1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains SQLite's grammar for SQL. Process this file 13 ** using the lemon parser generator to generate C code that runs 14 ** the parser. Lemon will also generate a header file containing 15 ** numeric codes for all of the tokens. 16 */ 17 18 // All token codes are small integers with #defines that begin with "TK_" 19 %token_prefix TK_ 20 21 // The type of the data attached to each token is Token. This is also the 22 // default type for non-terminals. 23 // 24 %token_type {Token} 25 %default_type {Token} 26 27 // The generated parser function takes a 4th argument as follows: 28 %extra_argument {Parse *pParse} 29 30 // This code runs whenever there is a syntax error 31 // 32 %syntax_error { 33 UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */ 34 assert( TOKEN.z[0] ); /* The tokenizer always gives us a token */ 35 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN); 36 } 37 %stack_overflow { 38 UNUSED_PARAMETER(yypMinor); /* Silence some compiler warnings */ 39 sqlite3ErrorMsg(pParse, "parser stack overflow"); 40 } 41 42 // The name of the generated procedure that implements the parser 43 // is as follows: 44 %name sqlite3Parser 45 46 // The following text is included near the beginning of the C source 47 // code file that implements the parser. 48 // 49 %include { 50 #include "sqliteInt.h" 51 52 /* 53 ** Disable all error recovery processing in the parser push-down 54 ** automaton. 55 */ 56 #define YYNOERRORRECOVERY 1 57 58 /* 59 ** Make yytestcase() the same as testcase() 60 */ 61 #define yytestcase(X) testcase(X) 62 63 /* 64 ** An instance of this structure holds information about the 65 ** LIMIT clause of a SELECT statement. 66 */ 67 struct LimitVal { 68 Expr *pLimit; /* The LIMIT expression. NULL if there is no limit */ 69 Expr *pOffset; /* The OFFSET expression. NULL if there is none */ 70 }; 71 72 /* 73 ** An instance of this structure is used to store the LIKE, 74 ** GLOB, NOT LIKE, and NOT GLOB operators. 75 */ 76 struct LikeOp { 77 Token eOperator; /* "like" or "glob" or "regexp" */ 78 int bNot; /* True if the NOT keyword is present */ 79 }; 80 81 /* 82 ** An instance of the following structure describes the event of a 83 ** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT, 84 ** TK_DELETE, or TK_INSTEAD. If the event is of the form 85 ** 86 ** UPDATE ON (a,b,c) 87 ** 88 ** Then the "b" IdList records the list "a,b,c". 89 */ 90 struct TrigEvent { int a; IdList * b; }; 91 92 /* 93 ** An instance of this structure holds the ATTACH key and the key type. 94 */ 95 struct AttachKey { int type; Token key; }; 96 97 /* 98 ** One or more VALUES claues 99 */ 100 struct ValueList { 101 ExprList *pList; 102 Select *pSelect; 103 }; 104 105 } // end %include 106 107 // Input is a single SQL command 108 input ::= cmdlist. 109 cmdlist ::= cmdlist ecmd. 110 cmdlist ::= ecmd. 111 ecmd ::= SEMI. 112 ecmd ::= explain cmdx SEMI. 113 explain ::= . { sqlite3BeginParse(pParse, 0); } 114 %ifndef SQLITE_OMIT_EXPLAIN 115 explain ::= EXPLAIN. { sqlite3BeginParse(pParse, 1); } 116 explain ::= EXPLAIN QUERY PLAN. { sqlite3BeginParse(pParse, 2); } 117 %endif SQLITE_OMIT_EXPLAIN 118 cmdx ::= cmd. { sqlite3FinishCoding(pParse); } 119 120 ///////////////////// Begin and end transactions. //////////////////////////// 121 // 122 123 cmd ::= BEGIN transtype(Y) trans_opt. {sqlite3BeginTransaction(pParse, Y);} 124 trans_opt ::= . 125 trans_opt ::= TRANSACTION. 126 trans_opt ::= TRANSACTION nm. 127 %type transtype {int} 128 transtype(A) ::= . {A = TK_DEFERRED;} 129 transtype(A) ::= DEFERRED(X). {A = @X;} 130 transtype(A) ::= IMMEDIATE(X). {A = @X;} 131 transtype(A) ::= EXCLUSIVE(X). {A = @X;} 132 cmd ::= COMMIT trans_opt. {sqlite3CommitTransaction(pParse);} 133 cmd ::= END trans_opt. {sqlite3CommitTransaction(pParse);} 134 cmd ::= ROLLBACK trans_opt. {sqlite3RollbackTransaction(pParse);} 135 136 savepoint_opt ::= SAVEPOINT. 137 savepoint_opt ::= . 138 cmd ::= SAVEPOINT nm(X). { 139 sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X); 140 } 141 cmd ::= RELEASE savepoint_opt nm(X). { 142 sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X); 143 } 144 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). { 145 sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X); 146 } 147 148 ///////////////////// The CREATE TABLE statement //////////////////////////// 149 // 150 cmd ::= create_table create_table_args. 151 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). { 152 sqlite3StartTable(pParse,&Y,&Z,T,0,0,E); 153 } 154 createkw(A) ::= CREATE(X). { 155 pParse->db->lookaside.bEnabled = 0; 156 A = X; 157 } 158 %type ifnotexists {int} 159 ifnotexists(A) ::= . {A = 0;} 160 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;} 161 %type temp {int} 162 %ifndef SQLITE_OMIT_TEMPDB 163 temp(A) ::= TEMP. {A = 1;} 164 %endif SQLITE_OMIT_TEMPDB 165 temp(A) ::= . {A = 0;} 166 create_table_args ::= LP columnlist conslist_opt(X) RP(Y). { 167 sqlite3EndTable(pParse,&X,&Y,0); 168 } 169 create_table_args ::= AS select(S). { 170 sqlite3EndTable(pParse,0,0,S); 171 sqlite3SelectDelete(pParse->db, S); 172 } 173 columnlist ::= columnlist COMMA column. 174 columnlist ::= column. 175 176 // A "column" is a complete description of a single column in a 177 // CREATE TABLE statement. This includes the column name, its 178 // datatype, and other keywords such as PRIMARY KEY, UNIQUE, REFERENCES, 179 // NOT NULL and so forth. 180 // 181 column(A) ::= columnid(X) type carglist. { 182 A.z = X.z; 183 A.n = (int)(pParse->sLastToken.z-X.z) + pParse->sLastToken.n; 184 } 185 columnid(A) ::= nm(X). { 186 sqlite3AddColumn(pParse,&X); 187 A = X; 188 pParse->constraintName.n = 0; 189 } 190 191 192 // An IDENTIFIER can be a generic identifier, or one of several 193 // keywords. Any non-standard keyword can also be an identifier. 194 // 195 %type id {Token} 196 id(A) ::= ID(X). {A = X;} 197 id(A) ::= INDEXED(X). {A = X;} 198 199 // The following directive causes tokens ABORT, AFTER, ASC, etc. to 200 // fallback to ID if they will not parse as their original value. 201 // This obviates the need for the "id" nonterminal. 202 // 203 %fallback ID 204 ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW 205 CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL FOR 206 IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN 207 QUERY KEY OF OFFSET PRAGMA RAISE RELEASE REPLACE RESTRICT ROW ROLLBACK 208 SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL 209 %ifdef SQLITE_OMIT_COMPOUND_SELECT 210 EXCEPT INTERSECT UNION 211 %endif SQLITE_OMIT_COMPOUND_SELECT 212 REINDEX RENAME CTIME_KW IF 213 . 214 %wildcard ANY. 215 216 // Define operator precedence early so that this is the first occurance 217 // of the operator tokens in the grammer. Keeping the operators together 218 // causes them to be assigned integer values that are close together, 219 // which keeps parser tables smaller. 220 // 221 // The token values assigned to these symbols is determined by the order 222 // in which lemon first sees them. It must be the case that ISNULL/NOTNULL, 223 // NE/EQ, GT/LE, and GE/LT are separated by only a single value. See 224 // the sqlite3ExprIfFalse() routine for additional information on this 225 // constraint. 226 // 227 %left OR. 228 %left AND. 229 %right NOT. 230 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. 231 %left GT LE LT GE. 232 %right ESCAPE. 233 %left BITAND BITOR LSHIFT RSHIFT. 234 %left PLUS MINUS. 235 %left STAR SLASH REM. 236 %left CONCAT. 237 %left COLLATE. 238 %right BITNOT. 239 240 // And "ids" is an identifer-or-string. 241 // 242 %type ids {Token} 243 ids(A) ::= ID|STRING(X). {A = X;} 244 245 // The name of a column or table can be any of the following: 246 // 247 %type nm {Token} 248 nm(A) ::= id(X). {A = X;} 249 nm(A) ::= STRING(X). {A = X;} 250 nm(A) ::= JOIN_KW(X). {A = X;} 251 252 // A typetoken is really one or more tokens that form a type name such 253 // as can be found after the column name in a CREATE TABLE statement. 254 // Multiple tokens are concatenated to form the value of the typetoken. 255 // 256 %type typetoken {Token} 257 type ::= . 258 type ::= typetoken(X). {sqlite3AddColumnType(pParse,&X);} 259 typetoken(A) ::= typename(X). {A = X;} 260 typetoken(A) ::= typename(X) LP signed RP(Y). { 261 A.z = X.z; 262 A.n = (int)(&Y.z[Y.n] - X.z); 263 } 264 typetoken(A) ::= typename(X) LP signed COMMA signed RP(Y). { 265 A.z = X.z; 266 A.n = (int)(&Y.z[Y.n] - X.z); 267 } 268 %type typename {Token} 269 typename(A) ::= ids(X). {A = X;} 270 typename(A) ::= typename(X) ids(Y). {A.z=X.z; A.n=Y.n+(int)(Y.z-X.z);} 271 signed ::= plus_num. 272 signed ::= minus_num. 273 274 // "carglist" is a list of additional constraints that come after the 275 // column name and column type in a CREATE TABLE statement. 276 // 277 carglist ::= carglist ccons. 278 carglist ::= . 279 ccons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} 280 ccons ::= DEFAULT term(X). {sqlite3AddDefaultValue(pParse,&X);} 281 ccons ::= DEFAULT LP expr(X) RP. {sqlite3AddDefaultValue(pParse,&X);} 282 ccons ::= DEFAULT PLUS term(X). {sqlite3AddDefaultValue(pParse,&X);} 283 ccons ::= DEFAULT MINUS(A) term(X). { 284 ExprSpan v; 285 v.pExpr = sqlite3PExpr(pParse, TK_UMINUS, X.pExpr, 0, 0); 286 v.zStart = A.z; 287 v.zEnd = X.zEnd; 288 sqlite3AddDefaultValue(pParse,&v); 289 } 290 ccons ::= DEFAULT id(X). { 291 ExprSpan v; 292 spanExpr(&v, pParse, TK_STRING, &X); 293 sqlite3AddDefaultValue(pParse,&v); 294 } 295 296 // In addition to the type name, we also care about the primary key and 297 // UNIQUE constraints. 298 // 299 ccons ::= NULL onconf. 300 ccons ::= NOT NULL onconf(R). {sqlite3AddNotNull(pParse, R);} 301 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I). 302 {sqlite3AddPrimaryKey(pParse,0,R,I,Z);} 303 ccons ::= UNIQUE onconf(R). {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0);} 304 ccons ::= CHECK LP expr(X) RP. {sqlite3AddCheckConstraint(pParse,X.pExpr);} 305 ccons ::= REFERENCES nm(T) idxlist_opt(TA) refargs(R). 306 {sqlite3CreateForeignKey(pParse,0,&T,TA,R);} 307 ccons ::= defer_subclause(D). {sqlite3DeferForeignKey(pParse,D);} 308 ccons ::= COLLATE ids(C). {sqlite3AddCollateType(pParse, &C);} 309 310 // The optional AUTOINCREMENT keyword 311 %type autoinc {int} 312 autoinc(X) ::= . {X = 0;} 313 autoinc(X) ::= AUTOINCR. {X = 1;} 314 315 // The next group of rules parses the arguments to a REFERENCES clause 316 // that determine if the referential integrity checking is deferred or 317 // or immediate and which determine what action to take if a ref-integ 318 // check fails. 319 // 320 %type refargs {int} 321 refargs(A) ::= . { A = OE_None*0x0101; /* EV: R-19803-45884 */} 322 refargs(A) ::= refargs(X) refarg(Y). { A = (X & ~Y.mask) | Y.value; } 323 %type refarg {struct {int value; int mask;}} 324 refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; } 325 refarg(A) ::= ON INSERT refact. { A.value = 0; A.mask = 0x000000; } 326 refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; } 327 refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; } 328 %type refact {int} 329 refact(A) ::= SET NULL. { A = OE_SetNull; /* EV: R-33326-45252 */} 330 refact(A) ::= SET DEFAULT. { A = OE_SetDflt; /* EV: R-33326-45252 */} 331 refact(A) ::= CASCADE. { A = OE_Cascade; /* EV: R-33326-45252 */} 332 refact(A) ::= RESTRICT. { A = OE_Restrict; /* EV: R-33326-45252 */} 333 refact(A) ::= NO ACTION. { A = OE_None; /* EV: R-33326-45252 */} 334 %type defer_subclause {int} 335 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt. {A = 0;} 336 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;} 337 %type init_deferred_pred_opt {int} 338 init_deferred_pred_opt(A) ::= . {A = 0;} 339 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;} 340 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;} 341 342 conslist_opt(A) ::= . {A.n = 0; A.z = 0;} 343 conslist_opt(A) ::= COMMA(X) conslist. {A = X;} 344 conslist ::= conslist tconscomma tcons. 345 conslist ::= tcons. 346 tconscomma ::= COMMA. {pParse->constraintName.n = 0;} 347 tconscomma ::= . 348 tcons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} 349 tcons ::= PRIMARY KEY LP idxlist(X) autoinc(I) RP onconf(R). 350 {sqlite3AddPrimaryKey(pParse,X,R,I,0);} 351 tcons ::= UNIQUE LP idxlist(X) RP onconf(R). 352 {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0);} 353 tcons ::= CHECK LP expr(E) RP onconf. 354 {sqlite3AddCheckConstraint(pParse,E.pExpr);} 355 tcons ::= FOREIGN KEY LP idxlist(FA) RP 356 REFERENCES nm(T) idxlist_opt(TA) refargs(R) defer_subclause_opt(D). { 357 sqlite3CreateForeignKey(pParse, FA, &T, TA, R); 358 sqlite3DeferForeignKey(pParse, D); 359 } 360 %type defer_subclause_opt {int} 361 defer_subclause_opt(A) ::= . {A = 0;} 362 defer_subclause_opt(A) ::= defer_subclause(X). {A = X;} 363 364 // The following is a non-standard extension that allows us to declare the 365 // default behavior when there is a constraint conflict. 366 // 367 %type onconf {int} 368 %type orconf {u8} 369 %type resolvetype {int} 370 onconf(A) ::= . {A = OE_Default;} 371 onconf(A) ::= ON CONFLICT resolvetype(X). {A = X;} 372 orconf(A) ::= . {A = OE_Default;} 373 orconf(A) ::= OR resolvetype(X). {A = (u8)X;} 374 resolvetype(A) ::= raisetype(X). {A = X;} 375 resolvetype(A) ::= IGNORE. {A = OE_Ignore;} 376 resolvetype(A) ::= REPLACE. {A = OE_Replace;} 377 378 ////////////////////////// The DROP TABLE ///////////////////////////////////// 379 // 380 cmd ::= DROP TABLE ifexists(E) fullname(X). { 381 sqlite3DropTable(pParse, X, 0, E); 382 } 383 %type ifexists {int} 384 ifexists(A) ::= IF EXISTS. {A = 1;} 385 ifexists(A) ::= . {A = 0;} 386 387 ///////////////////// The CREATE VIEW statement ///////////////////////////// 388 // 389 %ifndef SQLITE_OMIT_VIEW 390 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) AS select(S). { 391 sqlite3CreateView(pParse, &X, &Y, &Z, S, T, E); 392 } 393 cmd ::= DROP VIEW ifexists(E) fullname(X). { 394 sqlite3DropTable(pParse, X, 1, E); 395 } 396 %endif SQLITE_OMIT_VIEW 397 398 //////////////////////// The SELECT statement ///////////////////////////////// 399 // 400 cmd ::= select(X). { 401 SelectDest dest = {SRT_Output, 0, 0, 0, 0}; 402 sqlite3Select(pParse, X, &dest); 403 sqlite3ExplainBegin(pParse->pVdbe); 404 sqlite3ExplainSelect(pParse->pVdbe, X); 405 sqlite3ExplainFinish(pParse->pVdbe); 406 sqlite3SelectDelete(pParse->db, X); 407 } 408 409 %type select {Select*} 410 %destructor select {sqlite3SelectDelete(pParse->db, $$);} 411 %type oneselect {Select*} 412 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);} 413 414 select(A) ::= oneselect(X). {A = X;} 415 %ifndef SQLITE_OMIT_COMPOUND_SELECT 416 select(A) ::= select(X) multiselect_op(Y) oneselect(Z). { 417 if( Z ){ 418 Z->op = (u8)Y; 419 Z->pPrior = X; 420 }else{ 421 sqlite3SelectDelete(pParse->db, X); 422 } 423 A = Z; 424 } 425 %type multiselect_op {int} 426 multiselect_op(A) ::= UNION(OP). {A = @OP;} 427 multiselect_op(A) ::= UNION ALL. {A = TK_ALL;} 428 multiselect_op(A) ::= EXCEPT|INTERSECT(OP). {A = @OP;} 429 %endif SQLITE_OMIT_COMPOUND_SELECT 430 oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y) 431 groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). { 432 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L.pLimit,L.pOffset); 433 } 434 435 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is 436 // present and false (0) if it is not. 437 // 438 %type distinct {int} 439 distinct(A) ::= DISTINCT. {A = 1;} 440 distinct(A) ::= ALL. {A = 0;} 441 distinct(A) ::= . {A = 0;} 442 443 // selcollist is a list of expressions that are to become the return 444 // values of the SELECT statement. The "*" in statements like 445 // "SELECT * FROM ..." is encoded as a special expression with an 446 // opcode of TK_ALL. 447 // 448 %type selcollist {ExprList*} 449 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);} 450 %type sclp {ExprList*} 451 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);} 452 sclp(A) ::= selcollist(X) COMMA. {A = X;} 453 sclp(A) ::= . {A = 0;} 454 selcollist(A) ::= sclp(P) expr(X) as(Y). { 455 A = sqlite3ExprListAppend(pParse, P, X.pExpr); 456 if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1); 457 sqlite3ExprListSetSpan(pParse,A,&X); 458 } 459 selcollist(A) ::= sclp(P) STAR. { 460 Expr *p = sqlite3Expr(pParse->db, TK_ALL, 0); 461 A = sqlite3ExprListAppend(pParse, P, p); 462 } 463 selcollist(A) ::= sclp(P) nm(X) DOT STAR(Y). { 464 Expr *pRight = sqlite3PExpr(pParse, TK_ALL, 0, 0, &Y); 465 Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); 466 Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 467 A = sqlite3ExprListAppend(pParse,P, pDot); 468 } 469 470 // An option "AS <id>" phrase that can follow one of the expressions that 471 // define the result set, or one of the tables in the FROM clause. 472 // 473 %type as {Token} 474 as(X) ::= AS nm(Y). {X = Y;} 475 as(X) ::= ids(Y). {X = Y;} 476 as(X) ::= . {X.n = 0;} 477 478 479 %type seltablist {SrcList*} 480 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);} 481 %type stl_prefix {SrcList*} 482 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);} 483 %type from {SrcList*} 484 %destructor from {sqlite3SrcListDelete(pParse->db, $$);} 485 486 // A complete FROM clause. 487 // 488 from(A) ::= . {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));} 489 from(A) ::= FROM seltablist(X). { 490 A = X; 491 sqlite3SrcListShiftJoinType(A); 492 } 493 494 // "seltablist" is a "Select Table List" - the content of the FROM clause 495 // in a SELECT statement. "stl_prefix" is a prefix of this list. 496 // 497 stl_prefix(A) ::= seltablist(X) joinop(Y). { 498 A = X; 499 if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].jointype = (u8)Y; 500 } 501 stl_prefix(A) ::= . {A = 0;} 502 seltablist(A) ::= stl_prefix(X) nm(Y) dbnm(D) as(Z) indexed_opt(I) on_opt(N) using_opt(U). { 503 A = sqlite3SrcListAppendFromTerm(pParse,X,&Y,&D,&Z,0,N,U); 504 sqlite3SrcListIndexedBy(pParse, A, &I); 505 } 506 %ifndef SQLITE_OMIT_SUBQUERY 507 seltablist(A) ::= stl_prefix(X) LP select(S) RP 508 as(Z) on_opt(N) using_opt(U). { 509 A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,S,N,U); 510 } 511 seltablist(A) ::= stl_prefix(X) LP seltablist(F) RP 512 as(Z) on_opt(N) using_opt(U). { 513 if( X==0 && Z.n==0 && N==0 && U==0 ){ 514 A = F; 515 }else{ 516 Select *pSubquery; 517 sqlite3SrcListShiftJoinType(F); 518 pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,0,0,0); 519 A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,pSubquery,N,U); 520 } 521 } 522 523 // A seltablist_paren nonterminal represents anything in a FROM that 524 // is contained inside parentheses. This can be either a subquery or 525 // a grouping of table and subqueries. 526 // 527 // %type seltablist_paren {Select*} 528 // %destructor seltablist_paren {sqlite3SelectDelete(pParse->db, $$);} 529 // seltablist_paren(A) ::= select(S). {A = S;} 530 // seltablist_paren(A) ::= seltablist(F). { 531 // sqlite3SrcListShiftJoinType(F); 532 // A = sqlite3SelectNew(pParse,0,F,0,0,0,0,0,0,0); 533 // } 534 %endif SQLITE_OMIT_SUBQUERY 535 536 %type dbnm {Token} 537 dbnm(A) ::= . {A.z=0; A.n=0;} 538 dbnm(A) ::= DOT nm(X). {A = X;} 539 540 %type fullname {SrcList*} 541 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);} 542 fullname(A) ::= nm(X) dbnm(Y). {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y);} 543 544 %type joinop {int} 545 %type joinop2 {int} 546 joinop(X) ::= COMMA|JOIN. { X = JT_INNER; } 547 joinop(X) ::= JOIN_KW(A) JOIN. { X = sqlite3JoinType(pParse,&A,0,0); } 548 joinop(X) ::= JOIN_KW(A) nm(B) JOIN. { X = sqlite3JoinType(pParse,&A,&B,0); } 549 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN. 550 { X = sqlite3JoinType(pParse,&A,&B,&C); } 551 552 %type on_opt {Expr*} 553 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);} 554 on_opt(N) ::= ON expr(E). {N = E.pExpr;} 555 on_opt(N) ::= . {N = 0;} 556 557 // Note that this block abuses the Token type just a little. If there is 558 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If 559 // there is an INDEXED BY clause, then the token is populated as per normal, 560 // with z pointing to the token data and n containing the number of bytes 561 // in the token. 562 // 563 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is 564 // normally illegal. The sqlite3SrcListIndexedBy() function 565 // recognizes and interprets this as a special case. 566 // 567 %type indexed_opt {Token} 568 indexed_opt(A) ::= . {A.z=0; A.n=0;} 569 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;} 570 indexed_opt(A) ::= NOT INDEXED. {A.z=0; A.n=1;} 571 572 %type using_opt {IdList*} 573 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);} 574 using_opt(U) ::= USING LP inscollist(L) RP. {U = L;} 575 using_opt(U) ::= . {U = 0;} 576 577 578 %type orderby_opt {ExprList*} 579 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);} 580 %type sortlist {ExprList*} 581 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);} 582 583 orderby_opt(A) ::= . {A = 0;} 584 orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;} 585 sortlist(A) ::= sortlist(X) COMMA expr(Y) sortorder(Z). { 586 A = sqlite3ExprListAppend(pParse,X,Y.pExpr); 587 if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; 588 } 589 sortlist(A) ::= expr(Y) sortorder(Z). { 590 A = sqlite3ExprListAppend(pParse,0,Y.pExpr); 591 if( A && ALWAYS(A->a) ) A->a[0].sortOrder = (u8)Z; 592 } 593 594 %type sortorder {int} 595 596 sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;} 597 sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;} 598 sortorder(A) ::= . {A = SQLITE_SO_ASC;} 599 600 %type groupby_opt {ExprList*} 601 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);} 602 groupby_opt(A) ::= . {A = 0;} 603 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;} 604 605 %type having_opt {Expr*} 606 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);} 607 having_opt(A) ::= . {A = 0;} 608 having_opt(A) ::= HAVING expr(X). {A = X.pExpr;} 609 610 %type limit_opt {struct LimitVal} 611 612 // The destructor for limit_opt will never fire in the current grammar. 613 // The limit_opt non-terminal only occurs at the end of a single production 614 // rule for SELECT statements. As soon as the rule that create the 615 // limit_opt non-terminal reduces, the SELECT statement rule will also 616 // reduce. So there is never a limit_opt non-terminal on the stack 617 // except as a transient. So there is never anything to destroy. 618 // 619 //%destructor limit_opt { 620 // sqlite3ExprDelete(pParse->db, $$.pLimit); 621 // sqlite3ExprDelete(pParse->db, $$.pOffset); 622 //} 623 limit_opt(A) ::= . {A.pLimit = 0; A.pOffset = 0;} 624 limit_opt(A) ::= LIMIT expr(X). {A.pLimit = X.pExpr; A.pOffset = 0;} 625 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y). 626 {A.pLimit = X.pExpr; A.pOffset = Y.pExpr;} 627 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y). 628 {A.pOffset = X.pExpr; A.pLimit = Y.pExpr;} 629 630 /////////////////////////// The DELETE statement ///////////////////////////// 631 // 632 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 633 cmd ::= DELETE FROM fullname(X) indexed_opt(I) where_opt(W) 634 orderby_opt(O) limit_opt(L). { 635 sqlite3SrcListIndexedBy(pParse, X, &I); 636 W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "DELETE"); 637 sqlite3DeleteFrom(pParse,X,W); 638 } 639 %endif 640 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 641 cmd ::= DELETE FROM fullname(X) indexed_opt(I) where_opt(W). { 642 sqlite3SrcListIndexedBy(pParse, X, &I); 643 sqlite3DeleteFrom(pParse,X,W); 644 } 645 %endif 646 647 %type where_opt {Expr*} 648 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);} 649 650 where_opt(A) ::= . {A = 0;} 651 where_opt(A) ::= WHERE expr(X). {A = X.pExpr;} 652 653 ////////////////////////// The UPDATE command //////////////////////////////// 654 // 655 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 656 cmd ::= UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) where_opt(W) orderby_opt(O) limit_opt(L). { 657 sqlite3SrcListIndexedBy(pParse, X, &I); 658 sqlite3ExprListCheckLength(pParse,Y,"set list"); 659 W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "UPDATE"); 660 sqlite3Update(pParse,X,Y,W,R); 661 } 662 %endif 663 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 664 cmd ::= UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) where_opt(W). { 665 sqlite3SrcListIndexedBy(pParse, X, &I); 666 sqlite3ExprListCheckLength(pParse,Y,"set list"); 667 sqlite3Update(pParse,X,Y,W,R); 668 } 669 %endif 670 671 %type setlist {ExprList*} 672 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);} 673 674 setlist(A) ::= setlist(Z) COMMA nm(X) EQ expr(Y). { 675 A = sqlite3ExprListAppend(pParse, Z, Y.pExpr); 676 sqlite3ExprListSetName(pParse, A, &X, 1); 677 } 678 setlist(A) ::= nm(X) EQ expr(Y). { 679 A = sqlite3ExprListAppend(pParse, 0, Y.pExpr); 680 sqlite3ExprListSetName(pParse, A, &X, 1); 681 } 682 683 ////////////////////////// The INSERT command ///////////////////////////////// 684 // 685 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) valuelist(Y). 686 {sqlite3Insert(pParse, X, Y.pList, Y.pSelect, F, R);} 687 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) select(S). 688 {sqlite3Insert(pParse, X, 0, S, F, R);} 689 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) DEFAULT VALUES. 690 {sqlite3Insert(pParse, X, 0, 0, F, R);} 691 692 %type insert_cmd {u8} 693 insert_cmd(A) ::= INSERT orconf(R). {A = R;} 694 insert_cmd(A) ::= REPLACE. {A = OE_Replace;} 695 696 // A ValueList is either a single VALUES clause or a comma-separated list 697 // of VALUES clauses. If it is a single VALUES clause then the 698 // ValueList.pList field points to the expression list of that clause. 699 // If it is a list of VALUES clauses, then those clauses are transformed 700 // into a set of SELECT statements without FROM clauses and connected by 701 // UNION ALL and the ValueList.pSelect points to the right-most SELECT in 702 // that compound. 703 %type valuelist {struct ValueList} 704 %destructor valuelist { 705 sqlite3ExprListDelete(pParse->db, $$.pList); 706 sqlite3SelectDelete(pParse->db, $$.pSelect); 707 } 708 valuelist(A) ::= VALUES LP nexprlist(X) RP. { 709 A.pList = X; 710 A.pSelect = 0; 711 } 712 713 // Since a list of VALUEs is inplemented as a compound SELECT, we have 714 // to disable the value list option if compound SELECTs are disabled. 715 %ifndef SQLITE_OMIT_COMPOUND_SELECT 716 valuelist(A) ::= valuelist(X) COMMA LP exprlist(Y) RP. { 717 Select *pRight = sqlite3SelectNew(pParse, Y, 0, 0, 0, 0, 0, 0, 0, 0); 718 if( X.pList ){ 719 X.pSelect = sqlite3SelectNew(pParse, X.pList, 0, 0, 0, 0, 0, 0, 0, 0); 720 X.pList = 0; 721 } 722 A.pList = 0; 723 if( X.pSelect==0 || pRight==0 ){ 724 sqlite3SelectDelete(pParse->db, pRight); 725 sqlite3SelectDelete(pParse->db, X.pSelect); 726 A.pSelect = 0; 727 }else{ 728 pRight->op = TK_ALL; 729 pRight->pPrior = X.pSelect; 730 pRight->selFlags |= SF_Values; 731 pRight->pPrior->selFlags |= SF_Values; 732 A.pSelect = pRight; 733 } 734 } 735 %endif SQLITE_OMIT_COMPOUND_SELECT 736 737 %type inscollist_opt {IdList*} 738 %destructor inscollist_opt {sqlite3IdListDelete(pParse->db, $$);} 739 %type inscollist {IdList*} 740 %destructor inscollist {sqlite3IdListDelete(pParse->db, $$);} 741 742 inscollist_opt(A) ::= . {A = 0;} 743 inscollist_opt(A) ::= LP inscollist(X) RP. {A = X;} 744 inscollist(A) ::= inscollist(X) COMMA nm(Y). 745 {A = sqlite3IdListAppend(pParse->db,X,&Y);} 746 inscollist(A) ::= nm(Y). 747 {A = sqlite3IdListAppend(pParse->db,0,&Y);} 748 749 /////////////////////////// Expression Processing ///////////////////////////// 750 // 751 752 %type expr {ExprSpan} 753 %destructor expr {sqlite3ExprDelete(pParse->db, $$.pExpr);} 754 %type term {ExprSpan} 755 %destructor term {sqlite3ExprDelete(pParse->db, $$.pExpr);} 756 757 %include { 758 /* This is a utility routine used to set the ExprSpan.zStart and 759 ** ExprSpan.zEnd values of pOut so that the span covers the complete 760 ** range of text beginning with pStart and going to the end of pEnd. 761 */ 762 static void spanSet(ExprSpan *pOut, Token *pStart, Token *pEnd){ 763 pOut->zStart = pStart->z; 764 pOut->zEnd = &pEnd->z[pEnd->n]; 765 } 766 767 /* Construct a new Expr object from a single identifier. Use the 768 ** new Expr to populate pOut. Set the span of pOut to be the identifier 769 ** that created the expression. 770 */ 771 static void spanExpr(ExprSpan *pOut, Parse *pParse, int op, Token *pValue){ 772 pOut->pExpr = sqlite3PExpr(pParse, op, 0, 0, pValue); 773 pOut->zStart = pValue->z; 774 pOut->zEnd = &pValue->z[pValue->n]; 775 } 776 } 777 778 expr(A) ::= term(X). {A = X;} 779 expr(A) ::= LP(B) expr(X) RP(E). {A.pExpr = X.pExpr; spanSet(&A,&B,&E);} 780 term(A) ::= NULL(X). {spanExpr(&A, pParse, @X, &X);} 781 expr(A) ::= id(X). {spanExpr(&A, pParse, TK_ID, &X);} 782 expr(A) ::= JOIN_KW(X). {spanExpr(&A, pParse, TK_ID, &X);} 783 expr(A) ::= nm(X) DOT nm(Y). { 784 Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); 785 Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y); 786 A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0); 787 spanSet(&A,&X,&Y); 788 } 789 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). { 790 Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); 791 Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y); 792 Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Z); 793 Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0); 794 A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0); 795 spanSet(&A,&X,&Z); 796 } 797 term(A) ::= INTEGER|FLOAT|BLOB(X). {spanExpr(&A, pParse, @X, &X);} 798 term(A) ::= STRING(X). {spanExpr(&A, pParse, @X, &X);} 799 expr(A) ::= REGISTER(X). { 800 /* When doing a nested parse, one can include terms in an expression 801 ** that look like this: #1 #2 ... These terms refer to registers 802 ** in the virtual machine. #N is the N-th register. */ 803 if( pParse->nested==0 ){ 804 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &X); 805 A.pExpr = 0; 806 }else{ 807 A.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, &X); 808 if( A.pExpr ) sqlite3GetInt32(&X.z[1], &A.pExpr->iTable); 809 } 810 spanSet(&A, &X, &X); 811 } 812 expr(A) ::= VARIABLE(X). { 813 spanExpr(&A, pParse, TK_VARIABLE, &X); 814 sqlite3ExprAssignVarNumber(pParse, A.pExpr); 815 spanSet(&A, &X, &X); 816 } 817 expr(A) ::= expr(E) COLLATE ids(C). { 818 A.pExpr = sqlite3ExprSetCollByToken(pParse, E.pExpr, &C); 819 A.zStart = E.zStart; 820 A.zEnd = &C.z[C.n]; 821 } 822 %ifndef SQLITE_OMIT_CAST 823 expr(A) ::= CAST(X) LP expr(E) AS typetoken(T) RP(Y). { 824 A.pExpr = sqlite3PExpr(pParse, TK_CAST, E.pExpr, 0, &T); 825 spanSet(&A,&X,&Y); 826 } 827 %endif SQLITE_OMIT_CAST 828 expr(A) ::= ID(X) LP distinct(D) exprlist(Y) RP(E). { 829 if( Y && Y->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 830 sqlite3ErrorMsg(pParse, "too many arguments on function %T", &X); 831 } 832 A.pExpr = sqlite3ExprFunction(pParse, Y, &X); 833 spanSet(&A,&X,&E); 834 if( D && A.pExpr ){ 835 A.pExpr->flags |= EP_Distinct; 836 } 837 } 838 expr(A) ::= ID(X) LP STAR RP(E). { 839 A.pExpr = sqlite3ExprFunction(pParse, 0, &X); 840 spanSet(&A,&X,&E); 841 } 842 term(A) ::= CTIME_KW(OP). { 843 /* The CURRENT_TIME, CURRENT_DATE, and CURRENT_TIMESTAMP values are 844 ** treated as functions that return constants */ 845 A.pExpr = sqlite3ExprFunction(pParse, 0,&OP); 846 if( A.pExpr ){ 847 A.pExpr->op = TK_CONST_FUNC; 848 } 849 spanSet(&A, &OP, &OP); 850 } 851 852 %include { 853 /* This routine constructs a binary expression node out of two ExprSpan 854 ** objects and uses the result to populate a new ExprSpan object. 855 */ 856 static void spanBinaryExpr( 857 ExprSpan *pOut, /* Write the result here */ 858 Parse *pParse, /* The parsing context. Errors accumulate here */ 859 int op, /* The binary operation */ 860 ExprSpan *pLeft, /* The left operand */ 861 ExprSpan *pRight /* The right operand */ 862 ){ 863 pOut->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr, 0); 864 pOut->zStart = pLeft->zStart; 865 pOut->zEnd = pRight->zEnd; 866 } 867 } 868 869 expr(A) ::= expr(X) AND(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 870 expr(A) ::= expr(X) OR(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 871 expr(A) ::= expr(X) LT|GT|GE|LE(OP) expr(Y). 872 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 873 expr(A) ::= expr(X) EQ|NE(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 874 expr(A) ::= expr(X) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y). 875 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 876 expr(A) ::= expr(X) PLUS|MINUS(OP) expr(Y). 877 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 878 expr(A) ::= expr(X) STAR|SLASH|REM(OP) expr(Y). 879 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 880 expr(A) ::= expr(X) CONCAT(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 881 %type likeop {struct LikeOp} 882 likeop(A) ::= LIKE_KW(X). {A.eOperator = X; A.bNot = 0;} 883 likeop(A) ::= NOT LIKE_KW(X). {A.eOperator = X; A.bNot = 1;} 884 likeop(A) ::= MATCH(X). {A.eOperator = X; A.bNot = 0;} 885 likeop(A) ::= NOT MATCH(X). {A.eOperator = X; A.bNot = 1;} 886 expr(A) ::= expr(X) likeop(OP) expr(Y). [LIKE_KW] { 887 ExprList *pList; 888 pList = sqlite3ExprListAppend(pParse,0, Y.pExpr); 889 pList = sqlite3ExprListAppend(pParse,pList, X.pExpr); 890 A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator); 891 if( OP.bNot ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 892 A.zStart = X.zStart; 893 A.zEnd = Y.zEnd; 894 if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc; 895 } 896 expr(A) ::= expr(X) likeop(OP) expr(Y) ESCAPE expr(E). [LIKE_KW] { 897 ExprList *pList; 898 pList = sqlite3ExprListAppend(pParse,0, Y.pExpr); 899 pList = sqlite3ExprListAppend(pParse,pList, X.pExpr); 900 pList = sqlite3ExprListAppend(pParse,pList, E.pExpr); 901 A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator); 902 if( OP.bNot ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 903 A.zStart = X.zStart; 904 A.zEnd = E.zEnd; 905 if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc; 906 } 907 908 %include { 909 /* Construct an expression node for a unary postfix operator 910 */ 911 static void spanUnaryPostfix( 912 ExprSpan *pOut, /* Write the new expression node here */ 913 Parse *pParse, /* Parsing context to record errors */ 914 int op, /* The operator */ 915 ExprSpan *pOperand, /* The operand */ 916 Token *pPostOp /* The operand token for setting the span */ 917 ){ 918 pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0); 919 pOut->zStart = pOperand->zStart; 920 pOut->zEnd = &pPostOp->z[pPostOp->n]; 921 } 922 } 923 924 expr(A) ::= expr(X) ISNULL|NOTNULL(E). {spanUnaryPostfix(&A,pParse,@E,&X,&E);} 925 expr(A) ::= expr(X) NOT NULL(E). {spanUnaryPostfix(&A,pParse,TK_NOTNULL,&X,&E);} 926 927 %include { 928 /* A routine to convert a binary TK_IS or TK_ISNOT expression into a 929 ** unary TK_ISNULL or TK_NOTNULL expression. */ 930 static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){ 931 sqlite3 *db = pParse->db; 932 if( db->mallocFailed==0 && pY->op==TK_NULL ){ 933 pA->op = (u8)op; 934 sqlite3ExprDelete(db, pA->pRight); 935 pA->pRight = 0; 936 } 937 } 938 } 939 940 // expr1 IS expr2 941 // expr1 IS NOT expr2 942 // 943 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL. If expr2 944 // is any other expression, code as TK_IS or TK_ISNOT. 945 // 946 expr(A) ::= expr(X) IS expr(Y). { 947 spanBinaryExpr(&A,pParse,TK_IS,&X,&Y); 948 binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_ISNULL); 949 } 950 expr(A) ::= expr(X) IS NOT expr(Y). { 951 spanBinaryExpr(&A,pParse,TK_ISNOT,&X,&Y); 952 binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_NOTNULL); 953 } 954 955 %include { 956 /* Construct an expression node for a unary prefix operator 957 */ 958 static void spanUnaryPrefix( 959 ExprSpan *pOut, /* Write the new expression node here */ 960 Parse *pParse, /* Parsing context to record errors */ 961 int op, /* The operator */ 962 ExprSpan *pOperand, /* The operand */ 963 Token *pPreOp /* The operand token for setting the span */ 964 ){ 965 pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0); 966 pOut->zStart = pPreOp->z; 967 pOut->zEnd = pOperand->zEnd; 968 } 969 } 970 971 972 973 expr(A) ::= NOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);} 974 expr(A) ::= BITNOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);} 975 expr(A) ::= MINUS(B) expr(X). [BITNOT] 976 {spanUnaryPrefix(&A,pParse,TK_UMINUS,&X,&B);} 977 expr(A) ::= PLUS(B) expr(X). [BITNOT] 978 {spanUnaryPrefix(&A,pParse,TK_UPLUS,&X,&B);} 979 980 %type between_op {int} 981 between_op(A) ::= BETWEEN. {A = 0;} 982 between_op(A) ::= NOT BETWEEN. {A = 1;} 983 expr(A) ::= expr(W) between_op(N) expr(X) AND expr(Y). [BETWEEN] { 984 ExprList *pList = sqlite3ExprListAppend(pParse,0, X.pExpr); 985 pList = sqlite3ExprListAppend(pParse,pList, Y.pExpr); 986 A.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, W.pExpr, 0, 0); 987 if( A.pExpr ){ 988 A.pExpr->x.pList = pList; 989 }else{ 990 sqlite3ExprListDelete(pParse->db, pList); 991 } 992 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 993 A.zStart = W.zStart; 994 A.zEnd = Y.zEnd; 995 } 996 %ifndef SQLITE_OMIT_SUBQUERY 997 %type in_op {int} 998 in_op(A) ::= IN. {A = 0;} 999 in_op(A) ::= NOT IN. {A = 1;} 1000 expr(A) ::= expr(X) in_op(N) LP exprlist(Y) RP(E). [IN] { 1001 if( Y==0 ){ 1002 /* Expressions of the form 1003 ** 1004 ** expr1 IN () 1005 ** expr1 NOT IN () 1006 ** 1007 ** simplify to constants 0 (false) and 1 (true), respectively, 1008 ** regardless of the value of expr1. 1009 */ 1010 A.pExpr = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &sqlite3IntTokens[N]); 1011 sqlite3ExprDelete(pParse->db, X.pExpr); 1012 }else{ 1013 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); 1014 if( A.pExpr ){ 1015 A.pExpr->x.pList = Y; 1016 sqlite3ExprSetHeight(pParse, A.pExpr); 1017 }else{ 1018 sqlite3ExprListDelete(pParse->db, Y); 1019 } 1020 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 1021 } 1022 A.zStart = X.zStart; 1023 A.zEnd = &E.z[E.n]; 1024 } 1025 expr(A) ::= LP(B) select(X) RP(E). { 1026 A.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0); 1027 if( A.pExpr ){ 1028 A.pExpr->x.pSelect = X; 1029 ExprSetProperty(A.pExpr, EP_xIsSelect); 1030 sqlite3ExprSetHeight(pParse, A.pExpr); 1031 }else{ 1032 sqlite3SelectDelete(pParse->db, X); 1033 } 1034 A.zStart = B.z; 1035 A.zEnd = &E.z[E.n]; 1036 } 1037 expr(A) ::= expr(X) in_op(N) LP select(Y) RP(E). [IN] { 1038 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); 1039 if( A.pExpr ){ 1040 A.pExpr->x.pSelect = Y; 1041 ExprSetProperty(A.pExpr, EP_xIsSelect); 1042 sqlite3ExprSetHeight(pParse, A.pExpr); 1043 }else{ 1044 sqlite3SelectDelete(pParse->db, Y); 1045 } 1046 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 1047 A.zStart = X.zStart; 1048 A.zEnd = &E.z[E.n]; 1049 } 1050 expr(A) ::= expr(X) in_op(N) nm(Y) dbnm(Z). [IN] { 1051 SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z); 1052 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); 1053 if( A.pExpr ){ 1054 A.pExpr->x.pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0); 1055 ExprSetProperty(A.pExpr, EP_xIsSelect); 1056 sqlite3ExprSetHeight(pParse, A.pExpr); 1057 }else{ 1058 sqlite3SrcListDelete(pParse->db, pSrc); 1059 } 1060 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 1061 A.zStart = X.zStart; 1062 A.zEnd = Z.z ? &Z.z[Z.n] : &Y.z[Y.n]; 1063 } 1064 expr(A) ::= EXISTS(B) LP select(Y) RP(E). { 1065 Expr *p = A.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0); 1066 if( p ){ 1067 p->x.pSelect = Y; 1068 ExprSetProperty(p, EP_xIsSelect); 1069 sqlite3ExprSetHeight(pParse, p); 1070 }else{ 1071 sqlite3SelectDelete(pParse->db, Y); 1072 } 1073 A.zStart = B.z; 1074 A.zEnd = &E.z[E.n]; 1075 } 1076 %endif SQLITE_OMIT_SUBQUERY 1077 1078 /* CASE expressions */ 1079 expr(A) ::= CASE(C) case_operand(X) case_exprlist(Y) case_else(Z) END(E). { 1080 A.pExpr = sqlite3PExpr(pParse, TK_CASE, X, Z, 0); 1081 if( A.pExpr ){ 1082 A.pExpr->x.pList = Y; 1083 sqlite3ExprSetHeight(pParse, A.pExpr); 1084 }else{ 1085 sqlite3ExprListDelete(pParse->db, Y); 1086 } 1087 A.zStart = C.z; 1088 A.zEnd = &E.z[E.n]; 1089 } 1090 %type case_exprlist {ExprList*} 1091 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1092 case_exprlist(A) ::= case_exprlist(X) WHEN expr(Y) THEN expr(Z). { 1093 A = sqlite3ExprListAppend(pParse,X, Y.pExpr); 1094 A = sqlite3ExprListAppend(pParse,A, Z.pExpr); 1095 } 1096 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). { 1097 A = sqlite3ExprListAppend(pParse,0, Y.pExpr); 1098 A = sqlite3ExprListAppend(pParse,A, Z.pExpr); 1099 } 1100 %type case_else {Expr*} 1101 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);} 1102 case_else(A) ::= ELSE expr(X). {A = X.pExpr;} 1103 case_else(A) ::= . {A = 0;} 1104 %type case_operand {Expr*} 1105 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);} 1106 case_operand(A) ::= expr(X). {A = X.pExpr;} 1107 case_operand(A) ::= . {A = 0;} 1108 1109 %type exprlist {ExprList*} 1110 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1111 %type nexprlist {ExprList*} 1112 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);} 1113 1114 exprlist(A) ::= nexprlist(X). {A = X;} 1115 exprlist(A) ::= . {A = 0;} 1116 nexprlist(A) ::= nexprlist(X) COMMA expr(Y). 1117 {A = sqlite3ExprListAppend(pParse,X,Y.pExpr);} 1118 nexprlist(A) ::= expr(Y). 1119 {A = sqlite3ExprListAppend(pParse,0,Y.pExpr);} 1120 1121 1122 ///////////////////////////// The CREATE INDEX command /////////////////////// 1123 // 1124 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D) 1125 ON nm(Y) LP idxlist(Z) RP(E). { 1126 sqlite3CreateIndex(pParse, &X, &D, 1127 sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U, 1128 &S, &E, SQLITE_SO_ASC, NE); 1129 } 1130 1131 %type uniqueflag {int} 1132 uniqueflag(A) ::= UNIQUE. {A = OE_Abort;} 1133 uniqueflag(A) ::= . {A = OE_None;} 1134 1135 %type idxlist {ExprList*} 1136 %destructor idxlist {sqlite3ExprListDelete(pParse->db, $$);} 1137 %type idxlist_opt {ExprList*} 1138 %destructor idxlist_opt {sqlite3ExprListDelete(pParse->db, $$);} 1139 1140 idxlist_opt(A) ::= . {A = 0;} 1141 idxlist_opt(A) ::= LP idxlist(X) RP. {A = X;} 1142 idxlist(A) ::= idxlist(X) COMMA nm(Y) collate(C) sortorder(Z). { 1143 Expr *p = 0; 1144 if( C.n>0 ){ 1145 p = sqlite3Expr(pParse->db, TK_COLUMN, 0); 1146 sqlite3ExprSetCollByToken(pParse, p, &C); 1147 } 1148 A = sqlite3ExprListAppend(pParse,X, p); 1149 sqlite3ExprListSetName(pParse,A,&Y,1); 1150 sqlite3ExprListCheckLength(pParse, A, "index"); 1151 if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; 1152 } 1153 idxlist(A) ::= nm(Y) collate(C) sortorder(Z). { 1154 Expr *p = 0; 1155 if( C.n>0 ){ 1156 p = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0); 1157 sqlite3ExprSetCollByToken(pParse, p, &C); 1158 } 1159 A = sqlite3ExprListAppend(pParse,0, p); 1160 sqlite3ExprListSetName(pParse, A, &Y, 1); 1161 sqlite3ExprListCheckLength(pParse, A, "index"); 1162 if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; 1163 } 1164 1165 %type collate {Token} 1166 collate(C) ::= . {C.z = 0; C.n = 0;} 1167 collate(C) ::= COLLATE ids(X). {C = X;} 1168 1169 1170 ///////////////////////////// The DROP INDEX command ///////////////////////// 1171 // 1172 cmd ::= DROP INDEX ifexists(E) fullname(X). {sqlite3DropIndex(pParse, X, E);} 1173 1174 ///////////////////////////// The VACUUM command ///////////////////////////// 1175 // 1176 %ifndef SQLITE_OMIT_VACUUM 1177 %ifndef SQLITE_OMIT_ATTACH 1178 cmd ::= VACUUM. {sqlite3Vacuum(pParse);} 1179 cmd ::= VACUUM nm. {sqlite3Vacuum(pParse);} 1180 %endif SQLITE_OMIT_ATTACH 1181 %endif SQLITE_OMIT_VACUUM 1182 1183 ///////////////////////////// The PRAGMA command ///////////////////////////// 1184 // 1185 %ifndef SQLITE_OMIT_PRAGMA 1186 cmd ::= PRAGMA nm(X) dbnm(Z). {sqlite3Pragma(pParse,&X,&Z,0,0);} 1187 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1188 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1189 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y). 1190 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1191 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP. 1192 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1193 1194 nmnum(A) ::= plus_num(X). {A = X;} 1195 nmnum(A) ::= nm(X). {A = X;} 1196 nmnum(A) ::= ON(X). {A = X;} 1197 nmnum(A) ::= DELETE(X). {A = X;} 1198 nmnum(A) ::= DEFAULT(X). {A = X;} 1199 %endif SQLITE_OMIT_PRAGMA 1200 plus_num(A) ::= PLUS number(X). {A = X;} 1201 plus_num(A) ::= number(X). {A = X;} 1202 minus_num(A) ::= MINUS number(X). {A = X;} 1203 number(A) ::= INTEGER|FLOAT(X). {A = X;} 1204 1205 //////////////////////////// The CREATE TRIGGER command ///////////////////// 1206 1207 %ifndef SQLITE_OMIT_TRIGGER 1208 1209 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). { 1210 Token all; 1211 all.z = A.z; 1212 all.n = (int)(Z.z - A.z) + Z.n; 1213 sqlite3FinishTrigger(pParse, S, &all); 1214 } 1215 1216 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z) 1217 trigger_time(C) trigger_event(D) 1218 ON fullname(E) foreach_clause when_clause(G). { 1219 sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR); 1220 A = (Z.n==0?B:Z); 1221 } 1222 1223 %type trigger_time {int} 1224 trigger_time(A) ::= BEFORE. { A = TK_BEFORE; } 1225 trigger_time(A) ::= AFTER. { A = TK_AFTER; } 1226 trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;} 1227 trigger_time(A) ::= . { A = TK_BEFORE; } 1228 1229 %type trigger_event {struct TrigEvent} 1230 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);} 1231 trigger_event(A) ::= DELETE|INSERT(OP). {A.a = @OP; A.b = 0;} 1232 trigger_event(A) ::= UPDATE(OP). {A.a = @OP; A.b = 0;} 1233 trigger_event(A) ::= UPDATE OF inscollist(X). {A.a = TK_UPDATE; A.b = X;} 1234 1235 foreach_clause ::= . 1236 foreach_clause ::= FOR EACH ROW. 1237 1238 %type when_clause {Expr*} 1239 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);} 1240 when_clause(A) ::= . { A = 0; } 1241 when_clause(A) ::= WHEN expr(X). { A = X.pExpr; } 1242 1243 %type trigger_cmd_list {TriggerStep*} 1244 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);} 1245 trigger_cmd_list(A) ::= trigger_cmd_list(Y) trigger_cmd(X) SEMI. { 1246 assert( Y!=0 ); 1247 Y->pLast->pNext = X; 1248 Y->pLast = X; 1249 A = Y; 1250 } 1251 trigger_cmd_list(A) ::= trigger_cmd(X) SEMI. { 1252 assert( X!=0 ); 1253 X->pLast = X; 1254 A = X; 1255 } 1256 1257 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements 1258 // within a trigger. The table to INSERT, UPDATE, or DELETE is always in 1259 // the same database as the table that the trigger fires on. 1260 // 1261 %type trnm {Token} 1262 trnm(A) ::= nm(X). {A = X;} 1263 trnm(A) ::= nm DOT nm(X). { 1264 A = X; 1265 sqlite3ErrorMsg(pParse, 1266 "qualified table names are not allowed on INSERT, UPDATE, and DELETE " 1267 "statements within triggers"); 1268 } 1269 1270 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE 1271 // statements within triggers. We make a specific error message for this 1272 // since it is an exception to the default grammar rules. 1273 // 1274 tridxby ::= . 1275 tridxby ::= INDEXED BY nm. { 1276 sqlite3ErrorMsg(pParse, 1277 "the INDEXED BY clause is not allowed on UPDATE or DELETE statements " 1278 "within triggers"); 1279 } 1280 tridxby ::= NOT INDEXED. { 1281 sqlite3ErrorMsg(pParse, 1282 "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements " 1283 "within triggers"); 1284 } 1285 1286 1287 1288 %type trigger_cmd {TriggerStep*} 1289 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);} 1290 // UPDATE 1291 trigger_cmd(A) ::= 1292 UPDATE orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z). 1293 { A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R); } 1294 1295 // INSERT 1296 trigger_cmd(A) ::= 1297 insert_cmd(R) INTO trnm(X) inscollist_opt(F) valuelist(Y). 1298 {A = sqlite3TriggerInsertStep(pParse->db, &X, F, Y.pList, Y.pSelect, R);} 1299 1300 trigger_cmd(A) ::= insert_cmd(R) INTO trnm(X) inscollist_opt(F) select(S). 1301 {A = sqlite3TriggerInsertStep(pParse->db, &X, F, 0, S, R);} 1302 1303 // DELETE 1304 trigger_cmd(A) ::= DELETE FROM trnm(X) tridxby where_opt(Y). 1305 {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y);} 1306 1307 // SELECT 1308 trigger_cmd(A) ::= select(X). {A = sqlite3TriggerSelectStep(pParse->db, X); } 1309 1310 // The special RAISE expression that may occur in trigger programs 1311 expr(A) ::= RAISE(X) LP IGNORE RP(Y). { 1312 A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0); 1313 if( A.pExpr ){ 1314 A.pExpr->affinity = OE_Ignore; 1315 } 1316 A.zStart = X.z; 1317 A.zEnd = &Y.z[Y.n]; 1318 } 1319 expr(A) ::= RAISE(X) LP raisetype(T) COMMA nm(Z) RP(Y). { 1320 A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &Z); 1321 if( A.pExpr ) { 1322 A.pExpr->affinity = (char)T; 1323 } 1324 A.zStart = X.z; 1325 A.zEnd = &Y.z[Y.n]; 1326 } 1327 %endif !SQLITE_OMIT_TRIGGER 1328 1329 %type raisetype {int} 1330 raisetype(A) ::= ROLLBACK. {A = OE_Rollback;} 1331 raisetype(A) ::= ABORT. {A = OE_Abort;} 1332 raisetype(A) ::= FAIL. {A = OE_Fail;} 1333 1334 1335 //////////////////////// DROP TRIGGER statement ////////////////////////////// 1336 %ifndef SQLITE_OMIT_TRIGGER 1337 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). { 1338 sqlite3DropTrigger(pParse,X,NOERR); 1339 } 1340 %endif !SQLITE_OMIT_TRIGGER 1341 1342 //////////////////////// ATTACH DATABASE file AS name ///////////////////////// 1343 %ifndef SQLITE_OMIT_ATTACH 1344 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). { 1345 sqlite3Attach(pParse, F.pExpr, D.pExpr, K); 1346 } 1347 cmd ::= DETACH database_kw_opt expr(D). { 1348 sqlite3Detach(pParse, D.pExpr); 1349 } 1350 1351 %type key_opt {Expr*} 1352 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);} 1353 key_opt(A) ::= . { A = 0; } 1354 key_opt(A) ::= KEY expr(X). { A = X.pExpr; } 1355 1356 database_kw_opt ::= DATABASE. 1357 database_kw_opt ::= . 1358 %endif SQLITE_OMIT_ATTACH 1359 1360 ////////////////////////// REINDEX collation ////////////////////////////////// 1361 %ifndef SQLITE_OMIT_REINDEX 1362 cmd ::= REINDEX. {sqlite3Reindex(pParse, 0, 0);} 1363 cmd ::= REINDEX nm(X) dbnm(Y). {sqlite3Reindex(pParse, &X, &Y);} 1364 %endif SQLITE_OMIT_REINDEX 1365 1366 /////////////////////////////////// ANALYZE /////////////////////////////////// 1367 %ifndef SQLITE_OMIT_ANALYZE 1368 cmd ::= ANALYZE. {sqlite3Analyze(pParse, 0, 0);} 1369 cmd ::= ANALYZE nm(X) dbnm(Y). {sqlite3Analyze(pParse, &X, &Y);} 1370 %endif 1371 1372 //////////////////////// ALTER TABLE table ... //////////////////////////////// 1373 %ifndef SQLITE_OMIT_ALTERTABLE 1374 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). { 1375 sqlite3AlterRenameTable(pParse,X,&Z); 1376 } 1377 cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column(Y). { 1378 sqlite3AlterFinishAddColumn(pParse, &Y); 1379 } 1380 add_column_fullname ::= fullname(X). { 1381 pParse->db->lookaside.bEnabled = 0; 1382 sqlite3AlterBeginAddColumn(pParse, X); 1383 } 1384 kwcolumn_opt ::= . 1385 kwcolumn_opt ::= COLUMNKW. 1386 %endif SQLITE_OMIT_ALTERTABLE 1387 1388 //////////////////////// CREATE VIRTUAL TABLE ... ///////////////////////////// 1389 %ifndef SQLITE_OMIT_VIRTUALTABLE 1390 cmd ::= create_vtab. {sqlite3VtabFinishParse(pParse,0);} 1391 cmd ::= create_vtab LP vtabarglist RP(X). {sqlite3VtabFinishParse(pParse,&X);} 1392 create_vtab ::= createkw VIRTUAL TABLE ifnotexists(E) 1393 nm(X) dbnm(Y) USING nm(Z). { 1394 sqlite3VtabBeginParse(pParse, &X, &Y, &Z, E); 1395 } 1396 vtabarglist ::= vtabarg. 1397 vtabarglist ::= vtabarglist COMMA vtabarg. 1398 vtabarg ::= . {sqlite3VtabArgInit(pParse);} 1399 vtabarg ::= vtabarg vtabargtoken. 1400 vtabargtoken ::= ANY(X). {sqlite3VtabArgExtend(pParse,&X);} 1401 vtabargtoken ::= lp anylist RP(X). {sqlite3VtabArgExtend(pParse,&X);} 1402 lp ::= LP(X). {sqlite3VtabArgExtend(pParse,&X);} 1403 anylist ::= . 1404 anylist ::= anylist LP anylist RP. 1405 anylist ::= anylist ANY. 1406 %endif SQLITE_OMIT_VIRTUALTABLE 1407