1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains SQLite's grammar for SQL. Process this file 13 ** using the lemon parser generator to generate C code that runs 14 ** the parser. Lemon will also generate a header file containing 15 ** numeric codes for all of the tokens. 16 */ 17 18 // All token codes are small integers with #defines that begin with "TK_" 19 %token_prefix TK_ 20 21 // The type of the data attached to each token is Token. This is also the 22 // default type for non-terminals. 23 // 24 %token_type {Token} 25 %default_type {Token} 26 27 // The generated parser function takes a 4th argument as follows: 28 %extra_argument {Parse *pParse} 29 30 // This code runs whenever there is a syntax error 31 // 32 %syntax_error { 33 UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */ 34 assert( TOKEN.z[0] ); /* The tokenizer always gives us a token */ 35 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN); 36 } 37 %stack_overflow { 38 UNUSED_PARAMETER(yypMinor); /* Silence some compiler warnings */ 39 sqlite3ErrorMsg(pParse, "parser stack overflow"); 40 } 41 42 // The name of the generated procedure that implements the parser 43 // is as follows: 44 %name sqlite3Parser 45 46 // The following text is included near the beginning of the C source 47 // code file that implements the parser. 48 // 49 %include { 50 #include "sqliteInt.h" 51 52 /* 53 ** Disable all error recovery processing in the parser push-down 54 ** automaton. 55 */ 56 #define YYNOERRORRECOVERY 1 57 58 /* 59 ** Make yytestcase() the same as testcase() 60 */ 61 #define yytestcase(X) testcase(X) 62 63 /* 64 ** Indicate that sqlite3ParserFree() will never be called with a null 65 ** pointer. 66 */ 67 #define YYPARSEFREENEVERNULL 1 68 69 /* 70 ** Alternative datatype for the argument to the malloc() routine passed 71 ** into sqlite3ParserAlloc(). The default is size_t. 72 */ 73 #define YYMALLOCARGTYPE u64 74 75 /* 76 ** An instance of this structure holds information about the 77 ** LIMIT clause of a SELECT statement. 78 */ 79 struct LimitVal { 80 Expr *pLimit; /* The LIMIT expression. NULL if there is no limit */ 81 Expr *pOffset; /* The OFFSET expression. NULL if there is none */ 82 }; 83 84 /* 85 ** An instance of this structure is used to store the LIKE, 86 ** GLOB, NOT LIKE, and NOT GLOB operators. 87 */ 88 struct LikeOp { 89 Token eOperator; /* "like" or "glob" or "regexp" */ 90 int bNot; /* True if the NOT keyword is present */ 91 }; 92 93 /* 94 ** An instance of the following structure describes the event of a 95 ** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT, 96 ** TK_DELETE, or TK_INSTEAD. If the event is of the form 97 ** 98 ** UPDATE ON (a,b,c) 99 ** 100 ** Then the "b" IdList records the list "a,b,c". 101 */ 102 struct TrigEvent { int a; IdList * b; }; 103 104 /* 105 ** An instance of this structure holds the ATTACH key and the key type. 106 */ 107 struct AttachKey { int type; Token key; }; 108 109 /* 110 ** Disable lookaside memory allocation for objects that might be 111 ** shared across database connections. 112 */ 113 static void disableLookaside(Parse *pParse){ 114 pParse->disableLookaside++; 115 pParse->db->lookaside.bDisable++; 116 } 117 118 } // end %include 119 120 // Input is a single SQL command 121 input ::= cmdlist. 122 cmdlist ::= cmdlist ecmd. 123 cmdlist ::= ecmd. 124 ecmd ::= SEMI. 125 ecmd ::= explain cmdx SEMI. 126 explain ::= . 127 %ifndef SQLITE_OMIT_EXPLAIN 128 explain ::= EXPLAIN. { pParse->explain = 1; } 129 explain ::= EXPLAIN QUERY PLAN. { pParse->explain = 2; } 130 %endif SQLITE_OMIT_EXPLAIN 131 cmdx ::= cmd. { sqlite3FinishCoding(pParse); } 132 133 ///////////////////// Begin and end transactions. //////////////////////////// 134 // 135 136 cmd ::= BEGIN transtype(Y) trans_opt. {sqlite3BeginTransaction(pParse, Y);} 137 trans_opt ::= . 138 trans_opt ::= TRANSACTION. 139 trans_opt ::= TRANSACTION nm. 140 %type transtype {int} 141 transtype(A) ::= . {A = TK_DEFERRED;} 142 transtype(A) ::= DEFERRED(X). {A = @X;} 143 transtype(A) ::= IMMEDIATE(X). {A = @X;} 144 transtype(A) ::= EXCLUSIVE(X). {A = @X;} 145 cmd ::= COMMIT trans_opt. {sqlite3CommitTransaction(pParse);} 146 cmd ::= END trans_opt. {sqlite3CommitTransaction(pParse);} 147 cmd ::= ROLLBACK trans_opt. {sqlite3RollbackTransaction(pParse);} 148 149 savepoint_opt ::= SAVEPOINT. 150 savepoint_opt ::= . 151 cmd ::= SAVEPOINT nm(X). { 152 sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X); 153 } 154 cmd ::= RELEASE savepoint_opt nm(X). { 155 sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X); 156 } 157 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). { 158 sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X); 159 } 160 161 ///////////////////// The CREATE TABLE statement //////////////////////////// 162 // 163 cmd ::= create_table create_table_args. 164 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). { 165 sqlite3StartTable(pParse,&Y,&Z,T,0,0,E); 166 } 167 createkw(A) ::= CREATE(X). { 168 disableLookaside(pParse); 169 A = X; 170 } 171 %type ifnotexists {int} 172 ifnotexists(A) ::= . {A = 0;} 173 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;} 174 %type temp {int} 175 %ifndef SQLITE_OMIT_TEMPDB 176 temp(A) ::= TEMP. {A = 1;} 177 %endif SQLITE_OMIT_TEMPDB 178 temp(A) ::= . {A = 0;} 179 create_table_args ::= LP columnlist conslist_opt(X) RP(E) table_options(F). { 180 sqlite3EndTable(pParse,&X,&E,F,0); 181 } 182 create_table_args ::= AS select(S). { 183 sqlite3EndTable(pParse,0,0,0,S); 184 sqlite3SelectDelete(pParse->db, S); 185 } 186 %type table_options {int} 187 table_options(A) ::= . {A = 0;} 188 table_options(A) ::= WITHOUT nm(X). { 189 if( X.n==5 && sqlite3_strnicmp(X.z,"rowid",5)==0 ){ 190 A = TF_WithoutRowid | TF_NoVisibleRowid; 191 }else{ 192 A = 0; 193 sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z); 194 } 195 } 196 columnlist ::= columnlist COMMA column. 197 columnlist ::= column. 198 199 // A "column" is a complete description of a single column in a 200 // CREATE TABLE statement. This includes the column name, its 201 // datatype, and other keywords such as PRIMARY KEY, UNIQUE, REFERENCES, 202 // NOT NULL and so forth. 203 // 204 column(A) ::= columnid(X) type carglist. { 205 A.z = X.z; 206 A.n = (int)(pParse->sLastToken.z-X.z) + pParse->sLastToken.n; 207 } 208 columnid(A) ::= nm(X). { 209 sqlite3AddColumn(pParse,&X); 210 A = X; 211 pParse->constraintName.n = 0; 212 } 213 214 215 // An IDENTIFIER can be a generic identifier, or one of several 216 // keywords. Any non-standard keyword can also be an identifier. 217 // 218 %token_class id ID|INDEXED. 219 220 // The following directive causes tokens ABORT, AFTER, ASC, etc. to 221 // fallback to ID if they will not parse as their original value. 222 // This obviates the need for the "id" nonterminal. 223 // 224 %fallback ID 225 ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW 226 CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL FOR 227 IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN 228 QUERY KEY OF OFFSET PRAGMA RAISE RECURSIVE RELEASE REPLACE RESTRICT ROW 229 ROLLBACK SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL WITH WITHOUT 230 %ifdef SQLITE_OMIT_COMPOUND_SELECT 231 EXCEPT INTERSECT UNION 232 %endif SQLITE_OMIT_COMPOUND_SELECT 233 REINDEX RENAME CTIME_KW IF 234 . 235 %wildcard ANY. 236 237 // Define operator precedence early so that this is the first occurrence 238 // of the operator tokens in the grammer. Keeping the operators together 239 // causes them to be assigned integer values that are close together, 240 // which keeps parser tables smaller. 241 // 242 // The token values assigned to these symbols is determined by the order 243 // in which lemon first sees them. It must be the case that ISNULL/NOTNULL, 244 // NE/EQ, GT/LE, and GE/LT are separated by only a single value. See 245 // the sqlite3ExprIfFalse() routine for additional information on this 246 // constraint. 247 // 248 %left OR. 249 %left AND. 250 %right NOT. 251 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. 252 %left GT LE LT GE. 253 %right ESCAPE. 254 %left BITAND BITOR LSHIFT RSHIFT. 255 %left PLUS MINUS. 256 %left STAR SLASH REM. 257 %left CONCAT. 258 %left COLLATE. 259 %right BITNOT. 260 261 // And "ids" is an identifer-or-string. 262 // 263 %token_class ids ID|STRING. 264 265 // The name of a column or table can be any of the following: 266 // 267 %type nm {Token} 268 nm(A) ::= id(X). {A = X;} 269 nm(A) ::= STRING(X). {A = X;} 270 nm(A) ::= JOIN_KW(X). {A = X;} 271 272 // A typetoken is really one or more tokens that form a type name such 273 // as can be found after the column name in a CREATE TABLE statement. 274 // Multiple tokens are concatenated to form the value of the typetoken. 275 // 276 %type typetoken {Token} 277 type ::= . 278 type ::= typetoken(X). {sqlite3AddColumnType(pParse,&X);} 279 typetoken(A) ::= typename(X). {A = X;} 280 typetoken(A) ::= typename(X) LP signed RP(Y). { 281 A.z = X.z; 282 A.n = (int)(&Y.z[Y.n] - X.z); 283 } 284 typetoken(A) ::= typename(X) LP signed COMMA signed RP(Y). { 285 A.z = X.z; 286 A.n = (int)(&Y.z[Y.n] - X.z); 287 } 288 %type typename {Token} 289 typename(A) ::= ids(X). {A = X;} 290 typename(A) ::= typename(X) ids(Y). {A.z=X.z; A.n=Y.n+(int)(Y.z-X.z);} 291 signed ::= plus_num. 292 signed ::= minus_num. 293 294 // "carglist" is a list of additional constraints that come after the 295 // column name and column type in a CREATE TABLE statement. 296 // 297 carglist ::= carglist ccons. 298 carglist ::= . 299 ccons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} 300 ccons ::= DEFAULT term(X). {sqlite3AddDefaultValue(pParse,&X);} 301 ccons ::= DEFAULT LP expr(X) RP. {sqlite3AddDefaultValue(pParse,&X);} 302 ccons ::= DEFAULT PLUS term(X). {sqlite3AddDefaultValue(pParse,&X);} 303 ccons ::= DEFAULT MINUS(A) term(X). { 304 ExprSpan v; 305 v.pExpr = sqlite3PExpr(pParse, TK_UMINUS, X.pExpr, 0, 0); 306 v.zStart = A.z; 307 v.zEnd = X.zEnd; 308 sqlite3AddDefaultValue(pParse,&v); 309 } 310 ccons ::= DEFAULT id(X). { 311 ExprSpan v; 312 spanExpr(&v, pParse, TK_STRING, &X); 313 sqlite3AddDefaultValue(pParse,&v); 314 } 315 316 // In addition to the type name, we also care about the primary key and 317 // UNIQUE constraints. 318 // 319 ccons ::= NULL onconf. 320 ccons ::= NOT NULL onconf(R). {sqlite3AddNotNull(pParse, R);} 321 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I). 322 {sqlite3AddPrimaryKey(pParse,0,R,I,Z);} 323 ccons ::= UNIQUE onconf(R). {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0);} 324 ccons ::= CHECK LP expr(X) RP. {sqlite3AddCheckConstraint(pParse,X.pExpr);} 325 ccons ::= REFERENCES nm(T) eidlist_opt(TA) refargs(R). 326 {sqlite3CreateForeignKey(pParse,0,&T,TA,R);} 327 ccons ::= defer_subclause(D). {sqlite3DeferForeignKey(pParse,D);} 328 ccons ::= COLLATE ids(C). {sqlite3AddCollateType(pParse, &C);} 329 330 // The optional AUTOINCREMENT keyword 331 %type autoinc {int} 332 autoinc(X) ::= . {X = 0;} 333 autoinc(X) ::= AUTOINCR. {X = 1;} 334 335 // The next group of rules parses the arguments to a REFERENCES clause 336 // that determine if the referential integrity checking is deferred or 337 // or immediate and which determine what action to take if a ref-integ 338 // check fails. 339 // 340 %type refargs {int} 341 refargs(A) ::= . { A = OE_None*0x0101; /* EV: R-19803-45884 */} 342 refargs(A) ::= refargs(X) refarg(Y). { A = (X & ~Y.mask) | Y.value; } 343 %type refarg {struct {int value; int mask;}} 344 refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; } 345 refarg(A) ::= ON INSERT refact. { A.value = 0; A.mask = 0x000000; } 346 refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; } 347 refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; } 348 %type refact {int} 349 refact(A) ::= SET NULL. { A = OE_SetNull; /* EV: R-33326-45252 */} 350 refact(A) ::= SET DEFAULT. { A = OE_SetDflt; /* EV: R-33326-45252 */} 351 refact(A) ::= CASCADE. { A = OE_Cascade; /* EV: R-33326-45252 */} 352 refact(A) ::= RESTRICT. { A = OE_Restrict; /* EV: R-33326-45252 */} 353 refact(A) ::= NO ACTION. { A = OE_None; /* EV: R-33326-45252 */} 354 %type defer_subclause {int} 355 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt. {A = 0;} 356 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;} 357 %type init_deferred_pred_opt {int} 358 init_deferred_pred_opt(A) ::= . {A = 0;} 359 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;} 360 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;} 361 362 conslist_opt(A) ::= . {A.n = 0; A.z = 0;} 363 conslist_opt(A) ::= COMMA(X) conslist. {A = X;} 364 conslist ::= conslist tconscomma tcons. 365 conslist ::= tcons. 366 tconscomma ::= COMMA. {pParse->constraintName.n = 0;} 367 tconscomma ::= . 368 tcons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} 369 tcons ::= PRIMARY KEY LP sortlist(X) autoinc(I) RP onconf(R). 370 {sqlite3AddPrimaryKey(pParse,X,R,I,0);} 371 tcons ::= UNIQUE LP sortlist(X) RP onconf(R). 372 {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0);} 373 tcons ::= CHECK LP expr(E) RP onconf. 374 {sqlite3AddCheckConstraint(pParse,E.pExpr);} 375 tcons ::= FOREIGN KEY LP eidlist(FA) RP 376 REFERENCES nm(T) eidlist_opt(TA) refargs(R) defer_subclause_opt(D). { 377 sqlite3CreateForeignKey(pParse, FA, &T, TA, R); 378 sqlite3DeferForeignKey(pParse, D); 379 } 380 %type defer_subclause_opt {int} 381 defer_subclause_opt(A) ::= . {A = 0;} 382 defer_subclause_opt(A) ::= defer_subclause(X). {A = X;} 383 384 // The following is a non-standard extension that allows us to declare the 385 // default behavior when there is a constraint conflict. 386 // 387 %type onconf {int} 388 %type orconf {int} 389 %type resolvetype {int} 390 onconf(A) ::= . {A = OE_Default;} 391 onconf(A) ::= ON CONFLICT resolvetype(X). {A = X;} 392 orconf(A) ::= . {A = OE_Default;} 393 orconf(A) ::= OR resolvetype(X). {A = X;} 394 resolvetype(A) ::= raisetype(X). {A = X;} 395 resolvetype(A) ::= IGNORE. {A = OE_Ignore;} 396 resolvetype(A) ::= REPLACE. {A = OE_Replace;} 397 398 ////////////////////////// The DROP TABLE ///////////////////////////////////// 399 // 400 cmd ::= DROP TABLE ifexists(E) fullname(X). { 401 sqlite3DropTable(pParse, X, 0, E); 402 } 403 %type ifexists {int} 404 ifexists(A) ::= IF EXISTS. {A = 1;} 405 ifexists(A) ::= . {A = 0;} 406 407 ///////////////////// The CREATE VIEW statement ///////////////////////////// 408 // 409 %ifndef SQLITE_OMIT_VIEW 410 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) eidlist_opt(C) 411 AS select(S). { 412 sqlite3CreateView(pParse, &X, &Y, &Z, C, S, T, E); 413 } 414 cmd ::= DROP VIEW ifexists(E) fullname(X). { 415 sqlite3DropTable(pParse, X, 1, E); 416 } 417 %endif SQLITE_OMIT_VIEW 418 419 //////////////////////// The SELECT statement ///////////////////////////////// 420 // 421 cmd ::= select(X). { 422 SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0}; 423 sqlite3Select(pParse, X, &dest); 424 sqlite3SelectDelete(pParse->db, X); 425 } 426 427 %type select {Select*} 428 %destructor select {sqlite3SelectDelete(pParse->db, $$);} 429 %type selectnowith {Select*} 430 %destructor selectnowith {sqlite3SelectDelete(pParse->db, $$);} 431 %type oneselect {Select*} 432 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);} 433 434 %include { 435 /* 436 ** For a compound SELECT statement, make sure p->pPrior->pNext==p for 437 ** all elements in the list. And make sure list length does not exceed 438 ** SQLITE_LIMIT_COMPOUND_SELECT. 439 */ 440 static void parserDoubleLinkSelect(Parse *pParse, Select *p){ 441 if( p->pPrior ){ 442 Select *pNext = 0, *pLoop; 443 int mxSelect, cnt = 0; 444 for(pLoop=p; pLoop; pNext=pLoop, pLoop=pLoop->pPrior, cnt++){ 445 pLoop->pNext = pNext; 446 pLoop->selFlags |= SF_Compound; 447 } 448 if( (p->selFlags & SF_MultiValue)==0 && 449 (mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT])>0 && 450 cnt>mxSelect 451 ){ 452 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 453 } 454 } 455 } 456 } 457 458 select(A) ::= with(W) selectnowith(X). { 459 Select *p = X; 460 if( p ){ 461 p->pWith = W; 462 parserDoubleLinkSelect(pParse, p); 463 }else{ 464 sqlite3WithDelete(pParse->db, W); 465 } 466 A = p; 467 } 468 469 selectnowith(A) ::= oneselect(X). {A = X;} 470 %ifndef SQLITE_OMIT_COMPOUND_SELECT 471 selectnowith(A) ::= selectnowith(X) multiselect_op(Y) oneselect(Z). { 472 Select *pRhs = Z; 473 Select *pLhs = X; 474 if( pRhs && pRhs->pPrior ){ 475 SrcList *pFrom; 476 Token x; 477 x.n = 0; 478 parserDoubleLinkSelect(pParse, pRhs); 479 pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0); 480 pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0,0); 481 } 482 if( pRhs ){ 483 pRhs->op = (u8)Y; 484 pRhs->pPrior = pLhs; 485 if( ALWAYS(pLhs) ) pLhs->selFlags &= ~SF_MultiValue; 486 pRhs->selFlags &= ~SF_MultiValue; 487 if( Y!=TK_ALL ) pParse->hasCompound = 1; 488 }else{ 489 sqlite3SelectDelete(pParse->db, pLhs); 490 } 491 A = pRhs; 492 } 493 %type multiselect_op {int} 494 multiselect_op(A) ::= UNION(OP). {A = @OP;} 495 multiselect_op(A) ::= UNION ALL. {A = TK_ALL;} 496 multiselect_op(A) ::= EXCEPT|INTERSECT(OP). {A = @OP;} 497 %endif SQLITE_OMIT_COMPOUND_SELECT 498 oneselect(A) ::= SELECT(S) distinct(D) selcollist(W) from(X) where_opt(Y) 499 groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). { 500 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L.pLimit,L.pOffset); 501 #if SELECTTRACE_ENABLED 502 /* Populate the Select.zSelName[] string that is used to help with 503 ** query planner debugging, to differentiate between multiple Select 504 ** objects in a complex query. 505 ** 506 ** If the SELECT keyword is immediately followed by a C-style comment 507 ** then extract the first few alphanumeric characters from within that 508 ** comment to be the zSelName value. Otherwise, the label is #N where 509 ** is an integer that is incremented with each SELECT statement seen. 510 */ 511 if( A!=0 ){ 512 const char *z = S.z+6; 513 int i; 514 sqlite3_snprintf(sizeof(A->zSelName), A->zSelName, "#%d", 515 ++pParse->nSelect); 516 while( z[0]==' ' ) z++; 517 if( z[0]=='/' && z[1]=='*' ){ 518 z += 2; 519 while( z[0]==' ' ) z++; 520 for(i=0; sqlite3Isalnum(z[i]); i++){} 521 sqlite3_snprintf(sizeof(A->zSelName), A->zSelName, "%.*s", i, z); 522 } 523 } 524 #endif /* SELECTRACE_ENABLED */ 525 } 526 oneselect(A) ::= values(X). {A = X;} 527 528 %type values {Select*} 529 %destructor values {sqlite3SelectDelete(pParse->db, $$);} 530 values(A) ::= VALUES LP nexprlist(X) RP. { 531 A = sqlite3SelectNew(pParse,X,0,0,0,0,0,SF_Values,0,0); 532 } 533 values(A) ::= values(X) COMMA LP exprlist(Y) RP. { 534 Select *pRight, *pLeft = X; 535 pRight = sqlite3SelectNew(pParse,Y,0,0,0,0,0,SF_Values|SF_MultiValue,0,0); 536 if( ALWAYS(pLeft) ) pLeft->selFlags &= ~SF_MultiValue; 537 if( pRight ){ 538 pRight->op = TK_ALL; 539 pLeft = X; 540 pRight->pPrior = pLeft; 541 A = pRight; 542 }else{ 543 A = pLeft; 544 } 545 } 546 547 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is 548 // present and false (0) if it is not. 549 // 550 %type distinct {int} 551 distinct(A) ::= DISTINCT. {A = SF_Distinct;} 552 distinct(A) ::= ALL. {A = SF_All;} 553 distinct(A) ::= . {A = 0;} 554 555 // selcollist is a list of expressions that are to become the return 556 // values of the SELECT statement. The "*" in statements like 557 // "SELECT * FROM ..." is encoded as a special expression with an 558 // opcode of TK_ASTERISK. 559 // 560 %type selcollist {ExprList*} 561 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);} 562 %type sclp {ExprList*} 563 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);} 564 sclp(A) ::= selcollist(X) COMMA. {A = X;} 565 sclp(A) ::= . {A = 0;} 566 selcollist(A) ::= sclp(P) expr(X) as(Y). { 567 A = sqlite3ExprListAppend(pParse, P, X.pExpr); 568 if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1); 569 sqlite3ExprListSetSpan(pParse,A,&X); 570 } 571 selcollist(A) ::= sclp(P) STAR. { 572 Expr *p = sqlite3Expr(pParse->db, TK_ASTERISK, 0); 573 A = sqlite3ExprListAppend(pParse, P, p); 574 } 575 selcollist(A) ::= sclp(P) nm(X) DOT STAR(Y). { 576 Expr *pRight = sqlite3PExpr(pParse, TK_ASTERISK, 0, 0, &Y); 577 Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); 578 Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 579 A = sqlite3ExprListAppend(pParse,P, pDot); 580 } 581 582 // An option "AS <id>" phrase that can follow one of the expressions that 583 // define the result set, or one of the tables in the FROM clause. 584 // 585 %type as {Token} 586 as(X) ::= AS nm(Y). {X = Y;} 587 as(X) ::= ids(Y). {X = Y;} 588 as(X) ::= . {X.n = 0;} 589 590 591 %type seltablist {SrcList*} 592 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);} 593 %type stl_prefix {SrcList*} 594 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);} 595 %type from {SrcList*} 596 %destructor from {sqlite3SrcListDelete(pParse->db, $$);} 597 598 // A complete FROM clause. 599 // 600 from(A) ::= . {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));} 601 from(A) ::= FROM seltablist(X). { 602 A = X; 603 sqlite3SrcListShiftJoinType(A); 604 } 605 606 // "seltablist" is a "Select Table List" - the content of the FROM clause 607 // in a SELECT statement. "stl_prefix" is a prefix of this list. 608 // 609 stl_prefix(A) ::= seltablist(X) joinop(Y). { 610 A = X; 611 if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].fg.jointype = (u8)Y; 612 } 613 stl_prefix(A) ::= . {A = 0;} 614 seltablist(A) ::= stl_prefix(X) nm(Y) dbnm(D) as(Z) indexed_opt(I) 615 on_opt(N) using_opt(U). { 616 A = sqlite3SrcListAppendFromTerm(pParse,X,&Y,&D,&Z,0,N,U); 617 sqlite3SrcListIndexedBy(pParse, A, &I); 618 } 619 seltablist(A) ::= stl_prefix(X) nm(Y) dbnm(D) LP exprlist(E) RP as(Z) 620 on_opt(N) using_opt(U). { 621 A = sqlite3SrcListAppendFromTerm(pParse,X,&Y,&D,&Z,0,N,U); 622 sqlite3SrcListFuncArgs(pParse, A, E); 623 } 624 %ifndef SQLITE_OMIT_SUBQUERY 625 seltablist(A) ::= stl_prefix(X) LP select(S) RP 626 as(Z) on_opt(N) using_opt(U). { 627 A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,S,N,U); 628 } 629 seltablist(A) ::= stl_prefix(X) LP seltablist(F) RP 630 as(Z) on_opt(N) using_opt(U). { 631 if( X==0 && Z.n==0 && N==0 && U==0 ){ 632 A = F; 633 }else if( F->nSrc==1 ){ 634 A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,0,N,U); 635 if( A ){ 636 struct SrcList_item *pNew = &A->a[A->nSrc-1]; 637 struct SrcList_item *pOld = F->a; 638 pNew->zName = pOld->zName; 639 pNew->zDatabase = pOld->zDatabase; 640 pNew->pSelect = pOld->pSelect; 641 pOld->zName = pOld->zDatabase = 0; 642 pOld->pSelect = 0; 643 } 644 sqlite3SrcListDelete(pParse->db, F); 645 }else{ 646 Select *pSubquery; 647 sqlite3SrcListShiftJoinType(F); 648 pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,SF_NestedFrom,0,0); 649 A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,pSubquery,N,U); 650 } 651 } 652 %endif SQLITE_OMIT_SUBQUERY 653 654 %type dbnm {Token} 655 dbnm(A) ::= . {A.z=0; A.n=0;} 656 dbnm(A) ::= DOT nm(X). {A = X;} 657 658 %type fullname {SrcList*} 659 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);} 660 fullname(A) ::= nm(X) dbnm(Y). {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y);} 661 662 %type joinop {int} 663 joinop(X) ::= COMMA|JOIN. { X = JT_INNER; } 664 joinop(X) ::= JOIN_KW(A) JOIN. { X = sqlite3JoinType(pParse,&A,0,0); } 665 joinop(X) ::= JOIN_KW(A) nm(B) JOIN. { X = sqlite3JoinType(pParse,&A,&B,0); } 666 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN. 667 { X = sqlite3JoinType(pParse,&A,&B,&C); } 668 669 %type on_opt {Expr*} 670 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);} 671 on_opt(N) ::= ON expr(E). {N = E.pExpr;} 672 on_opt(N) ::= . {N = 0;} 673 674 // Note that this block abuses the Token type just a little. If there is 675 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If 676 // there is an INDEXED BY clause, then the token is populated as per normal, 677 // with z pointing to the token data and n containing the number of bytes 678 // in the token. 679 // 680 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is 681 // normally illegal. The sqlite3SrcListIndexedBy() function 682 // recognizes and interprets this as a special case. 683 // 684 %type indexed_opt {Token} 685 indexed_opt(A) ::= . {A.z=0; A.n=0;} 686 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;} 687 indexed_opt(A) ::= NOT INDEXED. {A.z=0; A.n=1;} 688 689 %type using_opt {IdList*} 690 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);} 691 using_opt(U) ::= USING LP idlist(L) RP. {U = L;} 692 using_opt(U) ::= . {U = 0;} 693 694 695 %type orderby_opt {ExprList*} 696 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);} 697 698 // the sortlist non-terminal stores a list of expression where each 699 // expression is optionally followed by ASC or DESC to indicate the 700 // sort order. 701 // 702 %type sortlist {ExprList*} 703 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);} 704 705 orderby_opt(A) ::= . {A = 0;} 706 orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;} 707 sortlist(A) ::= sortlist(X) COMMA expr(Y) sortorder(Z). { 708 A = sqlite3ExprListAppend(pParse,X,Y.pExpr); 709 sqlite3ExprListSetSortOrder(A,Z); 710 } 711 sortlist(A) ::= expr(Y) sortorder(Z). { 712 A = sqlite3ExprListAppend(pParse,0,Y.pExpr); 713 sqlite3ExprListSetSortOrder(A,Z); 714 } 715 716 %type sortorder {int} 717 718 sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;} 719 sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;} 720 sortorder(A) ::= . {A = SQLITE_SO_UNDEFINED;} 721 722 %type groupby_opt {ExprList*} 723 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);} 724 groupby_opt(A) ::= . {A = 0;} 725 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;} 726 727 %type having_opt {Expr*} 728 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);} 729 having_opt(A) ::= . {A = 0;} 730 having_opt(A) ::= HAVING expr(X). {A = X.pExpr;} 731 732 %type limit_opt {struct LimitVal} 733 734 // The destructor for limit_opt will never fire in the current grammar. 735 // The limit_opt non-terminal only occurs at the end of a single production 736 // rule for SELECT statements. As soon as the rule that create the 737 // limit_opt non-terminal reduces, the SELECT statement rule will also 738 // reduce. So there is never a limit_opt non-terminal on the stack 739 // except as a transient. So there is never anything to destroy. 740 // 741 //%destructor limit_opt { 742 // sqlite3ExprDelete(pParse->db, $$.pLimit); 743 // sqlite3ExprDelete(pParse->db, $$.pOffset); 744 //} 745 limit_opt(A) ::= . {A.pLimit = 0; A.pOffset = 0;} 746 limit_opt(A) ::= LIMIT expr(X). {A.pLimit = X.pExpr; A.pOffset = 0;} 747 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y). 748 {A.pLimit = X.pExpr; A.pOffset = Y.pExpr;} 749 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y). 750 {A.pOffset = X.pExpr; A.pLimit = Y.pExpr;} 751 752 /////////////////////////// The DELETE statement ///////////////////////////// 753 // 754 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 755 cmd ::= with(C) DELETE FROM fullname(X) indexed_opt(I) where_opt(W) 756 orderby_opt(O) limit_opt(L). { 757 sqlite3WithPush(pParse, C, 1); 758 sqlite3SrcListIndexedBy(pParse, X, &I); 759 W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "DELETE"); 760 sqlite3DeleteFrom(pParse,X,W); 761 } 762 %endif 763 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 764 cmd ::= with(C) DELETE FROM fullname(X) indexed_opt(I) where_opt(W). { 765 sqlite3WithPush(pParse, C, 1); 766 sqlite3SrcListIndexedBy(pParse, X, &I); 767 sqlite3DeleteFrom(pParse,X,W); 768 } 769 %endif 770 771 %type where_opt {Expr*} 772 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);} 773 774 where_opt(A) ::= . {A = 0;} 775 where_opt(A) ::= WHERE expr(X). {A = X.pExpr;} 776 777 ////////////////////////// The UPDATE command //////////////////////////////// 778 // 779 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 780 cmd ::= with(C) UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) 781 where_opt(W) orderby_opt(O) limit_opt(L). { 782 sqlite3WithPush(pParse, C, 1); 783 sqlite3SrcListIndexedBy(pParse, X, &I); 784 sqlite3ExprListCheckLength(pParse,Y,"set list"); 785 W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "UPDATE"); 786 sqlite3Update(pParse,X,Y,W,R); 787 } 788 %endif 789 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 790 cmd ::= with(C) UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) 791 where_opt(W). { 792 sqlite3WithPush(pParse, C, 1); 793 sqlite3SrcListIndexedBy(pParse, X, &I); 794 sqlite3ExprListCheckLength(pParse,Y,"set list"); 795 sqlite3Update(pParse,X,Y,W,R); 796 } 797 %endif 798 799 %type setlist {ExprList*} 800 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);} 801 802 setlist(A) ::= setlist(Z) COMMA nm(X) EQ expr(Y). { 803 A = sqlite3ExprListAppend(pParse, Z, Y.pExpr); 804 sqlite3ExprListSetName(pParse, A, &X, 1); 805 } 806 setlist(A) ::= nm(X) EQ expr(Y). { 807 A = sqlite3ExprListAppend(pParse, 0, Y.pExpr); 808 sqlite3ExprListSetName(pParse, A, &X, 1); 809 } 810 811 ////////////////////////// The INSERT command ///////////////////////////////// 812 // 813 cmd ::= with(W) insert_cmd(R) INTO fullname(X) idlist_opt(F) select(S). { 814 sqlite3WithPush(pParse, W, 1); 815 sqlite3Insert(pParse, X, S, F, R); 816 } 817 cmd ::= with(W) insert_cmd(R) INTO fullname(X) idlist_opt(F) DEFAULT VALUES. 818 { 819 sqlite3WithPush(pParse, W, 1); 820 sqlite3Insert(pParse, X, 0, F, R); 821 } 822 823 %type insert_cmd {int} 824 insert_cmd(A) ::= INSERT orconf(R). {A = R;} 825 insert_cmd(A) ::= REPLACE. {A = OE_Replace;} 826 827 %type idlist_opt {IdList*} 828 %destructor idlist_opt {sqlite3IdListDelete(pParse->db, $$);} 829 %type idlist {IdList*} 830 %destructor idlist {sqlite3IdListDelete(pParse->db, $$);} 831 832 idlist_opt(A) ::= . {A = 0;} 833 idlist_opt(A) ::= LP idlist(X) RP. {A = X;} 834 idlist(A) ::= idlist(X) COMMA nm(Y). 835 {A = sqlite3IdListAppend(pParse->db,X,&Y);} 836 idlist(A) ::= nm(Y). 837 {A = sqlite3IdListAppend(pParse->db,0,&Y);} 838 839 /////////////////////////// Expression Processing ///////////////////////////// 840 // 841 842 %type expr {ExprSpan} 843 %destructor expr {sqlite3ExprDelete(pParse->db, $$.pExpr);} 844 %type term {ExprSpan} 845 %destructor term {sqlite3ExprDelete(pParse->db, $$.pExpr);} 846 847 %include { 848 /* This is a utility routine used to set the ExprSpan.zStart and 849 ** ExprSpan.zEnd values of pOut so that the span covers the complete 850 ** range of text beginning with pStart and going to the end of pEnd. 851 */ 852 static void spanSet(ExprSpan *pOut, Token *pStart, Token *pEnd){ 853 pOut->zStart = pStart->z; 854 pOut->zEnd = &pEnd->z[pEnd->n]; 855 } 856 857 /* Construct a new Expr object from a single identifier. Use the 858 ** new Expr to populate pOut. Set the span of pOut to be the identifier 859 ** that created the expression. 860 */ 861 static void spanExpr(ExprSpan *pOut, Parse *pParse, int op, Token *pValue){ 862 pOut->pExpr = sqlite3PExpr(pParse, op, 0, 0, pValue); 863 pOut->zStart = pValue->z; 864 pOut->zEnd = &pValue->z[pValue->n]; 865 } 866 } 867 868 expr(A) ::= term(X). {A = X;} 869 expr(A) ::= LP(B) expr(X) RP(E). {A.pExpr = X.pExpr; spanSet(&A,&B,&E);} 870 term(A) ::= NULL(X). {spanExpr(&A, pParse, @X, &X);} 871 expr(A) ::= id(X). {spanExpr(&A, pParse, TK_ID, &X);} 872 expr(A) ::= JOIN_KW(X). {spanExpr(&A, pParse, TK_ID, &X);} 873 expr(A) ::= nm(X) DOT nm(Y). { 874 Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); 875 Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y); 876 A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0); 877 spanSet(&A,&X,&Y); 878 } 879 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). { 880 Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); 881 Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y); 882 Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Z); 883 Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0); 884 A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0); 885 spanSet(&A,&X,&Z); 886 } 887 term(A) ::= INTEGER|FLOAT|BLOB(X). {spanExpr(&A, pParse, @X, &X);} 888 term(A) ::= STRING(X). {spanExpr(&A, pParse, @X, &X);} 889 expr(A) ::= VARIABLE(X). { 890 if( X.n>=2 && X.z[0]=='#' && sqlite3Isdigit(X.z[1]) ){ 891 /* When doing a nested parse, one can include terms in an expression 892 ** that look like this: #1 #2 ... These terms refer to registers 893 ** in the virtual machine. #N is the N-th register. */ 894 if( pParse->nested==0 ){ 895 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &X); 896 A.pExpr = 0; 897 }else{ 898 A.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, &X); 899 if( A.pExpr ) sqlite3GetInt32(&X.z[1], &A.pExpr->iTable); 900 } 901 }else{ 902 spanExpr(&A, pParse, TK_VARIABLE, &X); 903 sqlite3ExprAssignVarNumber(pParse, A.pExpr); 904 } 905 spanSet(&A, &X, &X); 906 } 907 expr(A) ::= expr(E) COLLATE ids(C). { 908 A.pExpr = sqlite3ExprAddCollateToken(pParse, E.pExpr, &C, 1); 909 A.zStart = E.zStart; 910 A.zEnd = &C.z[C.n]; 911 } 912 %ifndef SQLITE_OMIT_CAST 913 expr(A) ::= CAST(X) LP expr(E) AS typetoken(T) RP(Y). { 914 A.pExpr = sqlite3PExpr(pParse, TK_CAST, E.pExpr, 0, &T); 915 spanSet(&A,&X,&Y); 916 } 917 %endif SQLITE_OMIT_CAST 918 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP(E). { 919 if( Y && Y->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 920 sqlite3ErrorMsg(pParse, "too many arguments on function %T", &X); 921 } 922 A.pExpr = sqlite3ExprFunction(pParse, Y, &X); 923 spanSet(&A,&X,&E); 924 if( D==SF_Distinct && A.pExpr ){ 925 A.pExpr->flags |= EP_Distinct; 926 } 927 } 928 expr(A) ::= id(X) LP STAR RP(E). { 929 A.pExpr = sqlite3ExprFunction(pParse, 0, &X); 930 spanSet(&A,&X,&E); 931 } 932 term(A) ::= CTIME_KW(OP). { 933 A.pExpr = sqlite3ExprFunction(pParse, 0, &OP); 934 spanSet(&A, &OP, &OP); 935 } 936 937 %include { 938 /* This routine constructs a binary expression node out of two ExprSpan 939 ** objects and uses the result to populate a new ExprSpan object. 940 */ 941 static void spanBinaryExpr( 942 ExprSpan *pOut, /* Write the result here */ 943 Parse *pParse, /* The parsing context. Errors accumulate here */ 944 int op, /* The binary operation */ 945 ExprSpan *pLeft, /* The left operand */ 946 ExprSpan *pRight /* The right operand */ 947 ){ 948 pOut->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr, 0); 949 pOut->zStart = pLeft->zStart; 950 pOut->zEnd = pRight->zEnd; 951 } 952 953 /* If doNot is true, then add a TK_NOT Expr-node wrapper around the 954 ** outside of *ppExpr. 955 */ 956 static void exprNot(Parse *pParse, int doNot, Expr **ppExpr){ 957 if( doNot ) *ppExpr = sqlite3PExpr(pParse, TK_NOT, *ppExpr, 0, 0); 958 } 959 } 960 961 expr(A) ::= expr(X) AND(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 962 expr(A) ::= expr(X) OR(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 963 expr(A) ::= expr(X) LT|GT|GE|LE(OP) expr(Y). 964 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 965 expr(A) ::= expr(X) EQ|NE(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 966 expr(A) ::= expr(X) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y). 967 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 968 expr(A) ::= expr(X) PLUS|MINUS(OP) expr(Y). 969 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 970 expr(A) ::= expr(X) STAR|SLASH|REM(OP) expr(Y). 971 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 972 expr(A) ::= expr(X) CONCAT(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 973 %type likeop {struct LikeOp} 974 likeop(A) ::= LIKE_KW|MATCH(X). {A.eOperator = X; A.bNot = 0;} 975 likeop(A) ::= NOT LIKE_KW|MATCH(X). {A.eOperator = X; A.bNot = 1;} 976 expr(A) ::= expr(X) likeop(OP) expr(Y). [LIKE_KW] { 977 ExprList *pList; 978 pList = sqlite3ExprListAppend(pParse,0, Y.pExpr); 979 pList = sqlite3ExprListAppend(pParse,pList, X.pExpr); 980 A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator); 981 exprNot(pParse, OP.bNot, &A.pExpr); 982 A.zStart = X.zStart; 983 A.zEnd = Y.zEnd; 984 if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc; 985 } 986 expr(A) ::= expr(X) likeop(OP) expr(Y) ESCAPE expr(E). [LIKE_KW] { 987 ExprList *pList; 988 pList = sqlite3ExprListAppend(pParse,0, Y.pExpr); 989 pList = sqlite3ExprListAppend(pParse,pList, X.pExpr); 990 pList = sqlite3ExprListAppend(pParse,pList, E.pExpr); 991 A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator); 992 exprNot(pParse, OP.bNot, &A.pExpr); 993 A.zStart = X.zStart; 994 A.zEnd = E.zEnd; 995 if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc; 996 } 997 998 %include { 999 /* Construct an expression node for a unary postfix operator 1000 */ 1001 static void spanUnaryPostfix( 1002 ExprSpan *pOut, /* Write the new expression node here */ 1003 Parse *pParse, /* Parsing context to record errors */ 1004 int op, /* The operator */ 1005 ExprSpan *pOperand, /* The operand */ 1006 Token *pPostOp /* The operand token for setting the span */ 1007 ){ 1008 pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0); 1009 pOut->zStart = pOperand->zStart; 1010 pOut->zEnd = &pPostOp->z[pPostOp->n]; 1011 } 1012 } 1013 1014 expr(A) ::= expr(X) ISNULL|NOTNULL(E). {spanUnaryPostfix(&A,pParse,@E,&X,&E);} 1015 expr(A) ::= expr(X) NOT NULL(E). {spanUnaryPostfix(&A,pParse,TK_NOTNULL,&X,&E);} 1016 1017 %include { 1018 /* A routine to convert a binary TK_IS or TK_ISNOT expression into a 1019 ** unary TK_ISNULL or TK_NOTNULL expression. */ 1020 static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){ 1021 sqlite3 *db = pParse->db; 1022 if( pA && pY && pY->op==TK_NULL ){ 1023 pA->op = (u8)op; 1024 sqlite3ExprDelete(db, pA->pRight); 1025 pA->pRight = 0; 1026 } 1027 } 1028 } 1029 1030 // expr1 IS expr2 1031 // expr1 IS NOT expr2 1032 // 1033 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL. If expr2 1034 // is any other expression, code as TK_IS or TK_ISNOT. 1035 // 1036 expr(A) ::= expr(X) IS expr(Y). { 1037 spanBinaryExpr(&A,pParse,TK_IS,&X,&Y); 1038 binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_ISNULL); 1039 } 1040 expr(A) ::= expr(X) IS NOT expr(Y). { 1041 spanBinaryExpr(&A,pParse,TK_ISNOT,&X,&Y); 1042 binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_NOTNULL); 1043 } 1044 1045 %include { 1046 /* Construct an expression node for a unary prefix operator 1047 */ 1048 static void spanUnaryPrefix( 1049 ExprSpan *pOut, /* Write the new expression node here */ 1050 Parse *pParse, /* Parsing context to record errors */ 1051 int op, /* The operator */ 1052 ExprSpan *pOperand, /* The operand */ 1053 Token *pPreOp /* The operand token for setting the span */ 1054 ){ 1055 pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0); 1056 pOut->zStart = pPreOp->z; 1057 pOut->zEnd = pOperand->zEnd; 1058 } 1059 } 1060 1061 1062 1063 expr(A) ::= NOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);} 1064 expr(A) ::= BITNOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);} 1065 expr(A) ::= MINUS(B) expr(X). [BITNOT] 1066 {spanUnaryPrefix(&A,pParse,TK_UMINUS,&X,&B);} 1067 expr(A) ::= PLUS(B) expr(X). [BITNOT] 1068 {spanUnaryPrefix(&A,pParse,TK_UPLUS,&X,&B);} 1069 1070 %type between_op {int} 1071 between_op(A) ::= BETWEEN. {A = 0;} 1072 between_op(A) ::= NOT BETWEEN. {A = 1;} 1073 expr(A) ::= expr(W) between_op(N) expr(X) AND expr(Y). [BETWEEN] { 1074 ExprList *pList = sqlite3ExprListAppend(pParse,0, X.pExpr); 1075 pList = sqlite3ExprListAppend(pParse,pList, Y.pExpr); 1076 A.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, W.pExpr, 0, 0); 1077 if( A.pExpr ){ 1078 A.pExpr->x.pList = pList; 1079 }else{ 1080 sqlite3ExprListDelete(pParse->db, pList); 1081 } 1082 exprNot(pParse, N, &A.pExpr); 1083 A.zStart = W.zStart; 1084 A.zEnd = Y.zEnd; 1085 } 1086 %ifndef SQLITE_OMIT_SUBQUERY 1087 %type in_op {int} 1088 in_op(A) ::= IN. {A = 0;} 1089 in_op(A) ::= NOT IN. {A = 1;} 1090 expr(A) ::= expr(X) in_op(N) LP exprlist(Y) RP(E). [IN] { 1091 if( Y==0 ){ 1092 /* Expressions of the form 1093 ** 1094 ** expr1 IN () 1095 ** expr1 NOT IN () 1096 ** 1097 ** simplify to constants 0 (false) and 1 (true), respectively, 1098 ** regardless of the value of expr1. 1099 */ 1100 A.pExpr = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &sqlite3IntTokens[N]); 1101 sqlite3ExprDelete(pParse->db, X.pExpr); 1102 }else if( Y->nExpr==1 ){ 1103 /* Expressions of the form: 1104 ** 1105 ** expr1 IN (?1) 1106 ** expr1 NOT IN (?2) 1107 ** 1108 ** with exactly one value on the RHS can be simplified to something 1109 ** like this: 1110 ** 1111 ** expr1 == ?1 1112 ** expr1 <> ?2 1113 ** 1114 ** But, the RHS of the == or <> is marked with the EP_Generic flag 1115 ** so that it may not contribute to the computation of comparison 1116 ** affinity or the collating sequence to use for comparison. Otherwise, 1117 ** the semantics would be subtly different from IN or NOT IN. 1118 */ 1119 Expr *pRHS = Y->a[0].pExpr; 1120 Y->a[0].pExpr = 0; 1121 sqlite3ExprListDelete(pParse->db, Y); 1122 /* pRHS cannot be NULL because a malloc error would have been detected 1123 ** before now and control would have never reached this point */ 1124 if( ALWAYS(pRHS) ){ 1125 pRHS->flags &= ~EP_Collate; 1126 pRHS->flags |= EP_Generic; 1127 } 1128 A.pExpr = sqlite3PExpr(pParse, N ? TK_NE : TK_EQ, X.pExpr, pRHS, 0); 1129 }else{ 1130 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); 1131 if( A.pExpr ){ 1132 A.pExpr->x.pList = Y; 1133 sqlite3ExprSetHeightAndFlags(pParse, A.pExpr); 1134 }else{ 1135 sqlite3ExprListDelete(pParse->db, Y); 1136 } 1137 exprNot(pParse, N, &A.pExpr); 1138 } 1139 A.zStart = X.zStart; 1140 A.zEnd = &E.z[E.n]; 1141 } 1142 expr(A) ::= LP(B) select(X) RP(E). { 1143 A.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0); 1144 if( A.pExpr ){ 1145 A.pExpr->x.pSelect = X; 1146 ExprSetProperty(A.pExpr, EP_xIsSelect|EP_Subquery); 1147 sqlite3ExprSetHeightAndFlags(pParse, A.pExpr); 1148 }else{ 1149 sqlite3SelectDelete(pParse->db, X); 1150 } 1151 A.zStart = B.z; 1152 A.zEnd = &E.z[E.n]; 1153 } 1154 expr(A) ::= expr(X) in_op(N) LP select(Y) RP(E). [IN] { 1155 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); 1156 if( A.pExpr ){ 1157 A.pExpr->x.pSelect = Y; 1158 ExprSetProperty(A.pExpr, EP_xIsSelect|EP_Subquery); 1159 sqlite3ExprSetHeightAndFlags(pParse, A.pExpr); 1160 }else{ 1161 sqlite3SelectDelete(pParse->db, Y); 1162 } 1163 exprNot(pParse, N, &A.pExpr); 1164 A.zStart = X.zStart; 1165 A.zEnd = &E.z[E.n]; 1166 } 1167 expr(A) ::= expr(X) in_op(N) nm(Y) dbnm(Z). [IN] { 1168 SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z); 1169 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); 1170 if( A.pExpr ){ 1171 A.pExpr->x.pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0); 1172 ExprSetProperty(A.pExpr, EP_xIsSelect|EP_Subquery); 1173 sqlite3ExprSetHeightAndFlags(pParse, A.pExpr); 1174 }else{ 1175 sqlite3SrcListDelete(pParse->db, pSrc); 1176 } 1177 exprNot(pParse, N, &A.pExpr); 1178 A.zStart = X.zStart; 1179 A.zEnd = Z.z ? &Z.z[Z.n] : &Y.z[Y.n]; 1180 } 1181 expr(A) ::= EXISTS(B) LP select(Y) RP(E). { 1182 Expr *p = A.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0); 1183 if( p ){ 1184 p->x.pSelect = Y; 1185 ExprSetProperty(p, EP_xIsSelect|EP_Subquery); 1186 sqlite3ExprSetHeightAndFlags(pParse, p); 1187 }else{ 1188 sqlite3SelectDelete(pParse->db, Y); 1189 } 1190 A.zStart = B.z; 1191 A.zEnd = &E.z[E.n]; 1192 } 1193 %endif SQLITE_OMIT_SUBQUERY 1194 1195 /* CASE expressions */ 1196 expr(A) ::= CASE(C) case_operand(X) case_exprlist(Y) case_else(Z) END(E). { 1197 A.pExpr = sqlite3PExpr(pParse, TK_CASE, X, 0, 0); 1198 if( A.pExpr ){ 1199 A.pExpr->x.pList = Z ? sqlite3ExprListAppend(pParse,Y,Z) : Y; 1200 sqlite3ExprSetHeightAndFlags(pParse, A.pExpr); 1201 }else{ 1202 sqlite3ExprListDelete(pParse->db, Y); 1203 sqlite3ExprDelete(pParse->db, Z); 1204 } 1205 A.zStart = C.z; 1206 A.zEnd = &E.z[E.n]; 1207 } 1208 %type case_exprlist {ExprList*} 1209 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1210 case_exprlist(A) ::= case_exprlist(X) WHEN expr(Y) THEN expr(Z). { 1211 A = sqlite3ExprListAppend(pParse,X, Y.pExpr); 1212 A = sqlite3ExprListAppend(pParse,A, Z.pExpr); 1213 } 1214 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). { 1215 A = sqlite3ExprListAppend(pParse,0, Y.pExpr); 1216 A = sqlite3ExprListAppend(pParse,A, Z.pExpr); 1217 } 1218 %type case_else {Expr*} 1219 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);} 1220 case_else(A) ::= ELSE expr(X). {A = X.pExpr;} 1221 case_else(A) ::= . {A = 0;} 1222 %type case_operand {Expr*} 1223 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);} 1224 case_operand(A) ::= expr(X). {A = X.pExpr;} 1225 case_operand(A) ::= . {A = 0;} 1226 1227 %type exprlist {ExprList*} 1228 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1229 %type nexprlist {ExprList*} 1230 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);} 1231 1232 exprlist(A) ::= nexprlist(X). {A = X;} 1233 exprlist(A) ::= . {A = 0;} 1234 nexprlist(A) ::= nexprlist(X) COMMA expr(Y). 1235 {A = sqlite3ExprListAppend(pParse,X,Y.pExpr);} 1236 nexprlist(A) ::= expr(Y). 1237 {A = sqlite3ExprListAppend(pParse,0,Y.pExpr);} 1238 1239 1240 ///////////////////////////// The CREATE INDEX command /////////////////////// 1241 // 1242 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D) 1243 ON nm(Y) LP sortlist(Z) RP where_opt(W). { 1244 sqlite3CreateIndex(pParse, &X, &D, 1245 sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U, 1246 &S, W, SQLITE_SO_ASC, NE); 1247 } 1248 1249 %type uniqueflag {int} 1250 uniqueflag(A) ::= UNIQUE. {A = OE_Abort;} 1251 uniqueflag(A) ::= . {A = OE_None;} 1252 1253 1254 // The eidlist non-terminal (Expression Id List) generates an ExprList 1255 // from a list of identifiers. The identifier names are in ExprList.a[].zName. 1256 // This list is stored in an ExprList rather than an IdList so that it 1257 // can be easily sent to sqlite3ColumnsExprList(). 1258 // 1259 // eidlist is grouped with CREATE INDEX because it used to be the non-terminal 1260 // used for the arguments to an index. That is just an historical accident. 1261 // 1262 // IMPORTANT COMPATIBILITY NOTE: Some prior versions of SQLite accepted 1263 // COLLATE clauses and ASC or DESC keywords on ID lists in inappropriate 1264 // places - places that might have been stored in the sqlite_master schema. 1265 // Those extra features were ignored. But because they might be in some 1266 // (busted) old databases, we need to continue parsing them when loading 1267 // historical schemas. 1268 // 1269 %type eidlist {ExprList*} 1270 %destructor eidlist {sqlite3ExprListDelete(pParse->db, $$);} 1271 %type eidlist_opt {ExprList*} 1272 %destructor eidlist_opt {sqlite3ExprListDelete(pParse->db, $$);} 1273 1274 %include { 1275 /* Add a single new term to an ExprList that is used to store a 1276 ** list of identifiers. Report an error if the ID list contains 1277 ** a COLLATE clause or an ASC or DESC keyword, except ignore the 1278 ** error while parsing a legacy schema. 1279 */ 1280 static ExprList *parserAddExprIdListTerm( 1281 Parse *pParse, 1282 ExprList *pPrior, 1283 Token *pIdToken, 1284 int hasCollate, 1285 int sortOrder 1286 ){ 1287 ExprList *p = sqlite3ExprListAppend(pParse, pPrior, 0); 1288 if( (hasCollate || sortOrder!=SQLITE_SO_UNDEFINED) 1289 && pParse->db->init.busy==0 1290 ){ 1291 sqlite3ErrorMsg(pParse, "syntax error after column name \"%.*s\"", 1292 pIdToken->n, pIdToken->z); 1293 } 1294 sqlite3ExprListSetName(pParse, p, pIdToken, 1); 1295 return p; 1296 } 1297 } // end %include 1298 1299 eidlist_opt(A) ::= . {A = 0;} 1300 eidlist_opt(A) ::= LP eidlist(X) RP. {A = X;} 1301 eidlist(A) ::= eidlist(X) COMMA nm(Y) collate(C) sortorder(Z). { 1302 A = parserAddExprIdListTerm(pParse, X, &Y, C, Z); 1303 } 1304 eidlist(A) ::= nm(Y) collate(C) sortorder(Z). { 1305 A = parserAddExprIdListTerm(pParse, 0, &Y, C, Z); 1306 } 1307 1308 %type collate {int} 1309 collate(C) ::= . {C = 0;} 1310 collate(C) ::= COLLATE ids. {C = 1;} 1311 1312 1313 ///////////////////////////// The DROP INDEX command ///////////////////////// 1314 // 1315 cmd ::= DROP INDEX ifexists(E) fullname(X). {sqlite3DropIndex(pParse, X, E);} 1316 1317 ///////////////////////////// The VACUUM command ///////////////////////////// 1318 // 1319 %ifndef SQLITE_OMIT_VACUUM 1320 %ifndef SQLITE_OMIT_ATTACH 1321 cmd ::= VACUUM. {sqlite3Vacuum(pParse);} 1322 cmd ::= VACUUM nm. {sqlite3Vacuum(pParse);} 1323 %endif SQLITE_OMIT_ATTACH 1324 %endif SQLITE_OMIT_VACUUM 1325 1326 ///////////////////////////// The PRAGMA command ///////////////////////////// 1327 // 1328 %ifndef SQLITE_OMIT_PRAGMA 1329 cmd ::= PRAGMA nm(X) dbnm(Z). {sqlite3Pragma(pParse,&X,&Z,0,0);} 1330 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1331 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1332 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y). 1333 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1334 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP. 1335 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1336 1337 nmnum(A) ::= plus_num(X). {A = X;} 1338 nmnum(A) ::= nm(X). {A = X;} 1339 nmnum(A) ::= ON(X). {A = X;} 1340 nmnum(A) ::= DELETE(X). {A = X;} 1341 nmnum(A) ::= DEFAULT(X). {A = X;} 1342 %endif SQLITE_OMIT_PRAGMA 1343 %token_class number INTEGER|FLOAT. 1344 plus_num(A) ::= PLUS number(X). {A = X;} 1345 plus_num(A) ::= number(X). {A = X;} 1346 minus_num(A) ::= MINUS number(X). {A = X;} 1347 //////////////////////////// The CREATE TRIGGER command ///////////////////// 1348 1349 %ifndef SQLITE_OMIT_TRIGGER 1350 1351 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). { 1352 Token all; 1353 all.z = A.z; 1354 all.n = (int)(Z.z - A.z) + Z.n; 1355 sqlite3FinishTrigger(pParse, S, &all); 1356 } 1357 1358 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z) 1359 trigger_time(C) trigger_event(D) 1360 ON fullname(E) foreach_clause when_clause(G). { 1361 sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR); 1362 A = (Z.n==0?B:Z); 1363 } 1364 1365 %type trigger_time {int} 1366 trigger_time(A) ::= BEFORE. { A = TK_BEFORE; } 1367 trigger_time(A) ::= AFTER. { A = TK_AFTER; } 1368 trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;} 1369 trigger_time(A) ::= . { A = TK_BEFORE; } 1370 1371 %type trigger_event {struct TrigEvent} 1372 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);} 1373 trigger_event(A) ::= DELETE|INSERT(OP). {A.a = @OP; A.b = 0;} 1374 trigger_event(A) ::= UPDATE(OP). {A.a = @OP; A.b = 0;} 1375 trigger_event(A) ::= UPDATE OF idlist(X). {A.a = TK_UPDATE; A.b = X;} 1376 1377 foreach_clause ::= . 1378 foreach_clause ::= FOR EACH ROW. 1379 1380 %type when_clause {Expr*} 1381 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);} 1382 when_clause(A) ::= . { A = 0; } 1383 when_clause(A) ::= WHEN expr(X). { A = X.pExpr; } 1384 1385 %type trigger_cmd_list {TriggerStep*} 1386 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);} 1387 trigger_cmd_list(A) ::= trigger_cmd_list(Y) trigger_cmd(X) SEMI. { 1388 assert( Y!=0 ); 1389 Y->pLast->pNext = X; 1390 Y->pLast = X; 1391 A = Y; 1392 } 1393 trigger_cmd_list(A) ::= trigger_cmd(X) SEMI. { 1394 assert( X!=0 ); 1395 X->pLast = X; 1396 A = X; 1397 } 1398 1399 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements 1400 // within a trigger. The table to INSERT, UPDATE, or DELETE is always in 1401 // the same database as the table that the trigger fires on. 1402 // 1403 %type trnm {Token} 1404 trnm(A) ::= nm(X). {A = X;} 1405 trnm(A) ::= nm DOT nm(X). { 1406 A = X; 1407 sqlite3ErrorMsg(pParse, 1408 "qualified table names are not allowed on INSERT, UPDATE, and DELETE " 1409 "statements within triggers"); 1410 } 1411 1412 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE 1413 // statements within triggers. We make a specific error message for this 1414 // since it is an exception to the default grammar rules. 1415 // 1416 tridxby ::= . 1417 tridxby ::= INDEXED BY nm. { 1418 sqlite3ErrorMsg(pParse, 1419 "the INDEXED BY clause is not allowed on UPDATE or DELETE statements " 1420 "within triggers"); 1421 } 1422 tridxby ::= NOT INDEXED. { 1423 sqlite3ErrorMsg(pParse, 1424 "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements " 1425 "within triggers"); 1426 } 1427 1428 1429 1430 %type trigger_cmd {TriggerStep*} 1431 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);} 1432 // UPDATE 1433 trigger_cmd(A) ::= 1434 UPDATE orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z). 1435 { A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R); } 1436 1437 // INSERT 1438 trigger_cmd(A) ::= insert_cmd(R) INTO trnm(X) idlist_opt(F) select(S). 1439 {A = sqlite3TriggerInsertStep(pParse->db, &X, F, S, R);} 1440 1441 // DELETE 1442 trigger_cmd(A) ::= DELETE FROM trnm(X) tridxby where_opt(Y). 1443 {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y);} 1444 1445 // SELECT 1446 trigger_cmd(A) ::= select(X). {A = sqlite3TriggerSelectStep(pParse->db, X); } 1447 1448 // The special RAISE expression that may occur in trigger programs 1449 expr(A) ::= RAISE(X) LP IGNORE RP(Y). { 1450 A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0); 1451 if( A.pExpr ){ 1452 A.pExpr->affinity = OE_Ignore; 1453 } 1454 A.zStart = X.z; 1455 A.zEnd = &Y.z[Y.n]; 1456 } 1457 expr(A) ::= RAISE(X) LP raisetype(T) COMMA nm(Z) RP(Y). { 1458 A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &Z); 1459 if( A.pExpr ) { 1460 A.pExpr->affinity = (char)T; 1461 } 1462 A.zStart = X.z; 1463 A.zEnd = &Y.z[Y.n]; 1464 } 1465 %endif !SQLITE_OMIT_TRIGGER 1466 1467 %type raisetype {int} 1468 raisetype(A) ::= ROLLBACK. {A = OE_Rollback;} 1469 raisetype(A) ::= ABORT. {A = OE_Abort;} 1470 raisetype(A) ::= FAIL. {A = OE_Fail;} 1471 1472 1473 //////////////////////// DROP TRIGGER statement ////////////////////////////// 1474 %ifndef SQLITE_OMIT_TRIGGER 1475 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). { 1476 sqlite3DropTrigger(pParse,X,NOERR); 1477 } 1478 %endif !SQLITE_OMIT_TRIGGER 1479 1480 //////////////////////// ATTACH DATABASE file AS name ///////////////////////// 1481 %ifndef SQLITE_OMIT_ATTACH 1482 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). { 1483 sqlite3Attach(pParse, F.pExpr, D.pExpr, K); 1484 } 1485 cmd ::= DETACH database_kw_opt expr(D). { 1486 sqlite3Detach(pParse, D.pExpr); 1487 } 1488 1489 %type key_opt {Expr*} 1490 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);} 1491 key_opt(A) ::= . { A = 0; } 1492 key_opt(A) ::= KEY expr(X). { A = X.pExpr; } 1493 1494 database_kw_opt ::= DATABASE. 1495 database_kw_opt ::= . 1496 %endif SQLITE_OMIT_ATTACH 1497 1498 ////////////////////////// REINDEX collation ////////////////////////////////// 1499 %ifndef SQLITE_OMIT_REINDEX 1500 cmd ::= REINDEX. {sqlite3Reindex(pParse, 0, 0);} 1501 cmd ::= REINDEX nm(X) dbnm(Y). {sqlite3Reindex(pParse, &X, &Y);} 1502 %endif SQLITE_OMIT_REINDEX 1503 1504 /////////////////////////////////// ANALYZE /////////////////////////////////// 1505 %ifndef SQLITE_OMIT_ANALYZE 1506 cmd ::= ANALYZE. {sqlite3Analyze(pParse, 0, 0);} 1507 cmd ::= ANALYZE nm(X) dbnm(Y). {sqlite3Analyze(pParse, &X, &Y);} 1508 %endif 1509 1510 //////////////////////// ALTER TABLE table ... //////////////////////////////// 1511 %ifndef SQLITE_OMIT_ALTERTABLE 1512 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). { 1513 sqlite3AlterRenameTable(pParse,X,&Z); 1514 } 1515 cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column(Y). { 1516 sqlite3AlterFinishAddColumn(pParse, &Y); 1517 } 1518 add_column_fullname ::= fullname(X). { 1519 disableLookaside(pParse); 1520 sqlite3AlterBeginAddColumn(pParse, X); 1521 } 1522 kwcolumn_opt ::= . 1523 kwcolumn_opt ::= COLUMNKW. 1524 %endif SQLITE_OMIT_ALTERTABLE 1525 1526 //////////////////////// CREATE VIRTUAL TABLE ... ///////////////////////////// 1527 %ifndef SQLITE_OMIT_VIRTUALTABLE 1528 cmd ::= create_vtab. {sqlite3VtabFinishParse(pParse,0);} 1529 cmd ::= create_vtab LP vtabarglist RP(X). {sqlite3VtabFinishParse(pParse,&X);} 1530 create_vtab ::= createkw VIRTUAL TABLE ifnotexists(E) 1531 nm(X) dbnm(Y) USING nm(Z). { 1532 sqlite3VtabBeginParse(pParse, &X, &Y, &Z, E); 1533 } 1534 vtabarglist ::= vtabarg. 1535 vtabarglist ::= vtabarglist COMMA vtabarg. 1536 vtabarg ::= . {sqlite3VtabArgInit(pParse);} 1537 vtabarg ::= vtabarg vtabargtoken. 1538 vtabargtoken ::= ANY(X). {sqlite3VtabArgExtend(pParse,&X);} 1539 vtabargtoken ::= lp anylist RP(X). {sqlite3VtabArgExtend(pParse,&X);} 1540 lp ::= LP(X). {sqlite3VtabArgExtend(pParse,&X);} 1541 anylist ::= . 1542 anylist ::= anylist LP anylist RP. 1543 anylist ::= anylist ANY. 1544 %endif SQLITE_OMIT_VIRTUALTABLE 1545 1546 1547 //////////////////////// COMMON TABLE EXPRESSIONS //////////////////////////// 1548 %type with {With*} 1549 %type wqlist {With*} 1550 %destructor with {sqlite3WithDelete(pParse->db, $$);} 1551 %destructor wqlist {sqlite3WithDelete(pParse->db, $$);} 1552 1553 with(A) ::= . {A = 0;} 1554 %ifndef SQLITE_OMIT_CTE 1555 with(A) ::= WITH wqlist(W). { A = W; } 1556 with(A) ::= WITH RECURSIVE wqlist(W). { A = W; } 1557 1558 wqlist(A) ::= nm(X) eidlist_opt(Y) AS LP select(Z) RP. { 1559 A = sqlite3WithAdd(pParse, 0, &X, Y, Z); 1560 } 1561 wqlist(A) ::= wqlist(W) COMMA nm(X) eidlist_opt(Y) AS LP select(Z) RP. { 1562 A = sqlite3WithAdd(pParse, W, &X, Y, Z); 1563 } 1564 %endif SQLITE_OMIT_CTE 1565