} 1239 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);} 1240 trigger_cmd_list(A) ::= trigger_cmd_list(Y) trigger_cmd(X) SEMI. { 1241 assert( Y!=0 ); 1242 Y->pLast->pNext = X; 1243 Y->pLast = X; 1244 A = Y; 1245 } 1246 trigger_cmd_list(A) ::= trigger_cmd(X) SEMI. { 1247 assert( X!=0 ); 1248 X->pLast = X; 1249 A = X; 1250 } 1251 1252 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements 1253 // within a trigger. The table to INSERT, UPDATE, or DELETE is always in 1254 // the same database as the table that the trigger fires on. 1255 // 1256 %type trnm {Token} 1257 trnm(A) ::= nm(X). {A = X;} 1258 trnm(A) ::= nm DOT nm(X). { 1259 A = X; 1260 sqlite3ErrorMsg(pParse, 1261 "qualified table names are not allowed on INSERT, UPDATE, and DELETE " 1262 "statements within triggers"); 1263 } 1264 1265 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE 1266 // statements within triggers. We make a specific error message for this 1267 // since it is an exception to the default grammar rules. 1268 // 1269 tridxby ::= . 1270 tridxby ::= INDEXED BY nm. { 1271 sqlite3ErrorMsg(pParse, 1272 "the INDEXED BY clause is not allowed on UPDATE or DELETE statements " 1273 "within triggers"); 1274 } 1275 tridxby ::= NOT INDEXED. { 1276 sqlite3ErrorMsg(pParse, 1277 "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements " 1278 "within triggers"); 1279 } 1280 1281 1282 1283 %type trigger_cmd {TriggerStep*} 1284 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);} 1285 // UPDATE 1286 trigger_cmd(A) ::= 1287 UPDATE orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z). 1288 { A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R); } 1289 1290 // INSERT 1291 trigger_cmd(A) ::= 1292 insert_cmd(R) INTO trnm(X) inscollist_opt(F) valuelist(Y). 1293 {A = sqlite3TriggerInsertStep(pParse->db, &X, F, Y.pList, Y.pSelect, R);} 1294 1295 trigger_cmd(A) ::= insert_cmd(R) INTO trnm(X) inscollist_opt(F) select(S). 1296 {A = sqlite3TriggerInsertStep(pParse->db, &X, F, 0, S, R);} 1297 1298 // DELETE 1299 trigger_cmd(A) ::= DELETE FROM trnm(X) tridxby where_opt(Y). 1300 {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y);} 1301 1302 // SELECT 1303 trigger_cmd(A) ::= select(X). {A = sqlite3TriggerSelectStep(pParse->db, X); } 1304 1305 // The special RAISE expression that may occur in trigger programs 1306 expr(A) ::= RAISE(X) LP IGNORE RP(Y). { 1307 A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0); 1308 if( A.pExpr ){ 1309 A.pExpr->affinity = OE_Ignore; 1310 } 1311 A.zStart = X.z; 1312 A.zEnd = &Y.z[Y.n]; 1313 } 1314 expr(A) ::= RAISE(X) LP raisetype(T) COMMA nm(Z) RP(Y). { 1315 A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &Z); 1316 if( A.pExpr ) { 1317 A.pExpr->affinity = (char)T; 1318 } 1319 A.zStart = X.z; 1320 A.zEnd = &Y.z[Y.n]; 1321 } 1322 %endif !SQLITE_OMIT_TRIGGER 1323 1324 %type raisetype {int} 1325 raisetype(A) ::= ROLLBACK. {A = OE_Rollback;} 1326 raisetype(A) ::= ABORT. {A = OE_Abort;} 1327 raisetype(A) ::= FAIL. {A = OE_Fail;} 1328 1329 1330 //////////////////////// DROP TRIGGER statement ////////////////////////////// 1331 %ifndef SQLITE_OMIT_TRIGGER 1332 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). { 1333 sqlite3DropTrigger(pParse,X,NOERR); 1334 } 1335 %endif !SQLITE_OMIT_TRIGGER 1336 1337 //////////////////////// ATTACH DATABASE file AS name ///////////////////////// 1338 %ifndef SQLITE_OMIT_ATTACH 1339 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). { 1340 sqlite3Attach(pParse, F.pExpr, D.pExpr, K); 1341 } 1342 cmd ::= DETACH database_kw_opt expr(D). { 1343 sqlite3Detach(pParse, D.pExpr); 1344 } 1345 1346 %type key_opt {Expr*} 1347 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);} 1348 key_opt(A) ::= . { A = 0; } 1349 key_opt(A) ::= KEY expr(X). { A = X.pExpr; } 1350 1351 database_kw_opt ::= DATABASE. 1352 database_kw_opt ::= . 1353 %endif SQLITE_OMIT_ATTACH 1354 1355 ////////////////////////// REINDEX collation ////////////////////////////////// 1356 %ifndef SQLITE_OMIT_REINDEX 1357 cmd ::= REINDEX. {sqlite3Reindex(pParse, 0, 0);} 1358 cmd ::= REINDEX nm(X) dbnm(Y). {sqlite3Reindex(pParse, &X, &Y);} 1359 %endif SQLITE_OMIT_REINDEX 1360 1361 /////////////////////////////////// ANALYZE /////////////////////////////////// 1362 %ifndef SQLITE_OMIT_ANALYZE 1363 cmd ::= ANALYZE. {sqlite3Analyze(pParse, 0, 0);} 1364 cmd ::= ANALYZE nm(X) dbnm(Y). {sqlite3Analyze(pParse, &X, &Y);} 1365 %endif 1366 1367 //////////////////////// ALTER TABLE table ... //////////////////////////////// 1368 %ifndef SQLITE_OMIT_ALTERTABLE 1369 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). { 1370 sqlite3AlterRenameTable(pParse,X,&Z); 1371 } 1372 cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column(Y). { 1373 sqlite3AlterFinishAddColumn(pParse, &Y); 1374 } 1375 add_column_fullname ::= fullname(X). { 1376 pParse->db->lookaside.bEnabled = 0; 1377 sqlite3AlterBeginAddColumn(pParse, X); 1378 } 1379 kwcolumn_opt ::= . 1380 kwcolumn_opt ::= COLUMNKW. 1381 %endif SQLITE_OMIT_ALTERTABLE 1382 1383 //////////////////////// CREATE VIRTUAL TABLE ... ///////////////////////////// 1384 %ifndef SQLITE_OMIT_VIRTUALTABLE 1385 cmd ::= create_vtab. {sqlite3VtabFinishParse(pParse,0);} 1386 cmd ::= create_vtab LP vtabarglist RP(X). {sqlite3VtabFinishParse(pParse,&X);} 1387 create_vtab ::= createkw VIRTUAL TABLE ifnotexists(E) 1388 nm(X) dbnm(Y) USING nm(Z). { 1389 sqlite3VtabBeginParse(pParse, &X, &Y, &Z, E); 1390 } 1391 vtabarglist ::= vtabarg. 1392 vtabarglist ::= vtabarglist COMMA vtabarg. 1393 vtabarg ::= . {sqlite3VtabArgInit(pParse);} 1394 vtabarg ::= vtabarg vtabargtoken. 1395 vtabargtoken ::= ANY(X). {sqlite3VtabArgExtend(pParse,&X);} 1396 vtabargtoken ::= lp anylist RP(X). {sqlite3VtabArgExtend(pParse,&X);} 1397 lp ::= LP(X). {sqlite3VtabArgExtend(pParse,&X);} 1398 anylist ::= . 1399 anylist ::= anylist LP anylist RP. 1400 anylist ::= anylist ANY. 1401 %endif SQLITE_OMIT_VIRTUALTABLE 1402