1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains SQLite's grammar for SQL. Process this file 13 ** using the lemon parser generator to generate C code that runs 14 ** the parser. Lemon will also generate a header file containing 15 ** numeric codes for all of the tokens. 16 */ 17 18 // All token codes are small integers with #defines that begin with "TK_" 19 %token_prefix TK_ 20 21 // The type of the data attached to each token is Token. This is also the 22 // default type for non-terminals. 23 // 24 %token_type {Token} 25 %default_type {Token} 26 27 // An extra argument to the constructor for the parser, which is available 28 // to all actions. 29 %extra_context {Parse *pParse} 30 31 // This code runs whenever there is a syntax error 32 // 33 %syntax_error { 34 UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */ 35 if( TOKEN.z[0] ){ 36 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN); 37 }else{ 38 sqlite3ErrorMsg(pParse, "incomplete input"); 39 } 40 } 41 %stack_overflow { 42 sqlite3ErrorMsg(pParse, "parser stack overflow"); 43 } 44 45 // The name of the generated procedure that implements the parser 46 // is as follows: 47 %name sqlite3Parser 48 49 // The following text is included near the beginning of the C source 50 // code file that implements the parser. 51 // 52 %include { 53 #include "sqliteInt.h" 54 55 /* 56 ** Disable all error recovery processing in the parser push-down 57 ** automaton. 58 */ 59 #define YYNOERRORRECOVERY 1 60 61 /* 62 ** Make yytestcase() the same as testcase() 63 */ 64 #define yytestcase(X) testcase(X) 65 66 /* 67 ** Indicate that sqlite3ParserFree() will never be called with a null 68 ** pointer. 69 */ 70 #define YYPARSEFREENEVERNULL 1 71 72 /* 73 ** In the amalgamation, the parse.c file generated by lemon and the 74 ** tokenize.c file are concatenated. In that case, sqlite3RunParser() 75 ** has access to the the size of the yyParser object and so the parser 76 ** engine can be allocated from stack. In that case, only the 77 ** sqlite3ParserInit() and sqlite3ParserFinalize() routines are invoked 78 ** and the sqlite3ParserAlloc() and sqlite3ParserFree() routines can be 79 ** omitted. 80 */ 81 #ifdef SQLITE_AMALGAMATION 82 # define sqlite3Parser_ENGINEALWAYSONSTACK 1 83 #endif 84 85 /* 86 ** Alternative datatype for the argument to the malloc() routine passed 87 ** into sqlite3ParserAlloc(). The default is size_t. 88 */ 89 #define YYMALLOCARGTYPE u64 90 91 /* 92 ** An instance of the following structure describes the event of a 93 ** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT, 94 ** TK_DELETE, or TK_INSTEAD. If the event is of the form 95 ** 96 ** UPDATE ON (a,b,c) 97 ** 98 ** Then the "b" IdList records the list "a,b,c". 99 */ 100 struct TrigEvent { int a; IdList * b; }; 101 102 struct FrameBound { int eType; Expr *pExpr; }; 103 104 /* 105 ** Disable lookaside memory allocation for objects that might be 106 ** shared across database connections. 107 */ 108 static void disableLookaside(Parse *pParse){ 109 sqlite3 *db = pParse->db; 110 pParse->disableLookaside++; 111 DisableLookaside; 112 } 113 114 } // end %include 115 116 // Input is a single SQL command 117 input ::= cmdlist. 118 cmdlist ::= cmdlist ecmd. 119 cmdlist ::= ecmd. 120 ecmd ::= SEMI. 121 ecmd ::= cmdx SEMI. 122 %ifndef SQLITE_OMIT_EXPLAIN 123 ecmd ::= explain cmdx SEMI. {NEVER-REDUCE} 124 explain ::= EXPLAIN. { pParse->explain = 1; } 125 explain ::= EXPLAIN QUERY PLAN. { pParse->explain = 2; } 126 %endif SQLITE_OMIT_EXPLAIN 127 cmdx ::= cmd. { sqlite3FinishCoding(pParse); } 128 129 ///////////////////// Begin and end transactions. //////////////////////////// 130 // 131 132 cmd ::= BEGIN transtype(Y) trans_opt. {sqlite3BeginTransaction(pParse, Y);} 133 trans_opt ::= . 134 trans_opt ::= TRANSACTION. 135 trans_opt ::= TRANSACTION nm. 136 %type transtype {int} 137 transtype(A) ::= . {A = TK_DEFERRED;} 138 transtype(A) ::= DEFERRED(X). {A = @X; /*A-overwrites-X*/} 139 transtype(A) ::= IMMEDIATE(X). {A = @X; /*A-overwrites-X*/} 140 transtype(A) ::= EXCLUSIVE(X). {A = @X; /*A-overwrites-X*/} 141 cmd ::= COMMIT|END(X) trans_opt. {sqlite3EndTransaction(pParse,@X);} 142 cmd ::= ROLLBACK(X) trans_opt. {sqlite3EndTransaction(pParse,@X);} 143 144 savepoint_opt ::= SAVEPOINT. 145 savepoint_opt ::= . 146 cmd ::= SAVEPOINT nm(X). { 147 sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X); 148 } 149 cmd ::= RELEASE savepoint_opt nm(X). { 150 sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X); 151 } 152 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). { 153 sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X); 154 } 155 156 ///////////////////// The CREATE TABLE statement //////////////////////////// 157 // 158 cmd ::= create_table create_table_args. 159 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). { 160 sqlite3StartTable(pParse,&Y,&Z,T,0,0,E); 161 } 162 createkw(A) ::= CREATE(A). {disableLookaside(pParse);} 163 164 %type ifnotexists {int} 165 ifnotexists(A) ::= . {A = 0;} 166 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;} 167 %type temp {int} 168 %ifndef SQLITE_OMIT_TEMPDB 169 temp(A) ::= TEMP. {A = 1;} 170 %endif SQLITE_OMIT_TEMPDB 171 temp(A) ::= . {A = 0;} 172 create_table_args ::= LP columnlist conslist_opt(X) RP(E) table_options(F). { 173 sqlite3EndTable(pParse,&X,&E,F,0); 174 } 175 create_table_args ::= AS select(S). { 176 sqlite3EndTable(pParse,0,0,0,S); 177 sqlite3SelectDelete(pParse->db, S); 178 } 179 %type table_options {int} 180 table_options(A) ::= . {A = 0;} 181 table_options(A) ::= WITHOUT nm(X). { 182 if( X.n==5 && sqlite3_strnicmp(X.z,"rowid",5)==0 ){ 183 A = TF_WithoutRowid | TF_NoVisibleRowid; 184 }else{ 185 A = 0; 186 sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z); 187 } 188 } 189 columnlist ::= columnlist COMMA columnname carglist. 190 columnlist ::= columnname carglist. 191 columnname(A) ::= nm(A) typetoken(Y). {sqlite3AddColumn(pParse,&A,&Y);} 192 193 // Declare some tokens early in order to influence their values, to 194 // improve performance and reduce the executable size. The goal here is 195 // to get the "jump" operations in ISNULL through ESCAPE to have numeric 196 // values that are early enough so that all jump operations are clustered 197 // at the beginning. 198 // 199 %token ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST. 200 %token CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL. 201 %token OR AND NOT IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. 202 %token GT LE LT GE ESCAPE. 203 204 // The following directive causes tokens ABORT, AFTER, ASC, etc. to 205 // fallback to ID if they will not parse as their original value. 206 // This obviates the need for the "id" nonterminal. 207 // 208 %fallback ID 209 ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW 210 CONFLICT DATABASE DEFERRED DESC DETACH DO 211 EACH END EXCLUSIVE EXPLAIN FAIL FOR 212 IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN 213 QUERY KEY OF OFFSET PRAGMA RAISE RECURSIVE RELEASE REPLACE RESTRICT ROW ROWS 214 ROLLBACK SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL WITH WITHOUT 215 NULLS FIRST LAST 216 %ifdef SQLITE_OMIT_COMPOUND_SELECT 217 EXCEPT INTERSECT UNION 218 %endif SQLITE_OMIT_COMPOUND_SELECT 219 %ifndef SQLITE_OMIT_WINDOWFUNC 220 CURRENT FOLLOWING PARTITION PRECEDING RANGE UNBOUNDED 221 EXCLUDE GROUPS OTHERS TIES 222 %endif SQLITE_OMIT_WINDOWFUNC 223 %ifndef SQLITE_OMIT_GENERATED_COLUMNS 224 GENERATED ALWAYS 225 %endif 226 REINDEX RENAME CTIME_KW IF 227 . 228 %wildcard ANY. 229 230 // Define operator precedence early so that this is the first occurrence 231 // of the operator tokens in the grammer. Keeping the operators together 232 // causes them to be assigned integer values that are close together, 233 // which keeps parser tables smaller. 234 // 235 // The token values assigned to these symbols is determined by the order 236 // in which lemon first sees them. It must be the case that ISNULL/NOTNULL, 237 // NE/EQ, GT/LE, and GE/LT are separated by only a single value. See 238 // the sqlite3ExprIfFalse() routine for additional information on this 239 // constraint. 240 // 241 %left OR. 242 %left AND. 243 %right NOT. 244 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. 245 %left GT LE LT GE. 246 %right ESCAPE. 247 %left BITAND BITOR LSHIFT RSHIFT. 248 %left PLUS MINUS. 249 %left STAR SLASH REM. 250 %left CONCAT. 251 %left COLLATE. 252 %right BITNOT. 253 %nonassoc ON. 254 255 // An IDENTIFIER can be a generic identifier, or one of several 256 // keywords. Any non-standard keyword can also be an identifier. 257 // 258 %token_class id ID|INDEXED. 259 260 261 // And "ids" is an identifer-or-string. 262 // 263 %token_class ids ID|STRING. 264 265 // The name of a column or table can be any of the following: 266 // 267 %type nm {Token} 268 nm(A) ::= id(A). 269 nm(A) ::= STRING(A). 270 nm(A) ::= JOIN_KW(A). 271 272 // A typetoken is really zero or more tokens that form a type name such 273 // as can be found after the column name in a CREATE TABLE statement. 274 // Multiple tokens are concatenated to form the value of the typetoken. 275 // 276 %type typetoken {Token} 277 typetoken(A) ::= . {A.n = 0; A.z = 0;} 278 typetoken(A) ::= typename(A). 279 typetoken(A) ::= typename(A) LP signed RP(Y). { 280 A.n = (int)(&Y.z[Y.n] - A.z); 281 } 282 typetoken(A) ::= typename(A) LP signed COMMA signed RP(Y). { 283 A.n = (int)(&Y.z[Y.n] - A.z); 284 } 285 %type typename {Token} 286 typename(A) ::= ids(A). 287 typename(A) ::= typename(A) ids(Y). {A.n=Y.n+(int)(Y.z-A.z);} 288 signed ::= plus_num. 289 signed ::= minus_num. 290 291 // The scanpt non-terminal takes a value which is a pointer to the 292 // input text just past the last token that has been shifted into 293 // the parser. By surrounding some phrase in the grammar with two 294 // scanpt non-terminals, we can capture the input text for that phrase. 295 // For example: 296 // 297 // something ::= .... scanpt(A) phrase scanpt(Z). 298 // 299 // The text that is parsed as "phrase" is a string starting at A 300 // and containing (int)(Z-A) characters. There might be some extra 301 // whitespace on either end of the text, but that can be removed in 302 // post-processing, if needed. 303 // 304 %type scanpt {const char*} 305 scanpt(A) ::= . { 306 assert( yyLookahead!=YYNOCODE ); 307 A = yyLookaheadToken.z; 308 } 309 scantok(A) ::= . { 310 assert( yyLookahead!=YYNOCODE ); 311 A = yyLookaheadToken; 312 } 313 314 // "carglist" is a list of additional constraints that come after the 315 // column name and column type in a CREATE TABLE statement. 316 // 317 carglist ::= carglist ccons. 318 carglist ::= . 319 ccons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} 320 ccons ::= DEFAULT scantok(A) term(X). 321 {sqlite3AddDefaultValue(pParse,X,A.z,&A.z[A.n]);} 322 ccons ::= DEFAULT LP(A) expr(X) RP(Z). 323 {sqlite3AddDefaultValue(pParse,X,A.z+1,Z.z);} 324 ccons ::= DEFAULT PLUS(A) scantok(Z) term(X). 325 {sqlite3AddDefaultValue(pParse,X,A.z,&Z.z[Z.n]);} 326 ccons ::= DEFAULT MINUS(A) scantok(Z) term(X). { 327 Expr *p = sqlite3PExpr(pParse, TK_UMINUS, X, 0); 328 sqlite3AddDefaultValue(pParse,p,A.z,&Z.z[Z.n]); 329 } 330 ccons ::= DEFAULT scantok id(X). { 331 Expr *p = tokenExpr(pParse, TK_STRING, X); 332 if( p ){ 333 sqlite3ExprIdToTrueFalse(p); 334 testcase( p->op==TK_TRUEFALSE && sqlite3ExprTruthValue(p) ); 335 } 336 sqlite3AddDefaultValue(pParse,p,X.z,X.z+X.n); 337 } 338 339 // In addition to the type name, we also care about the primary key and 340 // UNIQUE constraints. 341 // 342 ccons ::= NULL onconf. 343 ccons ::= NOT NULL onconf(R). {sqlite3AddNotNull(pParse, R);} 344 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I). 345 {sqlite3AddPrimaryKey(pParse,0,R,I,Z);} 346 ccons ::= UNIQUE onconf(R). {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0, 347 SQLITE_IDXTYPE_UNIQUE);} 348 ccons ::= CHECK LP expr(X) RP. {sqlite3AddCheckConstraint(pParse,X);} 349 ccons ::= REFERENCES nm(T) eidlist_opt(TA) refargs(R). 350 {sqlite3CreateForeignKey(pParse,0,&T,TA,R);} 351 ccons ::= defer_subclause(D). {sqlite3DeferForeignKey(pParse,D);} 352 ccons ::= COLLATE ids(C). {sqlite3AddCollateType(pParse, &C);} 353 ccons ::= GENERATED ALWAYS AS generated. 354 ccons ::= AS generated. 355 generated ::= LP expr(E) RP. {sqlite3AddGenerated(pParse,E,0);} 356 generated ::= LP expr(E) RP ID(TYPE). {sqlite3AddGenerated(pParse,E,&TYPE);} 357 358 // The optional AUTOINCREMENT keyword 359 %type autoinc {int} 360 autoinc(X) ::= . {X = 0;} 361 autoinc(X) ::= AUTOINCR. {X = 1;} 362 363 // The next group of rules parses the arguments to a REFERENCES clause 364 // that determine if the referential integrity checking is deferred or 365 // or immediate and which determine what action to take if a ref-integ 366 // check fails. 367 // 368 %type refargs {int} 369 refargs(A) ::= . { A = OE_None*0x0101; /* EV: R-19803-45884 */} 370 refargs(A) ::= refargs(A) refarg(Y). { A = (A & ~Y.mask) | Y.value; } 371 %type refarg {struct {int value; int mask;}} 372 refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; } 373 refarg(A) ::= ON INSERT refact. { A.value = 0; A.mask = 0x000000; } 374 refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; } 375 refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; } 376 %type refact {int} 377 refact(A) ::= SET NULL. { A = OE_SetNull; /* EV: R-33326-45252 */} 378 refact(A) ::= SET DEFAULT. { A = OE_SetDflt; /* EV: R-33326-45252 */} 379 refact(A) ::= CASCADE. { A = OE_Cascade; /* EV: R-33326-45252 */} 380 refact(A) ::= RESTRICT. { A = OE_Restrict; /* EV: R-33326-45252 */} 381 refact(A) ::= NO ACTION. { A = OE_None; /* EV: R-33326-45252 */} 382 %type defer_subclause {int} 383 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt. {A = 0;} 384 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;} 385 %type init_deferred_pred_opt {int} 386 init_deferred_pred_opt(A) ::= . {A = 0;} 387 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;} 388 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;} 389 390 conslist_opt(A) ::= . {A.n = 0; A.z = 0;} 391 conslist_opt(A) ::= COMMA(A) conslist. 392 conslist ::= conslist tconscomma tcons. 393 conslist ::= tcons. 394 tconscomma ::= COMMA. {pParse->constraintName.n = 0;} 395 tconscomma ::= . 396 tcons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} 397 tcons ::= PRIMARY KEY LP sortlist(X) autoinc(I) RP onconf(R). 398 {sqlite3AddPrimaryKey(pParse,X,R,I,0);} 399 tcons ::= UNIQUE LP sortlist(X) RP onconf(R). 400 {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0, 401 SQLITE_IDXTYPE_UNIQUE);} 402 tcons ::= CHECK LP expr(E) RP onconf. 403 {sqlite3AddCheckConstraint(pParse,E);} 404 tcons ::= FOREIGN KEY LP eidlist(FA) RP 405 REFERENCES nm(T) eidlist_opt(TA) refargs(R) defer_subclause_opt(D). { 406 sqlite3CreateForeignKey(pParse, FA, &T, TA, R); 407 sqlite3DeferForeignKey(pParse, D); 408 } 409 %type defer_subclause_opt {int} 410 defer_subclause_opt(A) ::= . {A = 0;} 411 defer_subclause_opt(A) ::= defer_subclause(A). 412 413 // The following is a non-standard extension that allows us to declare the 414 // default behavior when there is a constraint conflict. 415 // 416 %type onconf {int} 417 %type orconf {int} 418 %type resolvetype {int} 419 onconf(A) ::= . {A = OE_Default;} 420 onconf(A) ::= ON CONFLICT resolvetype(X). {A = X;} 421 orconf(A) ::= . {A = OE_Default;} 422 orconf(A) ::= OR resolvetype(X). {A = X;} 423 resolvetype(A) ::= raisetype(A). 424 resolvetype(A) ::= IGNORE. {A = OE_Ignore;} 425 resolvetype(A) ::= REPLACE. {A = OE_Replace;} 426 427 ////////////////////////// The DROP TABLE ///////////////////////////////////// 428 // 429 cmd ::= DROP TABLE ifexists(E) fullname(X). { 430 sqlite3DropTable(pParse, X, 0, E); 431 } 432 %type ifexists {int} 433 ifexists(A) ::= IF EXISTS. {A = 1;} 434 ifexists(A) ::= . {A = 0;} 435 436 ///////////////////// The CREATE VIEW statement ///////////////////////////// 437 // 438 %ifndef SQLITE_OMIT_VIEW 439 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) eidlist_opt(C) 440 AS select(S). { 441 sqlite3CreateView(pParse, &X, &Y, &Z, C, S, T, E); 442 } 443 cmd ::= DROP VIEW ifexists(E) fullname(X). { 444 sqlite3DropTable(pParse, X, 1, E); 445 } 446 %endif SQLITE_OMIT_VIEW 447 448 //////////////////////// The SELECT statement ///////////////////////////////// 449 // 450 cmd ::= select(X). { 451 SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0}; 452 sqlite3Select(pParse, X, &dest); 453 sqlite3SelectDelete(pParse->db, X); 454 } 455 456 %type select {Select*} 457 %destructor select {sqlite3SelectDelete(pParse->db, $$);} 458 %type selectnowith {Select*} 459 %destructor selectnowith {sqlite3SelectDelete(pParse->db, $$);} 460 %type oneselect {Select*} 461 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);} 462 463 %include { 464 /* 465 ** For a compound SELECT statement, make sure p->pPrior->pNext==p for 466 ** all elements in the list. And make sure list length does not exceed 467 ** SQLITE_LIMIT_COMPOUND_SELECT. 468 */ 469 static void parserDoubleLinkSelect(Parse *pParse, Select *p){ 470 assert( p!=0 ); 471 if( p->pPrior ){ 472 Select *pNext = 0, *pLoop; 473 int mxSelect, cnt = 0; 474 for(pLoop=p; pLoop; pNext=pLoop, pLoop=pLoop->pPrior, cnt++){ 475 pLoop->pNext = pNext; 476 pLoop->selFlags |= SF_Compound; 477 } 478 if( (p->selFlags & SF_MultiValue)==0 && 479 (mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT])>0 && 480 cnt>mxSelect 481 ){ 482 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 483 } 484 } 485 } 486 } 487 488 %ifndef SQLITE_OMIT_CTE 489 select(A) ::= WITH wqlist(W) selectnowith(X). { 490 Select *p = X; 491 if( p ){ 492 p->pWith = W; 493 parserDoubleLinkSelect(pParse, p); 494 }else{ 495 sqlite3WithDelete(pParse->db, W); 496 } 497 A = p; 498 } 499 select(A) ::= WITH RECURSIVE wqlist(W) selectnowith(X). { 500 Select *p = X; 501 if( p ){ 502 p->pWith = W; 503 parserDoubleLinkSelect(pParse, p); 504 }else{ 505 sqlite3WithDelete(pParse->db, W); 506 } 507 A = p; 508 } 509 %endif /* SQLITE_OMIT_CTE */ 510 select(A) ::= selectnowith(X). { 511 Select *p = X; 512 if( p ){ 513 parserDoubleLinkSelect(pParse, p); 514 } 515 A = p; /*A-overwrites-X*/ 516 } 517 518 selectnowith(A) ::= oneselect(A). 519 %ifndef SQLITE_OMIT_COMPOUND_SELECT 520 selectnowith(A) ::= selectnowith(A) multiselect_op(Y) oneselect(Z). { 521 Select *pRhs = Z; 522 Select *pLhs = A; 523 if( pRhs && pRhs->pPrior ){ 524 SrcList *pFrom; 525 Token x; 526 x.n = 0; 527 parserDoubleLinkSelect(pParse, pRhs); 528 pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0); 529 pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0); 530 } 531 if( pRhs ){ 532 pRhs->op = (u8)Y; 533 pRhs->pPrior = pLhs; 534 if( ALWAYS(pLhs) ) pLhs->selFlags &= ~SF_MultiValue; 535 pRhs->selFlags &= ~SF_MultiValue; 536 if( Y!=TK_ALL ) pParse->hasCompound = 1; 537 }else{ 538 sqlite3SelectDelete(pParse->db, pLhs); 539 } 540 A = pRhs; 541 } 542 %type multiselect_op {int} 543 multiselect_op(A) ::= UNION(OP). {A = @OP; /*A-overwrites-OP*/} 544 multiselect_op(A) ::= UNION ALL. {A = TK_ALL;} 545 multiselect_op(A) ::= EXCEPT|INTERSECT(OP). {A = @OP; /*A-overwrites-OP*/} 546 %endif SQLITE_OMIT_COMPOUND_SELECT 547 548 oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y) 549 groupby_opt(P) having_opt(Q) 550 orderby_opt(Z) limit_opt(L). { 551 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L); 552 } 553 %ifndef SQLITE_OMIT_WINDOWFUNC 554 oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y) 555 groupby_opt(P) having_opt(Q) window_clause(R) 556 orderby_opt(Z) limit_opt(L). { 557 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L); 558 if( A ){ 559 A->pWinDefn = R; 560 }else{ 561 sqlite3WindowListDelete(pParse->db, R); 562 } 563 } 564 %endif 565 566 567 oneselect(A) ::= values(A). 568 569 %type values {Select*} 570 %destructor values {sqlite3SelectDelete(pParse->db, $$);} 571 values(A) ::= VALUES LP nexprlist(X) RP. { 572 A = sqlite3SelectNew(pParse,X,0,0,0,0,0,SF_Values,0); 573 } 574 values(A) ::= values(A) COMMA LP nexprlist(Y) RP. { 575 Select *pRight, *pLeft = A; 576 pRight = sqlite3SelectNew(pParse,Y,0,0,0,0,0,SF_Values|SF_MultiValue,0); 577 if( ALWAYS(pLeft) ) pLeft->selFlags &= ~SF_MultiValue; 578 if( pRight ){ 579 pRight->op = TK_ALL; 580 pRight->pPrior = pLeft; 581 A = pRight; 582 }else{ 583 A = pLeft; 584 } 585 } 586 587 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is 588 // present and false (0) if it is not. 589 // 590 %type distinct {int} 591 distinct(A) ::= DISTINCT. {A = SF_Distinct;} 592 distinct(A) ::= ALL. {A = SF_All;} 593 distinct(A) ::= . {A = 0;} 594 595 // selcollist is a list of expressions that are to become the return 596 // values of the SELECT statement. The "*" in statements like 597 // "SELECT * FROM ..." is encoded as a special expression with an 598 // opcode of TK_ASTERISK. 599 // 600 %type selcollist {ExprList*} 601 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);} 602 %type sclp {ExprList*} 603 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);} 604 sclp(A) ::= selcollist(A) COMMA. 605 sclp(A) ::= . {A = 0;} 606 selcollist(A) ::= sclp(A) scanpt(B) expr(X) scanpt(Z) as(Y). { 607 A = sqlite3ExprListAppend(pParse, A, X); 608 if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1); 609 sqlite3ExprListSetSpan(pParse,A,B,Z); 610 } 611 selcollist(A) ::= sclp(A) scanpt STAR. { 612 Expr *p = sqlite3Expr(pParse->db, TK_ASTERISK, 0); 613 A = sqlite3ExprListAppend(pParse, A, p); 614 } 615 selcollist(A) ::= sclp(A) scanpt nm(X) DOT STAR. { 616 Expr *pRight = sqlite3PExpr(pParse, TK_ASTERISK, 0, 0); 617 Expr *pLeft = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1); 618 Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 619 A = sqlite3ExprListAppend(pParse,A, pDot); 620 } 621 622 // An option "AS <id>" phrase that can follow one of the expressions that 623 // define the result set, or one of the tables in the FROM clause. 624 // 625 %type as {Token} 626 as(X) ::= AS nm(Y). {X = Y;} 627 as(X) ::= ids(X). 628 as(X) ::= . {X.n = 0; X.z = 0;} 629 630 631 %type seltablist {SrcList*} 632 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);} 633 %type stl_prefix {SrcList*} 634 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);} 635 %type from {SrcList*} 636 %destructor from {sqlite3SrcListDelete(pParse->db, $$);} 637 638 // A complete FROM clause. 639 // 640 from(A) ::= . {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));} 641 from(A) ::= FROM seltablist(X). { 642 A = X; 643 sqlite3SrcListShiftJoinType(A); 644 } 645 646 // "seltablist" is a "Select Table List" - the content of the FROM clause 647 // in a SELECT statement. "stl_prefix" is a prefix of this list. 648 // 649 stl_prefix(A) ::= seltablist(A) joinop(Y). { 650 if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].fg.jointype = (u8)Y; 651 } 652 stl_prefix(A) ::= . {A = 0;} 653 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) as(Z) indexed_opt(I) 654 on_opt(N) using_opt(U). { 655 A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U); 656 sqlite3SrcListIndexedBy(pParse, A, &I); 657 } 658 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) LP exprlist(E) RP as(Z) 659 on_opt(N) using_opt(U). { 660 A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U); 661 sqlite3SrcListFuncArgs(pParse, A, E); 662 } 663 %ifndef SQLITE_OMIT_SUBQUERY 664 seltablist(A) ::= stl_prefix(A) LP select(S) RP 665 as(Z) on_opt(N) using_opt(U). { 666 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,S,N,U); 667 } 668 seltablist(A) ::= stl_prefix(A) LP seltablist(F) RP 669 as(Z) on_opt(N) using_opt(U). { 670 if( A==0 && Z.n==0 && N==0 && U==0 ){ 671 A = F; 672 }else if( F->nSrc==1 ){ 673 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,0,N,U); 674 if( A ){ 675 struct SrcList_item *pNew = &A->a[A->nSrc-1]; 676 struct SrcList_item *pOld = F->a; 677 pNew->zName = pOld->zName; 678 pNew->zDatabase = pOld->zDatabase; 679 pNew->pSelect = pOld->pSelect; 680 if( pOld->fg.isTabFunc ){ 681 pNew->u1.pFuncArg = pOld->u1.pFuncArg; 682 pOld->u1.pFuncArg = 0; 683 pOld->fg.isTabFunc = 0; 684 pNew->fg.isTabFunc = 1; 685 } 686 pOld->zName = pOld->zDatabase = 0; 687 pOld->pSelect = 0; 688 } 689 sqlite3SrcListDelete(pParse->db, F); 690 }else{ 691 Select *pSubquery; 692 sqlite3SrcListShiftJoinType(F); 693 pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,SF_NestedFrom,0); 694 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,pSubquery,N,U); 695 } 696 } 697 %endif SQLITE_OMIT_SUBQUERY 698 699 %type dbnm {Token} 700 dbnm(A) ::= . {A.z=0; A.n=0;} 701 dbnm(A) ::= DOT nm(X). {A = X;} 702 703 %type fullname {SrcList*} 704 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);} 705 fullname(A) ::= nm(X). { 706 A = sqlite3SrcListAppend(pParse,0,&X,0); 707 if( IN_RENAME_OBJECT && A ) sqlite3RenameTokenMap(pParse, A->a[0].zName, &X); 708 } 709 fullname(A) ::= nm(X) DOT nm(Y). { 710 A = sqlite3SrcListAppend(pParse,0,&X,&Y); 711 if( IN_RENAME_OBJECT && A ) sqlite3RenameTokenMap(pParse, A->a[0].zName, &Y); 712 } 713 714 %type xfullname {SrcList*} 715 %destructor xfullname {sqlite3SrcListDelete(pParse->db, $$);} 716 xfullname(A) ::= nm(X). 717 {A = sqlite3SrcListAppend(pParse,0,&X,0); /*A-overwrites-X*/} 718 xfullname(A) ::= nm(X) DOT nm(Y). 719 {A = sqlite3SrcListAppend(pParse,0,&X,&Y); /*A-overwrites-X*/} 720 xfullname(A) ::= nm(X) DOT nm(Y) AS nm(Z). { 721 A = sqlite3SrcListAppend(pParse,0,&X,&Y); /*A-overwrites-X*/ 722 if( A ) A->a[0].zAlias = sqlite3NameFromToken(pParse->db, &Z); 723 } 724 xfullname(A) ::= nm(X) AS nm(Z). { 725 A = sqlite3SrcListAppend(pParse,0,&X,0); /*A-overwrites-X*/ 726 if( A ) A->a[0].zAlias = sqlite3NameFromToken(pParse->db, &Z); 727 } 728 729 %type joinop {int} 730 joinop(X) ::= COMMA|JOIN. { X = JT_INNER; } 731 joinop(X) ::= JOIN_KW(A) JOIN. 732 {X = sqlite3JoinType(pParse,&A,0,0); /*X-overwrites-A*/} 733 joinop(X) ::= JOIN_KW(A) nm(B) JOIN. 734 {X = sqlite3JoinType(pParse,&A,&B,0); /*X-overwrites-A*/} 735 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN. 736 {X = sqlite3JoinType(pParse,&A,&B,&C);/*X-overwrites-A*/} 737 738 // There is a parsing abiguity in an upsert statement that uses a 739 // SELECT on the RHS of a the INSERT: 740 // 741 // INSERT INTO tab SELECT * FROM aaa JOIN bbb ON CONFLICT ... 742 // here ----^^ 743 // 744 // When the ON token is encountered, the parser does not know if it is 745 // the beginning of an ON CONFLICT clause, or the beginning of an ON 746 // clause associated with the JOIN. The conflict is resolved in favor 747 // of the JOIN. If an ON CONFLICT clause is intended, insert a dummy 748 // WHERE clause in between, like this: 749 // 750 // INSERT INTO tab SELECT * FROM aaa JOIN bbb WHERE true ON CONFLICT ... 751 // 752 // The [AND] and [OR] precedence marks in the rules for on_opt cause the 753 // ON in this context to always be interpreted as belonging to the JOIN. 754 // 755 %type on_opt {Expr*} 756 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);} 757 on_opt(N) ::= ON expr(E). {N = E;} 758 on_opt(N) ::= . [OR] {N = 0;} 759 760 // Note that this block abuses the Token type just a little. If there is 761 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If 762 // there is an INDEXED BY clause, then the token is populated as per normal, 763 // with z pointing to the token data and n containing the number of bytes 764 // in the token. 765 // 766 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is 767 // normally illegal. The sqlite3SrcListIndexedBy() function 768 // recognizes and interprets this as a special case. 769 // 770 %type indexed_opt {Token} 771 indexed_opt(A) ::= . {A.z=0; A.n=0;} 772 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;} 773 indexed_opt(A) ::= NOT INDEXED. {A.z=0; A.n=1;} 774 775 %type using_opt {IdList*} 776 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);} 777 using_opt(U) ::= USING LP idlist(L) RP. {U = L;} 778 using_opt(U) ::= . {U = 0;} 779 780 781 %type orderby_opt {ExprList*} 782 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);} 783 784 // the sortlist non-terminal stores a list of expression where each 785 // expression is optionally followed by ASC or DESC to indicate the 786 // sort order. 787 // 788 %type sortlist {ExprList*} 789 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);} 790 791 orderby_opt(A) ::= . {A = 0;} 792 orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;} 793 sortlist(A) ::= sortlist(A) COMMA expr(Y) sortorder(Z) nulls(X). { 794 A = sqlite3ExprListAppend(pParse,A,Y); 795 sqlite3ExprListSetSortOrder(A,Z,X); 796 } 797 sortlist(A) ::= expr(Y) sortorder(Z) nulls(X). { 798 A = sqlite3ExprListAppend(pParse,0,Y); /*A-overwrites-Y*/ 799 sqlite3ExprListSetSortOrder(A,Z,X); 800 } 801 802 %type sortorder {int} 803 804 sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;} 805 sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;} 806 sortorder(A) ::= . {A = SQLITE_SO_UNDEFINED;} 807 808 %type nulls {int} 809 nulls(A) ::= NULLS FIRST. {A = SQLITE_SO_ASC;} 810 nulls(A) ::= NULLS LAST. {A = SQLITE_SO_DESC;} 811 nulls(A) ::= . {A = SQLITE_SO_UNDEFINED;} 812 813 %type groupby_opt {ExprList*} 814 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);} 815 groupby_opt(A) ::= . {A = 0;} 816 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;} 817 818 %type having_opt {Expr*} 819 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);} 820 having_opt(A) ::= . {A = 0;} 821 having_opt(A) ::= HAVING expr(X). {A = X;} 822 823 %type limit_opt {Expr*} 824 825 // The destructor for limit_opt will never fire in the current grammar. 826 // The limit_opt non-terminal only occurs at the end of a single production 827 // rule for SELECT statements. As soon as the rule that create the 828 // limit_opt non-terminal reduces, the SELECT statement rule will also 829 // reduce. So there is never a limit_opt non-terminal on the stack 830 // except as a transient. So there is never anything to destroy. 831 // 832 //%destructor limit_opt {sqlite3ExprDelete(pParse->db, $$);} 833 limit_opt(A) ::= . {A = 0;} 834 limit_opt(A) ::= LIMIT expr(X). 835 {A = sqlite3PExpr(pParse,TK_LIMIT,X,0);} 836 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y). 837 {A = sqlite3PExpr(pParse,TK_LIMIT,X,Y);} 838 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y). 839 {A = sqlite3PExpr(pParse,TK_LIMIT,Y,X);} 840 841 /////////////////////////// The DELETE statement ///////////////////////////// 842 // 843 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 844 cmd ::= with DELETE FROM xfullname(X) indexed_opt(I) where_opt(W) 845 orderby_opt(O) limit_opt(L). { 846 sqlite3SrcListIndexedBy(pParse, X, &I); 847 #ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 848 sqlite3ExprListDelete(pParse->db, O); O = 0; 849 sqlite3ExprDelete(pParse->db, L); L = 0; 850 #endif 851 sqlite3DeleteFrom(pParse,X,W,O,L); 852 } 853 %endif 854 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 855 cmd ::= with DELETE FROM xfullname(X) indexed_opt(I) where_opt(W). { 856 sqlite3SrcListIndexedBy(pParse, X, &I); 857 sqlite3DeleteFrom(pParse,X,W,0,0); 858 } 859 %endif 860 861 %type where_opt {Expr*} 862 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);} 863 864 where_opt(A) ::= . {A = 0;} 865 where_opt(A) ::= WHERE expr(X). {A = X;} 866 867 ////////////////////////// The UPDATE command //////////////////////////////// 868 // 869 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 870 cmd ::= with UPDATE orconf(R) xfullname(X) indexed_opt(I) SET setlist(Y) 871 where_opt(W) orderby_opt(O) limit_opt(L). { 872 sqlite3SrcListIndexedBy(pParse, X, &I); 873 sqlite3ExprListCheckLength(pParse,Y,"set list"); 874 sqlite3Update(pParse,X,Y,W,R,O,L,0); 875 } 876 %endif 877 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 878 cmd ::= with UPDATE orconf(R) xfullname(X) indexed_opt(I) SET setlist(Y) 879 where_opt(W). { 880 sqlite3SrcListIndexedBy(pParse, X, &I); 881 sqlite3ExprListCheckLength(pParse,Y,"set list"); 882 sqlite3Update(pParse,X,Y,W,R,0,0,0); 883 } 884 %endif 885 886 %type setlist {ExprList*} 887 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);} 888 889 setlist(A) ::= setlist(A) COMMA nm(X) EQ expr(Y). { 890 A = sqlite3ExprListAppend(pParse, A, Y); 891 sqlite3ExprListSetName(pParse, A, &X, 1); 892 } 893 setlist(A) ::= setlist(A) COMMA LP idlist(X) RP EQ expr(Y). { 894 A = sqlite3ExprListAppendVector(pParse, A, X, Y); 895 } 896 setlist(A) ::= nm(X) EQ expr(Y). { 897 A = sqlite3ExprListAppend(pParse, 0, Y); 898 sqlite3ExprListSetName(pParse, A, &X, 1); 899 } 900 setlist(A) ::= LP idlist(X) RP EQ expr(Y). { 901 A = sqlite3ExprListAppendVector(pParse, 0, X, Y); 902 } 903 904 ////////////////////////// The INSERT command ///////////////////////////////// 905 // 906 cmd ::= with insert_cmd(R) INTO xfullname(X) idlist_opt(F) select(S) 907 upsert(U). { 908 sqlite3Insert(pParse, X, S, F, R, U); 909 } 910 cmd ::= with insert_cmd(R) INTO xfullname(X) idlist_opt(F) DEFAULT VALUES. 911 { 912 sqlite3Insert(pParse, X, 0, F, R, 0); 913 } 914 915 %type upsert {Upsert*} 916 917 // Because upsert only occurs at the tip end of the INSERT rule for cmd, 918 // there is never a case where the value of the upsert pointer will not 919 // be destroyed by the cmd action. So comment-out the destructor to 920 // avoid unreachable code. 921 //%destructor upsert {sqlite3UpsertDelete(pParse->db,$$);} 922 upsert(A) ::= . { A = 0; } 923 upsert(A) ::= ON CONFLICT LP sortlist(T) RP where_opt(TW) 924 DO UPDATE SET setlist(Z) where_opt(W). 925 { A = sqlite3UpsertNew(pParse->db,T,TW,Z,W);} 926 upsert(A) ::= ON CONFLICT LP sortlist(T) RP where_opt(TW) DO NOTHING. 927 { A = sqlite3UpsertNew(pParse->db,T,TW,0,0); } 928 upsert(A) ::= ON CONFLICT DO NOTHING. 929 { A = sqlite3UpsertNew(pParse->db,0,0,0,0); } 930 931 %type insert_cmd {int} 932 insert_cmd(A) ::= INSERT orconf(R). {A = R;} 933 insert_cmd(A) ::= REPLACE. {A = OE_Replace;} 934 935 %type idlist_opt {IdList*} 936 %destructor idlist_opt {sqlite3IdListDelete(pParse->db, $$);} 937 %type idlist {IdList*} 938 %destructor idlist {sqlite3IdListDelete(pParse->db, $$);} 939 940 idlist_opt(A) ::= . {A = 0;} 941 idlist_opt(A) ::= LP idlist(X) RP. {A = X;} 942 idlist(A) ::= idlist(A) COMMA nm(Y). 943 {A = sqlite3IdListAppend(pParse,A,&Y);} 944 idlist(A) ::= nm(Y). 945 {A = sqlite3IdListAppend(pParse,0,&Y); /*A-overwrites-Y*/} 946 947 /////////////////////////// Expression Processing ///////////////////////////// 948 // 949 950 %type expr {Expr*} 951 %destructor expr {sqlite3ExprDelete(pParse->db, $$);} 952 %type term {Expr*} 953 %destructor term {sqlite3ExprDelete(pParse->db, $$);} 954 955 %include { 956 957 /* Construct a new Expr object from a single identifier. Use the 958 ** new Expr to populate pOut. Set the span of pOut to be the identifier 959 ** that created the expression. 960 */ 961 static Expr *tokenExpr(Parse *pParse, int op, Token t){ 962 Expr *p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)+t.n+1); 963 if( p ){ 964 /* memset(p, 0, sizeof(Expr)); */ 965 p->op = (u8)op; 966 p->affExpr = 0; 967 p->flags = EP_Leaf; 968 p->iAgg = -1; 969 p->pLeft = p->pRight = 0; 970 p->x.pList = 0; 971 p->pAggInfo = 0; 972 p->y.pTab = 0; 973 p->op2 = 0; 974 p->iTable = 0; 975 p->iColumn = 0; 976 p->u.zToken = (char*)&p[1]; 977 memcpy(p->u.zToken, t.z, t.n); 978 p->u.zToken[t.n] = 0; 979 if( sqlite3Isquote(p->u.zToken[0]) ){ 980 sqlite3DequoteExpr(p); 981 } 982 #if SQLITE_MAX_EXPR_DEPTH>0 983 p->nHeight = 1; 984 #endif 985 if( IN_RENAME_OBJECT ){ 986 return (Expr*)sqlite3RenameTokenMap(pParse, (void*)p, &t); 987 } 988 } 989 return p; 990 } 991 992 } 993 994 expr(A) ::= term(A). 995 expr(A) ::= LP expr(X) RP. {A = X;} 996 expr(A) ::= id(X). {A=tokenExpr(pParse,TK_ID,X); /*A-overwrites-X*/} 997 expr(A) ::= JOIN_KW(X). {A=tokenExpr(pParse,TK_ID,X); /*A-overwrites-X*/} 998 expr(A) ::= nm(X) DOT nm(Y). { 999 Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1); 1000 Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1); 1001 if( IN_RENAME_OBJECT ){ 1002 sqlite3RenameTokenMap(pParse, (void*)temp2, &Y); 1003 sqlite3RenameTokenMap(pParse, (void*)temp1, &X); 1004 } 1005 A = sqlite3PExpr(pParse, TK_DOT, temp1, temp2); 1006 } 1007 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). { 1008 Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1); 1009 Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1); 1010 Expr *temp3 = sqlite3ExprAlloc(pParse->db, TK_ID, &Z, 1); 1011 Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3); 1012 if( IN_RENAME_OBJECT ){ 1013 sqlite3RenameTokenMap(pParse, (void*)temp3, &Z); 1014 sqlite3RenameTokenMap(pParse, (void*)temp2, &Y); 1015 } 1016 A = sqlite3PExpr(pParse, TK_DOT, temp1, temp4); 1017 } 1018 term(A) ::= NULL|FLOAT|BLOB(X). {A=tokenExpr(pParse,@X,X); /*A-overwrites-X*/} 1019 term(A) ::= STRING(X). {A=tokenExpr(pParse,@X,X); /*A-overwrites-X*/} 1020 term(A) ::= INTEGER(X). { 1021 A = sqlite3ExprAlloc(pParse->db, TK_INTEGER, &X, 1); 1022 } 1023 expr(A) ::= VARIABLE(X). { 1024 if( !(X.z[0]=='#' && sqlite3Isdigit(X.z[1])) ){ 1025 u32 n = X.n; 1026 A = tokenExpr(pParse, TK_VARIABLE, X); 1027 sqlite3ExprAssignVarNumber(pParse, A, n); 1028 }else{ 1029 /* When doing a nested parse, one can include terms in an expression 1030 ** that look like this: #1 #2 ... These terms refer to registers 1031 ** in the virtual machine. #N is the N-th register. */ 1032 Token t = X; /*A-overwrites-X*/ 1033 assert( t.n>=2 ); 1034 if( pParse->nested==0 ){ 1035 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &t); 1036 A = 0; 1037 }else{ 1038 A = sqlite3PExpr(pParse, TK_REGISTER, 0, 0); 1039 if( A ) sqlite3GetInt32(&t.z[1], &A->iTable); 1040 } 1041 } 1042 } 1043 expr(A) ::= expr(A) COLLATE ids(C). { 1044 A = sqlite3ExprAddCollateToken(pParse, A, &C, 1); 1045 } 1046 %ifndef SQLITE_OMIT_CAST 1047 expr(A) ::= CAST LP expr(E) AS typetoken(T) RP. { 1048 A = sqlite3ExprAlloc(pParse->db, TK_CAST, &T, 1); 1049 sqlite3ExprAttachSubtrees(pParse->db, A, E, 0); 1050 } 1051 %endif SQLITE_OMIT_CAST 1052 1053 1054 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP. { 1055 A = sqlite3ExprFunction(pParse, Y, &X, D); 1056 } 1057 expr(A) ::= id(X) LP STAR RP. { 1058 A = sqlite3ExprFunction(pParse, 0, &X, 0); 1059 } 1060 1061 %ifndef SQLITE_OMIT_WINDOWFUNC 1062 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP filter_over(Z). { 1063 A = sqlite3ExprFunction(pParse, Y, &X, D); 1064 sqlite3WindowAttach(pParse, A, Z); 1065 } 1066 expr(A) ::= id(X) LP STAR RP filter_over(Z). { 1067 A = sqlite3ExprFunction(pParse, 0, &X, 0); 1068 sqlite3WindowAttach(pParse, A, Z); 1069 } 1070 %endif 1071 1072 term(A) ::= CTIME_KW(OP). { 1073 A = sqlite3ExprFunction(pParse, 0, &OP, 0); 1074 } 1075 1076 expr(A) ::= LP nexprlist(X) COMMA expr(Y) RP. { 1077 ExprList *pList = sqlite3ExprListAppend(pParse, X, Y); 1078 A = sqlite3PExpr(pParse, TK_VECTOR, 0, 0); 1079 if( A ){ 1080 A->x.pList = pList; 1081 if( ALWAYS(pList->nExpr) ){ 1082 A->flags |= pList->a[0].pExpr->flags & EP_Propagate; 1083 } 1084 }else{ 1085 sqlite3ExprListDelete(pParse->db, pList); 1086 } 1087 } 1088 1089 expr(A) ::= expr(A) AND expr(Y). {A=sqlite3ExprAnd(pParse,A,Y);} 1090 expr(A) ::= expr(A) OR(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 1091 expr(A) ::= expr(A) LT|GT|GE|LE(OP) expr(Y). 1092 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1093 expr(A) ::= expr(A) EQ|NE(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 1094 expr(A) ::= expr(A) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y). 1095 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1096 expr(A) ::= expr(A) PLUS|MINUS(OP) expr(Y). 1097 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1098 expr(A) ::= expr(A) STAR|SLASH|REM(OP) expr(Y). 1099 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1100 expr(A) ::= expr(A) CONCAT(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 1101 %type likeop {Token} 1102 likeop(A) ::= LIKE_KW|MATCH(A). 1103 likeop(A) ::= NOT LIKE_KW|MATCH(X). {A=X; A.n|=0x80000000; /*A-overwrite-X*/} 1104 expr(A) ::= expr(A) likeop(OP) expr(Y). [LIKE_KW] { 1105 ExprList *pList; 1106 int bNot = OP.n & 0x80000000; 1107 OP.n &= 0x7fffffff; 1108 pList = sqlite3ExprListAppend(pParse,0, Y); 1109 pList = sqlite3ExprListAppend(pParse,pList, A); 1110 A = sqlite3ExprFunction(pParse, pList, &OP, 0); 1111 if( bNot ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1112 if( A ) A->flags |= EP_InfixFunc; 1113 } 1114 expr(A) ::= expr(A) likeop(OP) expr(Y) ESCAPE expr(E). [LIKE_KW] { 1115 ExprList *pList; 1116 int bNot = OP.n & 0x80000000; 1117 OP.n &= 0x7fffffff; 1118 pList = sqlite3ExprListAppend(pParse,0, Y); 1119 pList = sqlite3ExprListAppend(pParse,pList, A); 1120 pList = sqlite3ExprListAppend(pParse,pList, E); 1121 A = sqlite3ExprFunction(pParse, pList, &OP, 0); 1122 if( bNot ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1123 if( A ) A->flags |= EP_InfixFunc; 1124 } 1125 1126 expr(A) ::= expr(A) ISNULL|NOTNULL(E). {A = sqlite3PExpr(pParse,@E,A,0);} 1127 expr(A) ::= expr(A) NOT NULL. {A = sqlite3PExpr(pParse,TK_NOTNULL,A,0);} 1128 1129 %include { 1130 /* A routine to convert a binary TK_IS or TK_ISNOT expression into a 1131 ** unary TK_ISNULL or TK_NOTNULL expression. */ 1132 static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){ 1133 sqlite3 *db = pParse->db; 1134 if( pA && pY && pY->op==TK_NULL && !IN_RENAME_OBJECT ){ 1135 pA->op = (u8)op; 1136 sqlite3ExprDelete(db, pA->pRight); 1137 pA->pRight = 0; 1138 } 1139 } 1140 } 1141 1142 // expr1 IS expr2 1143 // expr1 IS NOT expr2 1144 // 1145 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL. If expr2 1146 // is any other expression, code as TK_IS or TK_ISNOT. 1147 // 1148 expr(A) ::= expr(A) IS expr(Y). { 1149 A = sqlite3PExpr(pParse,TK_IS,A,Y); 1150 binaryToUnaryIfNull(pParse, Y, A, TK_ISNULL); 1151 } 1152 expr(A) ::= expr(A) IS NOT expr(Y). { 1153 A = sqlite3PExpr(pParse,TK_ISNOT,A,Y); 1154 binaryToUnaryIfNull(pParse, Y, A, TK_NOTNULL); 1155 } 1156 1157 expr(A) ::= NOT(B) expr(X). 1158 {A = sqlite3PExpr(pParse, @B, X, 0);/*A-overwrites-B*/} 1159 expr(A) ::= BITNOT(B) expr(X). 1160 {A = sqlite3PExpr(pParse, @B, X, 0);/*A-overwrites-B*/} 1161 expr(A) ::= PLUS|MINUS(B) expr(X). [BITNOT] { 1162 A = sqlite3PExpr(pParse, @B==TK_PLUS ? TK_UPLUS : TK_UMINUS, X, 0); 1163 /*A-overwrites-B*/ 1164 } 1165 1166 %type between_op {int} 1167 between_op(A) ::= BETWEEN. {A = 0;} 1168 between_op(A) ::= NOT BETWEEN. {A = 1;} 1169 expr(A) ::= expr(A) between_op(N) expr(X) AND expr(Y). [BETWEEN] { 1170 ExprList *pList = sqlite3ExprListAppend(pParse,0, X); 1171 pList = sqlite3ExprListAppend(pParse,pList, Y); 1172 A = sqlite3PExpr(pParse, TK_BETWEEN, A, 0); 1173 if( A ){ 1174 A->x.pList = pList; 1175 }else{ 1176 sqlite3ExprListDelete(pParse->db, pList); 1177 } 1178 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1179 } 1180 %ifndef SQLITE_OMIT_SUBQUERY 1181 %type in_op {int} 1182 in_op(A) ::= IN. {A = 0;} 1183 in_op(A) ::= NOT IN. {A = 1;} 1184 expr(A) ::= expr(A) in_op(N) LP exprlist(Y) RP. [IN] { 1185 if( Y==0 ){ 1186 /* Expressions of the form 1187 ** 1188 ** expr1 IN () 1189 ** expr1 NOT IN () 1190 ** 1191 ** simplify to constants 0 (false) and 1 (true), respectively, 1192 ** regardless of the value of expr1. 1193 */ 1194 sqlite3ExprUnmapAndDelete(pParse, A); 1195 A = sqlite3Expr(pParse->db, TK_INTEGER, N ? "1" : "0"); 1196 }else if( 0 && Y->nExpr==1 && sqlite3ExprIsConstant(Y->a[0].pExpr) ){ 1197 Expr *pRHS = Y->a[0].pExpr; 1198 Y->a[0].pExpr = 0; 1199 sqlite3ExprListDelete(pParse->db, Y); 1200 A = sqlite3PExpr(pParse, TK_EQ, A, pRHS); 1201 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1202 }else{ 1203 A = sqlite3PExpr(pParse, TK_IN, A, 0); 1204 if( A ){ 1205 A->x.pList = Y; 1206 sqlite3ExprSetHeightAndFlags(pParse, A); 1207 }else{ 1208 sqlite3ExprListDelete(pParse->db, Y); 1209 } 1210 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1211 } 1212 } 1213 expr(A) ::= LP select(X) RP. { 1214 A = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 1215 sqlite3PExprAddSelect(pParse, A, X); 1216 } 1217 expr(A) ::= expr(A) in_op(N) LP select(Y) RP. [IN] { 1218 A = sqlite3PExpr(pParse, TK_IN, A, 0); 1219 sqlite3PExprAddSelect(pParse, A, Y); 1220 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1221 } 1222 expr(A) ::= expr(A) in_op(N) nm(Y) dbnm(Z) paren_exprlist(E). [IN] { 1223 SrcList *pSrc = sqlite3SrcListAppend(pParse, 0,&Y,&Z); 1224 Select *pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0); 1225 if( E ) sqlite3SrcListFuncArgs(pParse, pSelect ? pSrc : 0, E); 1226 A = sqlite3PExpr(pParse, TK_IN, A, 0); 1227 sqlite3PExprAddSelect(pParse, A, pSelect); 1228 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1229 } 1230 expr(A) ::= EXISTS LP select(Y) RP. { 1231 Expr *p; 1232 p = A = sqlite3PExpr(pParse, TK_EXISTS, 0, 0); 1233 sqlite3PExprAddSelect(pParse, p, Y); 1234 } 1235 %endif SQLITE_OMIT_SUBQUERY 1236 1237 /* CASE expressions */ 1238 expr(A) ::= CASE case_operand(X) case_exprlist(Y) case_else(Z) END. { 1239 A = sqlite3PExpr(pParse, TK_CASE, X, 0); 1240 if( A ){ 1241 A->x.pList = Z ? sqlite3ExprListAppend(pParse,Y,Z) : Y; 1242 sqlite3ExprSetHeightAndFlags(pParse, A); 1243 }else{ 1244 sqlite3ExprListDelete(pParse->db, Y); 1245 sqlite3ExprDelete(pParse->db, Z); 1246 } 1247 } 1248 %type case_exprlist {ExprList*} 1249 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1250 case_exprlist(A) ::= case_exprlist(A) WHEN expr(Y) THEN expr(Z). { 1251 A = sqlite3ExprListAppend(pParse,A, Y); 1252 A = sqlite3ExprListAppend(pParse,A, Z); 1253 } 1254 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). { 1255 A = sqlite3ExprListAppend(pParse,0, Y); 1256 A = sqlite3ExprListAppend(pParse,A, Z); 1257 } 1258 %type case_else {Expr*} 1259 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);} 1260 case_else(A) ::= ELSE expr(X). {A = X;} 1261 case_else(A) ::= . {A = 0;} 1262 %type case_operand {Expr*} 1263 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);} 1264 case_operand(A) ::= expr(X). {A = X; /*A-overwrites-X*/} 1265 case_operand(A) ::= . {A = 0;} 1266 1267 %type exprlist {ExprList*} 1268 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1269 %type nexprlist {ExprList*} 1270 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);} 1271 1272 exprlist(A) ::= nexprlist(A). 1273 exprlist(A) ::= . {A = 0;} 1274 nexprlist(A) ::= nexprlist(A) COMMA expr(Y). 1275 {A = sqlite3ExprListAppend(pParse,A,Y);} 1276 nexprlist(A) ::= expr(Y). 1277 {A = sqlite3ExprListAppend(pParse,0,Y); /*A-overwrites-Y*/} 1278 1279 %ifndef SQLITE_OMIT_SUBQUERY 1280 /* A paren_exprlist is an optional expression list contained inside 1281 ** of parenthesis */ 1282 %type paren_exprlist {ExprList*} 1283 %destructor paren_exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1284 paren_exprlist(A) ::= . {A = 0;} 1285 paren_exprlist(A) ::= LP exprlist(X) RP. {A = X;} 1286 %endif SQLITE_OMIT_SUBQUERY 1287 1288 1289 ///////////////////////////// The CREATE INDEX command /////////////////////// 1290 // 1291 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D) 1292 ON nm(Y) LP sortlist(Z) RP where_opt(W). { 1293 sqlite3CreateIndex(pParse, &X, &D, 1294 sqlite3SrcListAppend(pParse,0,&Y,0), Z, U, 1295 &S, W, SQLITE_SO_ASC, NE, SQLITE_IDXTYPE_APPDEF); 1296 if( IN_RENAME_OBJECT && pParse->pNewIndex ){ 1297 sqlite3RenameTokenMap(pParse, pParse->pNewIndex->zName, &Y); 1298 } 1299 } 1300 1301 %type uniqueflag {int} 1302 uniqueflag(A) ::= UNIQUE. {A = OE_Abort;} 1303 uniqueflag(A) ::= . {A = OE_None;} 1304 1305 1306 // The eidlist non-terminal (Expression Id List) generates an ExprList 1307 // from a list of identifiers. The identifier names are in ExprList.a[].zName. 1308 // This list is stored in an ExprList rather than an IdList so that it 1309 // can be easily sent to sqlite3ColumnsExprList(). 1310 // 1311 // eidlist is grouped with CREATE INDEX because it used to be the non-terminal 1312 // used for the arguments to an index. That is just an historical accident. 1313 // 1314 // IMPORTANT COMPATIBILITY NOTE: Some prior versions of SQLite accepted 1315 // COLLATE clauses and ASC or DESC keywords on ID lists in inappropriate 1316 // places - places that might have been stored in the sqlite_master schema. 1317 // Those extra features were ignored. But because they might be in some 1318 // (busted) old databases, we need to continue parsing them when loading 1319 // historical schemas. 1320 // 1321 %type eidlist {ExprList*} 1322 %destructor eidlist {sqlite3ExprListDelete(pParse->db, $$);} 1323 %type eidlist_opt {ExprList*} 1324 %destructor eidlist_opt {sqlite3ExprListDelete(pParse->db, $$);} 1325 1326 %include { 1327 /* Add a single new term to an ExprList that is used to store a 1328 ** list of identifiers. Report an error if the ID list contains 1329 ** a COLLATE clause or an ASC or DESC keyword, except ignore the 1330 ** error while parsing a legacy schema. 1331 */ 1332 static ExprList *parserAddExprIdListTerm( 1333 Parse *pParse, 1334 ExprList *pPrior, 1335 Token *pIdToken, 1336 int hasCollate, 1337 int sortOrder 1338 ){ 1339 ExprList *p = sqlite3ExprListAppend(pParse, pPrior, 0); 1340 if( (hasCollate || sortOrder!=SQLITE_SO_UNDEFINED) 1341 && pParse->db->init.busy==0 1342 ){ 1343 sqlite3ErrorMsg(pParse, "syntax error after column name \"%.*s\"", 1344 pIdToken->n, pIdToken->z); 1345 } 1346 sqlite3ExprListSetName(pParse, p, pIdToken, 1); 1347 return p; 1348 } 1349 } // end %include 1350 1351 eidlist_opt(A) ::= . {A = 0;} 1352 eidlist_opt(A) ::= LP eidlist(X) RP. {A = X;} 1353 eidlist(A) ::= eidlist(A) COMMA nm(Y) collate(C) sortorder(Z). { 1354 A = parserAddExprIdListTerm(pParse, A, &Y, C, Z); 1355 } 1356 eidlist(A) ::= nm(Y) collate(C) sortorder(Z). { 1357 A = parserAddExprIdListTerm(pParse, 0, &Y, C, Z); /*A-overwrites-Y*/ 1358 } 1359 1360 %type collate {int} 1361 collate(C) ::= . {C = 0;} 1362 collate(C) ::= COLLATE ids. {C = 1;} 1363 1364 1365 ///////////////////////////// The DROP INDEX command ///////////////////////// 1366 // 1367 cmd ::= DROP INDEX ifexists(E) fullname(X). {sqlite3DropIndex(pParse, X, E);} 1368 1369 ///////////////////////////// The VACUUM command ///////////////////////////// 1370 // 1371 %ifndef SQLITE_OMIT_VACUUM 1372 %ifndef SQLITE_OMIT_ATTACH 1373 %type vinto {Expr*} 1374 %destructor vinto {sqlite3ExprDelete(pParse->db, $$);} 1375 cmd ::= VACUUM vinto(Y). {sqlite3Vacuum(pParse,0,Y);} 1376 cmd ::= VACUUM nm(X) vinto(Y). {sqlite3Vacuum(pParse,&X,Y);} 1377 vinto(A) ::= INTO expr(X). {A = X;} 1378 vinto(A) ::= . {A = 0;} 1379 %endif SQLITE_OMIT_ATTACH 1380 %endif SQLITE_OMIT_VACUUM 1381 1382 ///////////////////////////// The PRAGMA command ///////////////////////////// 1383 // 1384 %ifndef SQLITE_OMIT_PRAGMA 1385 cmd ::= PRAGMA nm(X) dbnm(Z). {sqlite3Pragma(pParse,&X,&Z,0,0);} 1386 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1387 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1388 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y). 1389 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1390 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP. 1391 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1392 1393 nmnum(A) ::= plus_num(A). 1394 nmnum(A) ::= nm(A). 1395 nmnum(A) ::= ON(A). 1396 nmnum(A) ::= DELETE(A). 1397 nmnum(A) ::= DEFAULT(A). 1398 %endif SQLITE_OMIT_PRAGMA 1399 %token_class number INTEGER|FLOAT. 1400 plus_num(A) ::= PLUS number(X). {A = X;} 1401 plus_num(A) ::= number(A). 1402 minus_num(A) ::= MINUS number(X). {A = X;} 1403 //////////////////////////// The CREATE TRIGGER command ///////////////////// 1404 1405 %ifndef SQLITE_OMIT_TRIGGER 1406 1407 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). { 1408 Token all; 1409 all.z = A.z; 1410 all.n = (int)(Z.z - A.z) + Z.n; 1411 sqlite3FinishTrigger(pParse, S, &all); 1412 } 1413 1414 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z) 1415 trigger_time(C) trigger_event(D) 1416 ON fullname(E) foreach_clause when_clause(G). { 1417 sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR); 1418 A = (Z.n==0?B:Z); /*A-overwrites-T*/ 1419 } 1420 1421 %type trigger_time {int} 1422 trigger_time(A) ::= BEFORE|AFTER(X). { A = @X; /*A-overwrites-X*/ } 1423 trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;} 1424 trigger_time(A) ::= . { A = TK_BEFORE; } 1425 1426 %type trigger_event {struct TrigEvent} 1427 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);} 1428 trigger_event(A) ::= DELETE|INSERT(X). {A.a = @X; /*A-overwrites-X*/ A.b = 0;} 1429 trigger_event(A) ::= UPDATE(X). {A.a = @X; /*A-overwrites-X*/ A.b = 0;} 1430 trigger_event(A) ::= UPDATE OF idlist(X).{A.a = TK_UPDATE; A.b = X;} 1431 1432 foreach_clause ::= . 1433 foreach_clause ::= FOR EACH ROW. 1434 1435 %type when_clause {Expr*} 1436 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);} 1437 when_clause(A) ::= . { A = 0; } 1438 when_clause(A) ::= WHEN expr(X). { A = X; } 1439 1440 %type trigger_cmd_list {TriggerStep*} 1441 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);} 1442 trigger_cmd_list(A) ::= trigger_cmd_list(A) trigger_cmd(X) SEMI. { 1443 assert( A!=0 ); 1444 A->pLast->pNext = X; 1445 A->pLast = X; 1446 } 1447 trigger_cmd_list(A) ::= trigger_cmd(A) SEMI. { 1448 assert( A!=0 ); 1449 A->pLast = A; 1450 } 1451 1452 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements 1453 // within a trigger. The table to INSERT, UPDATE, or DELETE is always in 1454 // the same database as the table that the trigger fires on. 1455 // 1456 %type trnm {Token} 1457 trnm(A) ::= nm(A). 1458 trnm(A) ::= nm DOT nm(X). { 1459 A = X; 1460 sqlite3ErrorMsg(pParse, 1461 "qualified table names are not allowed on INSERT, UPDATE, and DELETE " 1462 "statements within triggers"); 1463 } 1464 1465 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE 1466 // statements within triggers. We make a specific error message for this 1467 // since it is an exception to the default grammar rules. 1468 // 1469 tridxby ::= . 1470 tridxby ::= INDEXED BY nm. { 1471 sqlite3ErrorMsg(pParse, 1472 "the INDEXED BY clause is not allowed on UPDATE or DELETE statements " 1473 "within triggers"); 1474 } 1475 tridxby ::= NOT INDEXED. { 1476 sqlite3ErrorMsg(pParse, 1477 "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements " 1478 "within triggers"); 1479 } 1480 1481 1482 1483 %type trigger_cmd {TriggerStep*} 1484 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);} 1485 // UPDATE 1486 trigger_cmd(A) ::= 1487 UPDATE(B) orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z) scanpt(E). 1488 {A = sqlite3TriggerUpdateStep(pParse, &X, Y, Z, R, B.z, E);} 1489 1490 // INSERT 1491 trigger_cmd(A) ::= scanpt(B) insert_cmd(R) INTO 1492 trnm(X) idlist_opt(F) select(S) upsert(U) scanpt(Z). { 1493 A = sqlite3TriggerInsertStep(pParse,&X,F,S,R,U,B,Z);/*A-overwrites-R*/ 1494 } 1495 // DELETE 1496 trigger_cmd(A) ::= DELETE(B) FROM trnm(X) tridxby where_opt(Y) scanpt(E). 1497 {A = sqlite3TriggerDeleteStep(pParse, &X, Y, B.z, E);} 1498 1499 // SELECT 1500 trigger_cmd(A) ::= scanpt(B) select(X) scanpt(E). 1501 {A = sqlite3TriggerSelectStep(pParse->db, X, B, E); /*A-overwrites-X*/} 1502 1503 // The special RAISE expression that may occur in trigger programs 1504 expr(A) ::= RAISE LP IGNORE RP. { 1505 A = sqlite3PExpr(pParse, TK_RAISE, 0, 0); 1506 if( A ){ 1507 A->affExpr = OE_Ignore; 1508 } 1509 } 1510 expr(A) ::= RAISE LP raisetype(T) COMMA nm(Z) RP. { 1511 A = sqlite3ExprAlloc(pParse->db, TK_RAISE, &Z, 1); 1512 if( A ) { 1513 A->affExpr = (char)T; 1514 } 1515 } 1516 %endif !SQLITE_OMIT_TRIGGER 1517 1518 %type raisetype {int} 1519 raisetype(A) ::= ROLLBACK. {A = OE_Rollback;} 1520 raisetype(A) ::= ABORT. {A = OE_Abort;} 1521 raisetype(A) ::= FAIL. {A = OE_Fail;} 1522 1523 1524 //////////////////////// DROP TRIGGER statement ////////////////////////////// 1525 %ifndef SQLITE_OMIT_TRIGGER 1526 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). { 1527 sqlite3DropTrigger(pParse,X,NOERR); 1528 } 1529 %endif !SQLITE_OMIT_TRIGGER 1530 1531 //////////////////////// ATTACH DATABASE file AS name ///////////////////////// 1532 %ifndef SQLITE_OMIT_ATTACH 1533 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). { 1534 sqlite3Attach(pParse, F, D, K); 1535 } 1536 cmd ::= DETACH database_kw_opt expr(D). { 1537 sqlite3Detach(pParse, D); 1538 } 1539 1540 %type key_opt {Expr*} 1541 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);} 1542 key_opt(A) ::= . { A = 0; } 1543 key_opt(A) ::= KEY expr(X). { A = X; } 1544 1545 database_kw_opt ::= DATABASE. 1546 database_kw_opt ::= . 1547 %endif SQLITE_OMIT_ATTACH 1548 1549 ////////////////////////// REINDEX collation ////////////////////////////////// 1550 %ifndef SQLITE_OMIT_REINDEX 1551 cmd ::= REINDEX. {sqlite3Reindex(pParse, 0, 0);} 1552 cmd ::= REINDEX nm(X) dbnm(Y). {sqlite3Reindex(pParse, &X, &Y);} 1553 %endif SQLITE_OMIT_REINDEX 1554 1555 /////////////////////////////////// ANALYZE /////////////////////////////////// 1556 %ifndef SQLITE_OMIT_ANALYZE 1557 cmd ::= ANALYZE. {sqlite3Analyze(pParse, 0, 0);} 1558 cmd ::= ANALYZE nm(X) dbnm(Y). {sqlite3Analyze(pParse, &X, &Y);} 1559 %endif 1560 1561 //////////////////////// ALTER TABLE table ... //////////////////////////////// 1562 %ifndef SQLITE_OMIT_ALTERTABLE 1563 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). { 1564 sqlite3AlterRenameTable(pParse,X,&Z); 1565 } 1566 cmd ::= ALTER TABLE add_column_fullname 1567 ADD kwcolumn_opt columnname(Y) carglist. { 1568 Y.n = (int)(pParse->sLastToken.z-Y.z) + pParse->sLastToken.n; 1569 sqlite3AlterFinishAddColumn(pParse, &Y); 1570 } 1571 add_column_fullname ::= fullname(X). { 1572 disableLookaside(pParse); 1573 sqlite3AlterBeginAddColumn(pParse, X); 1574 } 1575 cmd ::= ALTER TABLE fullname(X) RENAME kwcolumn_opt nm(Y) TO nm(Z). { 1576 sqlite3AlterRenameColumn(pParse, X, &Y, &Z); 1577 } 1578 1579 kwcolumn_opt ::= . 1580 kwcolumn_opt ::= COLUMNKW. 1581 1582 %endif SQLITE_OMIT_ALTERTABLE 1583 1584 //////////////////////// CREATE VIRTUAL TABLE ... ///////////////////////////// 1585 %ifndef SQLITE_OMIT_VIRTUALTABLE 1586 cmd ::= create_vtab. {sqlite3VtabFinishParse(pParse,0);} 1587 cmd ::= create_vtab LP vtabarglist RP(X). {sqlite3VtabFinishParse(pParse,&X);} 1588 create_vtab ::= createkw VIRTUAL TABLE ifnotexists(E) 1589 nm(X) dbnm(Y) USING nm(Z). { 1590 sqlite3VtabBeginParse(pParse, &X, &Y, &Z, E); 1591 } 1592 vtabarglist ::= vtabarg. 1593 vtabarglist ::= vtabarglist COMMA vtabarg. 1594 vtabarg ::= . {sqlite3VtabArgInit(pParse);} 1595 vtabarg ::= vtabarg vtabargtoken. 1596 vtabargtoken ::= ANY(X). {sqlite3VtabArgExtend(pParse,&X);} 1597 vtabargtoken ::= lp anylist RP(X). {sqlite3VtabArgExtend(pParse,&X);} 1598 lp ::= LP(X). {sqlite3VtabArgExtend(pParse,&X);} 1599 anylist ::= . 1600 anylist ::= anylist LP anylist RP. 1601 anylist ::= anylist ANY. 1602 %endif SQLITE_OMIT_VIRTUALTABLE 1603 1604 1605 //////////////////////// COMMON TABLE EXPRESSIONS //////////////////////////// 1606 %type wqlist {With*} 1607 %destructor wqlist {sqlite3WithDelete(pParse->db, $$);} 1608 1609 with ::= . 1610 %ifndef SQLITE_OMIT_CTE 1611 with ::= WITH wqlist(W). { sqlite3WithPush(pParse, W, 1); } 1612 with ::= WITH RECURSIVE wqlist(W). { sqlite3WithPush(pParse, W, 1); } 1613 1614 wqlist(A) ::= nm(X) eidlist_opt(Y) AS LP select(Z) RP. { 1615 A = sqlite3WithAdd(pParse, 0, &X, Y, Z); /*A-overwrites-X*/ 1616 } 1617 wqlist(A) ::= wqlist(A) COMMA nm(X) eidlist_opt(Y) AS LP select(Z) RP. { 1618 A = sqlite3WithAdd(pParse, A, &X, Y, Z); 1619 } 1620 %endif SQLITE_OMIT_CTE 1621 1622 //////////////////////// WINDOW FUNCTION EXPRESSIONS ///////////////////////// 1623 // These must be at the end of this file. Specifically, the rules that 1624 // introduce tokens WINDOW, OVER and FILTER must appear last. This causes 1625 // the integer values assigned to these tokens to be larger than all other 1626 // tokens that may be output by the tokenizer except TK_SPACE and TK_ILLEGAL. 1627 // 1628 %ifndef SQLITE_OMIT_WINDOWFUNC 1629 %type windowdefn_list {Window*} 1630 %destructor windowdefn_list {sqlite3WindowListDelete(pParse->db, $$);} 1631 windowdefn_list(A) ::= windowdefn(Z). { A = Z; } 1632 windowdefn_list(A) ::= windowdefn_list(Y) COMMA windowdefn(Z). { 1633 assert( Z!=0 ); 1634 sqlite3WindowChain(pParse, Z, Y); 1635 Z->pNextWin = Y; 1636 A = Z; 1637 } 1638 1639 %type windowdefn {Window*} 1640 %destructor windowdefn {sqlite3WindowDelete(pParse->db, $$);} 1641 windowdefn(A) ::= nm(X) AS LP window(Y) RP. { 1642 if( ALWAYS(Y) ){ 1643 Y->zName = sqlite3DbStrNDup(pParse->db, X.z, X.n); 1644 } 1645 A = Y; 1646 } 1647 1648 %type window {Window*} 1649 %destructor window {sqlite3WindowDelete(pParse->db, $$);} 1650 1651 %type frame_opt {Window*} 1652 %destructor frame_opt {sqlite3WindowDelete(pParse->db, $$);} 1653 1654 %type part_opt {ExprList*} 1655 %destructor part_opt {sqlite3ExprListDelete(pParse->db, $$);} 1656 1657 %type filter_clause {Expr*} 1658 %destructor filter_clause {sqlite3ExprDelete(pParse->db, $$);} 1659 1660 %type over_clause {Window*} 1661 %destructor over_clause {sqlite3WindowDelete(pParse->db, $$);} 1662 1663 %type filter_over {Window*} 1664 %destructor filter_over {sqlite3WindowDelete(pParse->db, $$);} 1665 1666 %type range_or_rows {int} 1667 1668 %type frame_bound {struct FrameBound} 1669 %destructor frame_bound {sqlite3ExprDelete(pParse->db, $$.pExpr);} 1670 %type frame_bound_s {struct FrameBound} 1671 %destructor frame_bound_s {sqlite3ExprDelete(pParse->db, $$.pExpr);} 1672 %type frame_bound_e {struct FrameBound} 1673 %destructor frame_bound_e {sqlite3ExprDelete(pParse->db, $$.pExpr);} 1674 1675 window(A) ::= PARTITION BY nexprlist(X) orderby_opt(Y) frame_opt(Z). { 1676 A = sqlite3WindowAssemble(pParse, Z, X, Y, 0); 1677 } 1678 window(A) ::= nm(W) PARTITION BY nexprlist(X) orderby_opt(Y) frame_opt(Z). { 1679 A = sqlite3WindowAssemble(pParse, Z, X, Y, &W); 1680 } 1681 window(A) ::= ORDER BY sortlist(Y) frame_opt(Z). { 1682 A = sqlite3WindowAssemble(pParse, Z, 0, Y, 0); 1683 } 1684 window(A) ::= nm(W) ORDER BY sortlist(Y) frame_opt(Z). { 1685 A = sqlite3WindowAssemble(pParse, Z, 0, Y, &W); 1686 } 1687 window(A) ::= frame_opt(Z). { 1688 A = Z; 1689 } 1690 window(A) ::= nm(W) frame_opt(Z). { 1691 A = sqlite3WindowAssemble(pParse, Z, 0, 0, &W); 1692 } 1693 1694 frame_opt(A) ::= . { 1695 A = sqlite3WindowAlloc(pParse, 0, TK_UNBOUNDED, 0, TK_CURRENT, 0, 0); 1696 } 1697 frame_opt(A) ::= range_or_rows(X) frame_bound_s(Y) frame_exclude_opt(Z). { 1698 A = sqlite3WindowAlloc(pParse, X, Y.eType, Y.pExpr, TK_CURRENT, 0, Z); 1699 } 1700 frame_opt(A) ::= range_or_rows(X) BETWEEN frame_bound_s(Y) AND 1701 frame_bound_e(Z) frame_exclude_opt(W). { 1702 A = sqlite3WindowAlloc(pParse, X, Y.eType, Y.pExpr, Z.eType, Z.pExpr, W); 1703 } 1704 1705 range_or_rows(A) ::= RANGE|ROWS|GROUPS(X). {A = @X; /*A-overwrites-X*/} 1706 1707 frame_bound_s(A) ::= frame_bound(X). {A = X;} 1708 frame_bound_s(A) ::= UNBOUNDED(X) PRECEDING. {A.eType = @X; A.pExpr = 0;} 1709 frame_bound_e(A) ::= frame_bound(X). {A = X;} 1710 frame_bound_e(A) ::= UNBOUNDED(X) FOLLOWING. {A.eType = @X; A.pExpr = 0;} 1711 1712 frame_bound(A) ::= expr(X) PRECEDING|FOLLOWING(Y). 1713 {A.eType = @Y; A.pExpr = X;} 1714 frame_bound(A) ::= CURRENT(X) ROW. {A.eType = @X; A.pExpr = 0;} 1715 1716 %type frame_exclude_opt {u8} 1717 frame_exclude_opt(A) ::= . {A = 0;} 1718 frame_exclude_opt(A) ::= EXCLUDE frame_exclude(X). {A = X;} 1719 1720 %type frame_exclude {u8} 1721 frame_exclude(A) ::= NO(X) OTHERS. {A = @X; /*A-overwrites-X*/} 1722 frame_exclude(A) ::= CURRENT(X) ROW. {A = @X; /*A-overwrites-X*/} 1723 frame_exclude(A) ::= GROUP|TIES(X). {A = @X; /*A-overwrites-X*/} 1724 1725 1726 %type window_clause {Window*} 1727 %destructor window_clause {sqlite3WindowListDelete(pParse->db, $$);} 1728 window_clause(A) ::= WINDOW windowdefn_list(B). { A = B; } 1729 1730 filter_over(A) ::= filter_clause(F) over_clause(O). { 1731 O->pFilter = F; 1732 A = O; 1733 } 1734 filter_over(A) ::= over_clause(O). { 1735 A = O; 1736 } 1737 filter_over(A) ::= filter_clause(F). { 1738 A = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); 1739 if( A ){ 1740 A->eFrmType = TK_FILTER; 1741 A->pFilter = F; 1742 }else{ 1743 sqlite3ExprDelete(pParse->db, F); 1744 } 1745 } 1746 1747 over_clause(A) ::= OVER LP window(Z) RP. { 1748 A = Z; 1749 assert( A!=0 ); 1750 } 1751 over_clause(A) ::= OVER nm(Z). { 1752 A = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); 1753 if( A ){ 1754 A->zName = sqlite3DbStrNDup(pParse->db, Z.z, Z.n); 1755 } 1756 } 1757 1758 filter_clause(A) ::= FILTER LP WHERE expr(X) RP. { A = X; } 1759 %endif /* SQLITE_OMIT_WINDOWFUNC */ 1760 1761 /* 1762 ** The code generator needs some extra TK_ token values for tokens that 1763 ** are synthesized and do not actually appear in the grammar: 1764 */ 1765 %token 1766 COLUMN /* Reference to a table column */ 1767 AGG_FUNCTION /* An aggregate function */ 1768 AGG_COLUMN /* An aggregated column */ 1769 TRUEFALSE /* True or false keyword */ 1770 ISNOT /* Combination of IS and NOT */ 1771 FUNCTION /* A function invocation */ 1772 UMINUS /* Unary minus */ 1773 UPLUS /* Unary plus */ 1774 TRUTH /* IS TRUE or IS FALSE or IS NOT TRUE or IS NOT FALSE */ 1775 REGISTER /* Reference to a VDBE register */ 1776 VECTOR /* Vector */ 1777 SELECT_COLUMN /* Choose a single column from a multi-column SELECT */ 1778 IF_NULL_ROW /* the if-null-row operator */ 1779 ASTERISK /* The "*" in count(*) and similar */ 1780 SPAN /* The span operator */ 1781 . 1782 /* There must be no more than 255 tokens defined above. If this grammar 1783 ** is extended with new rules and tokens, they must either be so few in 1784 ** number that TK_SPAN is no more than 255, or else the new tokens must 1785 ** appear after this line. 1786 */ 1787 %include { 1788 #if TK_SPAN>255 1789 # error too many tokens in the grammar 1790 #endif 1791 } 1792 1793 /* 1794 ** The TK_SPACE and TK_ILLEGAL tokens must be the last two tokens. The 1795 ** parser depends on this. Those tokens are not used in any grammar rule. 1796 ** They are only used by the tokenizer. Declare them last so that they 1797 ** are guaranteed to be the last two tokens 1798 */ 1799 %token SPACE ILLEGAL. 1800