1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains SQLite's grammar for SQL. Process this file 13 ** using the lemon parser generator to generate C code that runs 14 ** the parser. Lemon will also generate a header file containing 15 ** numeric codes for all of the tokens. 16 */ 17 18 // All token codes are small integers with #defines that begin with "TK_" 19 %token_prefix TK_ 20 21 // The type of the data attached to each token is Token. This is also the 22 // default type for non-terminals. 23 // 24 %token_type {Token} 25 %default_type {Token} 26 27 // The generated parser function takes a 4th argument as follows: 28 %extra_argument {Parse *pParse} 29 30 // This code runs whenever there is a syntax error 31 // 32 %syntax_error { 33 UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */ 34 if( TOKEN.z[0] ){ 35 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN); 36 }else{ 37 sqlite3ErrorMsg(pParse, "incomplete input"); 38 } 39 } 40 %stack_overflow { 41 sqlite3ErrorMsg(pParse, "parser stack overflow"); 42 } 43 44 // The name of the generated procedure that implements the parser 45 // is as follows: 46 %name sqlite3Parser 47 48 // The following text is included near the beginning of the C source 49 // code file that implements the parser. 50 // 51 %include { 52 #include "sqliteInt.h" 53 54 /* 55 ** Disable all error recovery processing in the parser push-down 56 ** automaton. 57 */ 58 #define YYNOERRORRECOVERY 1 59 60 /* 61 ** Make yytestcase() the same as testcase() 62 */ 63 #define yytestcase(X) testcase(X) 64 65 /* 66 ** Indicate that sqlite3ParserFree() will never be called with a null 67 ** pointer. 68 */ 69 #define YYPARSEFREENEVERNULL 1 70 71 /* 72 ** In the amalgamation, the parse.c file generated by lemon and the 73 ** tokenize.c file are concatenated. In that case, sqlite3RunParser() 74 ** has access to the the size of the yyParser object and so the parser 75 ** engine can be allocated from stack. In that case, only the 76 ** sqlite3ParserInit() and sqlite3ParserFinalize() routines are invoked 77 ** and the sqlite3ParserAlloc() and sqlite3ParserFree() routines can be 78 ** omitted. 79 */ 80 #ifdef SQLITE_AMALGAMATION 81 # define sqlite3Parser_ENGINEALWAYSONSTACK 1 82 #endif 83 84 /* 85 ** Alternative datatype for the argument to the malloc() routine passed 86 ** into sqlite3ParserAlloc(). The default is size_t. 87 */ 88 #define YYMALLOCARGTYPE u64 89 90 /* 91 ** An instance of the following structure describes the event of a 92 ** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT, 93 ** TK_DELETE, or TK_INSTEAD. If the event is of the form 94 ** 95 ** UPDATE ON (a,b,c) 96 ** 97 ** Then the "b" IdList records the list "a,b,c". 98 */ 99 struct TrigEvent { int a; IdList * b; }; 100 101 /* 102 ** Disable lookaside memory allocation for objects that might be 103 ** shared across database connections. 104 */ 105 static void disableLookaside(Parse *pParse){ 106 pParse->disableLookaside++; 107 pParse->db->lookaside.bDisable++; 108 } 109 110 } // end %include 111 112 // Input is a single SQL command 113 input ::= cmdlist. 114 cmdlist ::= cmdlist ecmd. 115 cmdlist ::= ecmd. 116 ecmd ::= SEMI. 117 ecmd ::= explain cmdx SEMI. 118 explain ::= . 119 %ifndef SQLITE_OMIT_EXPLAIN 120 explain ::= EXPLAIN. { pParse->explain = 1; } 121 explain ::= EXPLAIN QUERY PLAN. { pParse->explain = 2; } 122 %endif SQLITE_OMIT_EXPLAIN 123 cmdx ::= cmd. { sqlite3FinishCoding(pParse); } 124 125 ///////////////////// Begin and end transactions. //////////////////////////// 126 // 127 128 cmd ::= BEGIN transtype(Y) trans_opt. {sqlite3BeginTransaction(pParse, Y);} 129 trans_opt ::= . 130 trans_opt ::= TRANSACTION. 131 trans_opt ::= TRANSACTION nm. 132 %type transtype {int} 133 transtype(A) ::= . {A = TK_DEFERRED;} 134 transtype(A) ::= DEFERRED(X). {A = @X; /*A-overwrites-X*/} 135 transtype(A) ::= IMMEDIATE(X). {A = @X; /*A-overwrites-X*/} 136 transtype(A) ::= EXCLUSIVE(X). {A = @X; /*A-overwrites-X*/} 137 cmd ::= COMMIT|END(X) trans_opt. {sqlite3EndTransaction(pParse,@X);} 138 cmd ::= ROLLBACK(X) trans_opt. {sqlite3EndTransaction(pParse,@X);} 139 140 savepoint_opt ::= SAVEPOINT. 141 savepoint_opt ::= . 142 cmd ::= SAVEPOINT nm(X). { 143 sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X); 144 } 145 cmd ::= RELEASE savepoint_opt nm(X). { 146 sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X); 147 } 148 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). { 149 sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X); 150 } 151 152 ///////////////////// The CREATE TABLE statement //////////////////////////// 153 // 154 cmd ::= create_table create_table_args. 155 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). { 156 sqlite3StartTable(pParse,&Y,&Z,T,0,0,E); 157 } 158 createkw(A) ::= CREATE(A). {disableLookaside(pParse);} 159 160 %type ifnotexists {int} 161 ifnotexists(A) ::= . {A = 0;} 162 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;} 163 %type temp {int} 164 %ifndef SQLITE_OMIT_TEMPDB 165 temp(A) ::= TEMP. {A = 1;} 166 %endif SQLITE_OMIT_TEMPDB 167 temp(A) ::= . {A = 0;} 168 create_table_args ::= LP columnlist conslist_opt(X) RP(E) table_options(F). { 169 sqlite3EndTable(pParse,&X,&E,F,0); 170 } 171 create_table_args ::= AS select(S). { 172 sqlite3EndTable(pParse,0,0,0,S); 173 sqlite3SelectDelete(pParse->db, S); 174 } 175 %type table_options {int} 176 table_options(A) ::= . {A = 0;} 177 table_options(A) ::= WITHOUT nm(X). { 178 if( X.n==5 && sqlite3_strnicmp(X.z,"rowid",5)==0 ){ 179 A = TF_WithoutRowid | TF_NoVisibleRowid; 180 }else{ 181 A = 0; 182 sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z); 183 } 184 } 185 columnlist ::= columnlist COMMA columnname carglist. 186 columnlist ::= columnname carglist. 187 columnname(A) ::= nm(A) typetoken(Y). {sqlite3AddColumn(pParse,&A,&Y);} 188 189 // Declare some tokens early in order to influence their values, to 190 // improve performance and reduce the executable size. The goal here is 191 // to get the "jump" operations in ISNULL through ESCAPE to have numeric 192 // values that are early enough so that all jump operations are clustered 193 // at the beginning, but also so that the comparison tokens NE through GE 194 // are as large as possible so that they are near to FUNCTION, which is a 195 // token synthesized by addopcodes.tcl. 196 // 197 %token ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST. 198 %token CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL. 199 %token OR AND NOT IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. 200 %token GT LE LT GE ESCAPE. 201 202 // The following directive causes tokens ABORT, AFTER, ASC, etc. to 203 // fallback to ID if they will not parse as their original value. 204 // This obviates the need for the "id" nonterminal. 205 // 206 %fallback ID 207 ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW 208 CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL FOR 209 IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN 210 QUERY KEY OF OFFSET PRAGMA RAISE RECURSIVE RELEASE REPLACE RESTRICT ROW 211 ROLLBACK SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL WITH WITHOUT 212 %ifdef SQLITE_OMIT_COMPOUND_SELECT 213 EXCEPT INTERSECT UNION 214 %endif SQLITE_OMIT_COMPOUND_SELECT 215 REINDEX RENAME CTIME_KW IF 216 . 217 %wildcard ANY. 218 219 // Define operator precedence early so that this is the first occurrence 220 // of the operator tokens in the grammer. Keeping the operators together 221 // causes them to be assigned integer values that are close together, 222 // which keeps parser tables smaller. 223 // 224 // The token values assigned to these symbols is determined by the order 225 // in which lemon first sees them. It must be the case that ISNULL/NOTNULL, 226 // NE/EQ, GT/LE, and GE/LT are separated by only a single value. See 227 // the sqlite3ExprIfFalse() routine for additional information on this 228 // constraint. 229 // 230 %left OR. 231 %left AND. 232 %right NOT. 233 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. 234 %left GT LE LT GE. 235 %right ESCAPE. 236 %left BITAND BITOR LSHIFT RSHIFT. 237 %left PLUS MINUS. 238 %left STAR SLASH REM. 239 %left CONCAT. 240 %left COLLATE. 241 %right BITNOT. 242 243 // An IDENTIFIER can be a generic identifier, or one of several 244 // keywords. Any non-standard keyword can also be an identifier. 245 // 246 %token_class id ID|INDEXED. 247 248 249 // And "ids" is an identifer-or-string. 250 // 251 %token_class ids ID|STRING. 252 253 // The name of a column or table can be any of the following: 254 // 255 %type nm {Token} 256 nm(A) ::= id(A). 257 nm(A) ::= STRING(A). 258 nm(A) ::= JOIN_KW(A). 259 260 // A typetoken is really zero or more tokens that form a type name such 261 // as can be found after the column name in a CREATE TABLE statement. 262 // Multiple tokens are concatenated to form the value of the typetoken. 263 // 264 %type typetoken {Token} 265 typetoken(A) ::= . {A.n = 0; A.z = 0;} 266 typetoken(A) ::= typename(A). 267 typetoken(A) ::= typename(A) LP signed RP(Y). { 268 A.n = (int)(&Y.z[Y.n] - A.z); 269 } 270 typetoken(A) ::= typename(A) LP signed COMMA signed RP(Y). { 271 A.n = (int)(&Y.z[Y.n] - A.z); 272 } 273 %type typename {Token} 274 typename(A) ::= ids(A). 275 typename(A) ::= typename(A) ids(Y). {A.n=Y.n+(int)(Y.z-A.z);} 276 signed ::= plus_num. 277 signed ::= minus_num. 278 279 // The scanpt non-terminal takes a value which is a pointer to the 280 // input text just past the last token that has been shifted into 281 // the parser. By surrounding some phrase in the grammar with two 282 // scanpt non-terminals, we can capture the input text for that phrase. 283 // For example: 284 // 285 // something ::= .... scanpt(A) phrase scanpt(Z). 286 // 287 // The text that is parsed as "phrase" is a string starting at A 288 // and containing (int)(Z-A) characters. There might be some extra 289 // whitespace on either end of the text, but that can be removed in 290 // post-processing, if needed. 291 // 292 %type scanpt {const char*} 293 scanpt(A) ::= . { 294 assert( yyLookahead!=YYNOCODE ); 295 A = yyLookaheadToken.z; 296 } 297 298 // "carglist" is a list of additional constraints that come after the 299 // column name and column type in a CREATE TABLE statement. 300 // 301 carglist ::= carglist ccons. 302 carglist ::= . 303 ccons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} 304 ccons ::= DEFAULT scanpt(A) term(X) scanpt(Z). 305 {sqlite3AddDefaultValue(pParse,X,A,Z);} 306 ccons ::= DEFAULT LP(A) expr(X) RP(Z). 307 {sqlite3AddDefaultValue(pParse,X,A.z+1,Z.z);} 308 ccons ::= DEFAULT PLUS(A) term(X) scanpt(Z). 309 {sqlite3AddDefaultValue(pParse,X,A.z,Z);} 310 ccons ::= DEFAULT MINUS(A) term(X) scanpt(Z). { 311 Expr *p = sqlite3PExpr(pParse, TK_UMINUS, X, 0); 312 sqlite3AddDefaultValue(pParse,p,A.z,Z); 313 } 314 ccons ::= DEFAULT scanpt id(X). { 315 Expr *p = tokenExpr(pParse, TK_STRING, X); 316 if( p ){ 317 sqlite3ExprIdToTrueFalse(p); 318 testcase( p->op==TK_TRUEFALSE && sqlite3ExprTruthValue(p) ); 319 } 320 sqlite3AddDefaultValue(pParse,p,X.z,X.z+X.n); 321 } 322 323 // In addition to the type name, we also care about the primary key and 324 // UNIQUE constraints. 325 // 326 ccons ::= NULL onconf. 327 ccons ::= NOT NULL onconf(R). {sqlite3AddNotNull(pParse, R);} 328 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I). 329 {sqlite3AddPrimaryKey(pParse,0,R,I,Z);} 330 ccons ::= UNIQUE onconf(R). {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0, 331 SQLITE_IDXTYPE_UNIQUE);} 332 ccons ::= CHECK LP expr(X) RP. {sqlite3AddCheckConstraint(pParse,X);} 333 ccons ::= REFERENCES nm(T) eidlist_opt(TA) refargs(R). 334 {sqlite3CreateForeignKey(pParse,0,&T,TA,R);} 335 ccons ::= defer_subclause(D). {sqlite3DeferForeignKey(pParse,D);} 336 ccons ::= COLLATE ids(C). {sqlite3AddCollateType(pParse, &C);} 337 338 // The optional AUTOINCREMENT keyword 339 %type autoinc {int} 340 autoinc(X) ::= . {X = 0;} 341 autoinc(X) ::= AUTOINCR. {X = 1;} 342 343 // The next group of rules parses the arguments to a REFERENCES clause 344 // that determine if the referential integrity checking is deferred or 345 // or immediate and which determine what action to take if a ref-integ 346 // check fails. 347 // 348 %type refargs {int} 349 refargs(A) ::= . { A = OE_None*0x0101; /* EV: R-19803-45884 */} 350 refargs(A) ::= refargs(A) refarg(Y). { A = (A & ~Y.mask) | Y.value; } 351 %type refarg {struct {int value; int mask;}} 352 refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; } 353 refarg(A) ::= ON INSERT refact. { A.value = 0; A.mask = 0x000000; } 354 refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; } 355 refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; } 356 %type refact {int} 357 refact(A) ::= SET NULL. { A = OE_SetNull; /* EV: R-33326-45252 */} 358 refact(A) ::= SET DEFAULT. { A = OE_SetDflt; /* EV: R-33326-45252 */} 359 refact(A) ::= CASCADE. { A = OE_Cascade; /* EV: R-33326-45252 */} 360 refact(A) ::= RESTRICT. { A = OE_Restrict; /* EV: R-33326-45252 */} 361 refact(A) ::= NO ACTION. { A = OE_None; /* EV: R-33326-45252 */} 362 %type defer_subclause {int} 363 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt. {A = 0;} 364 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;} 365 %type init_deferred_pred_opt {int} 366 init_deferred_pred_opt(A) ::= . {A = 0;} 367 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;} 368 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;} 369 370 conslist_opt(A) ::= . {A.n = 0; A.z = 0;} 371 conslist_opt(A) ::= COMMA(A) conslist. 372 conslist ::= conslist tconscomma tcons. 373 conslist ::= tcons. 374 tconscomma ::= COMMA. {pParse->constraintName.n = 0;} 375 tconscomma ::= . 376 tcons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} 377 tcons ::= PRIMARY KEY LP sortlist(X) autoinc(I) RP onconf(R). 378 {sqlite3AddPrimaryKey(pParse,X,R,I,0);} 379 tcons ::= UNIQUE LP sortlist(X) RP onconf(R). 380 {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0, 381 SQLITE_IDXTYPE_UNIQUE);} 382 tcons ::= CHECK LP expr(E) RP onconf. 383 {sqlite3AddCheckConstraint(pParse,E);} 384 tcons ::= FOREIGN KEY LP eidlist(FA) RP 385 REFERENCES nm(T) eidlist_opt(TA) refargs(R) defer_subclause_opt(D). { 386 sqlite3CreateForeignKey(pParse, FA, &T, TA, R); 387 sqlite3DeferForeignKey(pParse, D); 388 } 389 %type defer_subclause_opt {int} 390 defer_subclause_opt(A) ::= . {A = 0;} 391 defer_subclause_opt(A) ::= defer_subclause(A). 392 393 // The following is a non-standard extension that allows us to declare the 394 // default behavior when there is a constraint conflict. 395 // 396 %type onconf {int} 397 %type orconf {int} 398 %type resolvetype {int} 399 onconf(A) ::= . {A = OE_Default;} 400 onconf(A) ::= ON CONFLICT resolvetype(X). {A = X;} 401 orconf(A) ::= . {A = OE_Default;} 402 orconf(A) ::= OR resolvetype(X). {A = X;} 403 resolvetype(A) ::= raisetype(A). 404 resolvetype(A) ::= IGNORE. {A = OE_Ignore;} 405 resolvetype(A) ::= REPLACE. {A = OE_Replace;} 406 407 ////////////////////////// The DROP TABLE ///////////////////////////////////// 408 // 409 cmd ::= DROP TABLE ifexists(E) fullname(X). { 410 sqlite3DropTable(pParse, X, 0, E); 411 } 412 %type ifexists {int} 413 ifexists(A) ::= IF EXISTS. {A = 1;} 414 ifexists(A) ::= . {A = 0;} 415 416 ///////////////////// The CREATE VIEW statement ///////////////////////////// 417 // 418 %ifndef SQLITE_OMIT_VIEW 419 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) eidlist_opt(C) 420 AS select(S). { 421 sqlite3CreateView(pParse, &X, &Y, &Z, C, S, T, E); 422 } 423 cmd ::= DROP VIEW ifexists(E) fullname(X). { 424 sqlite3DropTable(pParse, X, 1, E); 425 } 426 %endif SQLITE_OMIT_VIEW 427 428 //////////////////////// The SELECT statement ///////////////////////////////// 429 // 430 cmd ::= select(X). { 431 SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0}; 432 sqlite3Select(pParse, X, &dest); 433 sqlite3SelectDelete(pParse->db, X); 434 } 435 436 %type select {Select*} 437 %destructor select {sqlite3SelectDelete(pParse->db, $$);} 438 %type selectnowith {Select*} 439 %destructor selectnowith {sqlite3SelectDelete(pParse->db, $$);} 440 %type oneselect {Select*} 441 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);} 442 443 %include { 444 /* 445 ** For a compound SELECT statement, make sure p->pPrior->pNext==p for 446 ** all elements in the list. And make sure list length does not exceed 447 ** SQLITE_LIMIT_COMPOUND_SELECT. 448 */ 449 static void parserDoubleLinkSelect(Parse *pParse, Select *p){ 450 if( p->pPrior ){ 451 Select *pNext = 0, *pLoop; 452 int mxSelect, cnt = 0; 453 for(pLoop=p; pLoop; pNext=pLoop, pLoop=pLoop->pPrior, cnt++){ 454 pLoop->pNext = pNext; 455 pLoop->selFlags |= SF_Compound; 456 } 457 if( (p->selFlags & SF_MultiValue)==0 && 458 (mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT])>0 && 459 cnt>mxSelect 460 ){ 461 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 462 } 463 } 464 } 465 } 466 467 select(A) ::= with(W) selectnowith(X). { 468 Select *p = X; 469 if( p ){ 470 p->pWith = W; 471 parserDoubleLinkSelect(pParse, p); 472 }else{ 473 sqlite3WithDelete(pParse->db, W); 474 } 475 A = p; /*A-overwrites-W*/ 476 } 477 478 selectnowith(A) ::= oneselect(A). 479 %ifndef SQLITE_OMIT_COMPOUND_SELECT 480 selectnowith(A) ::= selectnowith(A) multiselect_op(Y) oneselect(Z). { 481 Select *pRhs = Z; 482 Select *pLhs = A; 483 if( pRhs && pRhs->pPrior ){ 484 SrcList *pFrom; 485 Token x; 486 x.n = 0; 487 parserDoubleLinkSelect(pParse, pRhs); 488 pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0); 489 pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0); 490 } 491 if( pRhs ){ 492 pRhs->op = (u8)Y; 493 pRhs->pPrior = pLhs; 494 if( ALWAYS(pLhs) ) pLhs->selFlags &= ~SF_MultiValue; 495 pRhs->selFlags &= ~SF_MultiValue; 496 if( Y!=TK_ALL ) pParse->hasCompound = 1; 497 }else{ 498 sqlite3SelectDelete(pParse->db, pLhs); 499 } 500 A = pRhs; 501 } 502 %type multiselect_op {int} 503 multiselect_op(A) ::= UNION(OP). {A = @OP; /*A-overwrites-OP*/} 504 multiselect_op(A) ::= UNION ALL. {A = TK_ALL;} 505 multiselect_op(A) ::= EXCEPT|INTERSECT(OP). {A = @OP; /*A-overwrites-OP*/} 506 %endif SQLITE_OMIT_COMPOUND_SELECT 507 oneselect(A) ::= SELECT(S) distinct(D) selcollist(W) from(X) where_opt(Y) 508 groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). { 509 #if SELECTTRACE_ENABLED 510 Token s = S; /*A-overwrites-S*/ 511 #endif 512 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L); 513 #if SELECTTRACE_ENABLED 514 /* Populate the Select.zSelName[] string that is used to help with 515 ** query planner debugging, to differentiate between multiple Select 516 ** objects in a complex query. 517 ** 518 ** If the SELECT keyword is immediately followed by a C-style comment 519 ** then extract the first few alphanumeric characters from within that 520 ** comment to be the zSelName value. Otherwise, the label is #N where 521 ** is an integer that is incremented with each SELECT statement seen. 522 */ 523 if( A!=0 ){ 524 const char *z = s.z+6; 525 int i; 526 sqlite3_snprintf(sizeof(A->zSelName), A->zSelName, "#%d", 527 ++pParse->nSelect); 528 while( z[0]==' ' ) z++; 529 if( z[0]=='/' && z[1]=='*' ){ 530 z += 2; 531 while( z[0]==' ' ) z++; 532 for(i=0; sqlite3Isalnum(z[i]); i++){} 533 sqlite3_snprintf(sizeof(A->zSelName), A->zSelName, "%.*s", i, z); 534 } 535 } 536 #endif /* SELECTRACE_ENABLED */ 537 } 538 oneselect(A) ::= values(A). 539 540 %type values {Select*} 541 %destructor values {sqlite3SelectDelete(pParse->db, $$);} 542 values(A) ::= VALUES LP nexprlist(X) RP. { 543 A = sqlite3SelectNew(pParse,X,0,0,0,0,0,SF_Values,0); 544 } 545 values(A) ::= values(A) COMMA LP exprlist(Y) RP. { 546 Select *pRight, *pLeft = A; 547 pRight = sqlite3SelectNew(pParse,Y,0,0,0,0,0,SF_Values|SF_MultiValue,0); 548 if( ALWAYS(pLeft) ) pLeft->selFlags &= ~SF_MultiValue; 549 if( pRight ){ 550 pRight->op = TK_ALL; 551 pRight->pPrior = pLeft; 552 A = pRight; 553 }else{ 554 A = pLeft; 555 } 556 } 557 558 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is 559 // present and false (0) if it is not. 560 // 561 %type distinct {int} 562 distinct(A) ::= DISTINCT. {A = SF_Distinct;} 563 distinct(A) ::= ALL. {A = SF_All;} 564 distinct(A) ::= . {A = 0;} 565 566 // selcollist is a list of expressions that are to become the return 567 // values of the SELECT statement. The "*" in statements like 568 // "SELECT * FROM ..." is encoded as a special expression with an 569 // opcode of TK_ASTERISK. 570 // 571 %type selcollist {ExprList*} 572 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);} 573 %type sclp {ExprList*} 574 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);} 575 sclp(A) ::= selcollist(A) COMMA. 576 sclp(A) ::= . {A = 0;} 577 selcollist(A) ::= sclp(A) scanpt(B) expr(X) scanpt(Z) as(Y). { 578 A = sqlite3ExprListAppend(pParse, A, X); 579 if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1); 580 sqlite3ExprListSetSpan(pParse,A,B,Z); 581 } 582 selcollist(A) ::= sclp(A) scanpt STAR. { 583 Expr *p = sqlite3Expr(pParse->db, TK_ASTERISK, 0); 584 A = sqlite3ExprListAppend(pParse, A, p); 585 } 586 selcollist(A) ::= sclp(A) scanpt nm(X) DOT STAR. { 587 Expr *pRight = sqlite3PExpr(pParse, TK_ASTERISK, 0, 0); 588 Expr *pLeft = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1); 589 Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 590 A = sqlite3ExprListAppend(pParse,A, pDot); 591 } 592 593 // An option "AS <id>" phrase that can follow one of the expressions that 594 // define the result set, or one of the tables in the FROM clause. 595 // 596 %type as {Token} 597 as(X) ::= AS nm(Y). {X = Y;} 598 as(X) ::= ids(X). 599 as(X) ::= . {X.n = 0; X.z = 0;} 600 601 602 %type seltablist {SrcList*} 603 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);} 604 %type stl_prefix {SrcList*} 605 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);} 606 %type from {SrcList*} 607 %destructor from {sqlite3SrcListDelete(pParse->db, $$);} 608 609 // A complete FROM clause. 610 // 611 from(A) ::= . {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));} 612 from(A) ::= FROM seltablist(X). { 613 A = X; 614 sqlite3SrcListShiftJoinType(A); 615 } 616 617 // "seltablist" is a "Select Table List" - the content of the FROM clause 618 // in a SELECT statement. "stl_prefix" is a prefix of this list. 619 // 620 stl_prefix(A) ::= seltablist(A) joinop(Y). { 621 if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].fg.jointype = (u8)Y; 622 } 623 stl_prefix(A) ::= . {A = 0;} 624 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) as(Z) indexed_opt(I) 625 on_opt(N) using_opt(U). { 626 A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U); 627 sqlite3SrcListIndexedBy(pParse, A, &I); 628 } 629 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) LP exprlist(E) RP as(Z) 630 on_opt(N) using_opt(U). { 631 A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U); 632 sqlite3SrcListFuncArgs(pParse, A, E); 633 } 634 %ifndef SQLITE_OMIT_SUBQUERY 635 seltablist(A) ::= stl_prefix(A) LP select(S) RP 636 as(Z) on_opt(N) using_opt(U). { 637 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,S,N,U); 638 } 639 seltablist(A) ::= stl_prefix(A) LP seltablist(F) RP 640 as(Z) on_opt(N) using_opt(U). { 641 if( A==0 && Z.n==0 && N==0 && U==0 ){ 642 A = F; 643 }else if( F->nSrc==1 ){ 644 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,0,N,U); 645 if( A ){ 646 struct SrcList_item *pNew = &A->a[A->nSrc-1]; 647 struct SrcList_item *pOld = F->a; 648 pNew->zName = pOld->zName; 649 pNew->zDatabase = pOld->zDatabase; 650 pNew->pSelect = pOld->pSelect; 651 pOld->zName = pOld->zDatabase = 0; 652 pOld->pSelect = 0; 653 } 654 sqlite3SrcListDelete(pParse->db, F); 655 }else{ 656 Select *pSubquery; 657 sqlite3SrcListShiftJoinType(F); 658 pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,SF_NestedFrom,0); 659 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,pSubquery,N,U); 660 } 661 } 662 %endif SQLITE_OMIT_SUBQUERY 663 664 %type dbnm {Token} 665 dbnm(A) ::= . {A.z=0; A.n=0;} 666 dbnm(A) ::= DOT nm(X). {A = X;} 667 668 %type fullname {SrcList*} 669 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);} 670 fullname(A) ::= nm(X) dbnm(Y). 671 {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y); /*A-overwrites-X*/} 672 673 %type joinop {int} 674 joinop(X) ::= COMMA|JOIN. { X = JT_INNER; } 675 joinop(X) ::= JOIN_KW(A) JOIN. 676 {X = sqlite3JoinType(pParse,&A,0,0); /*X-overwrites-A*/} 677 joinop(X) ::= JOIN_KW(A) nm(B) JOIN. 678 {X = sqlite3JoinType(pParse,&A,&B,0); /*X-overwrites-A*/} 679 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN. 680 {X = sqlite3JoinType(pParse,&A,&B,&C);/*X-overwrites-A*/} 681 682 %type on_opt {Expr*} 683 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);} 684 on_opt(N) ::= ON expr(E). {N = E;} 685 on_opt(N) ::= . {N = 0;} 686 687 // Note that this block abuses the Token type just a little. If there is 688 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If 689 // there is an INDEXED BY clause, then the token is populated as per normal, 690 // with z pointing to the token data and n containing the number of bytes 691 // in the token. 692 // 693 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is 694 // normally illegal. The sqlite3SrcListIndexedBy() function 695 // recognizes and interprets this as a special case. 696 // 697 %type indexed_opt {Token} 698 indexed_opt(A) ::= . {A.z=0; A.n=0;} 699 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;} 700 indexed_opt(A) ::= NOT INDEXED. {A.z=0; A.n=1;} 701 702 %type using_opt {IdList*} 703 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);} 704 using_opt(U) ::= USING LP idlist(L) RP. {U = L;} 705 using_opt(U) ::= . {U = 0;} 706 707 708 %type orderby_opt {ExprList*} 709 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);} 710 711 // the sortlist non-terminal stores a list of expression where each 712 // expression is optionally followed by ASC or DESC to indicate the 713 // sort order. 714 // 715 %type sortlist {ExprList*} 716 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);} 717 718 orderby_opt(A) ::= . {A = 0;} 719 orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;} 720 sortlist(A) ::= sortlist(A) COMMA expr(Y) sortorder(Z). { 721 A = sqlite3ExprListAppend(pParse,A,Y); 722 sqlite3ExprListSetSortOrder(A,Z); 723 } 724 sortlist(A) ::= expr(Y) sortorder(Z). { 725 A = sqlite3ExprListAppend(pParse,0,Y); /*A-overwrites-Y*/ 726 sqlite3ExprListSetSortOrder(A,Z); 727 } 728 729 %type sortorder {int} 730 731 sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;} 732 sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;} 733 sortorder(A) ::= . {A = SQLITE_SO_UNDEFINED;} 734 735 %type groupby_opt {ExprList*} 736 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);} 737 groupby_opt(A) ::= . {A = 0;} 738 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;} 739 740 %type having_opt {Expr*} 741 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);} 742 having_opt(A) ::= . {A = 0;} 743 having_opt(A) ::= HAVING expr(X). {A = X;} 744 745 %type limit_opt {Expr*} 746 747 // The destructor for limit_opt will never fire in the current grammar. 748 // The limit_opt non-terminal only occurs at the end of a single production 749 // rule for SELECT statements. As soon as the rule that create the 750 // limit_opt non-terminal reduces, the SELECT statement rule will also 751 // reduce. So there is never a limit_opt non-terminal on the stack 752 // except as a transient. So there is never anything to destroy. 753 // 754 //%destructor limit_opt {sqlite3ExprDelete(pParse->db, $$);} 755 limit_opt(A) ::= . {A = 0;} 756 limit_opt(A) ::= LIMIT expr(X). 757 {A = sqlite3PExpr(pParse,TK_LIMIT,X,0);} 758 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y). 759 {A = sqlite3PExpr(pParse,TK_LIMIT,X,Y);} 760 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y). 761 {A = sqlite3PExpr(pParse,TK_LIMIT,Y,X);} 762 763 /////////////////////////// The DELETE statement ///////////////////////////// 764 // 765 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 766 cmd ::= with(C) DELETE FROM fullname(X) indexed_opt(I) where_opt(W) 767 orderby_opt(O) limit_opt(L). { 768 sqlite3WithPush(pParse, C, 1); 769 sqlite3SrcListIndexedBy(pParse, X, &I); 770 sqlite3DeleteFrom(pParse,X,W,O,L); 771 } 772 %endif 773 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 774 cmd ::= with(C) DELETE FROM fullname(X) indexed_opt(I) where_opt(W). { 775 sqlite3WithPush(pParse, C, 1); 776 sqlite3SrcListIndexedBy(pParse, X, &I); 777 sqlite3DeleteFrom(pParse,X,W,0,0); 778 } 779 %endif 780 781 %type where_opt {Expr*} 782 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);} 783 784 where_opt(A) ::= . {A = 0;} 785 where_opt(A) ::= WHERE expr(X). {A = X;} 786 787 ////////////////////////// The UPDATE command //////////////////////////////// 788 // 789 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 790 cmd ::= with(C) UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) 791 where_opt(W) orderby_opt(O) limit_opt(L). { 792 sqlite3WithPush(pParse, C, 1); 793 sqlite3SrcListIndexedBy(pParse, X, &I); 794 sqlite3ExprListCheckLength(pParse,Y,"set list"); 795 sqlite3Update(pParse,X,Y,W,R,O,L); 796 } 797 %endif 798 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 799 cmd ::= with(C) UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) 800 where_opt(W). { 801 sqlite3WithPush(pParse, C, 1); 802 sqlite3SrcListIndexedBy(pParse, X, &I); 803 sqlite3ExprListCheckLength(pParse,Y,"set list"); 804 sqlite3Update(pParse,X,Y,W,R,0,0); 805 } 806 %endif 807 808 %type setlist {ExprList*} 809 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);} 810 811 setlist(A) ::= setlist(A) COMMA nm(X) EQ expr(Y). { 812 A = sqlite3ExprListAppend(pParse, A, Y); 813 sqlite3ExprListSetName(pParse, A, &X, 1); 814 } 815 setlist(A) ::= setlist(A) COMMA LP idlist(X) RP EQ expr(Y). { 816 A = sqlite3ExprListAppendVector(pParse, A, X, Y); 817 } 818 setlist(A) ::= nm(X) EQ expr(Y). { 819 A = sqlite3ExprListAppend(pParse, 0, Y); 820 sqlite3ExprListSetName(pParse, A, &X, 1); 821 } 822 setlist(A) ::= LP idlist(X) RP EQ expr(Y). { 823 A = sqlite3ExprListAppendVector(pParse, 0, X, Y); 824 } 825 826 ////////////////////////// The INSERT command ///////////////////////////////// 827 // 828 cmd ::= with(W) insert_cmd(R) INTO fullname(X) idlist_opt(F) select(S). { 829 sqlite3WithPush(pParse, W, 1); 830 sqlite3Insert(pParse, X, S, F, R); 831 } 832 cmd ::= with(W) insert_cmd(R) INTO fullname(X) idlist_opt(F) DEFAULT VALUES. 833 { 834 sqlite3WithPush(pParse, W, 1); 835 sqlite3Insert(pParse, X, 0, F, R); 836 } 837 838 %type insert_cmd {int} 839 insert_cmd(A) ::= INSERT orconf(R). {A = R;} 840 insert_cmd(A) ::= REPLACE. {A = OE_Replace;} 841 842 %type idlist_opt {IdList*} 843 %destructor idlist_opt {sqlite3IdListDelete(pParse->db, $$);} 844 %type idlist {IdList*} 845 %destructor idlist {sqlite3IdListDelete(pParse->db, $$);} 846 847 idlist_opt(A) ::= . {A = 0;} 848 idlist_opt(A) ::= LP idlist(X) RP. {A = X;} 849 idlist(A) ::= idlist(A) COMMA nm(Y). 850 {A = sqlite3IdListAppend(pParse->db,A,&Y);} 851 idlist(A) ::= nm(Y). 852 {A = sqlite3IdListAppend(pParse->db,0,&Y); /*A-overwrites-Y*/} 853 854 /////////////////////////// Expression Processing ///////////////////////////// 855 // 856 857 %type expr {Expr*} 858 %destructor expr {sqlite3ExprDelete(pParse->db, $$);} 859 %type term {Expr*} 860 %destructor term {sqlite3ExprDelete(pParse->db, $$);} 861 862 %include { 863 864 /* Construct a new Expr object from a single identifier. Use the 865 ** new Expr to populate pOut. Set the span of pOut to be the identifier 866 ** that created the expression. 867 */ 868 static Expr *tokenExpr(Parse *pParse, int op, Token t){ 869 Expr *p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)+t.n+1); 870 if( p ){ 871 memset(p, 0, sizeof(Expr)); 872 p->op = (u8)op; 873 p->flags = EP_Leaf; 874 p->iAgg = -1; 875 p->u.zToken = (char*)&p[1]; 876 memcpy(p->u.zToken, t.z, t.n); 877 p->u.zToken[t.n] = 0; 878 if( sqlite3Isquote(p->u.zToken[0]) ){ 879 if( p->u.zToken[0]=='"' ) p->flags |= EP_DblQuoted; 880 sqlite3Dequote(p->u.zToken); 881 } 882 #if SQLITE_MAX_EXPR_DEPTH>0 883 p->nHeight = 1; 884 #endif 885 } 886 return p; 887 } 888 } 889 890 expr(A) ::= term(A). 891 expr(A) ::= LP expr(X) RP. {A = X;} 892 expr(A) ::= id(X). {A=tokenExpr(pParse,TK_ID,X); /*A-overwrites-X*/} 893 expr(A) ::= JOIN_KW(X). {A=tokenExpr(pParse,TK_ID,X); /*A-overwrites-X*/} 894 expr(A) ::= nm(X) DOT nm(Y). { 895 Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1); 896 Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1); 897 A = sqlite3PExpr(pParse, TK_DOT, temp1, temp2); 898 } 899 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). { 900 Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1); 901 Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1); 902 Expr *temp3 = sqlite3ExprAlloc(pParse->db, TK_ID, &Z, 1); 903 Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3); 904 A = sqlite3PExpr(pParse, TK_DOT, temp1, temp4); 905 } 906 term(A) ::= NULL|FLOAT|BLOB(X). {A=tokenExpr(pParse,@X,X); /*A-overwrites-X*/} 907 term(A) ::= STRING(X). {A=tokenExpr(pParse,@X,X); /*A-overwrites-X*/} 908 term(A) ::= INTEGER(X). { 909 A = sqlite3ExprAlloc(pParse->db, TK_INTEGER, &X, 1); 910 } 911 expr(A) ::= VARIABLE(X). { 912 if( !(X.z[0]=='#' && sqlite3Isdigit(X.z[1])) ){ 913 u32 n = X.n; 914 A = tokenExpr(pParse, TK_VARIABLE, X); 915 sqlite3ExprAssignVarNumber(pParse, A, n); 916 }else{ 917 /* When doing a nested parse, one can include terms in an expression 918 ** that look like this: #1 #2 ... These terms refer to registers 919 ** in the virtual machine. #N is the N-th register. */ 920 Token t = X; /*A-overwrites-X*/ 921 assert( t.n>=2 ); 922 if( pParse->nested==0 ){ 923 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &t); 924 A = 0; 925 }else{ 926 A = sqlite3PExpr(pParse, TK_REGISTER, 0, 0); 927 if( A ) sqlite3GetInt32(&t.z[1], &A->iTable); 928 } 929 } 930 } 931 expr(A) ::= expr(A) COLLATE ids(C). { 932 A = sqlite3ExprAddCollateToken(pParse, A, &C, 1); 933 } 934 %ifndef SQLITE_OMIT_CAST 935 expr(A) ::= CAST LP expr(E) AS typetoken(T) RP. { 936 A = sqlite3ExprAlloc(pParse->db, TK_CAST, &T, 1); 937 sqlite3ExprAttachSubtrees(pParse->db, A, E, 0); 938 } 939 %endif SQLITE_OMIT_CAST 940 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP. { 941 if( Y && Y->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 942 sqlite3ErrorMsg(pParse, "too many arguments on function %T", &X); 943 } 944 A = sqlite3ExprFunction(pParse, Y, &X); 945 if( D==SF_Distinct && A ){ 946 A->flags |= EP_Distinct; 947 } 948 } 949 expr(A) ::= id(X) LP STAR RP. { 950 A = sqlite3ExprFunction(pParse, 0, &X); 951 } 952 term(A) ::= CTIME_KW(OP). { 953 A = sqlite3ExprFunction(pParse, 0, &OP); 954 } 955 956 expr(A) ::= LP nexprlist(X) COMMA expr(Y) RP. { 957 ExprList *pList = sqlite3ExprListAppend(pParse, X, Y); 958 A = sqlite3PExpr(pParse, TK_VECTOR, 0, 0); 959 if( A ){ 960 A->x.pList = pList; 961 }else{ 962 sqlite3ExprListDelete(pParse->db, pList); 963 } 964 } 965 966 expr(A) ::= expr(A) AND(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 967 expr(A) ::= expr(A) OR(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 968 expr(A) ::= expr(A) LT|GT|GE|LE(OP) expr(Y). 969 {A=sqlite3PExpr(pParse,@OP,A,Y);} 970 expr(A) ::= expr(A) EQ|NE(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 971 expr(A) ::= expr(A) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y). 972 {A=sqlite3PExpr(pParse,@OP,A,Y);} 973 expr(A) ::= expr(A) PLUS|MINUS(OP) expr(Y). 974 {A=sqlite3PExpr(pParse,@OP,A,Y);} 975 expr(A) ::= expr(A) STAR|SLASH|REM(OP) expr(Y). 976 {A=sqlite3PExpr(pParse,@OP,A,Y);} 977 expr(A) ::= expr(A) CONCAT(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 978 %type likeop {Token} 979 likeop(A) ::= LIKE_KW|MATCH(A). 980 likeop(A) ::= NOT LIKE_KW|MATCH(X). {A=X; A.n|=0x80000000; /*A-overwrite-X*/} 981 expr(A) ::= expr(A) likeop(OP) expr(Y). [LIKE_KW] { 982 ExprList *pList; 983 int bNot = OP.n & 0x80000000; 984 OP.n &= 0x7fffffff; 985 pList = sqlite3ExprListAppend(pParse,0, Y); 986 pList = sqlite3ExprListAppend(pParse,pList, A); 987 A = sqlite3ExprFunction(pParse, pList, &OP); 988 if( bNot ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 989 if( A ) A->flags |= EP_InfixFunc; 990 } 991 expr(A) ::= expr(A) likeop(OP) expr(Y) ESCAPE expr(E). [LIKE_KW] { 992 ExprList *pList; 993 int bNot = OP.n & 0x80000000; 994 OP.n &= 0x7fffffff; 995 pList = sqlite3ExprListAppend(pParse,0, Y); 996 pList = sqlite3ExprListAppend(pParse,pList, A); 997 pList = sqlite3ExprListAppend(pParse,pList, E); 998 A = sqlite3ExprFunction(pParse, pList, &OP); 999 if( bNot ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1000 if( A ) A->flags |= EP_InfixFunc; 1001 } 1002 1003 expr(A) ::= expr(A) ISNULL|NOTNULL(E). {A = sqlite3PExpr(pParse,@E,A,0);} 1004 expr(A) ::= expr(A) NOT NULL. {A = sqlite3PExpr(pParse,TK_NOTNULL,A,0);} 1005 1006 %include { 1007 /* A routine to convert a binary TK_IS or TK_ISNOT expression into a 1008 ** unary TK_ISNULL or TK_NOTNULL expression. */ 1009 static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){ 1010 sqlite3 *db = pParse->db; 1011 if( pA && pY && pY->op==TK_NULL ){ 1012 pA->op = (u8)op; 1013 sqlite3ExprDelete(db, pA->pRight); 1014 pA->pRight = 0; 1015 } 1016 } 1017 } 1018 1019 // expr1 IS expr2 1020 // expr1 IS NOT expr2 1021 // 1022 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL. If expr2 1023 // is any other expression, code as TK_IS or TK_ISNOT. 1024 // 1025 expr(A) ::= expr(A) IS expr(Y). { 1026 A = sqlite3PExpr(pParse,TK_IS,A,Y); 1027 binaryToUnaryIfNull(pParse, Y, A, TK_ISNULL); 1028 } 1029 expr(A) ::= expr(A) IS NOT expr(Y). { 1030 A = sqlite3PExpr(pParse,TK_ISNOT,A,Y); 1031 binaryToUnaryIfNull(pParse, Y, A, TK_NOTNULL); 1032 } 1033 1034 expr(A) ::= NOT(B) expr(X). 1035 {A = sqlite3PExpr(pParse, @B, X, 0);/*A-overwrites-B*/} 1036 expr(A) ::= BITNOT(B) expr(X). 1037 {A = sqlite3PExpr(pParse, @B, X, 0);/*A-overwrites-B*/} 1038 expr(A) ::= MINUS expr(X). [BITNOT] 1039 {A = sqlite3PExpr(pParse, TK_UMINUS, X, 0);} 1040 expr(A) ::= PLUS expr(X). [BITNOT] 1041 {A = sqlite3PExpr(pParse, TK_UPLUS, X, 0);} 1042 1043 %type between_op {int} 1044 between_op(A) ::= BETWEEN. {A = 0;} 1045 between_op(A) ::= NOT BETWEEN. {A = 1;} 1046 expr(A) ::= expr(A) between_op(N) expr(X) AND expr(Y). [BETWEEN] { 1047 ExprList *pList = sqlite3ExprListAppend(pParse,0, X); 1048 pList = sqlite3ExprListAppend(pParse,pList, Y); 1049 A = sqlite3PExpr(pParse, TK_BETWEEN, A, 0); 1050 if( A ){ 1051 A->x.pList = pList; 1052 }else{ 1053 sqlite3ExprListDelete(pParse->db, pList); 1054 } 1055 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1056 } 1057 %ifndef SQLITE_OMIT_SUBQUERY 1058 %type in_op {int} 1059 in_op(A) ::= IN. {A = 0;} 1060 in_op(A) ::= NOT IN. {A = 1;} 1061 expr(A) ::= expr(A) in_op(N) LP exprlist(Y) RP. [IN] { 1062 if( Y==0 ){ 1063 /* Expressions of the form 1064 ** 1065 ** expr1 IN () 1066 ** expr1 NOT IN () 1067 ** 1068 ** simplify to constants 0 (false) and 1 (true), respectively, 1069 ** regardless of the value of expr1. 1070 */ 1071 sqlite3ExprDelete(pParse->db, A); 1072 A = sqlite3ExprAlloc(pParse->db, TK_INTEGER,&sqlite3IntTokens[N],1); 1073 }else if( Y->nExpr==1 ){ 1074 /* Expressions of the form: 1075 ** 1076 ** expr1 IN (?1) 1077 ** expr1 NOT IN (?2) 1078 ** 1079 ** with exactly one value on the RHS can be simplified to something 1080 ** like this: 1081 ** 1082 ** expr1 == ?1 1083 ** expr1 <> ?2 1084 ** 1085 ** But, the RHS of the == or <> is marked with the EP_Generic flag 1086 ** so that it may not contribute to the computation of comparison 1087 ** affinity or the collating sequence to use for comparison. Otherwise, 1088 ** the semantics would be subtly different from IN or NOT IN. 1089 */ 1090 Expr *pRHS = Y->a[0].pExpr; 1091 Y->a[0].pExpr = 0; 1092 sqlite3ExprListDelete(pParse->db, Y); 1093 /* pRHS cannot be NULL because a malloc error would have been detected 1094 ** before now and control would have never reached this point */ 1095 if( ALWAYS(pRHS) ){ 1096 pRHS->flags &= ~EP_Collate; 1097 pRHS->flags |= EP_Generic; 1098 } 1099 A = sqlite3PExpr(pParse, N ? TK_NE : TK_EQ, A, pRHS); 1100 }else{ 1101 A = sqlite3PExpr(pParse, TK_IN, A, 0); 1102 if( A ){ 1103 A->x.pList = Y; 1104 sqlite3ExprSetHeightAndFlags(pParse, A); 1105 }else{ 1106 sqlite3ExprListDelete(pParse->db, Y); 1107 } 1108 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1109 } 1110 } 1111 expr(A) ::= LP select(X) RP. { 1112 A = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 1113 sqlite3PExprAddSelect(pParse, A, X); 1114 } 1115 expr(A) ::= expr(A) in_op(N) LP select(Y) RP. [IN] { 1116 A = sqlite3PExpr(pParse, TK_IN, A, 0); 1117 sqlite3PExprAddSelect(pParse, A, Y); 1118 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1119 } 1120 expr(A) ::= expr(A) in_op(N) nm(Y) dbnm(Z) paren_exprlist(E). [IN] { 1121 SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z); 1122 Select *pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0); 1123 if( E ) sqlite3SrcListFuncArgs(pParse, pSelect ? pSrc : 0, E); 1124 A = sqlite3PExpr(pParse, TK_IN, A, 0); 1125 sqlite3PExprAddSelect(pParse, A, pSelect); 1126 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1127 } 1128 expr(A) ::= EXISTS LP select(Y) RP. { 1129 Expr *p; 1130 p = A = sqlite3PExpr(pParse, TK_EXISTS, 0, 0); 1131 sqlite3PExprAddSelect(pParse, p, Y); 1132 } 1133 %endif SQLITE_OMIT_SUBQUERY 1134 1135 /* CASE expressions */ 1136 expr(A) ::= CASE case_operand(X) case_exprlist(Y) case_else(Z) END. { 1137 A = sqlite3PExpr(pParse, TK_CASE, X, 0); 1138 if( A ){ 1139 A->x.pList = Z ? sqlite3ExprListAppend(pParse,Y,Z) : Y; 1140 sqlite3ExprSetHeightAndFlags(pParse, A); 1141 }else{ 1142 sqlite3ExprListDelete(pParse->db, Y); 1143 sqlite3ExprDelete(pParse->db, Z); 1144 } 1145 } 1146 %type case_exprlist {ExprList*} 1147 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1148 case_exprlist(A) ::= case_exprlist(A) WHEN expr(Y) THEN expr(Z). { 1149 A = sqlite3ExprListAppend(pParse,A, Y); 1150 A = sqlite3ExprListAppend(pParse,A, Z); 1151 } 1152 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). { 1153 A = sqlite3ExprListAppend(pParse,0, Y); 1154 A = sqlite3ExprListAppend(pParse,A, Z); 1155 } 1156 %type case_else {Expr*} 1157 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);} 1158 case_else(A) ::= ELSE expr(X). {A = X;} 1159 case_else(A) ::= . {A = 0;} 1160 %type case_operand {Expr*} 1161 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);} 1162 case_operand(A) ::= expr(X). {A = X; /*A-overwrites-X*/} 1163 case_operand(A) ::= . {A = 0;} 1164 1165 %type exprlist {ExprList*} 1166 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1167 %type nexprlist {ExprList*} 1168 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);} 1169 1170 exprlist(A) ::= nexprlist(A). 1171 exprlist(A) ::= . {A = 0;} 1172 nexprlist(A) ::= nexprlist(A) COMMA expr(Y). 1173 {A = sqlite3ExprListAppend(pParse,A,Y);} 1174 nexprlist(A) ::= expr(Y). 1175 {A = sqlite3ExprListAppend(pParse,0,Y); /*A-overwrites-Y*/} 1176 1177 %ifndef SQLITE_OMIT_SUBQUERY 1178 /* A paren_exprlist is an optional expression list contained inside 1179 ** of parenthesis */ 1180 %type paren_exprlist {ExprList*} 1181 %destructor paren_exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1182 paren_exprlist(A) ::= . {A = 0;} 1183 paren_exprlist(A) ::= LP exprlist(X) RP. {A = X;} 1184 %endif SQLITE_OMIT_SUBQUERY 1185 1186 1187 ///////////////////////////// The CREATE INDEX command /////////////////////// 1188 // 1189 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D) 1190 ON nm(Y) LP sortlist(Z) RP where_opt(W). { 1191 sqlite3CreateIndex(pParse, &X, &D, 1192 sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U, 1193 &S, W, SQLITE_SO_ASC, NE, SQLITE_IDXTYPE_APPDEF); 1194 } 1195 1196 %type uniqueflag {int} 1197 uniqueflag(A) ::= UNIQUE. {A = OE_Abort;} 1198 uniqueflag(A) ::= . {A = OE_None;} 1199 1200 1201 // The eidlist non-terminal (Expression Id List) generates an ExprList 1202 // from a list of identifiers. The identifier names are in ExprList.a[].zName. 1203 // This list is stored in an ExprList rather than an IdList so that it 1204 // can be easily sent to sqlite3ColumnsExprList(). 1205 // 1206 // eidlist is grouped with CREATE INDEX because it used to be the non-terminal 1207 // used for the arguments to an index. That is just an historical accident. 1208 // 1209 // IMPORTANT COMPATIBILITY NOTE: Some prior versions of SQLite accepted 1210 // COLLATE clauses and ASC or DESC keywords on ID lists in inappropriate 1211 // places - places that might have been stored in the sqlite_master schema. 1212 // Those extra features were ignored. But because they might be in some 1213 // (busted) old databases, we need to continue parsing them when loading 1214 // historical schemas. 1215 // 1216 %type eidlist {ExprList*} 1217 %destructor eidlist {sqlite3ExprListDelete(pParse->db, $$);} 1218 %type eidlist_opt {ExprList*} 1219 %destructor eidlist_opt {sqlite3ExprListDelete(pParse->db, $$);} 1220 1221 %include { 1222 /* Add a single new term to an ExprList that is used to store a 1223 ** list of identifiers. Report an error if the ID list contains 1224 ** a COLLATE clause or an ASC or DESC keyword, except ignore the 1225 ** error while parsing a legacy schema. 1226 */ 1227 static ExprList *parserAddExprIdListTerm( 1228 Parse *pParse, 1229 ExprList *pPrior, 1230 Token *pIdToken, 1231 int hasCollate, 1232 int sortOrder 1233 ){ 1234 ExprList *p = sqlite3ExprListAppend(pParse, pPrior, 0); 1235 if( (hasCollate || sortOrder!=SQLITE_SO_UNDEFINED) 1236 && pParse->db->init.busy==0 1237 ){ 1238 sqlite3ErrorMsg(pParse, "syntax error after column name \"%.*s\"", 1239 pIdToken->n, pIdToken->z); 1240 } 1241 sqlite3ExprListSetName(pParse, p, pIdToken, 1); 1242 return p; 1243 } 1244 } // end %include 1245 1246 eidlist_opt(A) ::= . {A = 0;} 1247 eidlist_opt(A) ::= LP eidlist(X) RP. {A = X;} 1248 eidlist(A) ::= eidlist(A) COMMA nm(Y) collate(C) sortorder(Z). { 1249 A = parserAddExprIdListTerm(pParse, A, &Y, C, Z); 1250 } 1251 eidlist(A) ::= nm(Y) collate(C) sortorder(Z). { 1252 A = parserAddExprIdListTerm(pParse, 0, &Y, C, Z); /*A-overwrites-Y*/ 1253 } 1254 1255 %type collate {int} 1256 collate(C) ::= . {C = 0;} 1257 collate(C) ::= COLLATE ids. {C = 1;} 1258 1259 1260 ///////////////////////////// The DROP INDEX command ///////////////////////// 1261 // 1262 cmd ::= DROP INDEX ifexists(E) fullname(X). {sqlite3DropIndex(pParse, X, E);} 1263 1264 ///////////////////////////// The VACUUM command ///////////////////////////// 1265 // 1266 %ifndef SQLITE_OMIT_VACUUM 1267 %ifndef SQLITE_OMIT_ATTACH 1268 cmd ::= VACUUM. {sqlite3Vacuum(pParse,0);} 1269 cmd ::= VACUUM nm(X). {sqlite3Vacuum(pParse,&X);} 1270 %endif SQLITE_OMIT_ATTACH 1271 %endif SQLITE_OMIT_VACUUM 1272 1273 ///////////////////////////// The PRAGMA command ///////////////////////////// 1274 // 1275 %ifndef SQLITE_OMIT_PRAGMA 1276 cmd ::= PRAGMA nm(X) dbnm(Z). {sqlite3Pragma(pParse,&X,&Z,0,0);} 1277 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1278 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1279 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y). 1280 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1281 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP. 1282 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1283 1284 nmnum(A) ::= plus_num(A). 1285 nmnum(A) ::= nm(A). 1286 nmnum(A) ::= ON(A). 1287 nmnum(A) ::= DELETE(A). 1288 nmnum(A) ::= DEFAULT(A). 1289 %endif SQLITE_OMIT_PRAGMA 1290 %token_class number INTEGER|FLOAT. 1291 plus_num(A) ::= PLUS number(X). {A = X;} 1292 plus_num(A) ::= number(A). 1293 minus_num(A) ::= MINUS number(X). {A = X;} 1294 //////////////////////////// The CREATE TRIGGER command ///////////////////// 1295 1296 %ifndef SQLITE_OMIT_TRIGGER 1297 1298 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). { 1299 Token all; 1300 all.z = A.z; 1301 all.n = (int)(Z.z - A.z) + Z.n; 1302 sqlite3FinishTrigger(pParse, S, &all); 1303 } 1304 1305 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z) 1306 trigger_time(C) trigger_event(D) 1307 ON fullname(E) foreach_clause when_clause(G). { 1308 sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR); 1309 A = (Z.n==0?B:Z); /*A-overwrites-T*/ 1310 } 1311 1312 %type trigger_time {int} 1313 trigger_time(A) ::= BEFORE|AFTER(X). { A = @X; /*A-overwrites-X*/ } 1314 trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;} 1315 trigger_time(A) ::= . { A = TK_BEFORE; } 1316 1317 %type trigger_event {struct TrigEvent} 1318 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);} 1319 trigger_event(A) ::= DELETE|INSERT(X). {A.a = @X; /*A-overwrites-X*/ A.b = 0;} 1320 trigger_event(A) ::= UPDATE(X). {A.a = @X; /*A-overwrites-X*/ A.b = 0;} 1321 trigger_event(A) ::= UPDATE OF idlist(X).{A.a = TK_UPDATE; A.b = X;} 1322 1323 foreach_clause ::= . 1324 foreach_clause ::= FOR EACH ROW. 1325 1326 %type when_clause {Expr*} 1327 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);} 1328 when_clause(A) ::= . { A = 0; } 1329 when_clause(A) ::= WHEN expr(X). { A = X; } 1330 1331 %type trigger_cmd_list {TriggerStep*} 1332 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);} 1333 trigger_cmd_list(A) ::= trigger_cmd_list(A) trigger_cmd(X) SEMI. { 1334 assert( A!=0 ); 1335 A->pLast->pNext = X; 1336 A->pLast = X; 1337 } 1338 trigger_cmd_list(A) ::= trigger_cmd(A) SEMI. { 1339 assert( A!=0 ); 1340 A->pLast = A; 1341 } 1342 1343 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements 1344 // within a trigger. The table to INSERT, UPDATE, or DELETE is always in 1345 // the same database as the table that the trigger fires on. 1346 // 1347 %type trnm {Token} 1348 trnm(A) ::= nm(A). 1349 trnm(A) ::= nm DOT nm(X). { 1350 A = X; 1351 sqlite3ErrorMsg(pParse, 1352 "qualified table names are not allowed on INSERT, UPDATE, and DELETE " 1353 "statements within triggers"); 1354 } 1355 1356 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE 1357 // statements within triggers. We make a specific error message for this 1358 // since it is an exception to the default grammar rules. 1359 // 1360 tridxby ::= . 1361 tridxby ::= INDEXED BY nm. { 1362 sqlite3ErrorMsg(pParse, 1363 "the INDEXED BY clause is not allowed on UPDATE or DELETE statements " 1364 "within triggers"); 1365 } 1366 tridxby ::= NOT INDEXED. { 1367 sqlite3ErrorMsg(pParse, 1368 "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements " 1369 "within triggers"); 1370 } 1371 1372 1373 1374 %type trigger_cmd {TriggerStep*} 1375 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);} 1376 // UPDATE 1377 trigger_cmd(A) ::= 1378 UPDATE(B) orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z) scanpt(E). 1379 {A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R, B.z, E);} 1380 1381 // INSERT 1382 trigger_cmd(A) ::= scanpt(B) insert_cmd(R) INTO 1383 trnm(X) idlist_opt(F) select(S) scanpt(Z). 1384 {A = sqlite3TriggerInsertStep(pParse->db,&X,F,S,R,B,Z);/*A-overwrites-R*/} 1385 1386 // DELETE 1387 trigger_cmd(A) ::= DELETE(B) FROM trnm(X) tridxby where_opt(Y) scanpt(E). 1388 {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y, B.z, E);} 1389 1390 // SELECT 1391 trigger_cmd(A) ::= scanpt(B) select(X) scanpt(E). 1392 {A = sqlite3TriggerSelectStep(pParse->db, X, B, E); /*A-overwrites-X*/} 1393 1394 // The special RAISE expression that may occur in trigger programs 1395 expr(A) ::= RAISE LP IGNORE RP. { 1396 A = sqlite3PExpr(pParse, TK_RAISE, 0, 0); 1397 if( A ){ 1398 A->affinity = OE_Ignore; 1399 } 1400 } 1401 expr(A) ::= RAISE LP raisetype(T) COMMA nm(Z) RP. { 1402 A = sqlite3ExprAlloc(pParse->db, TK_RAISE, &Z, 1); 1403 if( A ) { 1404 A->affinity = (char)T; 1405 } 1406 } 1407 %endif !SQLITE_OMIT_TRIGGER 1408 1409 %type raisetype {int} 1410 raisetype(A) ::= ROLLBACK. {A = OE_Rollback;} 1411 raisetype(A) ::= ABORT. {A = OE_Abort;} 1412 raisetype(A) ::= FAIL. {A = OE_Fail;} 1413 1414 1415 //////////////////////// DROP TRIGGER statement ////////////////////////////// 1416 %ifndef SQLITE_OMIT_TRIGGER 1417 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). { 1418 sqlite3DropTrigger(pParse,X,NOERR); 1419 } 1420 %endif !SQLITE_OMIT_TRIGGER 1421 1422 //////////////////////// ATTACH DATABASE file AS name ///////////////////////// 1423 %ifndef SQLITE_OMIT_ATTACH 1424 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). { 1425 sqlite3Attach(pParse, F, D, K); 1426 } 1427 cmd ::= DETACH database_kw_opt expr(D). { 1428 sqlite3Detach(pParse, D); 1429 } 1430 1431 %type key_opt {Expr*} 1432 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);} 1433 key_opt(A) ::= . { A = 0; } 1434 key_opt(A) ::= KEY expr(X). { A = X; } 1435 1436 database_kw_opt ::= DATABASE. 1437 database_kw_opt ::= . 1438 %endif SQLITE_OMIT_ATTACH 1439 1440 ////////////////////////// REINDEX collation ////////////////////////////////// 1441 %ifndef SQLITE_OMIT_REINDEX 1442 cmd ::= REINDEX. {sqlite3Reindex(pParse, 0, 0);} 1443 cmd ::= REINDEX nm(X) dbnm(Y). {sqlite3Reindex(pParse, &X, &Y);} 1444 %endif SQLITE_OMIT_REINDEX 1445 1446 /////////////////////////////////// ANALYZE /////////////////////////////////// 1447 %ifndef SQLITE_OMIT_ANALYZE 1448 cmd ::= ANALYZE. {sqlite3Analyze(pParse, 0, 0);} 1449 cmd ::= ANALYZE nm(X) dbnm(Y). {sqlite3Analyze(pParse, &X, &Y);} 1450 %endif 1451 1452 //////////////////////// ALTER TABLE table ... //////////////////////////////// 1453 %ifndef SQLITE_OMIT_ALTERTABLE 1454 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). { 1455 sqlite3AlterRenameTable(pParse,X,&Z); 1456 } 1457 cmd ::= ALTER TABLE add_column_fullname 1458 ADD kwcolumn_opt columnname(Y) carglist. { 1459 Y.n = (int)(pParse->sLastToken.z-Y.z) + pParse->sLastToken.n; 1460 sqlite3AlterFinishAddColumn(pParse, &Y); 1461 } 1462 add_column_fullname ::= fullname(X). { 1463 disableLookaside(pParse); 1464 sqlite3AlterBeginAddColumn(pParse, X); 1465 } 1466 kwcolumn_opt ::= . 1467 kwcolumn_opt ::= COLUMNKW. 1468 %endif SQLITE_OMIT_ALTERTABLE 1469 1470 //////////////////////// CREATE VIRTUAL TABLE ... ///////////////////////////// 1471 %ifndef SQLITE_OMIT_VIRTUALTABLE 1472 cmd ::= create_vtab. {sqlite3VtabFinishParse(pParse,0);} 1473 cmd ::= create_vtab LP vtabarglist RP(X). {sqlite3VtabFinishParse(pParse,&X);} 1474 create_vtab ::= createkw VIRTUAL TABLE ifnotexists(E) 1475 nm(X) dbnm(Y) USING nm(Z). { 1476 sqlite3VtabBeginParse(pParse, &X, &Y, &Z, E); 1477 } 1478 vtabarglist ::= vtabarg. 1479 vtabarglist ::= vtabarglist COMMA vtabarg. 1480 vtabarg ::= . {sqlite3VtabArgInit(pParse);} 1481 vtabarg ::= vtabarg vtabargtoken. 1482 vtabargtoken ::= ANY(X). {sqlite3VtabArgExtend(pParse,&X);} 1483 vtabargtoken ::= lp anylist RP(X). {sqlite3VtabArgExtend(pParse,&X);} 1484 lp ::= LP(X). {sqlite3VtabArgExtend(pParse,&X);} 1485 anylist ::= . 1486 anylist ::= anylist LP anylist RP. 1487 anylist ::= anylist ANY. 1488 %endif SQLITE_OMIT_VIRTUALTABLE 1489 1490 1491 //////////////////////// COMMON TABLE EXPRESSIONS //////////////////////////// 1492 %type with {With*} 1493 %type wqlist {With*} 1494 %destructor with {sqlite3WithDelete(pParse->db, $$);} 1495 %destructor wqlist {sqlite3WithDelete(pParse->db, $$);} 1496 1497 with(A) ::= . {A = 0;} 1498 %ifndef SQLITE_OMIT_CTE 1499 with(A) ::= WITH wqlist(W). { A = W; } 1500 with(A) ::= WITH RECURSIVE wqlist(W). { A = W; } 1501 1502 wqlist(A) ::= nm(X) eidlist_opt(Y) AS LP select(Z) RP. { 1503 A = sqlite3WithAdd(pParse, 0, &X, Y, Z); /*A-overwrites-X*/ 1504 } 1505 wqlist(A) ::= wqlist(A) COMMA nm(X) eidlist_opt(Y) AS LP select(Z) RP. { 1506 A = sqlite3WithAdd(pParse, A, &X, Y, Z); 1507 } 1508 %endif SQLITE_OMIT_CTE 1509