1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains SQLite's grammar for SQL. Process this file 13 ** using the lemon parser generator to generate C code that runs 14 ** the parser. Lemon will also generate a header file containing 15 ** numeric codes for all of the tokens. 16 */ 17 18 // All token codes are small integers with #defines that begin with "TK_" 19 %token_prefix TK_ 20 21 // The type of the data attached to each token is Token. This is also the 22 // default type for non-terminals. 23 // 24 %token_type {Token} 25 %default_type {Token} 26 27 // The generated parser function takes a 4th argument as follows: 28 %extra_argument {Parse *pParse} 29 30 // This code runs whenever there is a syntax error 31 // 32 %syntax_error { 33 UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */ 34 assert( TOKEN.z[0] ); /* The tokenizer always gives us a token */ 35 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN); 36 } 37 %stack_overflow { 38 sqlite3ErrorMsg(pParse, "parser stack overflow"); 39 } 40 41 // The name of the generated procedure that implements the parser 42 // is as follows: 43 %name sqlite3Parser 44 45 // The following text is included near the beginning of the C source 46 // code file that implements the parser. 47 // 48 %include { 49 #include "sqliteInt.h" 50 51 /* 52 ** Disable all error recovery processing in the parser push-down 53 ** automaton. 54 */ 55 #define YYNOERRORRECOVERY 1 56 57 /* 58 ** Make yytestcase() the same as testcase() 59 */ 60 #define yytestcase(X) testcase(X) 61 62 /* 63 ** Indicate that sqlite3ParserFree() will never be called with a null 64 ** pointer. 65 */ 66 #define YYPARSEFREENEVERNULL 1 67 68 /* 69 ** Alternative datatype for the argument to the malloc() routine passed 70 ** into sqlite3ParserAlloc(). The default is size_t. 71 */ 72 #define YYMALLOCARGTYPE u64 73 74 /* 75 ** An instance of this structure holds information about the 76 ** LIMIT clause of a SELECT statement. 77 */ 78 struct LimitVal { 79 Expr *pLimit; /* The LIMIT expression. NULL if there is no limit */ 80 Expr *pOffset; /* The OFFSET expression. NULL if there is none */ 81 }; 82 83 /* 84 ** An instance of the following structure describes the event of a 85 ** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT, 86 ** TK_DELETE, or TK_INSTEAD. If the event is of the form 87 ** 88 ** UPDATE ON (a,b,c) 89 ** 90 ** Then the "b" IdList records the list "a,b,c". 91 */ 92 struct TrigEvent { int a; IdList * b; }; 93 94 /* 95 ** Disable lookaside memory allocation for objects that might be 96 ** shared across database connections. 97 */ 98 static void disableLookaside(Parse *pParse){ 99 pParse->disableLookaside++; 100 pParse->db->lookaside.bDisable++; 101 } 102 103 } // end %include 104 105 // Input is a single SQL command 106 input ::= cmdlist. 107 cmdlist ::= cmdlist ecmd. 108 cmdlist ::= ecmd. 109 ecmd ::= SEMI. 110 ecmd ::= explain cmdx SEMI. 111 explain ::= . 112 %ifndef SQLITE_OMIT_EXPLAIN 113 explain ::= EXPLAIN. { pParse->explain = 1; } 114 explain ::= EXPLAIN QUERY PLAN. { pParse->explain = 2; } 115 %endif SQLITE_OMIT_EXPLAIN 116 cmdx ::= cmd. { sqlite3FinishCoding(pParse); } 117 118 ///////////////////// Begin and end transactions. //////////////////////////// 119 // 120 121 cmd ::= BEGIN transtype(Y) trans_opt. {sqlite3BeginTransaction(pParse, Y);} 122 trans_opt ::= . 123 trans_opt ::= TRANSACTION. 124 trans_opt ::= TRANSACTION nm. 125 %type transtype {int} 126 transtype(A) ::= . {A = TK_DEFERRED;} 127 transtype(A) ::= DEFERRED(X). {A = @X; /*A-overwrites-X*/} 128 transtype(A) ::= IMMEDIATE(X). {A = @X; /*A-overwrites-X*/} 129 transtype(A) ::= EXCLUSIVE(X). {A = @X; /*A-overwrites-X*/} 130 cmd ::= COMMIT trans_opt. {sqlite3CommitTransaction(pParse);} 131 cmd ::= END trans_opt. {sqlite3CommitTransaction(pParse);} 132 cmd ::= ROLLBACK trans_opt. {sqlite3RollbackTransaction(pParse);} 133 134 savepoint_opt ::= SAVEPOINT. 135 savepoint_opt ::= . 136 cmd ::= SAVEPOINT nm(X). { 137 sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X); 138 } 139 cmd ::= RELEASE savepoint_opt nm(X). { 140 sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X); 141 } 142 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). { 143 sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X); 144 } 145 146 ///////////////////// The CREATE TABLE statement //////////////////////////// 147 // 148 cmd ::= create_table create_table_args. 149 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). { 150 sqlite3StartTable(pParse,&Y,&Z,T,0,0,E); 151 } 152 createkw(A) ::= CREATE(A). {disableLookaside(pParse);} 153 154 %type ifnotexists {int} 155 ifnotexists(A) ::= . {A = 0;} 156 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;} 157 %type temp {int} 158 %ifndef SQLITE_OMIT_TEMPDB 159 temp(A) ::= TEMP. {A = 1;} 160 %endif SQLITE_OMIT_TEMPDB 161 temp(A) ::= . {A = 0;} 162 create_table_args ::= LP columnlist conslist_opt(X) RP(E) table_options(F). { 163 sqlite3EndTable(pParse,&X,&E,F,0); 164 } 165 create_table_args ::= AS select(S). { 166 sqlite3EndTable(pParse,0,0,0,S); 167 sqlite3SelectDelete(pParse->db, S); 168 } 169 %type table_options {int} 170 table_options(A) ::= . {A = 0;} 171 table_options(A) ::= WITHOUT nm(X). { 172 if( X.n==5 && sqlite3_strnicmp(X.z,"rowid",5)==0 ){ 173 A = TF_WithoutRowid | TF_NoVisibleRowid; 174 }else{ 175 A = 0; 176 sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z); 177 } 178 } 179 columnlist ::= columnlist COMMA columnname carglist. 180 columnlist ::= columnname carglist. 181 columnname(A) ::= nm(A) typetoken(Y). {sqlite3AddColumn(pParse,&A,&Y);} 182 183 // Define operator precedence early so that this is the first occurrence 184 // of the operator tokens in the grammer. Keeping the operators together 185 // causes them to be assigned integer values that are close together, 186 // which keeps parser tables smaller. 187 // 188 // The token values assigned to these symbols is determined by the order 189 // in which lemon first sees them. It must be the case that ISNULL/NOTNULL, 190 // NE/EQ, GT/LE, and GE/LT are separated by only a single value. See 191 // the sqlite3ExprIfFalse() routine for additional information on this 192 // constraint. 193 // 194 %left OR. 195 %left AND. 196 %right NOT. 197 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. 198 %left GT LE LT GE. 199 %right ESCAPE. 200 %left BITAND BITOR LSHIFT RSHIFT. 201 %left PLUS MINUS. 202 %left STAR SLASH REM. 203 %left CONCAT. 204 %left COLLATE. 205 %right BITNOT. 206 207 // An IDENTIFIER can be a generic identifier, or one of several 208 // keywords. Any non-standard keyword can also be an identifier. 209 // 210 %token_class id ID|INDEXED. 211 212 // The following directive causes tokens ABORT, AFTER, ASC, etc. to 213 // fallback to ID if they will not parse as their original value. 214 // This obviates the need for the "id" nonterminal. 215 // 216 %fallback ID 217 ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW 218 CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL FOR 219 IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN 220 QUERY KEY OF OFFSET PRAGMA RAISE RECURSIVE RELEASE REPLACE RESTRICT ROW 221 ROLLBACK SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL WITH WITHOUT 222 %ifdef SQLITE_OMIT_COMPOUND_SELECT 223 EXCEPT INTERSECT UNION 224 %endif SQLITE_OMIT_COMPOUND_SELECT 225 REINDEX RENAME CTIME_KW IF 226 . 227 %wildcard ANY. 228 229 230 // And "ids" is an identifer-or-string. 231 // 232 %token_class ids ID|STRING. 233 234 // The name of a column or table can be any of the following: 235 // 236 %type nm {Token} 237 nm(A) ::= id(A). 238 nm(A) ::= STRING(A). 239 nm(A) ::= JOIN_KW(A). 240 241 // A typetoken is really zero or more tokens that form a type name such 242 // as can be found after the column name in a CREATE TABLE statement. 243 // Multiple tokens are concatenated to form the value of the typetoken. 244 // 245 %type typetoken {Token} 246 typetoken(A) ::= . {A.n = 0; A.z = 0;} 247 typetoken(A) ::= typename(A). 248 typetoken(A) ::= typename(A) LP signed RP(Y). { 249 A.n = (int)(&Y.z[Y.n] - A.z); 250 } 251 typetoken(A) ::= typename(A) LP signed COMMA signed RP(Y). { 252 A.n = (int)(&Y.z[Y.n] - A.z); 253 } 254 %type typename {Token} 255 typename(A) ::= ids(A). 256 typename(A) ::= typename(A) ids(Y). {A.n=Y.n+(int)(Y.z-A.z);} 257 signed ::= plus_num. 258 signed ::= minus_num. 259 260 // "carglist" is a list of additional constraints that come after the 261 // column name and column type in a CREATE TABLE statement. 262 // 263 carglist ::= carglist ccons. 264 carglist ::= . 265 ccons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} 266 ccons ::= DEFAULT term(X). {sqlite3AddDefaultValue(pParse,&X);} 267 ccons ::= DEFAULT LP expr(X) RP. {sqlite3AddDefaultValue(pParse,&X);} 268 ccons ::= DEFAULT PLUS term(X). {sqlite3AddDefaultValue(pParse,&X);} 269 ccons ::= DEFAULT MINUS(A) term(X). { 270 ExprSpan v; 271 v.pExpr = sqlite3PExpr(pParse, TK_UMINUS, X.pExpr, 0, 0); 272 v.zStart = A.z; 273 v.zEnd = X.zEnd; 274 sqlite3AddDefaultValue(pParse,&v); 275 } 276 ccons ::= DEFAULT id(X). { 277 ExprSpan v; 278 spanExpr(&v, pParse, TK_STRING, X); 279 sqlite3AddDefaultValue(pParse,&v); 280 } 281 282 // In addition to the type name, we also care about the primary key and 283 // UNIQUE constraints. 284 // 285 ccons ::= NULL onconf. 286 ccons ::= NOT NULL onconf(R). {sqlite3AddNotNull(pParse, R);} 287 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I). 288 {sqlite3AddPrimaryKey(pParse,0,R,I,Z);} 289 ccons ::= UNIQUE onconf(R). {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0, 290 SQLITE_IDXTYPE_UNIQUE);} 291 ccons ::= CHECK LP expr(X) RP. {sqlite3AddCheckConstraint(pParse,X.pExpr);} 292 ccons ::= REFERENCES nm(T) eidlist_opt(TA) refargs(R). 293 {sqlite3CreateForeignKey(pParse,0,&T,TA,R);} 294 ccons ::= defer_subclause(D). {sqlite3DeferForeignKey(pParse,D);} 295 ccons ::= COLLATE ids(C). {sqlite3AddCollateType(pParse, &C);} 296 297 // The optional AUTOINCREMENT keyword 298 %type autoinc {int} 299 autoinc(X) ::= . {X = 0;} 300 autoinc(X) ::= AUTOINCR. {X = 1;} 301 302 // The next group of rules parses the arguments to a REFERENCES clause 303 // that determine if the referential integrity checking is deferred or 304 // or immediate and which determine what action to take if a ref-integ 305 // check fails. 306 // 307 %type refargs {int} 308 refargs(A) ::= . { A = OE_None*0x0101; /* EV: R-19803-45884 */} 309 refargs(A) ::= refargs(A) refarg(Y). { A = (A & ~Y.mask) | Y.value; } 310 %type refarg {struct {int value; int mask;}} 311 refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; } 312 refarg(A) ::= ON INSERT refact. { A.value = 0; A.mask = 0x000000; } 313 refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; } 314 refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; } 315 %type refact {int} 316 refact(A) ::= SET NULL. { A = OE_SetNull; /* EV: R-33326-45252 */} 317 refact(A) ::= SET DEFAULT. { A = OE_SetDflt; /* EV: R-33326-45252 */} 318 refact(A) ::= CASCADE. { A = OE_Cascade; /* EV: R-33326-45252 */} 319 refact(A) ::= RESTRICT. { A = OE_Restrict; /* EV: R-33326-45252 */} 320 refact(A) ::= NO ACTION. { A = OE_None; /* EV: R-33326-45252 */} 321 %type defer_subclause {int} 322 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt. {A = 0;} 323 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;} 324 %type init_deferred_pred_opt {int} 325 init_deferred_pred_opt(A) ::= . {A = 0;} 326 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;} 327 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;} 328 329 conslist_opt(A) ::= . {A.n = 0; A.z = 0;} 330 conslist_opt(A) ::= COMMA(A) conslist. 331 conslist ::= conslist tconscomma tcons. 332 conslist ::= tcons. 333 tconscomma ::= COMMA. {pParse->constraintName.n = 0;} 334 tconscomma ::= . 335 tcons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} 336 tcons ::= PRIMARY KEY LP sortlist(X) autoinc(I) RP onconf(R). 337 {sqlite3AddPrimaryKey(pParse,X,R,I,0);} 338 tcons ::= UNIQUE LP sortlist(X) RP onconf(R). 339 {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0, 340 SQLITE_IDXTYPE_UNIQUE);} 341 tcons ::= CHECK LP expr(E) RP onconf. 342 {sqlite3AddCheckConstraint(pParse,E.pExpr);} 343 tcons ::= FOREIGN KEY LP eidlist(FA) RP 344 REFERENCES nm(T) eidlist_opt(TA) refargs(R) defer_subclause_opt(D). { 345 sqlite3CreateForeignKey(pParse, FA, &T, TA, R); 346 sqlite3DeferForeignKey(pParse, D); 347 } 348 %type defer_subclause_opt {int} 349 defer_subclause_opt(A) ::= . {A = 0;} 350 defer_subclause_opt(A) ::= defer_subclause(A). 351 352 // The following is a non-standard extension that allows us to declare the 353 // default behavior when there is a constraint conflict. 354 // 355 %type onconf {int} 356 %type orconf {int} 357 %type resolvetype {int} 358 onconf(A) ::= . {A = OE_Default;} 359 onconf(A) ::= ON CONFLICT resolvetype(X). {A = X;} 360 orconf(A) ::= . {A = OE_Default;} 361 orconf(A) ::= OR resolvetype(X). {A = X;} 362 resolvetype(A) ::= raisetype(A). 363 resolvetype(A) ::= IGNORE. {A = OE_Ignore;} 364 resolvetype(A) ::= REPLACE. {A = OE_Replace;} 365 366 ////////////////////////// The DROP TABLE ///////////////////////////////////// 367 // 368 cmd ::= DROP TABLE ifexists(E) fullname(X). { 369 sqlite3DropTable(pParse, X, 0, E); 370 } 371 %type ifexists {int} 372 ifexists(A) ::= IF EXISTS. {A = 1;} 373 ifexists(A) ::= . {A = 0;} 374 375 ///////////////////// The CREATE VIEW statement ///////////////////////////// 376 // 377 %ifndef SQLITE_OMIT_VIEW 378 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) eidlist_opt(C) 379 AS select(S). { 380 sqlite3CreateView(pParse, &X, &Y, &Z, C, S, T, E); 381 } 382 cmd ::= DROP VIEW ifexists(E) fullname(X). { 383 sqlite3DropTable(pParse, X, 1, E); 384 } 385 %endif SQLITE_OMIT_VIEW 386 387 //////////////////////// The SELECT statement ///////////////////////////////// 388 // 389 cmd ::= select(X). { 390 SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0}; 391 sqlite3Select(pParse, X, &dest); 392 sqlite3SelectDelete(pParse->db, X); 393 } 394 395 %type select {Select*} 396 %destructor select {sqlite3SelectDelete(pParse->db, $$);} 397 %type selectnowith {Select*} 398 %destructor selectnowith {sqlite3SelectDelete(pParse->db, $$);} 399 %type oneselect {Select*} 400 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);} 401 402 %include { 403 /* 404 ** For a compound SELECT statement, make sure p->pPrior->pNext==p for 405 ** all elements in the list. And make sure list length does not exceed 406 ** SQLITE_LIMIT_COMPOUND_SELECT. 407 */ 408 static void parserDoubleLinkSelect(Parse *pParse, Select *p){ 409 if( p->pPrior ){ 410 Select *pNext = 0, *pLoop; 411 int mxSelect, cnt = 0; 412 for(pLoop=p; pLoop; pNext=pLoop, pLoop=pLoop->pPrior, cnt++){ 413 pLoop->pNext = pNext; 414 pLoop->selFlags |= SF_Compound; 415 } 416 if( (p->selFlags & SF_MultiValue)==0 && 417 (mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT])>0 && 418 cnt>mxSelect 419 ){ 420 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 421 } 422 } 423 } 424 } 425 426 select(A) ::= with(W) selectnowith(X). { 427 Select *p = X; 428 if( p ){ 429 p->pWith = W; 430 parserDoubleLinkSelect(pParse, p); 431 }else{ 432 sqlite3WithDelete(pParse->db, W); 433 } 434 A = p; /*A-overwrites-W*/ 435 } 436 437 selectnowith(A) ::= oneselect(A). 438 %ifndef SQLITE_OMIT_COMPOUND_SELECT 439 selectnowith(A) ::= selectnowith(A) multiselect_op(Y) oneselect(Z). { 440 Select *pRhs = Z; 441 Select *pLhs = A; 442 if( pRhs && pRhs->pPrior ){ 443 SrcList *pFrom; 444 Token x; 445 x.n = 0; 446 parserDoubleLinkSelect(pParse, pRhs); 447 pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0); 448 pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0,0); 449 } 450 if( pRhs ){ 451 pRhs->op = (u8)Y; 452 pRhs->pPrior = pLhs; 453 if( ALWAYS(pLhs) ) pLhs->selFlags &= ~SF_MultiValue; 454 pRhs->selFlags &= ~SF_MultiValue; 455 if( Y!=TK_ALL ) pParse->hasCompound = 1; 456 }else{ 457 sqlite3SelectDelete(pParse->db, pLhs); 458 } 459 A = pRhs; 460 } 461 %type multiselect_op {int} 462 multiselect_op(A) ::= UNION(OP). {A = @OP; /*A-overwrites-OP*/} 463 multiselect_op(A) ::= UNION ALL. {A = TK_ALL;} 464 multiselect_op(A) ::= EXCEPT|INTERSECT(OP). {A = @OP; /*A-overwrites-OP*/} 465 %endif SQLITE_OMIT_COMPOUND_SELECT 466 oneselect(A) ::= SELECT(S) distinct(D) selcollist(W) from(X) where_opt(Y) 467 groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). { 468 #if SELECTTRACE_ENABLED 469 Token s = S; /*A-overwrites-S*/ 470 #endif 471 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L.pLimit,L.pOffset); 472 #if SELECTTRACE_ENABLED 473 /* Populate the Select.zSelName[] string that is used to help with 474 ** query planner debugging, to differentiate between multiple Select 475 ** objects in a complex query. 476 ** 477 ** If the SELECT keyword is immediately followed by a C-style comment 478 ** then extract the first few alphanumeric characters from within that 479 ** comment to be the zSelName value. Otherwise, the label is #N where 480 ** is an integer that is incremented with each SELECT statement seen. 481 */ 482 if( A!=0 ){ 483 const char *z = s.z+6; 484 int i; 485 sqlite3_snprintf(sizeof(A->zSelName), A->zSelName, "#%d", 486 ++pParse->nSelect); 487 while( z[0]==' ' ) z++; 488 if( z[0]=='/' && z[1]=='*' ){ 489 z += 2; 490 while( z[0]==' ' ) z++; 491 for(i=0; sqlite3Isalnum(z[i]); i++){} 492 sqlite3_snprintf(sizeof(A->zSelName), A->zSelName, "%.*s", i, z); 493 } 494 } 495 #endif /* SELECTRACE_ENABLED */ 496 } 497 oneselect(A) ::= values(A). 498 499 %type values {Select*} 500 %destructor values {sqlite3SelectDelete(pParse->db, $$);} 501 values(A) ::= VALUES LP nexprlist(X) RP. { 502 A = sqlite3SelectNew(pParse,X,0,0,0,0,0,SF_Values,0,0); 503 } 504 values(A) ::= values(A) COMMA LP exprlist(Y) RP. { 505 Select *pRight, *pLeft = A; 506 pRight = sqlite3SelectNew(pParse,Y,0,0,0,0,0,SF_Values|SF_MultiValue,0,0); 507 if( ALWAYS(pLeft) ) pLeft->selFlags &= ~SF_MultiValue; 508 if( pRight ){ 509 pRight->op = TK_ALL; 510 pRight->pPrior = pLeft; 511 A = pRight; 512 }else{ 513 A = pLeft; 514 } 515 } 516 517 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is 518 // present and false (0) if it is not. 519 // 520 %type distinct {int} 521 distinct(A) ::= DISTINCT. {A = SF_Distinct;} 522 distinct(A) ::= ALL. {A = SF_All;} 523 distinct(A) ::= . {A = 0;} 524 525 // selcollist is a list of expressions that are to become the return 526 // values of the SELECT statement. The "*" in statements like 527 // "SELECT * FROM ..." is encoded as a special expression with an 528 // opcode of TK_ASTERISK. 529 // 530 %type selcollist {ExprList*} 531 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);} 532 %type sclp {ExprList*} 533 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);} 534 sclp(A) ::= selcollist(A) COMMA. 535 sclp(A) ::= . {A = 0;} 536 selcollist(A) ::= sclp(A) expr(X) as(Y). { 537 A = sqlite3ExprListAppend(pParse, A, X.pExpr); 538 if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1); 539 sqlite3ExprListSetSpan(pParse,A,&X); 540 } 541 selcollist(A) ::= sclp(A) STAR. { 542 Expr *p = sqlite3Expr(pParse->db, TK_ASTERISK, 0); 543 A = sqlite3ExprListAppend(pParse, A, p); 544 } 545 selcollist(A) ::= sclp(A) nm(X) DOT STAR. { 546 Expr *pRight = sqlite3PExpr(pParse, TK_ASTERISK, 0, 0, 0); 547 Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); 548 Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 549 A = sqlite3ExprListAppend(pParse,A, pDot); 550 } 551 552 // An option "AS <id>" phrase that can follow one of the expressions that 553 // define the result set, or one of the tables in the FROM clause. 554 // 555 %type as {Token} 556 as(X) ::= AS nm(Y). {X = Y;} 557 as(X) ::= ids(X). 558 as(X) ::= . {X.n = 0; X.z = 0;} 559 560 561 %type seltablist {SrcList*} 562 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);} 563 %type stl_prefix {SrcList*} 564 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);} 565 %type from {SrcList*} 566 %destructor from {sqlite3SrcListDelete(pParse->db, $$);} 567 568 // A complete FROM clause. 569 // 570 from(A) ::= . {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));} 571 from(A) ::= FROM seltablist(X). { 572 A = X; 573 sqlite3SrcListShiftJoinType(A); 574 } 575 576 // "seltablist" is a "Select Table List" - the content of the FROM clause 577 // in a SELECT statement. "stl_prefix" is a prefix of this list. 578 // 579 stl_prefix(A) ::= seltablist(A) joinop(Y). { 580 if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].fg.jointype = (u8)Y; 581 } 582 stl_prefix(A) ::= . {A = 0;} 583 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) as(Z) indexed_opt(I) 584 on_opt(N) using_opt(U). { 585 A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U); 586 sqlite3SrcListIndexedBy(pParse, A, &I); 587 } 588 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) LP exprlist(E) RP as(Z) 589 on_opt(N) using_opt(U). { 590 A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U); 591 sqlite3SrcListFuncArgs(pParse, A, E); 592 } 593 %ifndef SQLITE_OMIT_SUBQUERY 594 seltablist(A) ::= stl_prefix(A) LP select(S) RP 595 as(Z) on_opt(N) using_opt(U). { 596 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,S,N,U); 597 } 598 seltablist(A) ::= stl_prefix(A) LP seltablist(F) RP 599 as(Z) on_opt(N) using_opt(U). { 600 if( A==0 && Z.n==0 && N==0 && U==0 ){ 601 A = F; 602 }else if( F->nSrc==1 ){ 603 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,0,N,U); 604 if( A ){ 605 struct SrcList_item *pNew = &A->a[A->nSrc-1]; 606 struct SrcList_item *pOld = F->a; 607 pNew->zName = pOld->zName; 608 pNew->zDatabase = pOld->zDatabase; 609 pNew->pSelect = pOld->pSelect; 610 pOld->zName = pOld->zDatabase = 0; 611 pOld->pSelect = 0; 612 } 613 sqlite3SrcListDelete(pParse->db, F); 614 }else{ 615 Select *pSubquery; 616 sqlite3SrcListShiftJoinType(F); 617 pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,SF_NestedFrom,0,0); 618 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,pSubquery,N,U); 619 } 620 } 621 %endif SQLITE_OMIT_SUBQUERY 622 623 %type dbnm {Token} 624 dbnm(A) ::= . {A.z=0; A.n=0;} 625 dbnm(A) ::= DOT nm(X). {A = X;} 626 627 %type fullname {SrcList*} 628 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);} 629 fullname(A) ::= nm(X) dbnm(Y). 630 {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y); /*A-overwrites-X*/} 631 632 %type joinop {int} 633 joinop(X) ::= COMMA|JOIN. { X = JT_INNER; } 634 joinop(X) ::= JOIN_KW(A) JOIN. 635 {X = sqlite3JoinType(pParse,&A,0,0); /*X-overwrites-A*/} 636 joinop(X) ::= JOIN_KW(A) nm(B) JOIN. 637 {X = sqlite3JoinType(pParse,&A,&B,0); /*X-overwrites-A*/} 638 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN. 639 {X = sqlite3JoinType(pParse,&A,&B,&C);/*X-overwrites-A*/} 640 641 %type on_opt {Expr*} 642 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);} 643 on_opt(N) ::= ON expr(E). {N = E.pExpr;} 644 on_opt(N) ::= . {N = 0;} 645 646 // Note that this block abuses the Token type just a little. If there is 647 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If 648 // there is an INDEXED BY clause, then the token is populated as per normal, 649 // with z pointing to the token data and n containing the number of bytes 650 // in the token. 651 // 652 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is 653 // normally illegal. The sqlite3SrcListIndexedBy() function 654 // recognizes and interprets this as a special case. 655 // 656 %type indexed_opt {Token} 657 indexed_opt(A) ::= . {A.z=0; A.n=0;} 658 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;} 659 indexed_opt(A) ::= NOT INDEXED. {A.z=0; A.n=1;} 660 661 %type using_opt {IdList*} 662 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);} 663 using_opt(U) ::= USING LP idlist(L) RP. {U = L;} 664 using_opt(U) ::= . {U = 0;} 665 666 667 %type orderby_opt {ExprList*} 668 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);} 669 670 // the sortlist non-terminal stores a list of expression where each 671 // expression is optionally followed by ASC or DESC to indicate the 672 // sort order. 673 // 674 %type sortlist {ExprList*} 675 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);} 676 677 orderby_opt(A) ::= . {A = 0;} 678 orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;} 679 sortlist(A) ::= sortlist(A) COMMA expr(Y) sortorder(Z). { 680 A = sqlite3ExprListAppend(pParse,A,Y.pExpr); 681 sqlite3ExprListSetSortOrder(A,Z); 682 } 683 sortlist(A) ::= expr(Y) sortorder(Z). { 684 A = sqlite3ExprListAppend(pParse,0,Y.pExpr); /*A-overwrites-Y*/ 685 sqlite3ExprListSetSortOrder(A,Z); 686 } 687 688 %type sortorder {int} 689 690 sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;} 691 sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;} 692 sortorder(A) ::= . {A = SQLITE_SO_UNDEFINED;} 693 694 %type groupby_opt {ExprList*} 695 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);} 696 groupby_opt(A) ::= . {A = 0;} 697 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;} 698 699 %type having_opt {Expr*} 700 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);} 701 having_opt(A) ::= . {A = 0;} 702 having_opt(A) ::= HAVING expr(X). {A = X.pExpr;} 703 704 %type limit_opt {struct LimitVal} 705 706 // The destructor for limit_opt will never fire in the current grammar. 707 // The limit_opt non-terminal only occurs at the end of a single production 708 // rule for SELECT statements. As soon as the rule that create the 709 // limit_opt non-terminal reduces, the SELECT statement rule will also 710 // reduce. So there is never a limit_opt non-terminal on the stack 711 // except as a transient. So there is never anything to destroy. 712 // 713 //%destructor limit_opt { 714 // sqlite3ExprDelete(pParse->db, $$.pLimit); 715 // sqlite3ExprDelete(pParse->db, $$.pOffset); 716 //} 717 limit_opt(A) ::= . {A.pLimit = 0; A.pOffset = 0;} 718 limit_opt(A) ::= LIMIT expr(X). {A.pLimit = X.pExpr; A.pOffset = 0;} 719 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y). 720 {A.pLimit = X.pExpr; A.pOffset = Y.pExpr;} 721 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y). 722 {A.pOffset = X.pExpr; A.pLimit = Y.pExpr;} 723 724 /////////////////////////// The DELETE statement ///////////////////////////// 725 // 726 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 727 cmd ::= with(C) DELETE FROM fullname(X) indexed_opt(I) where_opt(W) 728 orderby_opt(O) limit_opt(L). { 729 sqlite3WithPush(pParse, C, 1); 730 sqlite3SrcListIndexedBy(pParse, X, &I); 731 W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "DELETE"); 732 sqlite3DeleteFrom(pParse,X,W); 733 } 734 %endif 735 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 736 cmd ::= with(C) DELETE FROM fullname(X) indexed_opt(I) where_opt(W). { 737 sqlite3WithPush(pParse, C, 1); 738 sqlite3SrcListIndexedBy(pParse, X, &I); 739 sqlite3DeleteFrom(pParse,X,W); 740 } 741 %endif 742 743 %type where_opt {Expr*} 744 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);} 745 746 where_opt(A) ::= . {A = 0;} 747 where_opt(A) ::= WHERE expr(X). {A = X.pExpr;} 748 749 ////////////////////////// The UPDATE command //////////////////////////////// 750 // 751 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 752 cmd ::= with(C) UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) 753 where_opt(W) orderby_opt(O) limit_opt(L). { 754 sqlite3WithPush(pParse, C, 1); 755 sqlite3SrcListIndexedBy(pParse, X, &I); 756 sqlite3ExprListCheckLength(pParse,Y,"set list"); 757 W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "UPDATE"); 758 sqlite3Update(pParse,X,Y,W,R); 759 } 760 %endif 761 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 762 cmd ::= with(C) UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) 763 where_opt(W). { 764 sqlite3WithPush(pParse, C, 1); 765 sqlite3SrcListIndexedBy(pParse, X, &I); 766 sqlite3ExprListCheckLength(pParse,Y,"set list"); 767 sqlite3Update(pParse,X,Y,W,R); 768 } 769 %endif 770 771 %type setlist {ExprList*} 772 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);} 773 774 setlist(A) ::= setlist(A) COMMA nm(X) EQ expr(Y). { 775 A = sqlite3ExprListAppend(pParse, A, Y.pExpr); 776 sqlite3ExprListSetName(pParse, A, &X, 1); 777 } 778 setlist(A) ::= setlist(A) COMMA LP idlist(X) RP EQ expr(Y). { 779 A = sqlite3ExprListAppendVector(pParse, A, X, Y.pExpr); 780 } 781 setlist(A) ::= nm(X) EQ expr(Y). { 782 A = sqlite3ExprListAppend(pParse, 0, Y.pExpr); 783 sqlite3ExprListSetName(pParse, A, &X, 1); 784 } 785 setlist(A) ::= LP idlist(X) RP EQ expr(Y). { 786 A = sqlite3ExprListAppendVector(pParse, 0, X, Y.pExpr); 787 } 788 789 ////////////////////////// The INSERT command ///////////////////////////////// 790 // 791 cmd ::= with(W) insert_cmd(R) INTO fullname(X) idlist_opt(F) select(S). { 792 sqlite3WithPush(pParse, W, 1); 793 sqlite3Insert(pParse, X, S, F, R); 794 } 795 cmd ::= with(W) insert_cmd(R) INTO fullname(X) idlist_opt(F) DEFAULT VALUES. 796 { 797 sqlite3WithPush(pParse, W, 1); 798 sqlite3Insert(pParse, X, 0, F, R); 799 } 800 801 %type insert_cmd {int} 802 insert_cmd(A) ::= INSERT orconf(R). {A = R;} 803 insert_cmd(A) ::= REPLACE. {A = OE_Replace;} 804 805 %type idlist_opt {IdList*} 806 %destructor idlist_opt {sqlite3IdListDelete(pParse->db, $$);} 807 %type idlist {IdList*} 808 %destructor idlist {sqlite3IdListDelete(pParse->db, $$);} 809 810 idlist_opt(A) ::= . {A = 0;} 811 idlist_opt(A) ::= LP idlist(X) RP. {A = X;} 812 idlist(A) ::= idlist(A) COMMA nm(Y). 813 {A = sqlite3IdListAppend(pParse->db,A,&Y);} 814 idlist(A) ::= nm(Y). 815 {A = sqlite3IdListAppend(pParse->db,0,&Y); /*A-overwrites-Y*/} 816 817 /////////////////////////// Expression Processing ///////////////////////////// 818 // 819 820 %type expr {ExprSpan} 821 %destructor expr {sqlite3ExprDelete(pParse->db, $$.pExpr);} 822 %type term {ExprSpan} 823 %destructor term {sqlite3ExprDelete(pParse->db, $$.pExpr);} 824 825 %include { 826 /* This is a utility routine used to set the ExprSpan.zStart and 827 ** ExprSpan.zEnd values of pOut so that the span covers the complete 828 ** range of text beginning with pStart and going to the end of pEnd. 829 */ 830 static void spanSet(ExprSpan *pOut, Token *pStart, Token *pEnd){ 831 pOut->zStart = pStart->z; 832 pOut->zEnd = &pEnd->z[pEnd->n]; 833 } 834 835 /* Construct a new Expr object from a single identifier. Use the 836 ** new Expr to populate pOut. Set the span of pOut to be the identifier 837 ** that created the expression. 838 */ 839 static void spanExpr(ExprSpan *pOut, Parse *pParse, int op, Token t){ 840 Expr *p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)+t.n+1); 841 if( p ){ 842 memset(p, 0, sizeof(Expr)); 843 p->op = (u8)op; 844 p->flags = EP_Leaf; 845 p->iAgg = -1; 846 p->u.zToken = (char*)&p[1]; 847 memcpy(p->u.zToken, t.z, t.n); 848 p->u.zToken[t.n] = 0; 849 if( sqlite3Isquote(p->u.zToken[0]) ){ 850 if( p->u.zToken[0]=='"' ) p->flags |= EP_DblQuoted; 851 sqlite3Dequote(p->u.zToken); 852 } 853 #if SQLITE_MAX_EXPR_DEPTH>0 854 p->nHeight = 1; 855 #endif 856 } 857 pOut->pExpr = p; 858 pOut->zStart = t.z; 859 pOut->zEnd = &t.z[t.n]; 860 } 861 } 862 863 expr(A) ::= term(A). 864 expr(A) ::= LP(B) expr(X) RP(E). 865 {spanSet(&A,&B,&E); /*A-overwrites-B*/ A.pExpr = X.pExpr;} 866 term(A) ::= NULL(X). {spanExpr(&A,pParse,@X,X);/*A-overwrites-X*/} 867 expr(A) ::= id(X). {spanExpr(&A,pParse,TK_ID,X); /*A-overwrites-X*/} 868 expr(A) ::= JOIN_KW(X). {spanExpr(&A,pParse,TK_ID,X); /*A-overwrites-X*/} 869 expr(A) ::= nm(X) DOT nm(Y). { 870 Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1); 871 Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1); 872 spanSet(&A,&X,&Y); /*A-overwrites-X*/ 873 A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0); 874 } 875 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). { 876 Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1); 877 Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1); 878 Expr *temp3 = sqlite3ExprAlloc(pParse->db, TK_ID, &Z, 1); 879 Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0); 880 spanSet(&A,&X,&Z); /*A-overwrites-X*/ 881 A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0); 882 } 883 term(A) ::= FLOAT|BLOB(X). {spanExpr(&A,pParse,@X,X);/*A-overwrites-X*/} 884 term(A) ::= STRING(X). {spanExpr(&A,pParse,@X,X);/*A-overwrites-X*/} 885 term(A) ::= INTEGER(X). { 886 A.pExpr = sqlite3ExprAlloc(pParse->db, TK_INTEGER, &X, 1); 887 A.zStart = X.z; 888 A.zEnd = X.z + X.n; 889 if( A.pExpr ) A.pExpr->flags |= EP_Leaf; 890 } 891 expr(A) ::= VARIABLE(X). { 892 if( !(X.z[0]=='#' && sqlite3Isdigit(X.z[1])) ){ 893 u32 n = X.n; 894 spanExpr(&A, pParse, TK_VARIABLE, X); 895 sqlite3ExprAssignVarNumber(pParse, A.pExpr, n); 896 }else{ 897 /* When doing a nested parse, one can include terms in an expression 898 ** that look like this: #1 #2 ... These terms refer to registers 899 ** in the virtual machine. #N is the N-th register. */ 900 Token t = X; /*A-overwrites-X*/ 901 assert( t.n>=2 ); 902 spanSet(&A, &t, &t); 903 if( pParse->nested==0 ){ 904 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &t); 905 A.pExpr = 0; 906 }else{ 907 A.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, 0); 908 if( A.pExpr ) sqlite3GetInt32(&t.z[1], &A.pExpr->iTable); 909 } 910 } 911 } 912 expr(A) ::= expr(A) COLLATE ids(C). { 913 A.pExpr = sqlite3ExprAddCollateToken(pParse, A.pExpr, &C, 1); 914 A.zEnd = &C.z[C.n]; 915 } 916 %ifndef SQLITE_OMIT_CAST 917 expr(A) ::= CAST(X) LP expr(E) AS typetoken(T) RP(Y). { 918 spanSet(&A,&X,&Y); /*A-overwrites-X*/ 919 A.pExpr = sqlite3PExpr(pParse, TK_CAST, E.pExpr, 0, &T); 920 } 921 %endif SQLITE_OMIT_CAST 922 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP(E). { 923 if( Y && Y->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 924 sqlite3ErrorMsg(pParse, "too many arguments on function %T", &X); 925 } 926 A.pExpr = sqlite3ExprFunction(pParse, Y, &X); 927 spanSet(&A,&X,&E); 928 if( D==SF_Distinct && A.pExpr ){ 929 A.pExpr->flags |= EP_Distinct; 930 } 931 } 932 expr(A) ::= id(X) LP STAR RP(E). { 933 A.pExpr = sqlite3ExprFunction(pParse, 0, &X); 934 spanSet(&A,&X,&E); 935 } 936 term(A) ::= CTIME_KW(OP). { 937 A.pExpr = sqlite3ExprFunction(pParse, 0, &OP); 938 spanSet(&A, &OP, &OP); 939 } 940 941 %include { 942 /* This routine constructs a binary expression node out of two ExprSpan 943 ** objects and uses the result to populate a new ExprSpan object. 944 */ 945 static void spanBinaryExpr( 946 Parse *pParse, /* The parsing context. Errors accumulate here */ 947 int op, /* The binary operation */ 948 ExprSpan *pLeft, /* The left operand, and output */ 949 ExprSpan *pRight /* The right operand */ 950 ){ 951 pLeft->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr, 0); 952 pLeft->zEnd = pRight->zEnd; 953 } 954 955 /* If doNot is true, then add a TK_NOT Expr-node wrapper around the 956 ** outside of *ppExpr. 957 */ 958 static void exprNot(Parse *pParse, int doNot, ExprSpan *pSpan){ 959 if( doNot ){ 960 pSpan->pExpr = sqlite3PExpr(pParse, TK_NOT, pSpan->pExpr, 0, 0); 961 } 962 } 963 } 964 965 expr(A) ::= LP(L) nexprlist(X) COMMA expr(Y) RP(R). { 966 ExprList *pList = sqlite3ExprListAppend(pParse, X, Y.pExpr); 967 A.pExpr = sqlite3PExpr(pParse, TK_VECTOR, 0, 0, 0); 968 if( A.pExpr ){ 969 A.pExpr->x.pList = pList; 970 spanSet(&A, &L, &R); 971 }else{ 972 sqlite3ExprListDelete(pParse->db, pList); 973 } 974 } 975 976 expr(A) ::= expr(A) AND(OP) expr(Y). {spanBinaryExpr(pParse,@OP,&A,&Y);} 977 expr(A) ::= expr(A) OR(OP) expr(Y). {spanBinaryExpr(pParse,@OP,&A,&Y);} 978 expr(A) ::= expr(A) LT|GT|GE|LE(OP) expr(Y). 979 {spanBinaryExpr(pParse,@OP,&A,&Y);} 980 expr(A) ::= expr(A) EQ|NE(OP) expr(Y). {spanBinaryExpr(pParse,@OP,&A,&Y);} 981 expr(A) ::= expr(A) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y). 982 {spanBinaryExpr(pParse,@OP,&A,&Y);} 983 expr(A) ::= expr(A) PLUS|MINUS(OP) expr(Y). 984 {spanBinaryExpr(pParse,@OP,&A,&Y);} 985 expr(A) ::= expr(A) STAR|SLASH|REM(OP) expr(Y). 986 {spanBinaryExpr(pParse,@OP,&A,&Y);} 987 expr(A) ::= expr(A) CONCAT(OP) expr(Y). {spanBinaryExpr(pParse,@OP,&A,&Y);} 988 %type likeop {Token} 989 likeop(A) ::= LIKE_KW|MATCH(X). {A=X;/*A-overwrites-X*/} 990 likeop(A) ::= NOT LIKE_KW|MATCH(X). {A=X; A.n|=0x80000000; /*A-overwrite-X*/} 991 expr(A) ::= expr(A) likeop(OP) expr(Y). [LIKE_KW] { 992 ExprList *pList; 993 int bNot = OP.n & 0x80000000; 994 OP.n &= 0x7fffffff; 995 pList = sqlite3ExprListAppend(pParse,0, Y.pExpr); 996 pList = sqlite3ExprListAppend(pParse,pList, A.pExpr); 997 A.pExpr = sqlite3ExprFunction(pParse, pList, &OP); 998 exprNot(pParse, bNot, &A); 999 A.zEnd = Y.zEnd; 1000 if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc; 1001 } 1002 expr(A) ::= expr(A) likeop(OP) expr(Y) ESCAPE expr(E). [LIKE_KW] { 1003 ExprList *pList; 1004 int bNot = OP.n & 0x80000000; 1005 OP.n &= 0x7fffffff; 1006 pList = sqlite3ExprListAppend(pParse,0, Y.pExpr); 1007 pList = sqlite3ExprListAppend(pParse,pList, A.pExpr); 1008 pList = sqlite3ExprListAppend(pParse,pList, E.pExpr); 1009 A.pExpr = sqlite3ExprFunction(pParse, pList, &OP); 1010 exprNot(pParse, bNot, &A); 1011 A.zEnd = E.zEnd; 1012 if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc; 1013 } 1014 1015 %include { 1016 /* Construct an expression node for a unary postfix operator 1017 */ 1018 static void spanUnaryPostfix( 1019 Parse *pParse, /* Parsing context to record errors */ 1020 int op, /* The operator */ 1021 ExprSpan *pOperand, /* The operand, and output */ 1022 Token *pPostOp /* The operand token for setting the span */ 1023 ){ 1024 pOperand->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0); 1025 pOperand->zEnd = &pPostOp->z[pPostOp->n]; 1026 } 1027 } 1028 1029 expr(A) ::= expr(A) ISNULL|NOTNULL(E). {spanUnaryPostfix(pParse,@E,&A,&E);} 1030 expr(A) ::= expr(A) NOT NULL(E). {spanUnaryPostfix(pParse,TK_NOTNULL,&A,&E);} 1031 1032 %include { 1033 /* A routine to convert a binary TK_IS or TK_ISNOT expression into a 1034 ** unary TK_ISNULL or TK_NOTNULL expression. */ 1035 static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){ 1036 sqlite3 *db = pParse->db; 1037 if( pA && pY && pY->op==TK_NULL ){ 1038 pA->op = (u8)op; 1039 sqlite3ExprDelete(db, pA->pRight); 1040 pA->pRight = 0; 1041 } 1042 } 1043 } 1044 1045 // expr1 IS expr2 1046 // expr1 IS NOT expr2 1047 // 1048 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL. If expr2 1049 // is any other expression, code as TK_IS or TK_ISNOT. 1050 // 1051 expr(A) ::= expr(A) IS expr(Y). { 1052 spanBinaryExpr(pParse,TK_IS,&A,&Y); 1053 binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_ISNULL); 1054 } 1055 expr(A) ::= expr(A) IS NOT expr(Y). { 1056 spanBinaryExpr(pParse,TK_ISNOT,&A,&Y); 1057 binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_NOTNULL); 1058 } 1059 1060 %include { 1061 /* Construct an expression node for a unary prefix operator 1062 */ 1063 static void spanUnaryPrefix( 1064 ExprSpan *pOut, /* Write the new expression node here */ 1065 Parse *pParse, /* Parsing context to record errors */ 1066 int op, /* The operator */ 1067 ExprSpan *pOperand, /* The operand */ 1068 Token *pPreOp /* The operand token for setting the span */ 1069 ){ 1070 pOut->zStart = pPreOp->z; 1071 pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0); 1072 pOut->zEnd = pOperand->zEnd; 1073 } 1074 } 1075 1076 1077 1078 expr(A) ::= NOT(B) expr(X). 1079 {spanUnaryPrefix(&A,pParse,@B,&X,&B);/*A-overwrites-B*/} 1080 expr(A) ::= BITNOT(B) expr(X). 1081 {spanUnaryPrefix(&A,pParse,@B,&X,&B);/*A-overwrites-B*/} 1082 expr(A) ::= MINUS(B) expr(X). [BITNOT] 1083 {spanUnaryPrefix(&A,pParse,TK_UMINUS,&X,&B);/*A-overwrites-B*/} 1084 expr(A) ::= PLUS(B) expr(X). [BITNOT] 1085 {spanUnaryPrefix(&A,pParse,TK_UPLUS,&X,&B);/*A-overwrites-B*/} 1086 1087 %type between_op {int} 1088 between_op(A) ::= BETWEEN. {A = 0;} 1089 between_op(A) ::= NOT BETWEEN. {A = 1;} 1090 expr(A) ::= expr(A) between_op(N) expr(X) AND expr(Y). [BETWEEN] { 1091 ExprList *pList = sqlite3ExprListAppend(pParse,0, X.pExpr); 1092 pList = sqlite3ExprListAppend(pParse,pList, Y.pExpr); 1093 A.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, A.pExpr, 0, 0); 1094 if( A.pExpr ){ 1095 A.pExpr->x.pList = pList; 1096 }else{ 1097 sqlite3ExprListDelete(pParse->db, pList); 1098 } 1099 exprNot(pParse, N, &A); 1100 A.zEnd = Y.zEnd; 1101 } 1102 %ifndef SQLITE_OMIT_SUBQUERY 1103 %type in_op {int} 1104 in_op(A) ::= IN. {A = 0;} 1105 in_op(A) ::= NOT IN. {A = 1;} 1106 expr(A) ::= expr(A) in_op(N) LP exprlist(Y) RP(E). [IN] { 1107 if( Y==0 ){ 1108 /* Expressions of the form 1109 ** 1110 ** expr1 IN () 1111 ** expr1 NOT IN () 1112 ** 1113 ** simplify to constants 0 (false) and 1 (true), respectively, 1114 ** regardless of the value of expr1. 1115 */ 1116 sqlite3ExprDelete(pParse->db, A.pExpr); 1117 A.pExpr = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &sqlite3IntTokens[N]); 1118 }else if( Y->nExpr==1 ){ 1119 /* Expressions of the form: 1120 ** 1121 ** expr1 IN (?1) 1122 ** expr1 NOT IN (?2) 1123 ** 1124 ** with exactly one value on the RHS can be simplified to something 1125 ** like this: 1126 ** 1127 ** expr1 == ?1 1128 ** expr1 <> ?2 1129 ** 1130 ** But, the RHS of the == or <> is marked with the EP_Generic flag 1131 ** so that it may not contribute to the computation of comparison 1132 ** affinity or the collating sequence to use for comparison. Otherwise, 1133 ** the semantics would be subtly different from IN or NOT IN. 1134 */ 1135 Expr *pRHS = Y->a[0].pExpr; 1136 Y->a[0].pExpr = 0; 1137 sqlite3ExprListDelete(pParse->db, Y); 1138 /* pRHS cannot be NULL because a malloc error would have been detected 1139 ** before now and control would have never reached this point */ 1140 if( ALWAYS(pRHS) ){ 1141 pRHS->flags &= ~EP_Collate; 1142 pRHS->flags |= EP_Generic; 1143 } 1144 A.pExpr = sqlite3PExpr(pParse, N ? TK_NE : TK_EQ, A.pExpr, pRHS, 0); 1145 }else{ 1146 A.pExpr = sqlite3PExpr(pParse, TK_IN, A.pExpr, 0, 0); 1147 if( A.pExpr ){ 1148 A.pExpr->x.pList = Y; 1149 sqlite3ExprSetHeightAndFlags(pParse, A.pExpr); 1150 }else{ 1151 sqlite3ExprListDelete(pParse->db, Y); 1152 } 1153 exprNot(pParse, N, &A); 1154 } 1155 A.zEnd = &E.z[E.n]; 1156 } 1157 expr(A) ::= LP(B) select(X) RP(E). { 1158 spanSet(&A,&B,&E); /*A-overwrites-B*/ 1159 A.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0); 1160 sqlite3PExprAddSelect(pParse, A.pExpr, X); 1161 } 1162 expr(A) ::= expr(A) in_op(N) LP select(Y) RP(E). [IN] { 1163 A.pExpr = sqlite3PExpr(pParse, TK_IN, A.pExpr, 0, 0); 1164 sqlite3PExprAddSelect(pParse, A.pExpr, Y); 1165 exprNot(pParse, N, &A); 1166 A.zEnd = &E.z[E.n]; 1167 } 1168 expr(A) ::= expr(A) in_op(N) nm(Y) dbnm(Z) paren_exprlist(E). [IN] { 1169 SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z); 1170 Select *pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0); 1171 if( E ) sqlite3SrcListFuncArgs(pParse, pSelect ? pSrc : 0, E); 1172 A.pExpr = sqlite3PExpr(pParse, TK_IN, A.pExpr, 0, 0); 1173 sqlite3PExprAddSelect(pParse, A.pExpr, pSelect); 1174 exprNot(pParse, N, &A); 1175 A.zEnd = Z.z ? &Z.z[Z.n] : &Y.z[Y.n]; 1176 } 1177 expr(A) ::= EXISTS(B) LP select(Y) RP(E). { 1178 Expr *p; 1179 spanSet(&A,&B,&E); /*A-overwrites-B*/ 1180 p = A.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0); 1181 sqlite3PExprAddSelect(pParse, p, Y); 1182 } 1183 %endif SQLITE_OMIT_SUBQUERY 1184 1185 /* CASE expressions */ 1186 expr(A) ::= CASE(C) case_operand(X) case_exprlist(Y) case_else(Z) END(E). { 1187 spanSet(&A,&C,&E); /*A-overwrites-C*/ 1188 A.pExpr = sqlite3PExpr(pParse, TK_CASE, X, 0, 0); 1189 if( A.pExpr ){ 1190 A.pExpr->x.pList = Z ? sqlite3ExprListAppend(pParse,Y,Z) : Y; 1191 sqlite3ExprSetHeightAndFlags(pParse, A.pExpr); 1192 }else{ 1193 sqlite3ExprListDelete(pParse->db, Y); 1194 sqlite3ExprDelete(pParse->db, Z); 1195 } 1196 } 1197 %type case_exprlist {ExprList*} 1198 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1199 case_exprlist(A) ::= case_exprlist(A) WHEN expr(Y) THEN expr(Z). { 1200 A = sqlite3ExprListAppend(pParse,A, Y.pExpr); 1201 A = sqlite3ExprListAppend(pParse,A, Z.pExpr); 1202 } 1203 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). { 1204 A = sqlite3ExprListAppend(pParse,0, Y.pExpr); 1205 A = sqlite3ExprListAppend(pParse,A, Z.pExpr); 1206 } 1207 %type case_else {Expr*} 1208 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);} 1209 case_else(A) ::= ELSE expr(X). {A = X.pExpr;} 1210 case_else(A) ::= . {A = 0;} 1211 %type case_operand {Expr*} 1212 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);} 1213 case_operand(A) ::= expr(X). {A = X.pExpr; /*A-overwrites-X*/} 1214 case_operand(A) ::= . {A = 0;} 1215 1216 %type exprlist {ExprList*} 1217 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1218 %type nexprlist {ExprList*} 1219 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);} 1220 1221 exprlist(A) ::= nexprlist(A). 1222 exprlist(A) ::= . {A = 0;} 1223 nexprlist(A) ::= nexprlist(A) COMMA expr(Y). 1224 {A = sqlite3ExprListAppend(pParse,A,Y.pExpr);} 1225 nexprlist(A) ::= expr(Y). 1226 {A = sqlite3ExprListAppend(pParse,0,Y.pExpr); /*A-overwrites-Y*/} 1227 1228 %ifndef SQLITE_OMIT_SUBQUERY 1229 /* A paren_exprlist is an optional expression list contained inside 1230 ** of parenthesis */ 1231 %type paren_exprlist {ExprList*} 1232 %destructor paren_exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1233 paren_exprlist(A) ::= . {A = 0;} 1234 paren_exprlist(A) ::= LP exprlist(X) RP. {A = X;} 1235 %endif SQLITE_OMIT_SUBQUERY 1236 1237 1238 ///////////////////////////// The CREATE INDEX command /////////////////////// 1239 // 1240 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D) 1241 ON nm(Y) LP sortlist(Z) RP where_opt(W). { 1242 sqlite3CreateIndex(pParse, &X, &D, 1243 sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U, 1244 &S, W, SQLITE_SO_ASC, NE, SQLITE_IDXTYPE_APPDEF); 1245 } 1246 1247 %type uniqueflag {int} 1248 uniqueflag(A) ::= UNIQUE. {A = OE_Abort;} 1249 uniqueflag(A) ::= . {A = OE_None;} 1250 1251 1252 // The eidlist non-terminal (Expression Id List) generates an ExprList 1253 // from a list of identifiers. The identifier names are in ExprList.a[].zName. 1254 // This list is stored in an ExprList rather than an IdList so that it 1255 // can be easily sent to sqlite3ColumnsExprList(). 1256 // 1257 // eidlist is grouped with CREATE INDEX because it used to be the non-terminal 1258 // used for the arguments to an index. That is just an historical accident. 1259 // 1260 // IMPORTANT COMPATIBILITY NOTE: Some prior versions of SQLite accepted 1261 // COLLATE clauses and ASC or DESC keywords on ID lists in inappropriate 1262 // places - places that might have been stored in the sqlite_master schema. 1263 // Those extra features were ignored. But because they might be in some 1264 // (busted) old databases, we need to continue parsing them when loading 1265 // historical schemas. 1266 // 1267 %type eidlist {ExprList*} 1268 %destructor eidlist {sqlite3ExprListDelete(pParse->db, $$);} 1269 %type eidlist_opt {ExprList*} 1270 %destructor eidlist_opt {sqlite3ExprListDelete(pParse->db, $$);} 1271 1272 %include { 1273 /* Add a single new term to an ExprList that is used to store a 1274 ** list of identifiers. Report an error if the ID list contains 1275 ** a COLLATE clause or an ASC or DESC keyword, except ignore the 1276 ** error while parsing a legacy schema. 1277 */ 1278 static ExprList *parserAddExprIdListTerm( 1279 Parse *pParse, 1280 ExprList *pPrior, 1281 Token *pIdToken, 1282 int hasCollate, 1283 int sortOrder 1284 ){ 1285 ExprList *p = sqlite3ExprListAppend(pParse, pPrior, 0); 1286 if( (hasCollate || sortOrder!=SQLITE_SO_UNDEFINED) 1287 && pParse->db->init.busy==0 1288 ){ 1289 sqlite3ErrorMsg(pParse, "syntax error after column name \"%.*s\"", 1290 pIdToken->n, pIdToken->z); 1291 } 1292 sqlite3ExprListSetName(pParse, p, pIdToken, 1); 1293 return p; 1294 } 1295 } // end %include 1296 1297 eidlist_opt(A) ::= . {A = 0;} 1298 eidlist_opt(A) ::= LP eidlist(X) RP. {A = X;} 1299 eidlist(A) ::= eidlist(A) COMMA nm(Y) collate(C) sortorder(Z). { 1300 A = parserAddExprIdListTerm(pParse, A, &Y, C, Z); 1301 } 1302 eidlist(A) ::= nm(Y) collate(C) sortorder(Z). { 1303 A = parserAddExprIdListTerm(pParse, 0, &Y, C, Z); /*A-overwrites-Y*/ 1304 } 1305 1306 %type collate {int} 1307 collate(C) ::= . {C = 0;} 1308 collate(C) ::= COLLATE ids. {C = 1;} 1309 1310 1311 ///////////////////////////// The DROP INDEX command ///////////////////////// 1312 // 1313 cmd ::= DROP INDEX ifexists(E) fullname(X). {sqlite3DropIndex(pParse, X, E);} 1314 1315 ///////////////////////////// The VACUUM command ///////////////////////////// 1316 // 1317 %ifndef SQLITE_OMIT_VACUUM 1318 %ifndef SQLITE_OMIT_ATTACH 1319 cmd ::= VACUUM. {sqlite3Vacuum(pParse,0);} 1320 cmd ::= VACUUM nm(X). {sqlite3Vacuum(pParse,&X);} 1321 %endif SQLITE_OMIT_ATTACH 1322 %endif SQLITE_OMIT_VACUUM 1323 1324 ///////////////////////////// The PRAGMA command ///////////////////////////// 1325 // 1326 %ifndef SQLITE_OMIT_PRAGMA 1327 cmd ::= PRAGMA nm(X) dbnm(Z). {sqlite3Pragma(pParse,&X,&Z,0,0);} 1328 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1329 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1330 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y). 1331 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1332 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP. 1333 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1334 1335 nmnum(A) ::= plus_num(A). 1336 nmnum(A) ::= nm(A). 1337 nmnum(A) ::= ON(A). 1338 nmnum(A) ::= DELETE(A). 1339 nmnum(A) ::= DEFAULT(A). 1340 %endif SQLITE_OMIT_PRAGMA 1341 %token_class number INTEGER|FLOAT. 1342 plus_num(A) ::= PLUS number(X). {A = X;} 1343 plus_num(A) ::= number(A). 1344 minus_num(A) ::= MINUS number(X). {A = X;} 1345 //////////////////////////// The CREATE TRIGGER command ///////////////////// 1346 1347 %ifndef SQLITE_OMIT_TRIGGER 1348 1349 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). { 1350 Token all; 1351 all.z = A.z; 1352 all.n = (int)(Z.z - A.z) + Z.n; 1353 sqlite3FinishTrigger(pParse, S, &all); 1354 } 1355 1356 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z) 1357 trigger_time(C) trigger_event(D) 1358 ON fullname(E) foreach_clause when_clause(G). { 1359 sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR); 1360 A = (Z.n==0?B:Z); /*A-overwrites-T*/ 1361 } 1362 1363 %type trigger_time {int} 1364 trigger_time(A) ::= BEFORE. { A = TK_BEFORE; } 1365 trigger_time(A) ::= AFTER. { A = TK_AFTER; } 1366 trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;} 1367 trigger_time(A) ::= . { A = TK_BEFORE; } 1368 1369 %type trigger_event {struct TrigEvent} 1370 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);} 1371 trigger_event(A) ::= DELETE|INSERT(X). {A.a = @X; /*A-overwrites-X*/ A.b = 0;} 1372 trigger_event(A) ::= UPDATE(X). {A.a = @X; /*A-overwrites-X*/ A.b = 0;} 1373 trigger_event(A) ::= UPDATE OF idlist(X).{A.a = TK_UPDATE; A.b = X;} 1374 1375 foreach_clause ::= . 1376 foreach_clause ::= FOR EACH ROW. 1377 1378 %type when_clause {Expr*} 1379 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);} 1380 when_clause(A) ::= . { A = 0; } 1381 when_clause(A) ::= WHEN expr(X). { A = X.pExpr; } 1382 1383 %type trigger_cmd_list {TriggerStep*} 1384 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);} 1385 trigger_cmd_list(A) ::= trigger_cmd_list(A) trigger_cmd(X) SEMI. { 1386 assert( A!=0 ); 1387 A->pLast->pNext = X; 1388 A->pLast = X; 1389 } 1390 trigger_cmd_list(A) ::= trigger_cmd(A) SEMI. { 1391 assert( A!=0 ); 1392 A->pLast = A; 1393 } 1394 1395 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements 1396 // within a trigger. The table to INSERT, UPDATE, or DELETE is always in 1397 // the same database as the table that the trigger fires on. 1398 // 1399 %type trnm {Token} 1400 trnm(A) ::= nm(A). 1401 trnm(A) ::= nm DOT nm(X). { 1402 A = X; 1403 sqlite3ErrorMsg(pParse, 1404 "qualified table names are not allowed on INSERT, UPDATE, and DELETE " 1405 "statements within triggers"); 1406 } 1407 1408 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE 1409 // statements within triggers. We make a specific error message for this 1410 // since it is an exception to the default grammar rules. 1411 // 1412 tridxby ::= . 1413 tridxby ::= INDEXED BY nm. { 1414 sqlite3ErrorMsg(pParse, 1415 "the INDEXED BY clause is not allowed on UPDATE or DELETE statements " 1416 "within triggers"); 1417 } 1418 tridxby ::= NOT INDEXED. { 1419 sqlite3ErrorMsg(pParse, 1420 "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements " 1421 "within triggers"); 1422 } 1423 1424 1425 1426 %type trigger_cmd {TriggerStep*} 1427 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);} 1428 // UPDATE 1429 trigger_cmd(A) ::= 1430 UPDATE orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z). 1431 {A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R);} 1432 1433 // INSERT 1434 trigger_cmd(A) ::= insert_cmd(R) INTO trnm(X) idlist_opt(F) select(S). 1435 {A = sqlite3TriggerInsertStep(pParse->db, &X, F, S, R);/*A-overwrites-R*/} 1436 1437 // DELETE 1438 trigger_cmd(A) ::= DELETE FROM trnm(X) tridxby where_opt(Y). 1439 {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y);} 1440 1441 // SELECT 1442 trigger_cmd(A) ::= select(X). 1443 {A = sqlite3TriggerSelectStep(pParse->db, X); /*A-overwrites-X*/} 1444 1445 // The special RAISE expression that may occur in trigger programs 1446 expr(A) ::= RAISE(X) LP IGNORE RP(Y). { 1447 spanSet(&A,&X,&Y); /*A-overwrites-X*/ 1448 A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0); 1449 if( A.pExpr ){ 1450 A.pExpr->affinity = OE_Ignore; 1451 } 1452 } 1453 expr(A) ::= RAISE(X) LP raisetype(T) COMMA nm(Z) RP(Y). { 1454 spanSet(&A,&X,&Y); /*A-overwrites-X*/ 1455 A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &Z); 1456 if( A.pExpr ) { 1457 A.pExpr->affinity = (char)T; 1458 } 1459 } 1460 %endif !SQLITE_OMIT_TRIGGER 1461 1462 %type raisetype {int} 1463 raisetype(A) ::= ROLLBACK. {A = OE_Rollback;} 1464 raisetype(A) ::= ABORT. {A = OE_Abort;} 1465 raisetype(A) ::= FAIL. {A = OE_Fail;} 1466 1467 1468 //////////////////////// DROP TRIGGER statement ////////////////////////////// 1469 %ifndef SQLITE_OMIT_TRIGGER 1470 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). { 1471 sqlite3DropTrigger(pParse,X,NOERR); 1472 } 1473 %endif !SQLITE_OMIT_TRIGGER 1474 1475 //////////////////////// ATTACH DATABASE file AS name ///////////////////////// 1476 %ifndef SQLITE_OMIT_ATTACH 1477 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). { 1478 sqlite3Attach(pParse, F.pExpr, D.pExpr, K); 1479 } 1480 cmd ::= DETACH database_kw_opt expr(D). { 1481 sqlite3Detach(pParse, D.pExpr); 1482 } 1483 1484 %type key_opt {Expr*} 1485 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);} 1486 key_opt(A) ::= . { A = 0; } 1487 key_opt(A) ::= KEY expr(X). { A = X.pExpr; } 1488 1489 database_kw_opt ::= DATABASE. 1490 database_kw_opt ::= . 1491 %endif SQLITE_OMIT_ATTACH 1492 1493 ////////////////////////// REINDEX collation ////////////////////////////////// 1494 %ifndef SQLITE_OMIT_REINDEX 1495 cmd ::= REINDEX. {sqlite3Reindex(pParse, 0, 0);} 1496 cmd ::= REINDEX nm(X) dbnm(Y). {sqlite3Reindex(pParse, &X, &Y);} 1497 %endif SQLITE_OMIT_REINDEX 1498 1499 /////////////////////////////////// ANALYZE /////////////////////////////////// 1500 %ifndef SQLITE_OMIT_ANALYZE 1501 cmd ::= ANALYZE. {sqlite3Analyze(pParse, 0, 0);} 1502 cmd ::= ANALYZE nm(X) dbnm(Y). {sqlite3Analyze(pParse, &X, &Y);} 1503 %endif 1504 1505 //////////////////////// ALTER TABLE table ... //////////////////////////////// 1506 %ifndef SQLITE_OMIT_ALTERTABLE 1507 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). { 1508 sqlite3AlterRenameTable(pParse,X,&Z); 1509 } 1510 cmd ::= ALTER TABLE add_column_fullname 1511 ADD kwcolumn_opt columnname(Y) carglist. { 1512 Y.n = (int)(pParse->sLastToken.z-Y.z) + pParse->sLastToken.n; 1513 sqlite3AlterFinishAddColumn(pParse, &Y); 1514 } 1515 add_column_fullname ::= fullname(X). { 1516 disableLookaside(pParse); 1517 sqlite3AlterBeginAddColumn(pParse, X); 1518 } 1519 kwcolumn_opt ::= . 1520 kwcolumn_opt ::= COLUMNKW. 1521 %endif SQLITE_OMIT_ALTERTABLE 1522 1523 //////////////////////// CREATE VIRTUAL TABLE ... ///////////////////////////// 1524 %ifndef SQLITE_OMIT_VIRTUALTABLE 1525 cmd ::= create_vtab. {sqlite3VtabFinishParse(pParse,0);} 1526 cmd ::= create_vtab LP vtabarglist RP(X). {sqlite3VtabFinishParse(pParse,&X);} 1527 create_vtab ::= createkw VIRTUAL TABLE ifnotexists(E) 1528 nm(X) dbnm(Y) USING nm(Z). { 1529 sqlite3VtabBeginParse(pParse, &X, &Y, &Z, E); 1530 } 1531 vtabarglist ::= vtabarg. 1532 vtabarglist ::= vtabarglist COMMA vtabarg. 1533 vtabarg ::= . {sqlite3VtabArgInit(pParse);} 1534 vtabarg ::= vtabarg vtabargtoken. 1535 vtabargtoken ::= ANY(X). {sqlite3VtabArgExtend(pParse,&X);} 1536 vtabargtoken ::= lp anylist RP(X). {sqlite3VtabArgExtend(pParse,&X);} 1537 lp ::= LP(X). {sqlite3VtabArgExtend(pParse,&X);} 1538 anylist ::= . 1539 anylist ::= anylist LP anylist RP. 1540 anylist ::= anylist ANY. 1541 %endif SQLITE_OMIT_VIRTUALTABLE 1542 1543 1544 //////////////////////// COMMON TABLE EXPRESSIONS //////////////////////////// 1545 %type with {With*} 1546 %type wqlist {With*} 1547 %destructor with {sqlite3WithDelete(pParse->db, $$);} 1548 %destructor wqlist {sqlite3WithDelete(pParse->db, $$);} 1549 1550 with(A) ::= . {A = 0;} 1551 %ifndef SQLITE_OMIT_CTE 1552 with(A) ::= WITH wqlist(W). { A = W; } 1553 with(A) ::= WITH RECURSIVE wqlist(W). { A = W; } 1554 1555 wqlist(A) ::= nm(X) eidlist_opt(Y) AS LP select(Z) RP. { 1556 A = sqlite3WithAdd(pParse, 0, &X, Y, Z); /*A-overwrites-X*/ 1557 } 1558 wqlist(A) ::= wqlist(A) COMMA nm(X) eidlist_opt(Y) AS LP select(Z) RP. { 1559 A = sqlite3WithAdd(pParse, A, &X, Y, Z); 1560 } 1561 %endif SQLITE_OMIT_CTE 1562