1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains SQLite's grammar for SQL. Process this file 13 ** using the lemon parser generator to generate C code that runs 14 ** the parser. Lemon will also generate a header file containing 15 ** numeric codes for all of the tokens. 16 */ 17 18 // All token codes are small integers with #defines that begin with "TK_" 19 %token_prefix TK_ 20 21 // The type of the data attached to each token is Token. This is also the 22 // default type for non-terminals. 23 // 24 %token_type {Token} 25 %default_type {Token} 26 27 // The generated parser function takes a 4th argument as follows: 28 %extra_argument {Parse *pParse} 29 30 // This code runs whenever there is a syntax error 31 // 32 %syntax_error { 33 UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */ 34 assert( TOKEN.z[0] ); /* The tokenizer always gives us a token */ 35 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN); 36 } 37 %stack_overflow { 38 UNUSED_PARAMETER(yypMinor); /* Silence some compiler warnings */ 39 sqlite3ErrorMsg(pParse, "parser stack overflow"); 40 } 41 42 // The name of the generated procedure that implements the parser 43 // is as follows: 44 %name sqlite3Parser 45 46 // The following text is included near the beginning of the C source 47 // code file that implements the parser. 48 // 49 %include { 50 #include "sqliteInt.h" 51 52 /* 53 ** Disable all error recovery processing in the parser push-down 54 ** automaton. 55 */ 56 #define YYNOERRORRECOVERY 1 57 58 /* 59 ** Make yytestcase() the same as testcase() 60 */ 61 #define yytestcase(X) testcase(X) 62 63 /* 64 ** An instance of this structure holds information about the 65 ** LIMIT clause of a SELECT statement. 66 */ 67 struct LimitVal { 68 Expr *pLimit; /* The LIMIT expression. NULL if there is no limit */ 69 Expr *pOffset; /* The OFFSET expression. NULL if there is none */ 70 }; 71 72 /* 73 ** An instance of this structure is used to store the LIKE, 74 ** GLOB, NOT LIKE, and NOT GLOB operators. 75 */ 76 struct LikeOp { 77 Token eOperator; /* "like" or "glob" or "regexp" */ 78 int bNot; /* True if the NOT keyword is present */ 79 }; 80 81 /* 82 ** An instance of the following structure describes the event of a 83 ** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT, 84 ** TK_DELETE, or TK_INSTEAD. If the event is of the form 85 ** 86 ** UPDATE ON (a,b,c) 87 ** 88 ** Then the "b" IdList records the list "a,b,c". 89 */ 90 struct TrigEvent { int a; IdList * b; }; 91 92 /* 93 ** An instance of this structure holds the ATTACH key and the key type. 94 */ 95 struct AttachKey { int type; Token key; }; 96 97 } // end %include 98 99 // Input is a single SQL command 100 input ::= cmdlist. 101 cmdlist ::= cmdlist ecmd. 102 cmdlist ::= ecmd. 103 ecmd ::= SEMI. 104 ecmd ::= explain cmdx SEMI. 105 explain ::= . { sqlite3BeginParse(pParse, 0); } 106 %ifndef SQLITE_OMIT_EXPLAIN 107 explain ::= EXPLAIN. { sqlite3BeginParse(pParse, 1); } 108 explain ::= EXPLAIN QUERY PLAN. { sqlite3BeginParse(pParse, 2); } 109 %endif SQLITE_OMIT_EXPLAIN 110 cmdx ::= cmd. { sqlite3FinishCoding(pParse); } 111 112 ///////////////////// Begin and end transactions. //////////////////////////// 113 // 114 115 cmd ::= BEGIN transtype(Y) trans_opt. {sqlite3BeginTransaction(pParse, Y);} 116 trans_opt ::= . 117 trans_opt ::= TRANSACTION. 118 trans_opt ::= TRANSACTION nm. 119 %type transtype {int} 120 transtype(A) ::= . {A = TK_DEFERRED;} 121 transtype(A) ::= DEFERRED(X). {A = @X;} 122 transtype(A) ::= IMMEDIATE(X). {A = @X;} 123 transtype(A) ::= EXCLUSIVE(X). {A = @X;} 124 cmd ::= COMMIT trans_opt. {sqlite3CommitTransaction(pParse);} 125 cmd ::= END trans_opt. {sqlite3CommitTransaction(pParse);} 126 cmd ::= ROLLBACK trans_opt. {sqlite3RollbackTransaction(pParse);} 127 128 savepoint_opt ::= SAVEPOINT. 129 savepoint_opt ::= . 130 cmd ::= SAVEPOINT nm(X). { 131 sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X); 132 } 133 cmd ::= RELEASE savepoint_opt nm(X). { 134 sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X); 135 } 136 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). { 137 sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X); 138 } 139 140 ///////////////////// The CREATE TABLE statement //////////////////////////// 141 // 142 cmd ::= create_table create_table_args. 143 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). { 144 sqlite3StartTable(pParse,&Y,&Z,T,0,0,E); 145 } 146 createkw(A) ::= CREATE(X). { 147 pParse->db->lookaside.bEnabled = 0; 148 A = X; 149 } 150 %type ifnotexists {int} 151 ifnotexists(A) ::= . {A = 0;} 152 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;} 153 %type temp {int} 154 %ifndef SQLITE_OMIT_TEMPDB 155 temp(A) ::= TEMP. {A = 1;} 156 %endif SQLITE_OMIT_TEMPDB 157 temp(A) ::= . {A = 0;} 158 create_table_args ::= LP columnlist conslist_opt(X) RP(E) table_options(F). { 159 sqlite3EndTable(pParse,&X,&E,F,0); 160 } 161 create_table_args ::= AS select(S). { 162 sqlite3EndTable(pParse,0,0,0,S); 163 sqlite3SelectDelete(pParse->db, S); 164 } 165 %type table_options {u8} 166 table_options(A) ::= . {A = 0;} 167 table_options(A) ::= WITHOUT nm(X). { 168 if( X.n==5 && sqlite3_strnicmp(X.z,"rowid",5)==0 ){ 169 A = TF_WithoutRowid; 170 }else{ 171 A = 0; 172 sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z); 173 } 174 } 175 columnlist ::= columnlist COMMA column. 176 columnlist ::= column. 177 178 // A "column" is a complete description of a single column in a 179 // CREATE TABLE statement. This includes the column name, its 180 // datatype, and other keywords such as PRIMARY KEY, UNIQUE, REFERENCES, 181 // NOT NULL and so forth. 182 // 183 column(A) ::= columnid(X) type carglist. { 184 A.z = X.z; 185 A.n = (int)(pParse->sLastToken.z-X.z) + pParse->sLastToken.n; 186 } 187 columnid(A) ::= nm(X). { 188 sqlite3AddColumn(pParse,&X); 189 A = X; 190 pParse->constraintName.n = 0; 191 } 192 193 194 // An IDENTIFIER can be a generic identifier, or one of several 195 // keywords. Any non-standard keyword can also be an identifier. 196 // 197 %token_class id ID|INDEXED. 198 199 // The following directive causes tokens ABORT, AFTER, ASC, etc. to 200 // fallback to ID if they will not parse as their original value. 201 // This obviates the need for the "id" nonterminal. 202 // 203 %fallback ID 204 ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW 205 CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL FOR 206 IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN 207 QUERY KEY OF OFFSET PRAGMA RAISE RECURSIVE RELEASE REPLACE RESTRICT ROW 208 ROLLBACK SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL WITH WITHOUT 209 %ifdef SQLITE_OMIT_COMPOUND_SELECT 210 EXCEPT INTERSECT UNION 211 %endif SQLITE_OMIT_COMPOUND_SELECT 212 REINDEX RENAME CTIME_KW IF 213 . 214 %wildcard ANY. 215 216 // Define operator precedence early so that this is the first occurrence 217 // of the operator tokens in the grammer. Keeping the operators together 218 // causes them to be assigned integer values that are close together, 219 // which keeps parser tables smaller. 220 // 221 // The token values assigned to these symbols is determined by the order 222 // in which lemon first sees them. It must be the case that ISNULL/NOTNULL, 223 // NE/EQ, GT/LE, and GE/LT are separated by only a single value. See 224 // the sqlite3ExprIfFalse() routine for additional information on this 225 // constraint. 226 // 227 %left OR. 228 %left AND. 229 %right NOT. 230 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. 231 %left GT LE LT GE. 232 %right ESCAPE. 233 %left BITAND BITOR LSHIFT RSHIFT. 234 %left PLUS MINUS. 235 %left STAR SLASH REM. 236 %left CONCAT. 237 %left COLLATE. 238 %right BITNOT. 239 240 // And "ids" is an identifer-or-string. 241 // 242 %token_class ids ID|STRING. 243 244 // The name of a column or table can be any of the following: 245 // 246 %type nm {Token} 247 nm(A) ::= id(X). {A = X;} 248 nm(A) ::= STRING(X). {A = X;} 249 nm(A) ::= JOIN_KW(X). {A = X;} 250 251 // A typetoken is really one or more tokens that form a type name such 252 // as can be found after the column name in a CREATE TABLE statement. 253 // Multiple tokens are concatenated to form the value of the typetoken. 254 // 255 %type typetoken {Token} 256 type ::= . 257 type ::= typetoken(X). {sqlite3AddColumnType(pParse,&X);} 258 typetoken(A) ::= typename(X). {A = X;} 259 typetoken(A) ::= typename(X) LP signed RP(Y). { 260 A.z = X.z; 261 A.n = (int)(&Y.z[Y.n] - X.z); 262 } 263 typetoken(A) ::= typename(X) LP signed COMMA signed RP(Y). { 264 A.z = X.z; 265 A.n = (int)(&Y.z[Y.n] - X.z); 266 } 267 %type typename {Token} 268 typename(A) ::= ids(X). {A = X;} 269 typename(A) ::= typename(X) ids(Y). {A.z=X.z; A.n=Y.n+(int)(Y.z-X.z);} 270 signed ::= plus_num. 271 signed ::= minus_num. 272 273 // "carglist" is a list of additional constraints that come after the 274 // column name and column type in a CREATE TABLE statement. 275 // 276 carglist ::= carglist ccons. 277 carglist ::= . 278 ccons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} 279 ccons ::= DEFAULT term(X). {sqlite3AddDefaultValue(pParse,&X);} 280 ccons ::= DEFAULT LP expr(X) RP. {sqlite3AddDefaultValue(pParse,&X);} 281 ccons ::= DEFAULT PLUS term(X). {sqlite3AddDefaultValue(pParse,&X);} 282 ccons ::= DEFAULT MINUS(A) term(X). { 283 ExprSpan v; 284 v.pExpr = sqlite3PExpr(pParse, TK_UMINUS, X.pExpr, 0, 0); 285 v.zStart = A.z; 286 v.zEnd = X.zEnd; 287 sqlite3AddDefaultValue(pParse,&v); 288 } 289 ccons ::= DEFAULT id(X). { 290 ExprSpan v; 291 spanExpr(&v, pParse, TK_STRING, &X); 292 sqlite3AddDefaultValue(pParse,&v); 293 } 294 295 // In addition to the type name, we also care about the primary key and 296 // UNIQUE constraints. 297 // 298 ccons ::= NULL onconf. 299 ccons ::= NOT NULL onconf(R). {sqlite3AddNotNull(pParse, R);} 300 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I). 301 {sqlite3AddPrimaryKey(pParse,0,R,I,Z);} 302 ccons ::= UNIQUE onconf(R). {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0);} 303 ccons ::= CHECK LP expr(X) RP. {sqlite3AddCheckConstraint(pParse,X.pExpr);} 304 ccons ::= REFERENCES nm(T) idxlist_opt(TA) refargs(R). 305 {sqlite3CreateForeignKey(pParse,0,&T,TA,R);} 306 ccons ::= defer_subclause(D). {sqlite3DeferForeignKey(pParse,D);} 307 ccons ::= COLLATE ids(C). {sqlite3AddCollateType(pParse, &C);} 308 309 // The optional AUTOINCREMENT keyword 310 %type autoinc {int} 311 autoinc(X) ::= . {X = 0;} 312 autoinc(X) ::= AUTOINCR. {X = 1;} 313 314 // The next group of rules parses the arguments to a REFERENCES clause 315 // that determine if the referential integrity checking is deferred or 316 // or immediate and which determine what action to take if a ref-integ 317 // check fails. 318 // 319 %type refargs {int} 320 refargs(A) ::= . { A = OE_None*0x0101; /* EV: R-19803-45884 */} 321 refargs(A) ::= refargs(X) refarg(Y). { A = (X & ~Y.mask) | Y.value; } 322 %type refarg {struct {int value; int mask;}} 323 refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; } 324 refarg(A) ::= ON INSERT refact. { A.value = 0; A.mask = 0x000000; } 325 refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; } 326 refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; } 327 %type refact {int} 328 refact(A) ::= SET NULL. { A = OE_SetNull; /* EV: R-33326-45252 */} 329 refact(A) ::= SET DEFAULT. { A = OE_SetDflt; /* EV: R-33326-45252 */} 330 refact(A) ::= CASCADE. { A = OE_Cascade; /* EV: R-33326-45252 */} 331 refact(A) ::= RESTRICT. { A = OE_Restrict; /* EV: R-33326-45252 */} 332 refact(A) ::= NO ACTION. { A = OE_None; /* EV: R-33326-45252 */} 333 %type defer_subclause {int} 334 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt. {A = 0;} 335 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;} 336 %type init_deferred_pred_opt {int} 337 init_deferred_pred_opt(A) ::= . {A = 0;} 338 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;} 339 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;} 340 341 conslist_opt(A) ::= . {A.n = 0; A.z = 0;} 342 conslist_opt(A) ::= COMMA(X) conslist. {A = X;} 343 conslist ::= conslist tconscomma tcons. 344 conslist ::= tcons. 345 tconscomma ::= COMMA. {pParse->constraintName.n = 0;} 346 tconscomma ::= . 347 tcons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} 348 tcons ::= PRIMARY KEY LP idxlist(X) autoinc(I) RP onconf(R). 349 {sqlite3AddPrimaryKey(pParse,X,R,I,0);} 350 tcons ::= UNIQUE LP idxlist(X) RP onconf(R). 351 {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0);} 352 tcons ::= CHECK LP expr(E) RP onconf. 353 {sqlite3AddCheckConstraint(pParse,E.pExpr);} 354 tcons ::= FOREIGN KEY LP idxlist(FA) RP 355 REFERENCES nm(T) idxlist_opt(TA) refargs(R) defer_subclause_opt(D). { 356 sqlite3CreateForeignKey(pParse, FA, &T, TA, R); 357 sqlite3DeferForeignKey(pParse, D); 358 } 359 %type defer_subclause_opt {int} 360 defer_subclause_opt(A) ::= . {A = 0;} 361 defer_subclause_opt(A) ::= defer_subclause(X). {A = X;} 362 363 // The following is a non-standard extension that allows us to declare the 364 // default behavior when there is a constraint conflict. 365 // 366 %type onconf {int} 367 %type orconf {u8} 368 %type resolvetype {int} 369 onconf(A) ::= . {A = OE_Default;} 370 onconf(A) ::= ON CONFLICT resolvetype(X). {A = X;} 371 orconf(A) ::= . {A = OE_Default;} 372 orconf(A) ::= OR resolvetype(X). {A = (u8)X;} 373 resolvetype(A) ::= raisetype(X). {A = X;} 374 resolvetype(A) ::= IGNORE. {A = OE_Ignore;} 375 resolvetype(A) ::= REPLACE. {A = OE_Replace;} 376 377 ////////////////////////// The DROP TABLE ///////////////////////////////////// 378 // 379 cmd ::= DROP TABLE ifexists(E) fullname(X). { 380 sqlite3DropTable(pParse, X, 0, E); 381 } 382 %type ifexists {int} 383 ifexists(A) ::= IF EXISTS. {A = 1;} 384 ifexists(A) ::= . {A = 0;} 385 386 ///////////////////// The CREATE VIEW statement ///////////////////////////// 387 // 388 %ifndef SQLITE_OMIT_VIEW 389 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) AS select(S). { 390 sqlite3CreateView(pParse, &X, &Y, &Z, S, T, E); 391 } 392 cmd ::= DROP VIEW ifexists(E) fullname(X). { 393 sqlite3DropTable(pParse, X, 1, E); 394 } 395 %endif SQLITE_OMIT_VIEW 396 397 //////////////////////// The SELECT statement ///////////////////////////////// 398 // 399 cmd ::= select(X). { 400 SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0}; 401 sqlite3Select(pParse, X, &dest); 402 sqlite3SelectDelete(pParse->db, X); 403 } 404 405 %type select {Select*} 406 %destructor select {sqlite3SelectDelete(pParse->db, $$);} 407 %type selectnowith {Select*} 408 %destructor selectnowith {sqlite3SelectDelete(pParse->db, $$);} 409 %type oneselect {Select*} 410 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);} 411 412 select(A) ::= with(W) selectnowith(X). { 413 Select *p = X, *pNext, *pLoop; 414 if( p ){ 415 int cnt = 0, mxSelect; 416 p->pWith = W; 417 if( p->pPrior ){ 418 u16 allValues = SF_Values; 419 pNext = 0; 420 for(pLoop=p; pLoop; pNext=pLoop, pLoop=pLoop->pPrior, cnt++){ 421 pLoop->pNext = pNext; 422 pLoop->selFlags |= SF_Compound; 423 allValues &= pLoop->selFlags; 424 } 425 if( allValues ){ 426 p->selFlags |= SF_AllValues; 427 }else if( 428 (mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT])>0 429 && cnt>mxSelect 430 ){ 431 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 432 } 433 } 434 }else{ 435 sqlite3WithDelete(pParse->db, W); 436 } 437 A = p; 438 } 439 440 selectnowith(A) ::= oneselect(X). {A = X;} 441 %ifndef SQLITE_OMIT_COMPOUND_SELECT 442 selectnowith(A) ::= selectnowith(X) multiselect_op(Y) oneselect(Z). { 443 Select *pRhs = Z; 444 if( pRhs && pRhs->pPrior ){ 445 SrcList *pFrom; 446 Token x; 447 x.n = 0; 448 pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0); 449 pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0,0); 450 } 451 if( pRhs ){ 452 pRhs->op = (u8)Y; 453 pRhs->pPrior = X; 454 if( Y!=TK_ALL ) pParse->hasCompound = 1; 455 }else{ 456 sqlite3SelectDelete(pParse->db, X); 457 } 458 A = pRhs; 459 } 460 %type multiselect_op {int} 461 multiselect_op(A) ::= UNION(OP). {A = @OP;} 462 multiselect_op(A) ::= UNION ALL. {A = TK_ALL;} 463 multiselect_op(A) ::= EXCEPT|INTERSECT(OP). {A = @OP;} 464 %endif SQLITE_OMIT_COMPOUND_SELECT 465 oneselect(A) ::= SELECT(S) distinct(D) selcollist(W) from(X) where_opt(Y) 466 groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). { 467 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L.pLimit,L.pOffset); 468 #if SELECTTRACE_ENABLED 469 /* Populate the Select.zSelName[] string that is used to help with 470 ** query planner debugging, to differentiate between multiple Select 471 ** objects in a complex query. 472 ** 473 ** If the SELECT keyword is immediately followed by a C-style comment 474 ** then extract the first few alphanumeric characters from within that 475 ** comment to be the zSelName value. Otherwise, the label is #N where 476 ** is an integer that is incremented with each SELECT statement seen. 477 */ 478 if( A!=0 ){ 479 const char *z = S.z+6; 480 int i; 481 sqlite3_snprintf(sizeof(A->zSelName), A->zSelName, "#%d", 482 ++pParse->nSelect); 483 while( z[0]==' ' ) z++; 484 if( z[0]=='/' && z[1]=='*' ){ 485 z += 2; 486 while( z[0]==' ' ) z++; 487 for(i=0; sqlite3Isalnum(z[i]); i++){} 488 sqlite3_snprintf(sizeof(A->zSelName), A->zSelName, "%.*s", i, z); 489 } 490 } 491 #endif /* SELECTRACE_ENABLED */ 492 } 493 oneselect(A) ::= values(X). {A = X;} 494 495 %type values {Select*} 496 %destructor values {sqlite3SelectDelete(pParse->db, $$);} 497 values(A) ::= VALUES LP nexprlist(X) RP. { 498 A = sqlite3SelectNew(pParse,X,0,0,0,0,0,SF_Values,0,0); 499 } 500 values(A) ::= values(X) COMMA LP exprlist(Y) RP. { 501 Select *pRight = sqlite3SelectNew(pParse,Y,0,0,0,0,0,SF_Values,0,0); 502 if( pRight ){ 503 pRight->op = TK_ALL; 504 pRight->pPrior = X; 505 A = pRight; 506 }else{ 507 A = X; 508 } 509 } 510 511 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is 512 // present and false (0) if it is not. 513 // 514 %type distinct {u16} 515 distinct(A) ::= DISTINCT. {A = SF_Distinct;} 516 distinct(A) ::= ALL. {A = 0;} 517 distinct(A) ::= . {A = 0;} 518 519 // selcollist is a list of expressions that are to become the return 520 // values of the SELECT statement. The "*" in statements like 521 // "SELECT * FROM ..." is encoded as a special expression with an 522 // opcode of TK_ALL. 523 // 524 %type selcollist {ExprList*} 525 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);} 526 %type sclp {ExprList*} 527 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);} 528 sclp(A) ::= selcollist(X) COMMA. {A = X;} 529 sclp(A) ::= . {A = 0;} 530 selcollist(A) ::= sclp(P) expr(X) as(Y). { 531 A = sqlite3ExprListAppend(pParse, P, X.pExpr); 532 if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1); 533 sqlite3ExprListSetSpan(pParse,A,&X); 534 } 535 selcollist(A) ::= sclp(P) STAR. { 536 Expr *p = sqlite3Expr(pParse->db, TK_ALL, 0); 537 A = sqlite3ExprListAppend(pParse, P, p); 538 } 539 selcollist(A) ::= sclp(P) nm(X) DOT STAR(Y). { 540 Expr *pRight = sqlite3PExpr(pParse, TK_ALL, 0, 0, &Y); 541 Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); 542 Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 543 A = sqlite3ExprListAppend(pParse,P, pDot); 544 } 545 546 // An option "AS <id>" phrase that can follow one of the expressions that 547 // define the result set, or one of the tables in the FROM clause. 548 // 549 %type as {Token} 550 as(X) ::= AS nm(Y). {X = Y;} 551 as(X) ::= ids(Y). {X = Y;} 552 as(X) ::= . {X.n = 0;} 553 554 555 %type seltablist {SrcList*} 556 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);} 557 %type stl_prefix {SrcList*} 558 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);} 559 %type from {SrcList*} 560 %destructor from {sqlite3SrcListDelete(pParse->db, $$);} 561 562 // A complete FROM clause. 563 // 564 from(A) ::= . {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));} 565 from(A) ::= FROM seltablist(X). { 566 A = X; 567 sqlite3SrcListShiftJoinType(A); 568 } 569 570 // "seltablist" is a "Select Table List" - the content of the FROM clause 571 // in a SELECT statement. "stl_prefix" is a prefix of this list. 572 // 573 stl_prefix(A) ::= seltablist(X) joinop(Y). { 574 A = X; 575 if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].jointype = (u8)Y; 576 } 577 stl_prefix(A) ::= . {A = 0;} 578 seltablist(A) ::= stl_prefix(X) nm(Y) dbnm(D) as(Z) indexed_opt(I) 579 on_opt(N) using_opt(U). { 580 A = sqlite3SrcListAppendFromTerm(pParse,X,&Y,&D,&Z,0,N,U); 581 sqlite3SrcListIndexedBy(pParse, A, &I); 582 } 583 %ifndef SQLITE_OMIT_SUBQUERY 584 seltablist(A) ::= stl_prefix(X) LP select(S) RP 585 as(Z) on_opt(N) using_opt(U). { 586 A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,S,N,U); 587 } 588 seltablist(A) ::= stl_prefix(X) LP seltablist(F) RP 589 as(Z) on_opt(N) using_opt(U). { 590 if( X==0 && Z.n==0 && N==0 && U==0 ){ 591 A = F; 592 }else if( F->nSrc==1 ){ 593 A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,0,N,U); 594 if( A ){ 595 struct SrcList_item *pNew = &A->a[A->nSrc-1]; 596 struct SrcList_item *pOld = F->a; 597 pNew->zName = pOld->zName; 598 pNew->zDatabase = pOld->zDatabase; 599 pNew->pSelect = pOld->pSelect; 600 pOld->zName = pOld->zDatabase = 0; 601 pOld->pSelect = 0; 602 } 603 sqlite3SrcListDelete(pParse->db, F); 604 }else{ 605 Select *pSubquery; 606 sqlite3SrcListShiftJoinType(F); 607 pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,SF_NestedFrom,0,0); 608 A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,pSubquery,N,U); 609 } 610 } 611 %endif SQLITE_OMIT_SUBQUERY 612 613 %type dbnm {Token} 614 dbnm(A) ::= . {A.z=0; A.n=0;} 615 dbnm(A) ::= DOT nm(X). {A = X;} 616 617 %type fullname {SrcList*} 618 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);} 619 fullname(A) ::= nm(X) dbnm(Y). {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y);} 620 621 %type joinop {int} 622 %type joinop2 {int} 623 joinop(X) ::= COMMA|JOIN. { X = JT_INNER; } 624 joinop(X) ::= JOIN_KW(A) JOIN. { X = sqlite3JoinType(pParse,&A,0,0); } 625 joinop(X) ::= JOIN_KW(A) nm(B) JOIN. { X = sqlite3JoinType(pParse,&A,&B,0); } 626 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN. 627 { X = sqlite3JoinType(pParse,&A,&B,&C); } 628 629 %type on_opt {Expr*} 630 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);} 631 on_opt(N) ::= ON expr(E). {N = E.pExpr;} 632 on_opt(N) ::= . {N = 0;} 633 634 // Note that this block abuses the Token type just a little. If there is 635 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If 636 // there is an INDEXED BY clause, then the token is populated as per normal, 637 // with z pointing to the token data and n containing the number of bytes 638 // in the token. 639 // 640 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is 641 // normally illegal. The sqlite3SrcListIndexedBy() function 642 // recognizes and interprets this as a special case. 643 // 644 %type indexed_opt {Token} 645 indexed_opt(A) ::= . {A.z=0; A.n=0;} 646 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;} 647 indexed_opt(A) ::= NOT INDEXED. {A.z=0; A.n=1;} 648 649 %type using_opt {IdList*} 650 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);} 651 using_opt(U) ::= USING LP idlist(L) RP. {U = L;} 652 using_opt(U) ::= . {U = 0;} 653 654 655 %type orderby_opt {ExprList*} 656 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);} 657 %type sortlist {ExprList*} 658 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);} 659 660 orderby_opt(A) ::= . {A = 0;} 661 orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;} 662 sortlist(A) ::= sortlist(X) COMMA expr(Y) sortorder(Z). { 663 A = sqlite3ExprListAppend(pParse,X,Y.pExpr); 664 if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; 665 } 666 sortlist(A) ::= expr(Y) sortorder(Z). { 667 A = sqlite3ExprListAppend(pParse,0,Y.pExpr); 668 if( A && ALWAYS(A->a) ) A->a[0].sortOrder = (u8)Z; 669 } 670 671 %type sortorder {int} 672 673 sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;} 674 sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;} 675 sortorder(A) ::= . {A = SQLITE_SO_ASC;} 676 677 %type groupby_opt {ExprList*} 678 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);} 679 groupby_opt(A) ::= . {A = 0;} 680 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;} 681 682 %type having_opt {Expr*} 683 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);} 684 having_opt(A) ::= . {A = 0;} 685 having_opt(A) ::= HAVING expr(X). {A = X.pExpr;} 686 687 %type limit_opt {struct LimitVal} 688 689 // The destructor for limit_opt will never fire in the current grammar. 690 // The limit_opt non-terminal only occurs at the end of a single production 691 // rule for SELECT statements. As soon as the rule that create the 692 // limit_opt non-terminal reduces, the SELECT statement rule will also 693 // reduce. So there is never a limit_opt non-terminal on the stack 694 // except as a transient. So there is never anything to destroy. 695 // 696 //%destructor limit_opt { 697 // sqlite3ExprDelete(pParse->db, $$.pLimit); 698 // sqlite3ExprDelete(pParse->db, $$.pOffset); 699 //} 700 limit_opt(A) ::= . {A.pLimit = 0; A.pOffset = 0;} 701 limit_opt(A) ::= LIMIT expr(X). {A.pLimit = X.pExpr; A.pOffset = 0;} 702 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y). 703 {A.pLimit = X.pExpr; A.pOffset = Y.pExpr;} 704 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y). 705 {A.pOffset = X.pExpr; A.pLimit = Y.pExpr;} 706 707 /////////////////////////// The DELETE statement ///////////////////////////// 708 // 709 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 710 cmd ::= with(C) DELETE FROM fullname(X) indexed_opt(I) where_opt(W) 711 orderby_opt(O) limit_opt(L). { 712 sqlite3WithPush(pParse, C, 1); 713 sqlite3SrcListIndexedBy(pParse, X, &I); 714 W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "DELETE"); 715 sqlite3DeleteFrom(pParse,X,W); 716 } 717 %endif 718 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 719 cmd ::= with(C) DELETE FROM fullname(X) indexed_opt(I) where_opt(W). { 720 sqlite3WithPush(pParse, C, 1); 721 sqlite3SrcListIndexedBy(pParse, X, &I); 722 sqlite3DeleteFrom(pParse,X,W); 723 } 724 %endif 725 726 %type where_opt {Expr*} 727 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);} 728 729 where_opt(A) ::= . {A = 0;} 730 where_opt(A) ::= WHERE expr(X). {A = X.pExpr;} 731 732 ////////////////////////// The UPDATE command //////////////////////////////// 733 // 734 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 735 cmd ::= with(C) UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) 736 where_opt(W) orderby_opt(O) limit_opt(L). { 737 sqlite3WithPush(pParse, C, 1); 738 sqlite3SrcListIndexedBy(pParse, X, &I); 739 sqlite3ExprListCheckLength(pParse,Y,"set list"); 740 W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "UPDATE"); 741 sqlite3Update(pParse,X,Y,W,R); 742 } 743 %endif 744 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 745 cmd ::= with(C) UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) 746 where_opt(W). { 747 sqlite3WithPush(pParse, C, 1); 748 sqlite3SrcListIndexedBy(pParse, X, &I); 749 sqlite3ExprListCheckLength(pParse,Y,"set list"); 750 sqlite3Update(pParse,X,Y,W,R); 751 } 752 %endif 753 754 %type setlist {ExprList*} 755 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);} 756 757 setlist(A) ::= setlist(Z) COMMA nm(X) EQ expr(Y). { 758 A = sqlite3ExprListAppend(pParse, Z, Y.pExpr); 759 sqlite3ExprListSetName(pParse, A, &X, 1); 760 } 761 setlist(A) ::= nm(X) EQ expr(Y). { 762 A = sqlite3ExprListAppend(pParse, 0, Y.pExpr); 763 sqlite3ExprListSetName(pParse, A, &X, 1); 764 } 765 766 ////////////////////////// The INSERT command ///////////////////////////////// 767 // 768 cmd ::= with(W) insert_cmd(R) INTO fullname(X) inscollist_opt(F) select(S). { 769 sqlite3WithPush(pParse, W, 1); 770 sqlite3Insert(pParse, X, S, F, R); 771 } 772 cmd ::= with(W) insert_cmd(R) INTO fullname(X) inscollist_opt(F) DEFAULT VALUES. 773 { 774 sqlite3WithPush(pParse, W, 1); 775 sqlite3Insert(pParse, X, 0, F, R); 776 } 777 778 %type insert_cmd {u8} 779 insert_cmd(A) ::= INSERT orconf(R). {A = R;} 780 insert_cmd(A) ::= REPLACE. {A = OE_Replace;} 781 782 %type inscollist_opt {IdList*} 783 %destructor inscollist_opt {sqlite3IdListDelete(pParse->db, $$);} 784 %type idlist {IdList*} 785 %destructor idlist {sqlite3IdListDelete(pParse->db, $$);} 786 787 inscollist_opt(A) ::= . {A = 0;} 788 inscollist_opt(A) ::= LP idlist(X) RP. {A = X;} 789 idlist(A) ::= idlist(X) COMMA nm(Y). 790 {A = sqlite3IdListAppend(pParse->db,X,&Y);} 791 idlist(A) ::= nm(Y). 792 {A = sqlite3IdListAppend(pParse->db,0,&Y);} 793 794 /////////////////////////// Expression Processing ///////////////////////////// 795 // 796 797 %type expr {ExprSpan} 798 %destructor expr {sqlite3ExprDelete(pParse->db, $$.pExpr);} 799 %type term {ExprSpan} 800 %destructor term {sqlite3ExprDelete(pParse->db, $$.pExpr);} 801 802 %include { 803 /* This is a utility routine used to set the ExprSpan.zStart and 804 ** ExprSpan.zEnd values of pOut so that the span covers the complete 805 ** range of text beginning with pStart and going to the end of pEnd. 806 */ 807 static void spanSet(ExprSpan *pOut, Token *pStart, Token *pEnd){ 808 pOut->zStart = pStart->z; 809 pOut->zEnd = &pEnd->z[pEnd->n]; 810 } 811 812 /* Construct a new Expr object from a single identifier. Use the 813 ** new Expr to populate pOut. Set the span of pOut to be the identifier 814 ** that created the expression. 815 */ 816 static void spanExpr(ExprSpan *pOut, Parse *pParse, int op, Token *pValue){ 817 pOut->pExpr = sqlite3PExpr(pParse, op, 0, 0, pValue); 818 pOut->zStart = pValue->z; 819 pOut->zEnd = &pValue->z[pValue->n]; 820 } 821 } 822 823 expr(A) ::= term(X). {A = X;} 824 expr(A) ::= LP(B) expr(X) RP(E). {A.pExpr = X.pExpr; spanSet(&A,&B,&E);} 825 term(A) ::= NULL(X). {spanExpr(&A, pParse, @X, &X);} 826 expr(A) ::= id(X). {spanExpr(&A, pParse, TK_ID, &X);} 827 expr(A) ::= JOIN_KW(X). {spanExpr(&A, pParse, TK_ID, &X);} 828 expr(A) ::= nm(X) DOT nm(Y). { 829 Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); 830 Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y); 831 A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0); 832 spanSet(&A,&X,&Y); 833 } 834 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). { 835 Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); 836 Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y); 837 Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Z); 838 Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0); 839 A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0); 840 spanSet(&A,&X,&Z); 841 } 842 term(A) ::= INTEGER|FLOAT|BLOB(X). {spanExpr(&A, pParse, @X, &X);} 843 term(A) ::= STRING(X). {spanExpr(&A, pParse, @X, &X);} 844 expr(A) ::= VARIABLE(X). { 845 if( X.n>=2 && X.z[0]=='#' && sqlite3Isdigit(X.z[1]) ){ 846 /* When doing a nested parse, one can include terms in an expression 847 ** that look like this: #1 #2 ... These terms refer to registers 848 ** in the virtual machine. #N is the N-th register. */ 849 if( pParse->nested==0 ){ 850 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &X); 851 A.pExpr = 0; 852 }else{ 853 A.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, &X); 854 if( A.pExpr ) sqlite3GetInt32(&X.z[1], &A.pExpr->iTable); 855 } 856 }else{ 857 spanExpr(&A, pParse, TK_VARIABLE, &X); 858 sqlite3ExprAssignVarNumber(pParse, A.pExpr); 859 } 860 spanSet(&A, &X, &X); 861 } 862 expr(A) ::= expr(E) COLLATE ids(C). { 863 A.pExpr = sqlite3ExprAddCollateToken(pParse, E.pExpr, &C); 864 A.zStart = E.zStart; 865 A.zEnd = &C.z[C.n]; 866 } 867 %ifndef SQLITE_OMIT_CAST 868 expr(A) ::= CAST(X) LP expr(E) AS typetoken(T) RP(Y). { 869 A.pExpr = sqlite3PExpr(pParse, TK_CAST, E.pExpr, 0, &T); 870 spanSet(&A,&X,&Y); 871 } 872 %endif SQLITE_OMIT_CAST 873 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP(E). { 874 if( Y && Y->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 875 sqlite3ErrorMsg(pParse, "too many arguments on function %T", &X); 876 } 877 A.pExpr = sqlite3ExprFunction(pParse, Y, &X); 878 spanSet(&A,&X,&E); 879 if( D && A.pExpr ){ 880 A.pExpr->flags |= EP_Distinct; 881 } 882 } 883 expr(A) ::= id(X) LP STAR RP(E). { 884 A.pExpr = sqlite3ExprFunction(pParse, 0, &X); 885 spanSet(&A,&X,&E); 886 } 887 term(A) ::= CTIME_KW(OP). { 888 A.pExpr = sqlite3ExprFunction(pParse, 0, &OP); 889 spanSet(&A, &OP, &OP); 890 } 891 892 %include { 893 /* This routine constructs a binary expression node out of two ExprSpan 894 ** objects and uses the result to populate a new ExprSpan object. 895 */ 896 static void spanBinaryExpr( 897 ExprSpan *pOut, /* Write the result here */ 898 Parse *pParse, /* The parsing context. Errors accumulate here */ 899 int op, /* The binary operation */ 900 ExprSpan *pLeft, /* The left operand */ 901 ExprSpan *pRight /* The right operand */ 902 ){ 903 pOut->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr, 0); 904 pOut->zStart = pLeft->zStart; 905 pOut->zEnd = pRight->zEnd; 906 } 907 } 908 909 expr(A) ::= expr(X) AND(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 910 expr(A) ::= expr(X) OR(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 911 expr(A) ::= expr(X) LT|GT|GE|LE(OP) expr(Y). 912 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 913 expr(A) ::= expr(X) EQ|NE(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 914 expr(A) ::= expr(X) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y). 915 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 916 expr(A) ::= expr(X) PLUS|MINUS(OP) expr(Y). 917 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 918 expr(A) ::= expr(X) STAR|SLASH|REM(OP) expr(Y). 919 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 920 expr(A) ::= expr(X) CONCAT(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 921 %type likeop {struct LikeOp} 922 likeop(A) ::= LIKE_KW|MATCH(X). {A.eOperator = X; A.bNot = 0;} 923 likeop(A) ::= NOT LIKE_KW|MATCH(X). {A.eOperator = X; A.bNot = 1;} 924 expr(A) ::= expr(X) likeop(OP) expr(Y). [LIKE_KW] { 925 ExprList *pList; 926 pList = sqlite3ExprListAppend(pParse,0, Y.pExpr); 927 pList = sqlite3ExprListAppend(pParse,pList, X.pExpr); 928 A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator); 929 if( OP.bNot ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 930 A.zStart = X.zStart; 931 A.zEnd = Y.zEnd; 932 if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc; 933 } 934 expr(A) ::= expr(X) likeop(OP) expr(Y) ESCAPE expr(E). [LIKE_KW] { 935 ExprList *pList; 936 pList = sqlite3ExprListAppend(pParse,0, Y.pExpr); 937 pList = sqlite3ExprListAppend(pParse,pList, X.pExpr); 938 pList = sqlite3ExprListAppend(pParse,pList, E.pExpr); 939 A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator); 940 if( OP.bNot ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 941 A.zStart = X.zStart; 942 A.zEnd = E.zEnd; 943 if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc; 944 } 945 946 %include { 947 /* Construct an expression node for a unary postfix operator 948 */ 949 static void spanUnaryPostfix( 950 ExprSpan *pOut, /* Write the new expression node here */ 951 Parse *pParse, /* Parsing context to record errors */ 952 int op, /* The operator */ 953 ExprSpan *pOperand, /* The operand */ 954 Token *pPostOp /* The operand token for setting the span */ 955 ){ 956 pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0); 957 pOut->zStart = pOperand->zStart; 958 pOut->zEnd = &pPostOp->z[pPostOp->n]; 959 } 960 } 961 962 expr(A) ::= expr(X) ISNULL|NOTNULL(E). {spanUnaryPostfix(&A,pParse,@E,&X,&E);} 963 expr(A) ::= expr(X) NOT NULL(E). {spanUnaryPostfix(&A,pParse,TK_NOTNULL,&X,&E);} 964 965 %include { 966 /* A routine to convert a binary TK_IS or TK_ISNOT expression into a 967 ** unary TK_ISNULL or TK_NOTNULL expression. */ 968 static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){ 969 sqlite3 *db = pParse->db; 970 if( pY && pA && pY->op==TK_NULL ){ 971 pA->op = (u8)op; 972 sqlite3ExprDelete(db, pA->pRight); 973 pA->pRight = 0; 974 } 975 } 976 } 977 978 // expr1 IS expr2 979 // expr1 IS NOT expr2 980 // 981 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL. If expr2 982 // is any other expression, code as TK_IS or TK_ISNOT. 983 // 984 expr(A) ::= expr(X) IS expr(Y). { 985 spanBinaryExpr(&A,pParse,TK_IS,&X,&Y); 986 binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_ISNULL); 987 } 988 expr(A) ::= expr(X) IS NOT expr(Y). { 989 spanBinaryExpr(&A,pParse,TK_ISNOT,&X,&Y); 990 binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_NOTNULL); 991 } 992 993 %include { 994 /* Construct an expression node for a unary prefix operator 995 */ 996 static void spanUnaryPrefix( 997 ExprSpan *pOut, /* Write the new expression node here */ 998 Parse *pParse, /* Parsing context to record errors */ 999 int op, /* The operator */ 1000 ExprSpan *pOperand, /* The operand */ 1001 Token *pPreOp /* The operand token for setting the span */ 1002 ){ 1003 pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0); 1004 pOut->zStart = pPreOp->z; 1005 pOut->zEnd = pOperand->zEnd; 1006 } 1007 } 1008 1009 1010 1011 expr(A) ::= NOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);} 1012 expr(A) ::= BITNOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);} 1013 expr(A) ::= MINUS(B) expr(X). [BITNOT] 1014 {spanUnaryPrefix(&A,pParse,TK_UMINUS,&X,&B);} 1015 expr(A) ::= PLUS(B) expr(X). [BITNOT] 1016 {spanUnaryPrefix(&A,pParse,TK_UPLUS,&X,&B);} 1017 1018 %type between_op {int} 1019 between_op(A) ::= BETWEEN. {A = 0;} 1020 between_op(A) ::= NOT BETWEEN. {A = 1;} 1021 expr(A) ::= expr(W) between_op(N) expr(X) AND expr(Y). [BETWEEN] { 1022 ExprList *pList = sqlite3ExprListAppend(pParse,0, X.pExpr); 1023 pList = sqlite3ExprListAppend(pParse,pList, Y.pExpr); 1024 A.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, W.pExpr, 0, 0); 1025 if( A.pExpr ){ 1026 A.pExpr->x.pList = pList; 1027 }else{ 1028 sqlite3ExprListDelete(pParse->db, pList); 1029 } 1030 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 1031 A.zStart = W.zStart; 1032 A.zEnd = Y.zEnd; 1033 } 1034 %ifndef SQLITE_OMIT_SUBQUERY 1035 %type in_op {int} 1036 in_op(A) ::= IN. {A = 0;} 1037 in_op(A) ::= NOT IN. {A = 1;} 1038 expr(A) ::= expr(X) in_op(N) LP exprlist(Y) RP(E). [IN] { 1039 if( Y==0 ){ 1040 /* Expressions of the form 1041 ** 1042 ** expr1 IN () 1043 ** expr1 NOT IN () 1044 ** 1045 ** simplify to constants 0 (false) and 1 (true), respectively, 1046 ** regardless of the value of expr1. 1047 */ 1048 A.pExpr = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &sqlite3IntTokens[N]); 1049 sqlite3ExprDelete(pParse->db, X.pExpr); 1050 }else if( Y->nExpr==1 ){ 1051 /* Expressions of the form: 1052 ** 1053 ** expr1 IN (?1) 1054 ** expr1 NOT IN (?2) 1055 ** 1056 ** with exactly one value on the RHS can be simplified to something 1057 ** like this: 1058 ** 1059 ** expr1 == ?1 1060 ** expr1 <> ?2 1061 ** 1062 ** But, the RHS of the == or <> is marked with the EP_Generic flag 1063 ** so that it may not contribute to the computation of comparison 1064 ** affinity or the collating sequence to use for comparison. Otherwise, 1065 ** the semantics would be subtly different from IN or NOT IN. 1066 */ 1067 Expr *pRHS = Y->a[0].pExpr; 1068 Y->a[0].pExpr = 0; 1069 sqlite3ExprListDelete(pParse->db, Y); 1070 /* pRHS cannot be NULL because a malloc error would have been detected 1071 ** before now and control would have never reached this point */ 1072 if( ALWAYS(pRHS) ){ 1073 pRHS->flags &= ~EP_Collate; 1074 pRHS->flags |= EP_Generic; 1075 } 1076 A.pExpr = sqlite3PExpr(pParse, N ? TK_NE : TK_EQ, X.pExpr, pRHS, 0); 1077 }else{ 1078 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); 1079 if( A.pExpr ){ 1080 A.pExpr->x.pList = Y; 1081 sqlite3ExprSetHeightAndFlags(pParse, A.pExpr); 1082 }else{ 1083 sqlite3ExprListDelete(pParse->db, Y); 1084 } 1085 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 1086 } 1087 A.zStart = X.zStart; 1088 A.zEnd = &E.z[E.n]; 1089 } 1090 expr(A) ::= LP(B) select(X) RP(E). { 1091 A.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0); 1092 if( A.pExpr ){ 1093 A.pExpr->x.pSelect = X; 1094 ExprSetProperty(A.pExpr, EP_xIsSelect|EP_Subquery); 1095 sqlite3ExprSetHeightAndFlags(pParse, A.pExpr); 1096 }else{ 1097 sqlite3SelectDelete(pParse->db, X); 1098 } 1099 A.zStart = B.z; 1100 A.zEnd = &E.z[E.n]; 1101 } 1102 expr(A) ::= expr(X) in_op(N) LP select(Y) RP(E). [IN] { 1103 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); 1104 if( A.pExpr ){ 1105 A.pExpr->x.pSelect = Y; 1106 ExprSetProperty(A.pExpr, EP_xIsSelect|EP_Subquery); 1107 sqlite3ExprSetHeightAndFlags(pParse, A.pExpr); 1108 }else{ 1109 sqlite3SelectDelete(pParse->db, Y); 1110 } 1111 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 1112 A.zStart = X.zStart; 1113 A.zEnd = &E.z[E.n]; 1114 } 1115 expr(A) ::= expr(X) in_op(N) nm(Y) dbnm(Z). [IN] { 1116 SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z); 1117 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); 1118 if( A.pExpr ){ 1119 A.pExpr->x.pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0); 1120 ExprSetProperty(A.pExpr, EP_xIsSelect|EP_Subquery); 1121 sqlite3ExprSetHeightAndFlags(pParse, A.pExpr); 1122 }else{ 1123 sqlite3SrcListDelete(pParse->db, pSrc); 1124 } 1125 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 1126 A.zStart = X.zStart; 1127 A.zEnd = Z.z ? &Z.z[Z.n] : &Y.z[Y.n]; 1128 } 1129 expr(A) ::= EXISTS(B) LP select(Y) RP(E). { 1130 Expr *p = A.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0); 1131 if( p ){ 1132 p->x.pSelect = Y; 1133 ExprSetProperty(p, EP_xIsSelect|EP_Subquery); 1134 sqlite3ExprSetHeightAndFlags(pParse, p); 1135 }else{ 1136 sqlite3SelectDelete(pParse->db, Y); 1137 } 1138 A.zStart = B.z; 1139 A.zEnd = &E.z[E.n]; 1140 } 1141 %endif SQLITE_OMIT_SUBQUERY 1142 1143 /* CASE expressions */ 1144 expr(A) ::= CASE(C) case_operand(X) case_exprlist(Y) case_else(Z) END(E). { 1145 A.pExpr = sqlite3PExpr(pParse, TK_CASE, X, 0, 0); 1146 if( A.pExpr ){ 1147 A.pExpr->x.pList = Z ? sqlite3ExprListAppend(pParse,Y,Z) : Y; 1148 sqlite3ExprSetHeightAndFlags(pParse, A.pExpr); 1149 }else{ 1150 sqlite3ExprListDelete(pParse->db, Y); 1151 sqlite3ExprDelete(pParse->db, Z); 1152 } 1153 A.zStart = C.z; 1154 A.zEnd = &E.z[E.n]; 1155 } 1156 %type case_exprlist {ExprList*} 1157 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1158 case_exprlist(A) ::= case_exprlist(X) WHEN expr(Y) THEN expr(Z). { 1159 A = sqlite3ExprListAppend(pParse,X, Y.pExpr); 1160 A = sqlite3ExprListAppend(pParse,A, Z.pExpr); 1161 } 1162 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). { 1163 A = sqlite3ExprListAppend(pParse,0, Y.pExpr); 1164 A = sqlite3ExprListAppend(pParse,A, Z.pExpr); 1165 } 1166 %type case_else {Expr*} 1167 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);} 1168 case_else(A) ::= ELSE expr(X). {A = X.pExpr;} 1169 case_else(A) ::= . {A = 0;} 1170 %type case_operand {Expr*} 1171 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);} 1172 case_operand(A) ::= expr(X). {A = X.pExpr;} 1173 case_operand(A) ::= . {A = 0;} 1174 1175 %type exprlist {ExprList*} 1176 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1177 %type nexprlist {ExprList*} 1178 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);} 1179 1180 exprlist(A) ::= nexprlist(X). {A = X;} 1181 exprlist(A) ::= . {A = 0;} 1182 nexprlist(A) ::= nexprlist(X) COMMA expr(Y). 1183 {A = sqlite3ExprListAppend(pParse,X,Y.pExpr);} 1184 nexprlist(A) ::= expr(Y). 1185 {A = sqlite3ExprListAppend(pParse,0,Y.pExpr);} 1186 1187 1188 ///////////////////////////// The CREATE INDEX command /////////////////////// 1189 // 1190 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D) 1191 ON nm(Y) LP idxlist(Z) RP where_opt(W). { 1192 sqlite3CreateIndex(pParse, &X, &D, 1193 sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U, 1194 &S, W, SQLITE_SO_ASC, NE); 1195 } 1196 1197 %type uniqueflag {int} 1198 uniqueflag(A) ::= UNIQUE. {A = OE_Abort;} 1199 uniqueflag(A) ::= . {A = OE_None;} 1200 1201 %type idxlist {ExprList*} 1202 %destructor idxlist {sqlite3ExprListDelete(pParse->db, $$);} 1203 %type idxlist_opt {ExprList*} 1204 %destructor idxlist_opt {sqlite3ExprListDelete(pParse->db, $$);} 1205 1206 idxlist_opt(A) ::= . {A = 0;} 1207 idxlist_opt(A) ::= LP idxlist(X) RP. {A = X;} 1208 idxlist(A) ::= idxlist(X) COMMA nm(Y) collate(C) sortorder(Z). { 1209 Expr *p = sqlite3ExprAddCollateToken(pParse, 0, &C); 1210 A = sqlite3ExprListAppend(pParse,X, p); 1211 sqlite3ExprListSetName(pParse,A,&Y,1); 1212 sqlite3ExprListCheckLength(pParse, A, "index"); 1213 if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; 1214 } 1215 idxlist(A) ::= nm(Y) collate(C) sortorder(Z). { 1216 Expr *p = sqlite3ExprAddCollateToken(pParse, 0, &C); 1217 A = sqlite3ExprListAppend(pParse,0, p); 1218 sqlite3ExprListSetName(pParse, A, &Y, 1); 1219 sqlite3ExprListCheckLength(pParse, A, "index"); 1220 if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; 1221 } 1222 1223 %type collate {Token} 1224 collate(C) ::= . {C.z = 0; C.n = 0;} 1225 collate(C) ::= COLLATE ids(X). {C = X;} 1226 1227 1228 ///////////////////////////// The DROP INDEX command ///////////////////////// 1229 // 1230 cmd ::= DROP INDEX ifexists(E) fullname(X). {sqlite3DropIndex(pParse, X, E);} 1231 1232 ///////////////////////////// The VACUUM command ///////////////////////////// 1233 // 1234 %ifndef SQLITE_OMIT_VACUUM 1235 %ifndef SQLITE_OMIT_ATTACH 1236 cmd ::= VACUUM. {sqlite3Vacuum(pParse);} 1237 cmd ::= VACUUM nm. {sqlite3Vacuum(pParse);} 1238 %endif SQLITE_OMIT_ATTACH 1239 %endif SQLITE_OMIT_VACUUM 1240 1241 ///////////////////////////// The PRAGMA command ///////////////////////////// 1242 // 1243 %ifndef SQLITE_OMIT_PRAGMA 1244 cmd ::= PRAGMA nm(X) dbnm(Z). {sqlite3Pragma(pParse,&X,&Z,0,0);} 1245 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1246 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1247 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y). 1248 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1249 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP. 1250 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1251 1252 nmnum(A) ::= plus_num(X). {A = X;} 1253 nmnum(A) ::= nm(X). {A = X;} 1254 nmnum(A) ::= ON(X). {A = X;} 1255 nmnum(A) ::= DELETE(X). {A = X;} 1256 nmnum(A) ::= DEFAULT(X). {A = X;} 1257 %endif SQLITE_OMIT_PRAGMA 1258 %token_class number INTEGER|FLOAT. 1259 plus_num(A) ::= PLUS number(X). {A = X;} 1260 plus_num(A) ::= number(X). {A = X;} 1261 minus_num(A) ::= MINUS number(X). {A = X;} 1262 //////////////////////////// The CREATE TRIGGER command ///////////////////// 1263 1264 %ifndef SQLITE_OMIT_TRIGGER 1265 1266 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). { 1267 Token all; 1268 all.z = A.z; 1269 all.n = (int)(Z.z - A.z) + Z.n; 1270 sqlite3FinishTrigger(pParse, S, &all); 1271 } 1272 1273 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z) 1274 trigger_time(C) trigger_event(D) 1275 ON fullname(E) foreach_clause when_clause(G). { 1276 sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR); 1277 A = (Z.n==0?B:Z); 1278 } 1279 1280 %type trigger_time {int} 1281 trigger_time(A) ::= BEFORE. { A = TK_BEFORE; } 1282 trigger_time(A) ::= AFTER. { A = TK_AFTER; } 1283 trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;} 1284 trigger_time(A) ::= . { A = TK_BEFORE; } 1285 1286 %type trigger_event {struct TrigEvent} 1287 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);} 1288 trigger_event(A) ::= DELETE|INSERT(OP). {A.a = @OP; A.b = 0;} 1289 trigger_event(A) ::= UPDATE(OP). {A.a = @OP; A.b = 0;} 1290 trigger_event(A) ::= UPDATE OF idlist(X). {A.a = TK_UPDATE; A.b = X;} 1291 1292 foreach_clause ::= . 1293 foreach_clause ::= FOR EACH ROW. 1294 1295 %type when_clause {Expr*} 1296 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);} 1297 when_clause(A) ::= . { A = 0; } 1298 when_clause(A) ::= WHEN expr(X). { A = X.pExpr; } 1299 1300 %type trigger_cmd_list {TriggerStep*} 1301 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);} 1302 trigger_cmd_list(A) ::= trigger_cmd_list(Y) trigger_cmd(X) SEMI. { 1303 assert( Y!=0 ); 1304 Y->pLast->pNext = X; 1305 Y->pLast = X; 1306 A = Y; 1307 } 1308 trigger_cmd_list(A) ::= trigger_cmd(X) SEMI. { 1309 assert( X!=0 ); 1310 X->pLast = X; 1311 A = X; 1312 } 1313 1314 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements 1315 // within a trigger. The table to INSERT, UPDATE, or DELETE is always in 1316 // the same database as the table that the trigger fires on. 1317 // 1318 %type trnm {Token} 1319 trnm(A) ::= nm(X). {A = X;} 1320 trnm(A) ::= nm DOT nm(X). { 1321 A = X; 1322 sqlite3ErrorMsg(pParse, 1323 "qualified table names are not allowed on INSERT, UPDATE, and DELETE " 1324 "statements within triggers"); 1325 } 1326 1327 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE 1328 // statements within triggers. We make a specific error message for this 1329 // since it is an exception to the default grammar rules. 1330 // 1331 tridxby ::= . 1332 tridxby ::= INDEXED BY nm. { 1333 sqlite3ErrorMsg(pParse, 1334 "the INDEXED BY clause is not allowed on UPDATE or DELETE statements " 1335 "within triggers"); 1336 } 1337 tridxby ::= NOT INDEXED. { 1338 sqlite3ErrorMsg(pParse, 1339 "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements " 1340 "within triggers"); 1341 } 1342 1343 1344 1345 %type trigger_cmd {TriggerStep*} 1346 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);} 1347 // UPDATE 1348 trigger_cmd(A) ::= 1349 UPDATE orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z). 1350 { A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R); } 1351 1352 // INSERT 1353 trigger_cmd(A) ::= insert_cmd(R) INTO trnm(X) inscollist_opt(F) select(S). 1354 {A = sqlite3TriggerInsertStep(pParse->db, &X, F, S, R);} 1355 1356 // DELETE 1357 trigger_cmd(A) ::= DELETE FROM trnm(X) tridxby where_opt(Y). 1358 {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y);} 1359 1360 // SELECT 1361 trigger_cmd(A) ::= select(X). {A = sqlite3TriggerSelectStep(pParse->db, X); } 1362 1363 // The special RAISE expression that may occur in trigger programs 1364 expr(A) ::= RAISE(X) LP IGNORE RP(Y). { 1365 A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0); 1366 if( A.pExpr ){ 1367 A.pExpr->affinity = OE_Ignore; 1368 } 1369 A.zStart = X.z; 1370 A.zEnd = &Y.z[Y.n]; 1371 } 1372 expr(A) ::= RAISE(X) LP raisetype(T) COMMA nm(Z) RP(Y). { 1373 A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &Z); 1374 if( A.pExpr ) { 1375 A.pExpr->affinity = (char)T; 1376 } 1377 A.zStart = X.z; 1378 A.zEnd = &Y.z[Y.n]; 1379 } 1380 %endif !SQLITE_OMIT_TRIGGER 1381 1382 %type raisetype {int} 1383 raisetype(A) ::= ROLLBACK. {A = OE_Rollback;} 1384 raisetype(A) ::= ABORT. {A = OE_Abort;} 1385 raisetype(A) ::= FAIL. {A = OE_Fail;} 1386 1387 1388 //////////////////////// DROP TRIGGER statement ////////////////////////////// 1389 %ifndef SQLITE_OMIT_TRIGGER 1390 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). { 1391 sqlite3DropTrigger(pParse,X,NOERR); 1392 } 1393 %endif !SQLITE_OMIT_TRIGGER 1394 1395 //////////////////////// ATTACH DATABASE file AS name ///////////////////////// 1396 %ifndef SQLITE_OMIT_ATTACH 1397 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). { 1398 sqlite3Attach(pParse, F.pExpr, D.pExpr, K); 1399 } 1400 cmd ::= DETACH database_kw_opt expr(D). { 1401 sqlite3Detach(pParse, D.pExpr); 1402 } 1403 1404 %type key_opt {Expr*} 1405 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);} 1406 key_opt(A) ::= . { A = 0; } 1407 key_opt(A) ::= KEY expr(X). { A = X.pExpr; } 1408 1409 database_kw_opt ::= DATABASE. 1410 database_kw_opt ::= . 1411 %endif SQLITE_OMIT_ATTACH 1412 1413 ////////////////////////// REINDEX collation ////////////////////////////////// 1414 %ifndef SQLITE_OMIT_REINDEX 1415 cmd ::= REINDEX. {sqlite3Reindex(pParse, 0, 0);} 1416 cmd ::= REINDEX nm(X) dbnm(Y). {sqlite3Reindex(pParse, &X, &Y);} 1417 %endif SQLITE_OMIT_REINDEX 1418 1419 /////////////////////////////////// ANALYZE /////////////////////////////////// 1420 %ifndef SQLITE_OMIT_ANALYZE 1421 cmd ::= ANALYZE. {sqlite3Analyze(pParse, 0, 0);} 1422 cmd ::= ANALYZE nm(X) dbnm(Y). {sqlite3Analyze(pParse, &X, &Y);} 1423 %endif 1424 1425 //////////////////////// ALTER TABLE table ... //////////////////////////////// 1426 %ifndef SQLITE_OMIT_ALTERTABLE 1427 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). { 1428 sqlite3AlterRenameTable(pParse,X,&Z); 1429 } 1430 cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column(Y). { 1431 sqlite3AlterFinishAddColumn(pParse, &Y); 1432 } 1433 add_column_fullname ::= fullname(X). { 1434 pParse->db->lookaside.bEnabled = 0; 1435 sqlite3AlterBeginAddColumn(pParse, X); 1436 } 1437 kwcolumn_opt ::= . 1438 kwcolumn_opt ::= COLUMNKW. 1439 %endif SQLITE_OMIT_ALTERTABLE 1440 1441 //////////////////////// CREATE VIRTUAL TABLE ... ///////////////////////////// 1442 %ifndef SQLITE_OMIT_VIRTUALTABLE 1443 cmd ::= create_vtab. {sqlite3VtabFinishParse(pParse,0);} 1444 cmd ::= create_vtab LP vtabarglist RP(X). {sqlite3VtabFinishParse(pParse,&X);} 1445 create_vtab ::= createkw VIRTUAL TABLE ifnotexists(E) 1446 nm(X) dbnm(Y) USING nm(Z). { 1447 sqlite3VtabBeginParse(pParse, &X, &Y, &Z, E); 1448 } 1449 vtabarglist ::= vtabarg. 1450 vtabarglist ::= vtabarglist COMMA vtabarg. 1451 vtabarg ::= . {sqlite3VtabArgInit(pParse);} 1452 vtabarg ::= vtabarg vtabargtoken. 1453 vtabargtoken ::= ANY(X). {sqlite3VtabArgExtend(pParse,&X);} 1454 vtabargtoken ::= lp anylist RP(X). {sqlite3VtabArgExtend(pParse,&X);} 1455 lp ::= LP(X). {sqlite3VtabArgExtend(pParse,&X);} 1456 anylist ::= . 1457 anylist ::= anylist LP anylist RP. 1458 anylist ::= anylist ANY. 1459 %endif SQLITE_OMIT_VIRTUALTABLE 1460 1461 1462 //////////////////////// COMMON TABLE EXPRESSIONS //////////////////////////// 1463 %type with {With*} 1464 %type wqlist {With*} 1465 %destructor with {sqlite3WithDelete(pParse->db, $$);} 1466 %destructor wqlist {sqlite3WithDelete(pParse->db, $$);} 1467 1468 with(A) ::= . {A = 0;} 1469 %ifndef SQLITE_OMIT_CTE 1470 with(A) ::= WITH wqlist(W). { A = W; } 1471 with(A) ::= WITH RECURSIVE wqlist(W). { A = W; } 1472 1473 wqlist(A) ::= nm(X) idxlist_opt(Y) AS LP select(Z) RP. { 1474 A = sqlite3WithAdd(pParse, 0, &X, Y, Z); 1475 } 1476 wqlist(A) ::= wqlist(W) COMMA nm(X) idxlist_opt(Y) AS LP select(Z) RP. { 1477 A = sqlite3WithAdd(pParse, W, &X, Y, Z); 1478 } 1479 %endif SQLITE_OMIT_CTE 1480