1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains SQLite's grammar for SQL. Process this file 13 ** using the lemon parser generator to generate C code that runs 14 ** the parser. Lemon will also generate a header file containing 15 ** numeric codes for all of the tokens. 16 ** 17 ** @(#) $Id: parse.y,v 1.235 2007/11/12 09:50:26 danielk1977 Exp $ 18 */ 19 20 // All token codes are small integers with #defines that begin with "TK_" 21 %token_prefix TK_ 22 23 // The type of the data attached to each token is Token. This is also the 24 // default type for non-terminals. 25 // 26 %token_type {Token} 27 %default_type {Token} 28 29 // The generated parser function takes a 4th argument as follows: 30 %extra_argument {Parse *pParse} 31 32 // This code runs whenever there is a syntax error 33 // 34 %syntax_error { 35 if( !pParse->parseError ){ 36 if( TOKEN.z[0] ){ 37 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN); 38 }else{ 39 sqlite3ErrorMsg(pParse, "incomplete SQL statement"); 40 } 41 pParse->parseError = 1; 42 } 43 } 44 %stack_overflow { 45 sqlite3ErrorMsg(pParse, "parser stack overflow"); 46 pParse->parseError = 1; 47 } 48 49 // The name of the generated procedure that implements the parser 50 // is as follows: 51 %name sqlite3Parser 52 53 // The following text is included near the beginning of the C source 54 // code file that implements the parser. 55 // 56 %include { 57 #include "sqliteInt.h" 58 59 /* 60 ** An instance of this structure holds information about the 61 ** LIMIT clause of a SELECT statement. 62 */ 63 struct LimitVal { 64 Expr *pLimit; /* The LIMIT expression. NULL if there is no limit */ 65 Expr *pOffset; /* The OFFSET expression. NULL if there is none */ 66 }; 67 68 /* 69 ** An instance of this structure is used to store the LIKE, 70 ** GLOB, NOT LIKE, and NOT GLOB operators. 71 */ 72 struct LikeOp { 73 Token eOperator; /* "like" or "glob" or "regexp" */ 74 int not; /* True if the NOT keyword is present */ 75 }; 76 77 /* 78 ** An instance of the following structure describes the event of a 79 ** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT, 80 ** TK_DELETE, or TK_INSTEAD. If the event is of the form 81 ** 82 ** UPDATE ON (a,b,c) 83 ** 84 ** Then the "b" IdList records the list "a,b,c". 85 */ 86 struct TrigEvent { int a; IdList * b; }; 87 88 /* 89 ** An instance of this structure holds the ATTACH key and the key type. 90 */ 91 struct AttachKey { int type; Token key; }; 92 93 } // end %include 94 95 // Input is a single SQL command 96 input ::= cmdlist. 97 cmdlist ::= cmdlist ecmd. 98 cmdlist ::= ecmd. 99 cmdx ::= cmd. { sqlite3FinishCoding(pParse); } 100 ecmd ::= SEMI. 101 ecmd ::= explain cmdx SEMI. 102 explain ::= . { sqlite3BeginParse(pParse, 0); } 103 %ifndef SQLITE_OMIT_EXPLAIN 104 explain ::= EXPLAIN. { sqlite3BeginParse(pParse, 1); } 105 explain ::= EXPLAIN QUERY PLAN. { sqlite3BeginParse(pParse, 2); } 106 %endif SQLITE_OMIT_EXPLAIN 107 108 ///////////////////// Begin and end transactions. //////////////////////////// 109 // 110 111 cmd ::= BEGIN transtype(Y) trans_opt. {sqlite3BeginTransaction(pParse, Y);} 112 trans_opt ::= . 113 trans_opt ::= TRANSACTION. 114 trans_opt ::= TRANSACTION nm. 115 %type transtype {int} 116 transtype(A) ::= . {A = TK_DEFERRED;} 117 transtype(A) ::= DEFERRED(X). {A = @X;} 118 transtype(A) ::= IMMEDIATE(X). {A = @X;} 119 transtype(A) ::= EXCLUSIVE(X). {A = @X;} 120 cmd ::= COMMIT trans_opt. {sqlite3CommitTransaction(pParse);} 121 cmd ::= END trans_opt. {sqlite3CommitTransaction(pParse);} 122 cmd ::= ROLLBACK trans_opt. {sqlite3RollbackTransaction(pParse);} 123 124 ///////////////////// The CREATE TABLE statement //////////////////////////// 125 // 126 cmd ::= create_table create_table_args. 127 create_table ::= CREATE temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). { 128 sqlite3StartTable(pParse,&Y,&Z,T,0,0,E); 129 } 130 %type ifnotexists {int} 131 ifnotexists(A) ::= . {A = 0;} 132 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;} 133 %type temp {int} 134 %ifndef SQLITE_OMIT_TEMPDB 135 temp(A) ::= TEMP. {A = 1;} 136 %endif SQLITE_OMIT_TEMPDB 137 temp(A) ::= . {A = 0;} 138 create_table_args ::= LP columnlist conslist_opt(X) RP(Y). { 139 sqlite3EndTable(pParse,&X,&Y,0); 140 } 141 create_table_args ::= AS select(S). { 142 sqlite3EndTable(pParse,0,0,S); 143 sqlite3SelectDelete(S); 144 } 145 columnlist ::= columnlist COMMA column. 146 columnlist ::= column. 147 148 // A "column" is a complete description of a single column in a 149 // CREATE TABLE statement. This includes the column name, its 150 // datatype, and other keywords such as PRIMARY KEY, UNIQUE, REFERENCES, 151 // NOT NULL and so forth. 152 // 153 column(A) ::= columnid(X) type carglist. { 154 A.z = X.z; 155 A.n = (pParse->sLastToken.z-X.z) + pParse->sLastToken.n; 156 } 157 columnid(A) ::= nm(X). { 158 sqlite3AddColumn(pParse,&X); 159 A = X; 160 } 161 162 163 // An IDENTIFIER can be a generic identifier, or one of several 164 // keywords. Any non-standard keyword can also be an identifier. 165 // 166 %type id {Token} 167 id(A) ::= ID(X). {A = X;} 168 169 // The following directive causes tokens ABORT, AFTER, ASC, etc. to 170 // fallback to ID if they will not parse as their original value. 171 // This obviates the need for the "id" nonterminal. 172 // 173 %fallback ID 174 ABORT AFTER ANALYZE ASC ATTACH BEFORE BEGIN CASCADE CAST CONFLICT 175 DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL FOR 176 IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH PLAN 177 QUERY KEY OF OFFSET PRAGMA RAISE REPLACE RESTRICT ROW 178 TEMP TRIGGER VACUUM VIEW VIRTUAL 179 %ifdef SQLITE_OMIT_COMPOUND_SELECT 180 EXCEPT INTERSECT UNION 181 %endif SQLITE_OMIT_COMPOUND_SELECT 182 REINDEX RENAME CTIME_KW IF 183 . 184 %wildcard ANY. 185 186 // Define operator precedence early so that this is the first occurance 187 // of the operator tokens in the grammer. Keeping the operators together 188 // causes them to be assigned integer values that are close together, 189 // which keeps parser tables smaller. 190 // 191 // The token values assigned to these symbols is determined by the order 192 // in which lemon first sees them. It must be the case that ISNULL/NOTNULL, 193 // NE/EQ, GT/LE, and GE/LT are separated by only a single value. See 194 // the sqlite3ExprIfFalse() routine for additional information on this 195 // constraint. 196 // 197 %left OR. 198 %left AND. 199 %right NOT. 200 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. 201 %left GT LE LT GE. 202 %right ESCAPE. 203 %left BITAND BITOR LSHIFT RSHIFT. 204 %left PLUS MINUS. 205 %left STAR SLASH REM. 206 %left CONCAT. 207 %left COLLATE. 208 %right UMINUS UPLUS BITNOT. 209 210 // And "ids" is an identifer-or-string. 211 // 212 %type ids {Token} 213 ids(A) ::= ID|STRING(X). {A = X;} 214 215 // The name of a column or table can be any of the following: 216 // 217 %type nm {Token} 218 nm(A) ::= ID(X). {A = X;} 219 nm(A) ::= STRING(X). {A = X;} 220 nm(A) ::= JOIN_KW(X). {A = X;} 221 222 // A typetoken is really one or more tokens that form a type name such 223 // as can be found after the column name in a CREATE TABLE statement. 224 // Multiple tokens are concatenated to form the value of the typetoken. 225 // 226 %type typetoken {Token} 227 type ::= . 228 type ::= typetoken(X). {sqlite3AddColumnType(pParse,&X);} 229 typetoken(A) ::= typename(X). {A = X;} 230 typetoken(A) ::= typename(X) LP signed RP(Y). { 231 A.z = X.z; 232 A.n = &Y.z[Y.n] - X.z; 233 } 234 typetoken(A) ::= typename(X) LP signed COMMA signed RP(Y). { 235 A.z = X.z; 236 A.n = &Y.z[Y.n] - X.z; 237 } 238 %type typename {Token} 239 typename(A) ::= ids(X). {A = X;} 240 typename(A) ::= typename(X) ids(Y). {A.z=X.z; A.n=Y.n+(Y.z-X.z);} 241 signed ::= plus_num. 242 signed ::= minus_num. 243 244 // "carglist" is a list of additional constraints that come after the 245 // column name and column type in a CREATE TABLE statement. 246 // 247 carglist ::= carglist carg. 248 carglist ::= . 249 carg ::= CONSTRAINT nm ccons. 250 carg ::= ccons. 251 ccons ::= DEFAULT term(X). {sqlite3AddDefaultValue(pParse,X);} 252 ccons ::= DEFAULT LP expr(X) RP. {sqlite3AddDefaultValue(pParse,X);} 253 ccons ::= DEFAULT PLUS term(X). {sqlite3AddDefaultValue(pParse,X);} 254 ccons ::= DEFAULT MINUS term(X). { 255 Expr *p = sqlite3PExpr(pParse, TK_UMINUS, X, 0, 0); 256 sqlite3AddDefaultValue(pParse,p); 257 } 258 ccons ::= DEFAULT id(X). { 259 Expr *p = sqlite3PExpr(pParse, TK_STRING, 0, 0, &X); 260 sqlite3AddDefaultValue(pParse,p); 261 } 262 263 // In addition to the type name, we also care about the primary key and 264 // UNIQUE constraints. 265 // 266 ccons ::= NULL onconf. 267 ccons ::= NOT NULL onconf(R). {sqlite3AddNotNull(pParse, R);} 268 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I). 269 {sqlite3AddPrimaryKey(pParse,0,R,I,Z);} 270 ccons ::= UNIQUE onconf(R). {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0);} 271 ccons ::= CHECK LP expr(X) RP. {sqlite3AddCheckConstraint(pParse,X);} 272 ccons ::= REFERENCES nm(T) idxlist_opt(TA) refargs(R). 273 {sqlite3CreateForeignKey(pParse,0,&T,TA,R);} 274 ccons ::= defer_subclause(D). {sqlite3DeferForeignKey(pParse,D);} 275 ccons ::= COLLATE ids(C). {sqlite3AddCollateType(pParse, &C);} 276 277 // The optional AUTOINCREMENT keyword 278 %type autoinc {int} 279 autoinc(X) ::= . {X = 0;} 280 autoinc(X) ::= AUTOINCR. {X = 1;} 281 282 // The next group of rules parses the arguments to a REFERENCES clause 283 // that determine if the referential integrity checking is deferred or 284 // or immediate and which determine what action to take if a ref-integ 285 // check fails. 286 // 287 %type refargs {int} 288 refargs(A) ::= . { A = OE_Restrict * 0x010101; } 289 refargs(A) ::= refargs(X) refarg(Y). { A = (X & Y.mask) | Y.value; } 290 %type refarg {struct {int value; int mask;}} 291 refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; } 292 refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; } 293 refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; } 294 refarg(A) ::= ON INSERT refact(X). { A.value = X<<16; A.mask = 0xff0000; } 295 %type refact {int} 296 refact(A) ::= SET NULL. { A = OE_SetNull; } 297 refact(A) ::= SET DEFAULT. { A = OE_SetDflt; } 298 refact(A) ::= CASCADE. { A = OE_Cascade; } 299 refact(A) ::= RESTRICT. { A = OE_Restrict; } 300 %type defer_subclause {int} 301 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt(X). {A = X;} 302 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;} 303 %type init_deferred_pred_opt {int} 304 init_deferred_pred_opt(A) ::= . {A = 0;} 305 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;} 306 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;} 307 308 // For the time being, the only constraint we care about is the primary 309 // key and UNIQUE. Both create indices. 310 // 311 conslist_opt(A) ::= . {A.n = 0; A.z = 0;} 312 conslist_opt(A) ::= COMMA(X) conslist. {A = X;} 313 conslist ::= conslist COMMA tcons. 314 conslist ::= conslist tcons. 315 conslist ::= tcons. 316 tcons ::= CONSTRAINT nm. 317 tcons ::= PRIMARY KEY LP idxlist(X) autoinc(I) RP onconf(R). 318 {sqlite3AddPrimaryKey(pParse,X,R,I,0);} 319 tcons ::= UNIQUE LP idxlist(X) RP onconf(R). 320 {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0);} 321 tcons ::= CHECK LP expr(E) RP onconf. {sqlite3AddCheckConstraint(pParse,E);} 322 tcons ::= FOREIGN KEY LP idxlist(FA) RP 323 REFERENCES nm(T) idxlist_opt(TA) refargs(R) defer_subclause_opt(D). { 324 sqlite3CreateForeignKey(pParse, FA, &T, TA, R); 325 sqlite3DeferForeignKey(pParse, D); 326 } 327 %type defer_subclause_opt {int} 328 defer_subclause_opt(A) ::= . {A = 0;} 329 defer_subclause_opt(A) ::= defer_subclause(X). {A = X;} 330 331 // The following is a non-standard extension that allows us to declare the 332 // default behavior when there is a constraint conflict. 333 // 334 %type onconf {int} 335 %type orconf {int} 336 %type resolvetype {int} 337 onconf(A) ::= . {A = OE_Default;} 338 onconf(A) ::= ON CONFLICT resolvetype(X). {A = X;} 339 orconf(A) ::= . {A = OE_Default;} 340 orconf(A) ::= OR resolvetype(X). {A = X;} 341 resolvetype(A) ::= raisetype(X). {A = X;} 342 resolvetype(A) ::= IGNORE. {A = OE_Ignore;} 343 resolvetype(A) ::= REPLACE. {A = OE_Replace;} 344 345 ////////////////////////// The DROP TABLE ///////////////////////////////////// 346 // 347 cmd ::= DROP TABLE ifexists(E) fullname(X). { 348 sqlite3DropTable(pParse, X, 0, E); 349 } 350 %type ifexists {int} 351 ifexists(A) ::= IF EXISTS. {A = 1;} 352 ifexists(A) ::= . {A = 0;} 353 354 ///////////////////// The CREATE VIEW statement ///////////////////////////// 355 // 356 %ifndef SQLITE_OMIT_VIEW 357 cmd ::= CREATE(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) AS select(S). { 358 sqlite3CreateView(pParse, &X, &Y, &Z, S, T, E); 359 } 360 cmd ::= DROP VIEW ifexists(E) fullname(X). { 361 sqlite3DropTable(pParse, X, 1, E); 362 } 363 %endif SQLITE_OMIT_VIEW 364 365 //////////////////////// The SELECT statement ///////////////////////////////// 366 // 367 cmd ::= select(X). { 368 sqlite3Select(pParse, X, SRT_Callback, 0, 0, 0, 0, 0); 369 sqlite3SelectDelete(X); 370 } 371 372 %type select {Select*} 373 %destructor select {sqlite3SelectDelete($$);} 374 %type oneselect {Select*} 375 %destructor oneselect {sqlite3SelectDelete($$);} 376 377 select(A) ::= oneselect(X). {A = X;} 378 %ifndef SQLITE_OMIT_COMPOUND_SELECT 379 select(A) ::= select(X) multiselect_op(Y) oneselect(Z). { 380 if( Z ){ 381 Z->op = Y; 382 Z->pPrior = X; 383 }else{ 384 sqlite3SelectDelete(X); 385 } 386 A = Z; 387 } 388 %type multiselect_op {int} 389 multiselect_op(A) ::= UNION(OP). {A = @OP;} 390 multiselect_op(A) ::= UNION ALL. {A = TK_ALL;} 391 multiselect_op(A) ::= EXCEPT|INTERSECT(OP). {A = @OP;} 392 %endif SQLITE_OMIT_COMPOUND_SELECT 393 oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y) 394 groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). { 395 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L.pLimit,L.pOffset); 396 } 397 398 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is 399 // present and false (0) if it is not. 400 // 401 %type distinct {int} 402 distinct(A) ::= DISTINCT. {A = 1;} 403 distinct(A) ::= ALL. {A = 0;} 404 distinct(A) ::= . {A = 0;} 405 406 // selcollist is a list of expressions that are to become the return 407 // values of the SELECT statement. The "*" in statements like 408 // "SELECT * FROM ..." is encoded as a special expression with an 409 // opcode of TK_ALL. 410 // 411 %type selcollist {ExprList*} 412 %destructor selcollist {sqlite3ExprListDelete($$);} 413 %type sclp {ExprList*} 414 %destructor sclp {sqlite3ExprListDelete($$);} 415 sclp(A) ::= selcollist(X) COMMA. {A = X;} 416 sclp(A) ::= . {A = 0;} 417 selcollist(A) ::= sclp(P) expr(X) as(Y). { 418 A = sqlite3ExprListAppend(pParse,P,X,Y.n?&Y:0); 419 } 420 selcollist(A) ::= sclp(P) STAR. { 421 Expr *p = sqlite3PExpr(pParse, TK_ALL, 0, 0, 0); 422 A = sqlite3ExprListAppend(pParse, P, p, 0); 423 } 424 selcollist(A) ::= sclp(P) nm(X) DOT STAR. { 425 Expr *pRight = sqlite3PExpr(pParse, TK_ALL, 0, 0, 0); 426 Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); 427 Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 428 A = sqlite3ExprListAppend(pParse,P, pDot, 0); 429 } 430 431 // An option "AS <id>" phrase that can follow one of the expressions that 432 // define the result set, or one of the tables in the FROM clause. 433 // 434 %type as {Token} 435 as(X) ::= AS nm(Y). {X = Y;} 436 as(X) ::= ids(Y). {X = Y;} 437 as(X) ::= . {X.n = 0;} 438 439 440 %type seltablist {SrcList*} 441 %destructor seltablist {sqlite3SrcListDelete($$);} 442 %type stl_prefix {SrcList*} 443 %destructor stl_prefix {sqlite3SrcListDelete($$);} 444 %type from {SrcList*} 445 %destructor from {sqlite3SrcListDelete($$);} 446 447 // A complete FROM clause. 448 // 449 from(A) ::= . {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));} 450 from(A) ::= FROM seltablist(X). { 451 A = X; 452 sqlite3SrcListShiftJoinType(A); 453 } 454 455 // "seltablist" is a "Select Table List" - the content of the FROM clause 456 // in a SELECT statement. "stl_prefix" is a prefix of this list. 457 // 458 stl_prefix(A) ::= seltablist(X) joinop(Y). { 459 A = X; 460 if( A && A->nSrc>0 ) A->a[A->nSrc-1].jointype = Y; 461 } 462 stl_prefix(A) ::= . {A = 0;} 463 seltablist(A) ::= stl_prefix(X) nm(Y) dbnm(D) as(Z) on_opt(N) using_opt(U). { 464 A = sqlite3SrcListAppendFromTerm(pParse,X,&Y,&D,&Z,0,N,U); 465 } 466 %ifndef SQLITE_OMIT_SUBQUERY 467 seltablist(A) ::= stl_prefix(X) LP seltablist_paren(S) RP 468 as(Z) on_opt(N) using_opt(U). { 469 A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,S,N,U); 470 } 471 472 // A seltablist_paren nonterminal represents anything in a FROM that 473 // is contained inside parentheses. This can be either a subquery or 474 // a grouping of table and subqueries. 475 // 476 %type seltablist_paren {Select*} 477 %destructor seltablist_paren {sqlite3SelectDelete($$);} 478 seltablist_paren(A) ::= select(S). {A = S;} 479 seltablist_paren(A) ::= seltablist(F). { 480 sqlite3SrcListShiftJoinType(F); 481 A = sqlite3SelectNew(pParse,0,F,0,0,0,0,0,0,0); 482 } 483 %endif SQLITE_OMIT_SUBQUERY 484 485 %type dbnm {Token} 486 dbnm(A) ::= . {A.z=0; A.n=0;} 487 dbnm(A) ::= DOT nm(X). {A = X;} 488 489 %type fullname {SrcList*} 490 %destructor fullname {sqlite3SrcListDelete($$);} 491 fullname(A) ::= nm(X) dbnm(Y). {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y);} 492 493 %type joinop {int} 494 %type joinop2 {int} 495 joinop(X) ::= COMMA|JOIN. { X = JT_INNER; } 496 joinop(X) ::= JOIN_KW(A) JOIN. { X = sqlite3JoinType(pParse,&A,0,0); } 497 joinop(X) ::= JOIN_KW(A) nm(B) JOIN. { X = sqlite3JoinType(pParse,&A,&B,0); } 498 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN. 499 { X = sqlite3JoinType(pParse,&A,&B,&C); } 500 501 %type on_opt {Expr*} 502 %destructor on_opt {sqlite3ExprDelete($$);} 503 on_opt(N) ::= ON expr(E). {N = E;} 504 on_opt(N) ::= . {N = 0;} 505 506 %type using_opt {IdList*} 507 %destructor using_opt {sqlite3IdListDelete($$);} 508 using_opt(U) ::= USING LP inscollist(L) RP. {U = L;} 509 using_opt(U) ::= . {U = 0;} 510 511 512 %type orderby_opt {ExprList*} 513 %destructor orderby_opt {sqlite3ExprListDelete($$);} 514 %type sortlist {ExprList*} 515 %destructor sortlist {sqlite3ExprListDelete($$);} 516 %type sortitem {Expr*} 517 %destructor sortitem {sqlite3ExprDelete($$);} 518 519 orderby_opt(A) ::= . {A = 0;} 520 orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;} 521 sortlist(A) ::= sortlist(X) COMMA sortitem(Y) sortorder(Z). { 522 A = sqlite3ExprListAppend(pParse,X,Y,0); 523 if( A ) A->a[A->nExpr-1].sortOrder = Z; 524 } 525 sortlist(A) ::= sortitem(Y) sortorder(Z). { 526 A = sqlite3ExprListAppend(pParse,0,Y,0); 527 if( A && A->a ) A->a[0].sortOrder = Z; 528 } 529 sortitem(A) ::= expr(X). {A = X;} 530 531 %type sortorder {int} 532 533 sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;} 534 sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;} 535 sortorder(A) ::= . {A = SQLITE_SO_ASC;} 536 537 %type groupby_opt {ExprList*} 538 %destructor groupby_opt {sqlite3ExprListDelete($$);} 539 groupby_opt(A) ::= . {A = 0;} 540 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;} 541 542 %type having_opt {Expr*} 543 %destructor having_opt {sqlite3ExprDelete($$);} 544 having_opt(A) ::= . {A = 0;} 545 having_opt(A) ::= HAVING expr(X). {A = X;} 546 547 %type limit_opt {struct LimitVal} 548 549 // The destructor for limit_opt will never fire in the current grammar. 550 // The limit_opt non-terminal only occurs at the end of a single production 551 // rule for SELECT statements. As soon as the rule that create the 552 // limit_opt non-terminal reduces, the SELECT statement rule will also 553 // reduce. So there is never a limit_opt non-terminal on the stack 554 // except as a transient. So there is never anything to destroy. 555 // 556 //%destructor limit_opt { 557 // sqlite3ExprDelete($$.pLimit); 558 // sqlite3ExprDelete($$.pOffset); 559 //} 560 limit_opt(A) ::= . {A.pLimit = 0; A.pOffset = 0;} 561 limit_opt(A) ::= LIMIT expr(X). {A.pLimit = X; A.pOffset = 0;} 562 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y). 563 {A.pLimit = X; A.pOffset = Y;} 564 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y). 565 {A.pOffset = X; A.pLimit = Y;} 566 567 /////////////////////////// The DELETE statement ///////////////////////////// 568 // 569 cmd ::= DELETE FROM fullname(X) where_opt(Y). {sqlite3DeleteFrom(pParse,X,Y);} 570 571 %type where_opt {Expr*} 572 %destructor where_opt {sqlite3ExprDelete($$);} 573 574 where_opt(A) ::= . {A = 0;} 575 where_opt(A) ::= WHERE expr(X). {A = X;} 576 577 ////////////////////////// The UPDATE command //////////////////////////////// 578 // 579 cmd ::= UPDATE orconf(R) fullname(X) SET setlist(Y) where_opt(Z). { 580 sqlite3ExprListCheckLength(pParse,Y,SQLITE_MAX_COLUMN,"set list"); 581 sqlite3Update(pParse,X,Y,Z,R); 582 } 583 584 %type setlist {ExprList*} 585 %destructor setlist {sqlite3ExprListDelete($$);} 586 587 setlist(A) ::= setlist(Z) COMMA nm(X) EQ expr(Y). 588 {A = sqlite3ExprListAppend(pParse,Z,Y,&X);} 589 setlist(A) ::= nm(X) EQ expr(Y). 590 {A = sqlite3ExprListAppend(pParse,0,Y,&X);} 591 592 ////////////////////////// The INSERT command ///////////////////////////////// 593 // 594 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) 595 VALUES LP itemlist(Y) RP. 596 {sqlite3Insert(pParse, X, Y, 0, F, R);} 597 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) select(S). 598 {sqlite3Insert(pParse, X, 0, S, F, R);} 599 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) DEFAULT VALUES. 600 {sqlite3Insert(pParse, X, 0, 0, F, R);} 601 602 %type insert_cmd {int} 603 insert_cmd(A) ::= INSERT orconf(R). {A = R;} 604 insert_cmd(A) ::= REPLACE. {A = OE_Replace;} 605 606 607 %type itemlist {ExprList*} 608 %destructor itemlist {sqlite3ExprListDelete($$);} 609 610 itemlist(A) ::= itemlist(X) COMMA expr(Y). 611 {A = sqlite3ExprListAppend(pParse,X,Y,0);} 612 itemlist(A) ::= expr(X). 613 {A = sqlite3ExprListAppend(pParse,0,X,0);} 614 615 %type inscollist_opt {IdList*} 616 %destructor inscollist_opt {sqlite3IdListDelete($$);} 617 %type inscollist {IdList*} 618 %destructor inscollist {sqlite3IdListDelete($$);} 619 620 inscollist_opt(A) ::= . {A = 0;} 621 inscollist_opt(A) ::= LP inscollist(X) RP. {A = X;} 622 inscollist(A) ::= inscollist(X) COMMA nm(Y). 623 {A = sqlite3IdListAppend(pParse->db,X,&Y);} 624 inscollist(A) ::= nm(Y). 625 {A = sqlite3IdListAppend(pParse->db,0,&Y);} 626 627 /////////////////////////// Expression Processing ///////////////////////////// 628 // 629 630 %type expr {Expr*} 631 %destructor expr {sqlite3ExprDelete($$);} 632 %type term {Expr*} 633 %destructor term {sqlite3ExprDelete($$);} 634 635 expr(A) ::= term(X). {A = X;} 636 expr(A) ::= LP(B) expr(X) RP(E). {A = X; sqlite3ExprSpan(A,&B,&E); } 637 term(A) ::= NULL(X). {A = sqlite3PExpr(pParse, @X, 0, 0, &X);} 638 expr(A) ::= ID(X). {A = sqlite3PExpr(pParse, TK_ID, 0, 0, &X);} 639 expr(A) ::= JOIN_KW(X). {A = sqlite3PExpr(pParse, TK_ID, 0, 0, &X);} 640 expr(A) ::= nm(X) DOT nm(Y). { 641 Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); 642 Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y); 643 A = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0); 644 } 645 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). { 646 Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); 647 Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y); 648 Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Z); 649 Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0); 650 A = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0); 651 } 652 term(A) ::= INTEGER|FLOAT|BLOB(X). {A = sqlite3PExpr(pParse, @X, 0, 0, &X);} 653 term(A) ::= STRING(X). {A = sqlite3PExpr(pParse, @X, 0, 0, &X);} 654 expr(A) ::= REGISTER(X). {A = sqlite3RegisterExpr(pParse, &X);} 655 expr(A) ::= VARIABLE(X). { 656 Token *pToken = &X; 657 Expr *pExpr = A = sqlite3PExpr(pParse, TK_VARIABLE, 0, 0, pToken); 658 sqlite3ExprAssignVarNumber(pParse, pExpr); 659 } 660 expr(A) ::= expr(E) COLLATE ids(C). { 661 A = sqlite3ExprSetColl(pParse, E, &C); 662 } 663 %ifndef SQLITE_OMIT_CAST 664 expr(A) ::= CAST(X) LP expr(E) AS typetoken(T) RP(Y). { 665 A = sqlite3PExpr(pParse, TK_CAST, E, 0, &T); 666 sqlite3ExprSpan(A,&X,&Y); 667 } 668 %endif SQLITE_OMIT_CAST 669 expr(A) ::= ID(X) LP distinct(D) exprlist(Y) RP(E). { 670 if( Y && Y->nExpr>SQLITE_MAX_FUNCTION_ARG ){ 671 sqlite3ErrorMsg(pParse, "too many arguments on function %T", &X); 672 } 673 A = sqlite3ExprFunction(pParse, Y, &X); 674 sqlite3ExprSpan(A,&X,&E); 675 if( D && A ){ 676 A->flags |= EP_Distinct; 677 } 678 } 679 expr(A) ::= ID(X) LP STAR RP(E). { 680 A = sqlite3ExprFunction(pParse, 0, &X); 681 sqlite3ExprSpan(A,&X,&E); 682 } 683 term(A) ::= CTIME_KW(OP). { 684 /* The CURRENT_TIME, CURRENT_DATE, and CURRENT_TIMESTAMP values are 685 ** treated as functions that return constants */ 686 A = sqlite3ExprFunction(pParse, 0,&OP); 687 if( A ){ 688 A->op = TK_CONST_FUNC; 689 A->span = OP; 690 } 691 } 692 expr(A) ::= expr(X) AND(OP) expr(Y). {A = sqlite3PExpr(pParse,@OP,X,Y,0);} 693 expr(A) ::= expr(X) OR(OP) expr(Y). {A = sqlite3PExpr(pParse,@OP,X,Y,0);} 694 expr(A) ::= expr(X) LT|GT|GE|LE(OP) expr(Y). 695 {A = sqlite3PExpr(pParse,@OP,X,Y,0);} 696 expr(A) ::= expr(X) EQ|NE(OP) expr(Y). {A = sqlite3PExpr(pParse,@OP,X,Y,0);} 697 expr(A) ::= expr(X) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y). 698 {A = sqlite3PExpr(pParse,@OP,X,Y,0);} 699 expr(A) ::= expr(X) PLUS|MINUS(OP) expr(Y).{A = sqlite3PExpr(pParse,@OP,X,Y,0);} 700 expr(A) ::= expr(X) STAR|SLASH|REM(OP) expr(Y). 701 {A = sqlite3PExpr(pParse,@OP,X,Y,0);} 702 expr(A) ::= expr(X) CONCAT(OP) expr(Y). {A = sqlite3PExpr(pParse,@OP,X,Y,0);} 703 %type likeop {struct LikeOp} 704 likeop(A) ::= LIKE_KW(X). {A.eOperator = X; A.not = 0;} 705 likeop(A) ::= NOT LIKE_KW(X). {A.eOperator = X; A.not = 1;} 706 likeop(A) ::= MATCH(X). {A.eOperator = X; A.not = 0;} 707 likeop(A) ::= NOT MATCH(X). {A.eOperator = X; A.not = 1;} 708 %type escape {Expr*} 709 %destructor escape {sqlite3ExprDelete($$);} 710 escape(X) ::= ESCAPE expr(A). [ESCAPE] {X = A;} 711 escape(X) ::= . [ESCAPE] {X = 0;} 712 expr(A) ::= expr(X) likeop(OP) expr(Y) escape(E). [LIKE_KW] { 713 ExprList *pList; 714 pList = sqlite3ExprListAppend(pParse,0, Y, 0); 715 pList = sqlite3ExprListAppend(pParse,pList, X, 0); 716 if( E ){ 717 pList = sqlite3ExprListAppend(pParse,pList, E, 0); 718 } 719 A = sqlite3ExprFunction(pParse, pList, &OP.eOperator); 720 if( OP.not ) A = sqlite3PExpr(pParse, TK_NOT, A, 0, 0); 721 sqlite3ExprSpan(A, &X->span, &Y->span); 722 if( A ) A->flags |= EP_InfixFunc; 723 } 724 725 expr(A) ::= expr(X) ISNULL|NOTNULL(E). { 726 A = sqlite3PExpr(pParse, @E, X, 0, 0); 727 sqlite3ExprSpan(A,&X->span,&E); 728 } 729 expr(A) ::= expr(X) IS NULL(E). { 730 A = sqlite3PExpr(pParse, TK_ISNULL, X, 0, 0); 731 sqlite3ExprSpan(A,&X->span,&E); 732 } 733 expr(A) ::= expr(X) NOT NULL(E). { 734 A = sqlite3PExpr(pParse, TK_NOTNULL, X, 0, 0); 735 sqlite3ExprSpan(A,&X->span,&E); 736 } 737 expr(A) ::= expr(X) IS NOT NULL(E). { 738 A = sqlite3PExpr(pParse, TK_NOTNULL, X, 0, 0); 739 sqlite3ExprSpan(A,&X->span,&E); 740 } 741 expr(A) ::= NOT|BITNOT(B) expr(X). { 742 A = sqlite3PExpr(pParse, @B, X, 0, 0); 743 sqlite3ExprSpan(A,&B,&X->span); 744 } 745 expr(A) ::= MINUS(B) expr(X). [UMINUS] { 746 A = sqlite3PExpr(pParse, TK_UMINUS, X, 0, 0); 747 sqlite3ExprSpan(A,&B,&X->span); 748 } 749 expr(A) ::= PLUS(B) expr(X). [UPLUS] { 750 A = sqlite3PExpr(pParse, TK_UPLUS, X, 0, 0); 751 sqlite3ExprSpan(A,&B,&X->span); 752 } 753 %type between_op {int} 754 between_op(A) ::= BETWEEN. {A = 0;} 755 between_op(A) ::= NOT BETWEEN. {A = 1;} 756 expr(A) ::= expr(W) between_op(N) expr(X) AND expr(Y). [BETWEEN] { 757 ExprList *pList = sqlite3ExprListAppend(pParse,0, X, 0); 758 pList = sqlite3ExprListAppend(pParse,pList, Y, 0); 759 A = sqlite3PExpr(pParse, TK_BETWEEN, W, 0, 0); 760 if( A ){ 761 A->pList = pList; 762 }else{ 763 sqlite3ExprListDelete(pList); 764 } 765 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0, 0); 766 sqlite3ExprSpan(A,&W->span,&Y->span); 767 } 768 %ifndef SQLITE_OMIT_SUBQUERY 769 %type in_op {int} 770 in_op(A) ::= IN. {A = 0;} 771 in_op(A) ::= NOT IN. {A = 1;} 772 expr(A) ::= expr(X) in_op(N) LP exprlist(Y) RP(E). [IN] { 773 A = sqlite3PExpr(pParse, TK_IN, X, 0, 0); 774 if( A ){ 775 A->pList = Y; 776 sqlite3ExprSetHeight(A); 777 }else{ 778 sqlite3ExprListDelete(Y); 779 } 780 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0, 0); 781 sqlite3ExprSpan(A,&X->span,&E); 782 } 783 expr(A) ::= LP(B) select(X) RP(E). { 784 A = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0); 785 if( A ){ 786 A->pSelect = X; 787 sqlite3ExprSetHeight(A); 788 }else{ 789 sqlite3SelectDelete(X); 790 } 791 sqlite3ExprSpan(A,&B,&E); 792 } 793 expr(A) ::= expr(X) in_op(N) LP select(Y) RP(E). [IN] { 794 A = sqlite3PExpr(pParse, TK_IN, X, 0, 0); 795 if( A ){ 796 A->pSelect = Y; 797 sqlite3ExprSetHeight(A); 798 }else{ 799 sqlite3SelectDelete(Y); 800 } 801 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0, 0); 802 sqlite3ExprSpan(A,&X->span,&E); 803 } 804 expr(A) ::= expr(X) in_op(N) nm(Y) dbnm(Z). [IN] { 805 SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z); 806 A = sqlite3PExpr(pParse, TK_IN, X, 0, 0); 807 if( A ){ 808 A->pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0); 809 sqlite3ExprSetHeight(A); 810 }else{ 811 sqlite3SrcListDelete(pSrc); 812 } 813 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0, 0); 814 sqlite3ExprSpan(A,&X->span,Z.z?&Z:&Y); 815 } 816 expr(A) ::= EXISTS(B) LP select(Y) RP(E). { 817 Expr *p = A = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0); 818 if( p ){ 819 p->pSelect = Y; 820 sqlite3ExprSpan(p,&B,&E); 821 sqlite3ExprSetHeight(A); 822 }else{ 823 sqlite3SelectDelete(Y); 824 } 825 } 826 %endif SQLITE_OMIT_SUBQUERY 827 828 /* CASE expressions */ 829 expr(A) ::= CASE(C) case_operand(X) case_exprlist(Y) case_else(Z) END(E). { 830 A = sqlite3PExpr(pParse, TK_CASE, X, Z, 0); 831 if( A ){ 832 A->pList = Y; 833 sqlite3ExprSetHeight(A); 834 }else{ 835 sqlite3ExprListDelete(Y); 836 } 837 sqlite3ExprSpan(A, &C, &E); 838 } 839 %type case_exprlist {ExprList*} 840 %destructor case_exprlist {sqlite3ExprListDelete($$);} 841 case_exprlist(A) ::= case_exprlist(X) WHEN expr(Y) THEN expr(Z). { 842 A = sqlite3ExprListAppend(pParse,X, Y, 0); 843 A = sqlite3ExprListAppend(pParse,A, Z, 0); 844 } 845 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). { 846 A = sqlite3ExprListAppend(pParse,0, Y, 0); 847 A = sqlite3ExprListAppend(pParse,A, Z, 0); 848 } 849 %type case_else {Expr*} 850 %destructor case_else {sqlite3ExprDelete($$);} 851 case_else(A) ::= ELSE expr(X). {A = X;} 852 case_else(A) ::= . {A = 0;} 853 %type case_operand {Expr*} 854 %destructor case_operand {sqlite3ExprDelete($$);} 855 case_operand(A) ::= expr(X). {A = X;} 856 case_operand(A) ::= . {A = 0;} 857 858 %type exprlist {ExprList*} 859 %destructor exprlist {sqlite3ExprListDelete($$);} 860 %type nexprlist {ExprList*} 861 %destructor nexprlist {sqlite3ExprListDelete($$);} 862 863 exprlist(A) ::= nexprlist(X). {A = X;} 864 exprlist(A) ::= . {A = 0;} 865 nexprlist(A) ::= nexprlist(X) COMMA expr(Y). 866 {A = sqlite3ExprListAppend(pParse,X,Y,0);} 867 nexprlist(A) ::= expr(Y). 868 {A = sqlite3ExprListAppend(pParse,0,Y,0);} 869 870 871 ///////////////////////////// The CREATE INDEX command /////////////////////// 872 // 873 cmd ::= CREATE(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D) 874 ON nm(Y) LP idxlist(Z) RP(E). { 875 sqlite3CreateIndex(pParse, &X, &D, 876 sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U, 877 &S, &E, SQLITE_SO_ASC, NE); 878 } 879 880 %type uniqueflag {int} 881 uniqueflag(A) ::= UNIQUE. {A = OE_Abort;} 882 uniqueflag(A) ::= . {A = OE_None;} 883 884 %type idxlist {ExprList*} 885 %destructor idxlist {sqlite3ExprListDelete($$);} 886 %type idxlist_opt {ExprList*} 887 %destructor idxlist_opt {sqlite3ExprListDelete($$);} 888 %type idxitem {Token} 889 890 idxlist_opt(A) ::= . {A = 0;} 891 idxlist_opt(A) ::= LP idxlist(X) RP. {A = X;} 892 idxlist(A) ::= idxlist(X) COMMA idxitem(Y) collate(C) sortorder(Z). { 893 Expr *p = 0; 894 if( C.n>0 ){ 895 p = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0); 896 sqlite3ExprSetColl(pParse, p, &C); 897 } 898 A = sqlite3ExprListAppend(pParse,X, p, &Y); 899 sqlite3ExprListCheckLength(pParse, A, SQLITE_MAX_COLUMN, "index"); 900 if( A ) A->a[A->nExpr-1].sortOrder = Z; 901 } 902 idxlist(A) ::= idxitem(Y) collate(C) sortorder(Z). { 903 Expr *p = 0; 904 if( C.n>0 ){ 905 p = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0); 906 sqlite3ExprSetColl(pParse, p, &C); 907 } 908 A = sqlite3ExprListAppend(pParse,0, p, &Y); 909 sqlite3ExprListCheckLength(pParse, A, SQLITE_MAX_COLUMN, "index"); 910 if( A ) A->a[A->nExpr-1].sortOrder = Z; 911 } 912 idxitem(A) ::= nm(X). {A = X;} 913 914 %type collate {Token} 915 collate(C) ::= . {C.z = 0; C.n = 0;} 916 collate(C) ::= COLLATE ids(X). {C = X;} 917 918 919 ///////////////////////////// The DROP INDEX command ///////////////////////// 920 // 921 cmd ::= DROP INDEX ifexists(E) fullname(X). {sqlite3DropIndex(pParse, X, E);} 922 923 ///////////////////////////// The VACUUM command ///////////////////////////// 924 // 925 %ifndef SQLITE_OMIT_VACUUM 926 %ifndef SQLITE_OMIT_ATTACH 927 cmd ::= VACUUM. {sqlite3Vacuum(pParse);} 928 cmd ::= VACUUM nm. {sqlite3Vacuum(pParse);} 929 %endif SQLITE_OMIT_ATTACH 930 %endif SQLITE_OMIT_VACUUM 931 932 ///////////////////////////// The PRAGMA command ///////////////////////////// 933 // 934 %ifndef SQLITE_OMIT_PRAGMA 935 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 936 cmd ::= PRAGMA nm(X) dbnm(Z) EQ ON(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 937 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y). { 938 sqlite3Pragma(pParse,&X,&Z,&Y,1); 939 } 940 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 941 cmd ::= PRAGMA nm(X) dbnm(Z). {sqlite3Pragma(pParse,&X,&Z,0,0);} 942 nmnum(A) ::= plus_num(X). {A = X;} 943 nmnum(A) ::= nm(X). {A = X;} 944 %endif SQLITE_OMIT_PRAGMA 945 plus_num(A) ::= plus_opt number(X). {A = X;} 946 minus_num(A) ::= MINUS number(X). {A = X;} 947 number(A) ::= INTEGER|FLOAT(X). {A = X;} 948 plus_opt ::= PLUS. 949 plus_opt ::= . 950 951 //////////////////////////// The CREATE TRIGGER command ///////////////////// 952 953 %ifndef SQLITE_OMIT_TRIGGER 954 955 cmd ::= CREATE trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). { 956 Token all; 957 all.z = A.z; 958 all.n = (Z.z - A.z) + Z.n; 959 sqlite3FinishTrigger(pParse, S, &all); 960 } 961 962 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z) 963 trigger_time(C) trigger_event(D) 964 ON fullname(E) foreach_clause when_clause(G). { 965 sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR); 966 A = (Z.n==0?B:Z); 967 } 968 969 %type trigger_time {int} 970 trigger_time(A) ::= BEFORE. { A = TK_BEFORE; } 971 trigger_time(A) ::= AFTER. { A = TK_AFTER; } 972 trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;} 973 trigger_time(A) ::= . { A = TK_BEFORE; } 974 975 %type trigger_event {struct TrigEvent} 976 %destructor trigger_event {sqlite3IdListDelete($$.b);} 977 trigger_event(A) ::= DELETE|INSERT(OP). {A.a = @OP; A.b = 0;} 978 trigger_event(A) ::= UPDATE(OP). {A.a = @OP; A.b = 0;} 979 trigger_event(A) ::= UPDATE OF inscollist(X). {A.a = TK_UPDATE; A.b = X;} 980 981 foreach_clause ::= . 982 foreach_clause ::= FOR EACH ROW. 983 984 %type when_clause {Expr*} 985 %destructor when_clause {sqlite3ExprDelete($$);} 986 when_clause(A) ::= . { A = 0; } 987 when_clause(A) ::= WHEN expr(X). { A = X; } 988 989 %type trigger_cmd_list {TriggerStep*} 990 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep($$);} 991 trigger_cmd_list(A) ::= trigger_cmd_list(Y) trigger_cmd(X) SEMI. { 992 if( Y ){ 993 Y->pLast->pNext = X; 994 }else{ 995 Y = X; 996 } 997 Y->pLast = X; 998 A = Y; 999 } 1000 trigger_cmd_list(A) ::= . { A = 0; } 1001 1002 %type trigger_cmd {TriggerStep*} 1003 %destructor trigger_cmd {sqlite3DeleteTriggerStep($$);} 1004 // UPDATE 1005 trigger_cmd(A) ::= UPDATE orconf(R) nm(X) SET setlist(Y) where_opt(Z). 1006 { A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R); } 1007 1008 // INSERT 1009 trigger_cmd(A) ::= insert_cmd(R) INTO nm(X) inscollist_opt(F) 1010 VALUES LP itemlist(Y) RP. 1011 {A = sqlite3TriggerInsertStep(pParse->db, &X, F, Y, 0, R);} 1012 1013 trigger_cmd(A) ::= insert_cmd(R) INTO nm(X) inscollist_opt(F) select(S). 1014 {A = sqlite3TriggerInsertStep(pParse->db, &X, F, 0, S, R);} 1015 1016 // DELETE 1017 trigger_cmd(A) ::= DELETE FROM nm(X) where_opt(Y). 1018 {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y);} 1019 1020 // SELECT 1021 trigger_cmd(A) ::= select(X). {A = sqlite3TriggerSelectStep(pParse->db, X); } 1022 1023 // The special RAISE expression that may occur in trigger programs 1024 expr(A) ::= RAISE(X) LP IGNORE RP(Y). { 1025 A = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0); 1026 if( A ){ 1027 A->iColumn = OE_Ignore; 1028 sqlite3ExprSpan(A, &X, &Y); 1029 } 1030 } 1031 expr(A) ::= RAISE(X) LP raisetype(T) COMMA nm(Z) RP(Y). { 1032 A = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &Z); 1033 if( A ) { 1034 A->iColumn = T; 1035 sqlite3ExprSpan(A, &X, &Y); 1036 } 1037 } 1038 %endif !SQLITE_OMIT_TRIGGER 1039 1040 %type raisetype {int} 1041 raisetype(A) ::= ROLLBACK. {A = OE_Rollback;} 1042 raisetype(A) ::= ABORT. {A = OE_Abort;} 1043 raisetype(A) ::= FAIL. {A = OE_Fail;} 1044 1045 1046 //////////////////////// DROP TRIGGER statement ////////////////////////////// 1047 %ifndef SQLITE_OMIT_TRIGGER 1048 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). { 1049 sqlite3DropTrigger(pParse,X,NOERR); 1050 } 1051 %endif !SQLITE_OMIT_TRIGGER 1052 1053 //////////////////////// ATTACH DATABASE file AS name ///////////////////////// 1054 %ifndef SQLITE_OMIT_ATTACH 1055 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). { 1056 sqlite3Attach(pParse, F, D, K); 1057 } 1058 cmd ::= DETACH database_kw_opt expr(D). { 1059 sqlite3Detach(pParse, D); 1060 } 1061 1062 %type key_opt {Expr *} 1063 %destructor key_opt {sqlite3ExprDelete($$);} 1064 key_opt(A) ::= . { A = 0; } 1065 key_opt(A) ::= KEY expr(X). { A = X; } 1066 1067 database_kw_opt ::= DATABASE. 1068 database_kw_opt ::= . 1069 %endif SQLITE_OMIT_ATTACH 1070 1071 ////////////////////////// REINDEX collation ////////////////////////////////// 1072 %ifndef SQLITE_OMIT_REINDEX 1073 cmd ::= REINDEX. {sqlite3Reindex(pParse, 0, 0);} 1074 cmd ::= REINDEX nm(X) dbnm(Y). {sqlite3Reindex(pParse, &X, &Y);} 1075 %endif SQLITE_OMIT_REINDEX 1076 1077 /////////////////////////////////// ANALYZE /////////////////////////////////// 1078 %ifndef SQLITE_OMIT_ANALYZE 1079 cmd ::= ANALYZE. {sqlite3Analyze(pParse, 0, 0);} 1080 cmd ::= ANALYZE nm(X) dbnm(Y). {sqlite3Analyze(pParse, &X, &Y);} 1081 %endif 1082 1083 //////////////////////// ALTER TABLE table ... //////////////////////////////// 1084 %ifndef SQLITE_OMIT_ALTERTABLE 1085 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). { 1086 sqlite3AlterRenameTable(pParse,X,&Z); 1087 } 1088 cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column(Y). { 1089 sqlite3AlterFinishAddColumn(pParse, &Y); 1090 } 1091 add_column_fullname ::= fullname(X). { 1092 sqlite3AlterBeginAddColumn(pParse, X); 1093 } 1094 kwcolumn_opt ::= . 1095 kwcolumn_opt ::= COLUMNKW. 1096 %endif SQLITE_OMIT_ALTERTABLE 1097 1098 //////////////////////// CREATE VIRTUAL TABLE ... ///////////////////////////// 1099 %ifndef SQLITE_OMIT_VIRTUALTABLE 1100 cmd ::= create_vtab. {sqlite3VtabFinishParse(pParse,0);} 1101 cmd ::= create_vtab LP vtabarglist RP(X). {sqlite3VtabFinishParse(pParse,&X);} 1102 create_vtab ::= CREATE VIRTUAL TABLE nm(X) dbnm(Y) USING nm(Z). { 1103 sqlite3VtabBeginParse(pParse, &X, &Y, &Z); 1104 } 1105 vtabarglist ::= vtabarg. 1106 vtabarglist ::= vtabarglist COMMA vtabarg. 1107 vtabarg ::= . {sqlite3VtabArgInit(pParse);} 1108 vtabarg ::= vtabarg vtabargtoken. 1109 vtabargtoken ::= ANY(X). {sqlite3VtabArgExtend(pParse,&X);} 1110 vtabargtoken ::= lp anylist RP(X). {sqlite3VtabArgExtend(pParse,&X);} 1111 lp ::= LP(X). {sqlite3VtabArgExtend(pParse,&X);} 1112 anylist ::= . 1113 anylist ::= anylist ANY(X). {sqlite3VtabArgExtend(pParse,&X);} 1114 %endif SQLITE_OMIT_VIRTUALTABLE 1115