1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains SQLite's grammar for SQL. Process this file 13 ** using the lemon parser generator to generate C code that runs 14 ** the parser. Lemon will also generate a header file containing 15 ** numeric codes for all of the tokens. 16 */ 17 18 // All token codes are small integers with #defines that begin with "TK_" 19 %token_prefix TK_ 20 21 // The type of the data attached to each token is Token. This is also the 22 // default type for non-terminals. 23 // 24 %token_type {Token} 25 %default_type {Token} 26 27 // An extra argument to the constructor for the parser, which is available 28 // to all actions. 29 %extra_context {Parse *pParse} 30 31 // This code runs whenever there is a syntax error 32 // 33 %syntax_error { 34 UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */ 35 if( TOKEN.z[0] ){ 36 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN); 37 }else{ 38 sqlite3ErrorMsg(pParse, "incomplete input"); 39 } 40 } 41 %stack_overflow { 42 sqlite3ErrorMsg(pParse, "parser stack overflow"); 43 } 44 45 // The name of the generated procedure that implements the parser 46 // is as follows: 47 %name sqlite3Parser 48 49 // The following text is included near the beginning of the C source 50 // code file that implements the parser. 51 // 52 %include { 53 #include "sqliteInt.h" 54 55 /* 56 ** Disable all error recovery processing in the parser push-down 57 ** automaton. 58 */ 59 #define YYNOERRORRECOVERY 1 60 61 /* 62 ** Make yytestcase() the same as testcase() 63 */ 64 #define yytestcase(X) testcase(X) 65 66 /* 67 ** Indicate that sqlite3ParserFree() will never be called with a null 68 ** pointer. 69 */ 70 #define YYPARSEFREENEVERNULL 1 71 72 /* 73 ** In the amalgamation, the parse.c file generated by lemon and the 74 ** tokenize.c file are concatenated. In that case, sqlite3RunParser() 75 ** has access to the the size of the yyParser object and so the parser 76 ** engine can be allocated from stack. In that case, only the 77 ** sqlite3ParserInit() and sqlite3ParserFinalize() routines are invoked 78 ** and the sqlite3ParserAlloc() and sqlite3ParserFree() routines can be 79 ** omitted. 80 */ 81 #ifdef SQLITE_AMALGAMATION 82 # define sqlite3Parser_ENGINEALWAYSONSTACK 1 83 #endif 84 85 /* 86 ** Alternative datatype for the argument to the malloc() routine passed 87 ** into sqlite3ParserAlloc(). The default is size_t. 88 */ 89 #define YYMALLOCARGTYPE u64 90 91 /* 92 ** An instance of the following structure describes the event of a 93 ** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT, 94 ** TK_DELETE, or TK_INSTEAD. If the event is of the form 95 ** 96 ** UPDATE ON (a,b,c) 97 ** 98 ** Then the "b" IdList records the list "a,b,c". 99 */ 100 struct TrigEvent { int a; IdList * b; }; 101 102 struct FrameBound { int eType; Expr *pExpr; }; 103 104 /* 105 ** Disable lookaside memory allocation for objects that might be 106 ** shared across database connections. 107 */ 108 static void disableLookaside(Parse *pParse){ 109 pParse->disableLookaside++; 110 pParse->db->lookaside.bDisable++; 111 } 112 113 } // end %include 114 115 // Input is a single SQL command 116 input ::= cmdlist. 117 cmdlist ::= cmdlist ecmd. 118 cmdlist ::= ecmd. 119 ecmd ::= SEMI. 120 ecmd ::= cmdx SEMI. 121 %ifndef SQLITE_OMIT_EXPLAIN 122 ecmd ::= explain cmdx. 123 explain ::= EXPLAIN. { pParse->explain = 1; } 124 explain ::= EXPLAIN QUERY PLAN. { pParse->explain = 2; } 125 %endif SQLITE_OMIT_EXPLAIN 126 cmdx ::= cmd. { sqlite3FinishCoding(pParse); } 127 128 ///////////////////// Begin and end transactions. //////////////////////////// 129 // 130 131 cmd ::= BEGIN transtype(Y) trans_opt. {sqlite3BeginTransaction(pParse, Y);} 132 trans_opt ::= . 133 trans_opt ::= TRANSACTION. 134 trans_opt ::= TRANSACTION nm. 135 %type transtype {int} 136 transtype(A) ::= . {A = TK_DEFERRED;} 137 transtype(A) ::= DEFERRED(X). {A = @X; /*A-overwrites-X*/} 138 transtype(A) ::= IMMEDIATE(X). {A = @X; /*A-overwrites-X*/} 139 transtype(A) ::= EXCLUSIVE(X). {A = @X; /*A-overwrites-X*/} 140 cmd ::= COMMIT|END(X) trans_opt. {sqlite3EndTransaction(pParse,@X);} 141 cmd ::= ROLLBACK(X) trans_opt. {sqlite3EndTransaction(pParse,@X);} 142 143 savepoint_opt ::= SAVEPOINT. 144 savepoint_opt ::= . 145 cmd ::= SAVEPOINT nm(X). { 146 sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X); 147 } 148 cmd ::= RELEASE savepoint_opt nm(X). { 149 sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X); 150 } 151 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). { 152 sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X); 153 } 154 155 ///////////////////// The CREATE TABLE statement //////////////////////////// 156 // 157 cmd ::= create_table create_table_args. 158 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). { 159 sqlite3StartTable(pParse,&Y,&Z,T,0,0,E); 160 } 161 createkw(A) ::= CREATE(A). {disableLookaside(pParse);} 162 163 %type ifnotexists {int} 164 ifnotexists(A) ::= . {A = 0;} 165 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;} 166 %type temp {int} 167 %ifndef SQLITE_OMIT_TEMPDB 168 temp(A) ::= TEMP. {A = 1;} 169 %endif SQLITE_OMIT_TEMPDB 170 temp(A) ::= . {A = 0;} 171 create_table_args ::= LP columnlist conslist_opt(X) RP(E) table_options(F). { 172 sqlite3EndTable(pParse,&X,&E,F,0); 173 } 174 create_table_args ::= AS select(S). { 175 sqlite3EndTable(pParse,0,0,0,S); 176 sqlite3SelectDelete(pParse->db, S); 177 } 178 %type table_options {int} 179 table_options(A) ::= . {A = 0;} 180 table_options(A) ::= WITHOUT nm(X). { 181 if( X.n==5 && sqlite3_strnicmp(X.z,"rowid",5)==0 ){ 182 A = TF_WithoutRowid | TF_NoVisibleRowid; 183 }else{ 184 A = 0; 185 sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z); 186 } 187 } 188 columnlist ::= columnlist COMMA columnname carglist. 189 columnlist ::= columnname carglist. 190 columnname(A) ::= nm(A) typetoken(Y). {sqlite3AddColumn(pParse,&A,&Y);} 191 192 // Declare some tokens early in order to influence their values, to 193 // improve performance and reduce the executable size. The goal here is 194 // to get the "jump" operations in ISNULL through ESCAPE to have numeric 195 // values that are early enough so that all jump operations are clustered 196 // at the beginning, but also so that the comparison tokens NE through GE 197 // are as large as possible so that they are near to FUNCTION, which is a 198 // token synthesized by addopcodes.tcl. 199 // 200 %token ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST. 201 %token CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL. 202 %token OR AND NOT IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. 203 %token GT LE LT GE ESCAPE. 204 205 // The following directive causes tokens ABORT, AFTER, ASC, etc. to 206 // fallback to ID if they will not parse as their original value. 207 // This obviates the need for the "id" nonterminal. 208 // 209 %fallback ID 210 ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW 211 CONFLICT DATABASE DEFERRED DESC DETACH DO 212 EACH END EXCLUSIVE EXPLAIN FAIL FOR 213 IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN 214 QUERY KEY OF OFFSET PRAGMA RAISE RECURSIVE RELEASE REPLACE RESTRICT ROW ROWS 215 ROLLBACK SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL WITH WITHOUT 216 %ifdef SQLITE_OMIT_COMPOUND_SELECT 217 EXCEPT INTERSECT UNION 218 %endif SQLITE_OMIT_COMPOUND_SELECT 219 %ifndef SQLITE_OMIT_WINDOWFUNC 220 CURRENT FOLLOWING PARTITION PRECEDING RANGE UNBOUNDED 221 %endif SQLITE_OMIT_WINDOWFUNC 222 REINDEX RENAME CTIME_KW IF 223 . 224 %wildcard ANY. 225 226 // Define operator precedence early so that this is the first occurrence 227 // of the operator tokens in the grammer. Keeping the operators together 228 // causes them to be assigned integer values that are close together, 229 // which keeps parser tables smaller. 230 // 231 // The token values assigned to these symbols is determined by the order 232 // in which lemon first sees them. It must be the case that ISNULL/NOTNULL, 233 // NE/EQ, GT/LE, and GE/LT are separated by only a single value. See 234 // the sqlite3ExprIfFalse() routine for additional information on this 235 // constraint. 236 // 237 %left OR. 238 %left AND. 239 %right NOT. 240 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. 241 %left GT LE LT GE. 242 %right ESCAPE. 243 %left BITAND BITOR LSHIFT RSHIFT. 244 %left PLUS MINUS. 245 %left STAR SLASH REM. 246 %left CONCAT. 247 %left COLLATE. 248 %right BITNOT. 249 %nonassoc ON. 250 251 // An IDENTIFIER can be a generic identifier, or one of several 252 // keywords. Any non-standard keyword can also be an identifier. 253 // 254 %token_class id ID|INDEXED. 255 256 257 // And "ids" is an identifer-or-string. 258 // 259 %token_class ids ID|STRING. 260 261 // The name of a column or table can be any of the following: 262 // 263 %type nm {Token} 264 nm(A) ::= id(A). 265 nm(A) ::= STRING(A). 266 nm(A) ::= JOIN_KW(A). 267 268 // A typetoken is really zero or more tokens that form a type name such 269 // as can be found after the column name in a CREATE TABLE statement. 270 // Multiple tokens are concatenated to form the value of the typetoken. 271 // 272 %type typetoken {Token} 273 typetoken(A) ::= . {A.n = 0; A.z = 0;} 274 typetoken(A) ::= typename(A). 275 typetoken(A) ::= typename(A) LP signed RP(Y). { 276 A.n = (int)(&Y.z[Y.n] - A.z); 277 } 278 typetoken(A) ::= typename(A) LP signed COMMA signed RP(Y). { 279 A.n = (int)(&Y.z[Y.n] - A.z); 280 } 281 %type typename {Token} 282 typename(A) ::= ids(A). 283 typename(A) ::= typename(A) ids(Y). {A.n=Y.n+(int)(Y.z-A.z);} 284 signed ::= plus_num. 285 signed ::= minus_num. 286 287 // The scanpt non-terminal takes a value which is a pointer to the 288 // input text just past the last token that has been shifted into 289 // the parser. By surrounding some phrase in the grammar with two 290 // scanpt non-terminals, we can capture the input text for that phrase. 291 // For example: 292 // 293 // something ::= .... scanpt(A) phrase scanpt(Z). 294 // 295 // The text that is parsed as "phrase" is a string starting at A 296 // and containing (int)(Z-A) characters. There might be some extra 297 // whitespace on either end of the text, but that can be removed in 298 // post-processing, if needed. 299 // 300 %type scanpt {const char*} 301 scanpt(A) ::= . { 302 assert( yyLookahead!=YYNOCODE ); 303 A = yyLookaheadToken.z; 304 } 305 306 // "carglist" is a list of additional constraints that come after the 307 // column name and column type in a CREATE TABLE statement. 308 // 309 carglist ::= carglist ccons. 310 carglist ::= . 311 ccons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} 312 ccons ::= DEFAULT scanpt(A) term(X) scanpt(Z). 313 {sqlite3AddDefaultValue(pParse,X,A,Z);} 314 ccons ::= DEFAULT LP(A) expr(X) RP(Z). 315 {sqlite3AddDefaultValue(pParse,X,A.z+1,Z.z);} 316 ccons ::= DEFAULT PLUS(A) term(X) scanpt(Z). 317 {sqlite3AddDefaultValue(pParse,X,A.z,Z);} 318 ccons ::= DEFAULT MINUS(A) term(X) scanpt(Z). { 319 Expr *p = sqlite3PExpr(pParse, TK_UMINUS, X, 0); 320 sqlite3AddDefaultValue(pParse,p,A.z,Z); 321 } 322 ccons ::= DEFAULT scanpt id(X). { 323 Expr *p = tokenExpr(pParse, TK_STRING, X); 324 if( p ){ 325 sqlite3ExprIdToTrueFalse(p); 326 testcase( p->op==TK_TRUEFALSE && sqlite3ExprTruthValue(p) ); 327 } 328 sqlite3AddDefaultValue(pParse,p,X.z,X.z+X.n); 329 } 330 331 // In addition to the type name, we also care about the primary key and 332 // UNIQUE constraints. 333 // 334 ccons ::= NULL onconf. 335 ccons ::= NOT NULL onconf(R). {sqlite3AddNotNull(pParse, R);} 336 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I). 337 {sqlite3AddPrimaryKey(pParse,0,R,I,Z);} 338 ccons ::= UNIQUE onconf(R). {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0, 339 SQLITE_IDXTYPE_UNIQUE);} 340 ccons ::= CHECK LP expr(X) RP. {sqlite3AddCheckConstraint(pParse,X);} 341 ccons ::= REFERENCES nm(T) eidlist_opt(TA) refargs(R). 342 {sqlite3CreateForeignKey(pParse,0,&T,TA,R);} 343 ccons ::= defer_subclause(D). {sqlite3DeferForeignKey(pParse,D);} 344 ccons ::= COLLATE ids(C). {sqlite3AddCollateType(pParse, &C);} 345 346 // The optional AUTOINCREMENT keyword 347 %type autoinc {int} 348 autoinc(X) ::= . {X = 0;} 349 autoinc(X) ::= AUTOINCR. {X = 1;} 350 351 // The next group of rules parses the arguments to a REFERENCES clause 352 // that determine if the referential integrity checking is deferred or 353 // or immediate and which determine what action to take if a ref-integ 354 // check fails. 355 // 356 %type refargs {int} 357 refargs(A) ::= . { A = OE_None*0x0101; /* EV: R-19803-45884 */} 358 refargs(A) ::= refargs(A) refarg(Y). { A = (A & ~Y.mask) | Y.value; } 359 %type refarg {struct {int value; int mask;}} 360 refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; } 361 refarg(A) ::= ON INSERT refact. { A.value = 0; A.mask = 0x000000; } 362 refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; } 363 refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; } 364 %type refact {int} 365 refact(A) ::= SET NULL. { A = OE_SetNull; /* EV: R-33326-45252 */} 366 refact(A) ::= SET DEFAULT. { A = OE_SetDflt; /* EV: R-33326-45252 */} 367 refact(A) ::= CASCADE. { A = OE_Cascade; /* EV: R-33326-45252 */} 368 refact(A) ::= RESTRICT. { A = OE_Restrict; /* EV: R-33326-45252 */} 369 refact(A) ::= NO ACTION. { A = OE_None; /* EV: R-33326-45252 */} 370 %type defer_subclause {int} 371 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt. {A = 0;} 372 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;} 373 %type init_deferred_pred_opt {int} 374 init_deferred_pred_opt(A) ::= . {A = 0;} 375 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;} 376 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;} 377 378 conslist_opt(A) ::= . {A.n = 0; A.z = 0;} 379 conslist_opt(A) ::= COMMA(A) conslist. 380 conslist ::= conslist tconscomma tcons. 381 conslist ::= tcons. 382 tconscomma ::= COMMA. {pParse->constraintName.n = 0;} 383 tconscomma ::= . 384 tcons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} 385 tcons ::= PRIMARY KEY LP sortlist(X) autoinc(I) RP onconf(R). 386 {sqlite3AddPrimaryKey(pParse,X,R,I,0);} 387 tcons ::= UNIQUE LP sortlist(X) RP onconf(R). 388 {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0, 389 SQLITE_IDXTYPE_UNIQUE);} 390 tcons ::= CHECK LP expr(E) RP onconf. 391 {sqlite3AddCheckConstraint(pParse,E);} 392 tcons ::= FOREIGN KEY LP eidlist(FA) RP 393 REFERENCES nm(T) eidlist_opt(TA) refargs(R) defer_subclause_opt(D). { 394 sqlite3CreateForeignKey(pParse, FA, &T, TA, R); 395 sqlite3DeferForeignKey(pParse, D); 396 } 397 %type defer_subclause_opt {int} 398 defer_subclause_opt(A) ::= . {A = 0;} 399 defer_subclause_opt(A) ::= defer_subclause(A). 400 401 // The following is a non-standard extension that allows us to declare the 402 // default behavior when there is a constraint conflict. 403 // 404 %type onconf {int} 405 %type orconf {int} 406 %type resolvetype {int} 407 onconf(A) ::= . {A = OE_Default;} 408 onconf(A) ::= ON CONFLICT resolvetype(X). {A = X;} 409 orconf(A) ::= . {A = OE_Default;} 410 orconf(A) ::= OR resolvetype(X). {A = X;} 411 resolvetype(A) ::= raisetype(A). 412 resolvetype(A) ::= IGNORE. {A = OE_Ignore;} 413 resolvetype(A) ::= REPLACE. {A = OE_Replace;} 414 415 ////////////////////////// The DROP TABLE ///////////////////////////////////// 416 // 417 cmd ::= DROP TABLE ifexists(E) fullname(X). { 418 sqlite3DropTable(pParse, X, 0, E); 419 } 420 %type ifexists {int} 421 ifexists(A) ::= IF EXISTS. {A = 1;} 422 ifexists(A) ::= . {A = 0;} 423 424 ///////////////////// The CREATE VIEW statement ///////////////////////////// 425 // 426 %ifndef SQLITE_OMIT_VIEW 427 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) eidlist_opt(C) 428 AS select(S). { 429 sqlite3CreateView(pParse, &X, &Y, &Z, C, S, T, E); 430 } 431 cmd ::= DROP VIEW ifexists(E) fullname(X). { 432 sqlite3DropTable(pParse, X, 1, E); 433 } 434 %endif SQLITE_OMIT_VIEW 435 436 //////////////////////// The SELECT statement ///////////////////////////////// 437 // 438 cmd ::= select(X). { 439 SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0}; 440 sqlite3Select(pParse, X, &dest); 441 sqlite3SelectDelete(pParse->db, X); 442 } 443 444 %type select {Select*} 445 %destructor select {sqlite3SelectDelete(pParse->db, $$);} 446 %type selectnowith {Select*} 447 %destructor selectnowith {sqlite3SelectDelete(pParse->db, $$);} 448 %type oneselect {Select*} 449 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);} 450 451 %include { 452 /* 453 ** For a compound SELECT statement, make sure p->pPrior->pNext==p for 454 ** all elements in the list. And make sure list length does not exceed 455 ** SQLITE_LIMIT_COMPOUND_SELECT. 456 */ 457 static void parserDoubleLinkSelect(Parse *pParse, Select *p){ 458 if( p->pPrior ){ 459 Select *pNext = 0, *pLoop; 460 int mxSelect, cnt = 0; 461 for(pLoop=p; pLoop; pNext=pLoop, pLoop=pLoop->pPrior, cnt++){ 462 pLoop->pNext = pNext; 463 pLoop->selFlags |= SF_Compound; 464 } 465 if( (p->selFlags & SF_MultiValue)==0 && 466 (mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT])>0 && 467 cnt>mxSelect 468 ){ 469 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 470 } 471 } 472 } 473 } 474 475 %ifndef SQLITE_OMIT_CTE 476 select(A) ::= WITH wqlist(W) selectnowith(X). { 477 Select *p = X; 478 if( p ){ 479 p->pWith = W; 480 parserDoubleLinkSelect(pParse, p); 481 }else{ 482 sqlite3WithDelete(pParse->db, W); 483 } 484 A = p; 485 } 486 select(A) ::= WITH RECURSIVE wqlist(W) selectnowith(X). { 487 Select *p = X; 488 if( p ){ 489 p->pWith = W; 490 parserDoubleLinkSelect(pParse, p); 491 }else{ 492 sqlite3WithDelete(pParse->db, W); 493 } 494 A = p; 495 } 496 %endif /* SQLITE_OMIT_CTE */ 497 select(A) ::= selectnowith(X). { 498 Select *p = X; 499 if( p ){ 500 parserDoubleLinkSelect(pParse, p); 501 } 502 A = p; /*A-overwrites-X*/ 503 } 504 505 selectnowith(A) ::= oneselect(A). 506 %ifndef SQLITE_OMIT_COMPOUND_SELECT 507 selectnowith(A) ::= selectnowith(A) multiselect_op(Y) oneselect(Z). { 508 Select *pRhs = Z; 509 Select *pLhs = A; 510 if( pRhs && pRhs->pPrior ){ 511 SrcList *pFrom; 512 Token x; 513 x.n = 0; 514 parserDoubleLinkSelect(pParse, pRhs); 515 pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0); 516 pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0); 517 } 518 if( pRhs ){ 519 pRhs->op = (u8)Y; 520 pRhs->pPrior = pLhs; 521 if( ALWAYS(pLhs) ) pLhs->selFlags &= ~SF_MultiValue; 522 pRhs->selFlags &= ~SF_MultiValue; 523 if( Y!=TK_ALL ) pParse->hasCompound = 1; 524 }else{ 525 sqlite3SelectDelete(pParse->db, pLhs); 526 } 527 A = pRhs; 528 } 529 %type multiselect_op {int} 530 multiselect_op(A) ::= UNION(OP). {A = @OP; /*A-overwrites-OP*/} 531 multiselect_op(A) ::= UNION ALL. {A = TK_ALL;} 532 multiselect_op(A) ::= EXCEPT|INTERSECT(OP). {A = @OP; /*A-overwrites-OP*/} 533 %endif SQLITE_OMIT_COMPOUND_SELECT 534 oneselect(A) ::= SELECT(S) distinct(D) selcollist(W) from(X) where_opt(Y) 535 groupby_opt(P) having_opt(Q) 536 %ifndef SQLITE_OMIT_WINDOWFUNC 537 windowdefn_opt(R) 538 %endif 539 orderby_opt(Z) limit_opt(L). { 540 #if SELECTTRACE_ENABLED 541 Token s = S; /*A-overwrites-S*/ 542 #endif 543 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L); 544 #ifndef SQLITE_OMIT_WINDOWFUNC 545 if( A ){ 546 A->pWinDefn = R; 547 }else{ 548 sqlite3WindowListDelete(pParse->db, R); 549 } 550 #endif // SQLITE_OMIT_WINDOWFUNC 551 #if SELECTTRACE_ENABLED 552 /* Populate the Select.zSelName[] string that is used to help with 553 ** query planner debugging, to differentiate between multiple Select 554 ** objects in a complex query. 555 ** 556 ** If the SELECT keyword is immediately followed by a C-style comment 557 ** then extract the first few alphanumeric characters from within that 558 ** comment to be the zSelName value. Otherwise, the label is #N where 559 ** is an integer that is incremented with each SELECT statement seen. 560 */ 561 if( A!=0 ){ 562 const char *z = s.z+6; 563 int i; 564 sqlite3_snprintf(sizeof(A->zSelName), A->zSelName,"#%d",++pParse->nSelect); 565 while( z[0]==' ' ) z++; 566 if( z[0]=='/' && z[1]=='*' ){ 567 z += 2; 568 while( z[0]==' ' ) z++; 569 for(i=0; sqlite3Isalnum(z[i]); i++){} 570 sqlite3_snprintf(sizeof(A->zSelName), A->zSelName, "%.*s", i, z); 571 } 572 } 573 #endif /* SELECTRACE_ENABLED */ 574 } 575 oneselect(A) ::= values(A). 576 577 %type values {Select*} 578 %destructor values {sqlite3SelectDelete(pParse->db, $$);} 579 values(A) ::= VALUES LP nexprlist(X) RP. { 580 A = sqlite3SelectNew(pParse,X,0,0,0,0,0,SF_Values,0); 581 } 582 values(A) ::= values(A) COMMA LP exprlist(Y) RP. { 583 Select *pRight, *pLeft = A; 584 pRight = sqlite3SelectNew(pParse,Y,0,0,0,0,0,SF_Values|SF_MultiValue,0); 585 if( ALWAYS(pLeft) ) pLeft->selFlags &= ~SF_MultiValue; 586 if( pRight ){ 587 pRight->op = TK_ALL; 588 pRight->pPrior = pLeft; 589 A = pRight; 590 }else{ 591 A = pLeft; 592 } 593 } 594 595 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is 596 // present and false (0) if it is not. 597 // 598 %type distinct {int} 599 distinct(A) ::= DISTINCT. {A = SF_Distinct;} 600 distinct(A) ::= ALL. {A = SF_All;} 601 distinct(A) ::= . {A = 0;} 602 603 // selcollist is a list of expressions that are to become the return 604 // values of the SELECT statement. The "*" in statements like 605 // "SELECT * FROM ..." is encoded as a special expression with an 606 // opcode of TK_ASTERISK. 607 // 608 %type selcollist {ExprList*} 609 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);} 610 %type sclp {ExprList*} 611 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);} 612 sclp(A) ::= selcollist(A) COMMA. 613 sclp(A) ::= . {A = 0;} 614 selcollist(A) ::= sclp(A) scanpt(B) expr(X) scanpt(Z) as(Y). { 615 A = sqlite3ExprListAppend(pParse, A, X); 616 if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1); 617 sqlite3ExprListSetSpan(pParse,A,B,Z); 618 } 619 selcollist(A) ::= sclp(A) scanpt STAR. { 620 Expr *p = sqlite3Expr(pParse->db, TK_ASTERISK, 0); 621 A = sqlite3ExprListAppend(pParse, A, p); 622 } 623 selcollist(A) ::= sclp(A) scanpt nm(X) DOT STAR. { 624 Expr *pRight = sqlite3PExpr(pParse, TK_ASTERISK, 0, 0); 625 Expr *pLeft = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1); 626 Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 627 A = sqlite3ExprListAppend(pParse,A, pDot); 628 } 629 630 // An option "AS <id>" phrase that can follow one of the expressions that 631 // define the result set, or one of the tables in the FROM clause. 632 // 633 %type as {Token} 634 as(X) ::= AS nm(Y). {X = Y;} 635 as(X) ::= ids(X). 636 as(X) ::= . {X.n = 0; X.z = 0;} 637 638 639 %type seltablist {SrcList*} 640 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);} 641 %type stl_prefix {SrcList*} 642 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);} 643 %type from {SrcList*} 644 %destructor from {sqlite3SrcListDelete(pParse->db, $$);} 645 646 // A complete FROM clause. 647 // 648 from(A) ::= . {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));} 649 from(A) ::= FROM seltablist(X). { 650 A = X; 651 sqlite3SrcListShiftJoinType(A); 652 } 653 654 // "seltablist" is a "Select Table List" - the content of the FROM clause 655 // in a SELECT statement. "stl_prefix" is a prefix of this list. 656 // 657 stl_prefix(A) ::= seltablist(A) joinop(Y). { 658 if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].fg.jointype = (u8)Y; 659 } 660 stl_prefix(A) ::= . {A = 0;} 661 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) as(Z) indexed_opt(I) 662 on_opt(N) using_opt(U). { 663 A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U); 664 sqlite3SrcListIndexedBy(pParse, A, &I); 665 } 666 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) LP exprlist(E) RP as(Z) 667 on_opt(N) using_opt(U). { 668 A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U); 669 sqlite3SrcListFuncArgs(pParse, A, E); 670 } 671 %ifndef SQLITE_OMIT_SUBQUERY 672 seltablist(A) ::= stl_prefix(A) LP select(S) RP 673 as(Z) on_opt(N) using_opt(U). { 674 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,S,N,U); 675 } 676 seltablist(A) ::= stl_prefix(A) LP seltablist(F) RP 677 as(Z) on_opt(N) using_opt(U). { 678 if( A==0 && Z.n==0 && N==0 && U==0 ){ 679 A = F; 680 }else if( F->nSrc==1 ){ 681 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,0,N,U); 682 if( A ){ 683 struct SrcList_item *pNew = &A->a[A->nSrc-1]; 684 struct SrcList_item *pOld = F->a; 685 pNew->zName = pOld->zName; 686 pNew->zDatabase = pOld->zDatabase; 687 pNew->pSelect = pOld->pSelect; 688 pOld->zName = pOld->zDatabase = 0; 689 pOld->pSelect = 0; 690 } 691 sqlite3SrcListDelete(pParse->db, F); 692 }else{ 693 Select *pSubquery; 694 sqlite3SrcListShiftJoinType(F); 695 pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,SF_NestedFrom,0); 696 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,pSubquery,N,U); 697 } 698 } 699 %endif SQLITE_OMIT_SUBQUERY 700 701 %type dbnm {Token} 702 dbnm(A) ::= . {A.z=0; A.n=0;} 703 dbnm(A) ::= DOT nm(X). {A = X;} 704 705 %type fullname {SrcList*} 706 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);} 707 fullname(A) ::= nm(X). 708 {A = sqlite3SrcListAppend(pParse->db,0,&X,0); /*A-overwrites-X*/} 709 fullname(A) ::= nm(X) DOT nm(Y). 710 {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y); /*A-overwrites-X*/} 711 712 %type xfullname {SrcList*} 713 %destructor xfullname {sqlite3SrcListDelete(pParse->db, $$);} 714 xfullname(A) ::= nm(X). 715 {A = sqlite3SrcListAppend(pParse->db,0,&X,0); /*A-overwrites-X*/} 716 xfullname(A) ::= nm(X) DOT nm(Y). 717 {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y); /*A-overwrites-X*/} 718 xfullname(A) ::= nm(X) DOT nm(Y) AS nm(Z). { 719 A = sqlite3SrcListAppend(pParse->db,0,&X,&Y); /*A-overwrites-X*/ 720 if( A ) A->a[0].zAlias = sqlite3NameFromToken(pParse->db, &Z); 721 } 722 xfullname(A) ::= nm(X) AS nm(Z). { 723 A = sqlite3SrcListAppend(pParse->db,0,&X,0); /*A-overwrites-X*/ 724 if( A ) A->a[0].zAlias = sqlite3NameFromToken(pParse->db, &Z); 725 } 726 727 %type joinop {int} 728 joinop(X) ::= COMMA|JOIN. { X = JT_INNER; } 729 joinop(X) ::= JOIN_KW(A) JOIN. 730 {X = sqlite3JoinType(pParse,&A,0,0); /*X-overwrites-A*/} 731 joinop(X) ::= JOIN_KW(A) nm(B) JOIN. 732 {X = sqlite3JoinType(pParse,&A,&B,0); /*X-overwrites-A*/} 733 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN. 734 {X = sqlite3JoinType(pParse,&A,&B,&C);/*X-overwrites-A*/} 735 736 // There is a parsing abiguity in an upsert statement that uses a 737 // SELECT on the RHS of a the INSERT: 738 // 739 // INSERT INTO tab SELECT * FROM aaa JOIN bbb ON CONFLICT ... 740 // here ----^^ 741 // 742 // When the ON token is encountered, the parser does not know if it is 743 // the beginning of an ON CONFLICT clause, or the beginning of an ON 744 // clause associated with the JOIN. The conflict is resolved in favor 745 // of the JOIN. If an ON CONFLICT clause is intended, insert a dummy 746 // WHERE clause in between, like this: 747 // 748 // INSERT INTO tab SELECT * FROM aaa JOIN bbb WHERE true ON CONFLICT ... 749 // 750 // The [AND] and [OR] precedence marks in the rules for on_opt cause the 751 // ON in this context to always be interpreted as belonging to the JOIN. 752 // 753 %type on_opt {Expr*} 754 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);} 755 on_opt(N) ::= ON expr(E). {N = E;} 756 on_opt(N) ::= . [OR] {N = 0;} 757 758 // Note that this block abuses the Token type just a little. If there is 759 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If 760 // there is an INDEXED BY clause, then the token is populated as per normal, 761 // with z pointing to the token data and n containing the number of bytes 762 // in the token. 763 // 764 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is 765 // normally illegal. The sqlite3SrcListIndexedBy() function 766 // recognizes and interprets this as a special case. 767 // 768 %type indexed_opt {Token} 769 indexed_opt(A) ::= . {A.z=0; A.n=0;} 770 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;} 771 indexed_opt(A) ::= NOT INDEXED. {A.z=0; A.n=1;} 772 773 %type using_opt {IdList*} 774 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);} 775 using_opt(U) ::= USING LP idlist(L) RP. {U = L;} 776 using_opt(U) ::= . {U = 0;} 777 778 779 %type orderby_opt {ExprList*} 780 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);} 781 782 // the sortlist non-terminal stores a list of expression where each 783 // expression is optionally followed by ASC or DESC to indicate the 784 // sort order. 785 // 786 %type sortlist {ExprList*} 787 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);} 788 789 orderby_opt(A) ::= . {A = 0;} 790 orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;} 791 sortlist(A) ::= sortlist(A) COMMA expr(Y) sortorder(Z). { 792 A = sqlite3ExprListAppend(pParse,A,Y); 793 sqlite3ExprListSetSortOrder(A,Z); 794 } 795 sortlist(A) ::= expr(Y) sortorder(Z). { 796 A = sqlite3ExprListAppend(pParse,0,Y); /*A-overwrites-Y*/ 797 sqlite3ExprListSetSortOrder(A,Z); 798 } 799 800 %type sortorder {int} 801 802 sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;} 803 sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;} 804 sortorder(A) ::= . {A = SQLITE_SO_UNDEFINED;} 805 806 %type groupby_opt {ExprList*} 807 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);} 808 groupby_opt(A) ::= . {A = 0;} 809 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;} 810 811 %type having_opt {Expr*} 812 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);} 813 having_opt(A) ::= . {A = 0;} 814 having_opt(A) ::= HAVING expr(X). {A = X;} 815 816 %type limit_opt {Expr*} 817 818 // The destructor for limit_opt will never fire in the current grammar. 819 // The limit_opt non-terminal only occurs at the end of a single production 820 // rule for SELECT statements. As soon as the rule that create the 821 // limit_opt non-terminal reduces, the SELECT statement rule will also 822 // reduce. So there is never a limit_opt non-terminal on the stack 823 // except as a transient. So there is never anything to destroy. 824 // 825 //%destructor limit_opt {sqlite3ExprDelete(pParse->db, $$);} 826 limit_opt(A) ::= . {A = 0;} 827 limit_opt(A) ::= LIMIT expr(X). 828 {A = sqlite3PExpr(pParse,TK_LIMIT,X,0);} 829 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y). 830 {A = sqlite3PExpr(pParse,TK_LIMIT,X,Y);} 831 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y). 832 {A = sqlite3PExpr(pParse,TK_LIMIT,Y,X);} 833 834 /////////////////////////// The DELETE statement ///////////////////////////// 835 // 836 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 837 cmd ::= with DELETE FROM xfullname(X) indexed_opt(I) where_opt(W) 838 orderby_opt(O) limit_opt(L). { 839 sqlite3SrcListIndexedBy(pParse, X, &I); 840 sqlite3DeleteFrom(pParse,X,W,O,L); 841 } 842 %endif 843 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 844 cmd ::= with DELETE FROM xfullname(X) indexed_opt(I) where_opt(W). { 845 sqlite3SrcListIndexedBy(pParse, X, &I); 846 sqlite3DeleteFrom(pParse,X,W,0,0); 847 } 848 %endif 849 850 %type where_opt {Expr*} 851 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);} 852 853 where_opt(A) ::= . {A = 0;} 854 where_opt(A) ::= WHERE expr(X). {A = X;} 855 856 ////////////////////////// The UPDATE command //////////////////////////////// 857 // 858 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 859 cmd ::= with UPDATE orconf(R) xfullname(X) indexed_opt(I) SET setlist(Y) 860 where_opt(W) orderby_opt(O) limit_opt(L). { 861 sqlite3SrcListIndexedBy(pParse, X, &I); 862 sqlite3ExprListCheckLength(pParse,Y,"set list"); 863 sqlite3Update(pParse,X,Y,W,R,O,L,0); 864 } 865 %endif 866 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 867 cmd ::= with UPDATE orconf(R) xfullname(X) indexed_opt(I) SET setlist(Y) 868 where_opt(W). { 869 sqlite3SrcListIndexedBy(pParse, X, &I); 870 sqlite3ExprListCheckLength(pParse,Y,"set list"); 871 sqlite3Update(pParse,X,Y,W,R,0,0,0); 872 } 873 %endif 874 875 %type setlist {ExprList*} 876 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);} 877 878 setlist(A) ::= setlist(A) COMMA nm(X) EQ expr(Y). { 879 A = sqlite3ExprListAppend(pParse, A, Y); 880 sqlite3ExprListSetName(pParse, A, &X, 1); 881 } 882 setlist(A) ::= setlist(A) COMMA LP idlist(X) RP EQ expr(Y). { 883 A = sqlite3ExprListAppendVector(pParse, A, X, Y); 884 } 885 setlist(A) ::= nm(X) EQ expr(Y). { 886 A = sqlite3ExprListAppend(pParse, 0, Y); 887 sqlite3ExprListSetName(pParse, A, &X, 1); 888 } 889 setlist(A) ::= LP idlist(X) RP EQ expr(Y). { 890 A = sqlite3ExprListAppendVector(pParse, 0, X, Y); 891 } 892 893 ////////////////////////// The INSERT command ///////////////////////////////// 894 // 895 cmd ::= with insert_cmd(R) INTO xfullname(X) idlist_opt(F) select(S) 896 upsert(U). { 897 sqlite3Insert(pParse, X, S, F, R, U); 898 } 899 cmd ::= with insert_cmd(R) INTO xfullname(X) idlist_opt(F) DEFAULT VALUES. 900 { 901 sqlite3Insert(pParse, X, 0, F, R, 0); 902 } 903 904 %type upsert {Upsert*} 905 906 // Because upsert only occurs at the tip end of the INSERT rule for cmd, 907 // there is never a case where the value of the upsert pointer will not 908 // be destroyed by the cmd action. So comment-out the destructor to 909 // avoid unreachable code. 910 //%destructor upsert {sqlite3UpsertDelete(pParse->db,$$);} 911 upsert(A) ::= . { A = 0; } 912 upsert(A) ::= ON CONFLICT LP sortlist(T) RP where_opt(TW) 913 DO UPDATE SET setlist(Z) where_opt(W). 914 { A = sqlite3UpsertNew(pParse->db,T,TW,Z,W);} 915 upsert(A) ::= ON CONFLICT LP sortlist(T) RP where_opt(TW) DO NOTHING. 916 { A = sqlite3UpsertNew(pParse->db,T,TW,0,0); } 917 upsert(A) ::= ON CONFLICT DO NOTHING. 918 { A = sqlite3UpsertNew(pParse->db,0,0,0,0); } 919 920 %type insert_cmd {int} 921 insert_cmd(A) ::= INSERT orconf(R). {A = R;} 922 insert_cmd(A) ::= REPLACE. {A = OE_Replace;} 923 924 %type idlist_opt {IdList*} 925 %destructor idlist_opt {sqlite3IdListDelete(pParse->db, $$);} 926 %type idlist {IdList*} 927 %destructor idlist {sqlite3IdListDelete(pParse->db, $$);} 928 929 idlist_opt(A) ::= . {A = 0;} 930 idlist_opt(A) ::= LP idlist(X) RP. {A = X;} 931 idlist(A) ::= idlist(A) COMMA nm(Y). 932 {A = sqlite3IdListAppend(pParse->db,A,&Y);} 933 idlist(A) ::= nm(Y). 934 {A = sqlite3IdListAppend(pParse->db,0,&Y); /*A-overwrites-Y*/} 935 936 /////////////////////////// Expression Processing ///////////////////////////// 937 // 938 939 %type expr {Expr*} 940 %destructor expr {sqlite3ExprDelete(pParse->db, $$);} 941 %type term {Expr*} 942 %destructor term {sqlite3ExprDelete(pParse->db, $$);} 943 944 %include { 945 946 /* Construct a new Expr object from a single identifier. Use the 947 ** new Expr to populate pOut. Set the span of pOut to be the identifier 948 ** that created the expression. 949 */ 950 static Expr *tokenExpr(Parse *pParse, int op, Token t){ 951 Expr *p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)+t.n+1); 952 if( p ){ 953 memset(p, 0, sizeof(Expr)); 954 p->op = (u8)op; 955 p->flags = EP_Leaf; 956 p->iAgg = -1; 957 p->u.zToken = (char*)&p[1]; 958 memcpy(p->u.zToken, t.z, t.n); 959 p->u.zToken[t.n] = 0; 960 if( sqlite3Isquote(p->u.zToken[0]) ){ 961 if( p->u.zToken[0]=='"' ) p->flags |= EP_DblQuoted; 962 sqlite3Dequote(p->u.zToken); 963 } 964 #if SQLITE_MAX_EXPR_DEPTH>0 965 p->nHeight = 1; 966 #endif 967 } 968 return p; 969 } 970 } 971 972 expr(A) ::= term(A). 973 expr(A) ::= LP expr(X) RP. {A = X;} 974 expr(A) ::= id(X). {A=tokenExpr(pParse,TK_ID,X); /*A-overwrites-X*/} 975 expr(A) ::= JOIN_KW(X). {A=tokenExpr(pParse,TK_ID,X); /*A-overwrites-X*/} 976 expr(A) ::= nm(X) DOT nm(Y). { 977 Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1); 978 Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1); 979 A = sqlite3PExpr(pParse, TK_DOT, temp1, temp2); 980 } 981 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). { 982 Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1); 983 Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1); 984 Expr *temp3 = sqlite3ExprAlloc(pParse->db, TK_ID, &Z, 1); 985 Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3); 986 A = sqlite3PExpr(pParse, TK_DOT, temp1, temp4); 987 } 988 term(A) ::= NULL|FLOAT|BLOB(X). {A=tokenExpr(pParse,@X,X); /*A-overwrites-X*/} 989 term(A) ::= STRING(X). {A=tokenExpr(pParse,@X,X); /*A-overwrites-X*/} 990 term(A) ::= INTEGER(X). { 991 A = sqlite3ExprAlloc(pParse->db, TK_INTEGER, &X, 1); 992 } 993 expr(A) ::= VARIABLE(X). { 994 if( !(X.z[0]=='#' && sqlite3Isdigit(X.z[1])) ){ 995 u32 n = X.n; 996 A = tokenExpr(pParse, TK_VARIABLE, X); 997 sqlite3ExprAssignVarNumber(pParse, A, n); 998 }else{ 999 /* When doing a nested parse, one can include terms in an expression 1000 ** that look like this: #1 #2 ... These terms refer to registers 1001 ** in the virtual machine. #N is the N-th register. */ 1002 Token t = X; /*A-overwrites-X*/ 1003 assert( t.n>=2 ); 1004 if( pParse->nested==0 ){ 1005 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &t); 1006 A = 0; 1007 }else{ 1008 A = sqlite3PExpr(pParse, TK_REGISTER, 0, 0); 1009 if( A ) sqlite3GetInt32(&t.z[1], &A->iTable); 1010 } 1011 } 1012 } 1013 expr(A) ::= expr(A) COLLATE ids(C). { 1014 A = sqlite3ExprAddCollateToken(pParse, A, &C, 1); 1015 } 1016 %ifndef SQLITE_OMIT_CAST 1017 expr(A) ::= CAST LP expr(E) AS typetoken(T) RP. { 1018 A = sqlite3ExprAlloc(pParse->db, TK_CAST, &T, 1); 1019 sqlite3ExprAttachSubtrees(pParse->db, A, E, 0); 1020 } 1021 %endif SQLITE_OMIT_CAST 1022 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP 1023 %ifndef SQLITE_OMIT_WINDOWFUNC 1024 over_opt(Z) 1025 %endif 1026 . { 1027 if( Y && Y->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 1028 sqlite3ErrorMsg(pParse, "too many arguments on function %T", &X); 1029 } 1030 A = sqlite3ExprFunction(pParse, Y, &X); 1031 if( D==SF_Distinct && A ){ 1032 A->flags |= EP_Distinct; 1033 } 1034 sqlite3WindowAttach(pParse, A, Z); 1035 } 1036 expr(A) ::= id(X) LP STAR RP 1037 %ifndef SQLITE_OMIT_WINDOWFUNC 1038 over_opt(Z) 1039 %endif 1040 . { 1041 A = sqlite3ExprFunction(pParse, 0, &X); 1042 sqlite3WindowAttach(pParse, A, Z); 1043 } 1044 term(A) ::= CTIME_KW(OP). { 1045 A = sqlite3ExprFunction(pParse, 0, &OP); 1046 } 1047 1048 expr(A) ::= LP nexprlist(X) COMMA expr(Y) RP. { 1049 ExprList *pList = sqlite3ExprListAppend(pParse, X, Y); 1050 A = sqlite3PExpr(pParse, TK_VECTOR, 0, 0); 1051 if( A ){ 1052 A->x.pList = pList; 1053 }else{ 1054 sqlite3ExprListDelete(pParse->db, pList); 1055 } 1056 } 1057 1058 expr(A) ::= expr(A) AND(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 1059 expr(A) ::= expr(A) OR(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 1060 expr(A) ::= expr(A) LT|GT|GE|LE(OP) expr(Y). 1061 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1062 expr(A) ::= expr(A) EQ|NE(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 1063 expr(A) ::= expr(A) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y). 1064 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1065 expr(A) ::= expr(A) PLUS|MINUS(OP) expr(Y). 1066 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1067 expr(A) ::= expr(A) STAR|SLASH|REM(OP) expr(Y). 1068 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1069 expr(A) ::= expr(A) CONCAT(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 1070 %type likeop {Token} 1071 likeop(A) ::= LIKE_KW|MATCH(A). 1072 likeop(A) ::= NOT LIKE_KW|MATCH(X). {A=X; A.n|=0x80000000; /*A-overwrite-X*/} 1073 expr(A) ::= expr(A) likeop(OP) expr(Y). [LIKE_KW] { 1074 ExprList *pList; 1075 int bNot = OP.n & 0x80000000; 1076 OP.n &= 0x7fffffff; 1077 pList = sqlite3ExprListAppend(pParse,0, Y); 1078 pList = sqlite3ExprListAppend(pParse,pList, A); 1079 A = sqlite3ExprFunction(pParse, pList, &OP); 1080 if( bNot ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1081 if( A ) A->flags |= EP_InfixFunc; 1082 } 1083 expr(A) ::= expr(A) likeop(OP) expr(Y) ESCAPE expr(E). [LIKE_KW] { 1084 ExprList *pList; 1085 int bNot = OP.n & 0x80000000; 1086 OP.n &= 0x7fffffff; 1087 pList = sqlite3ExprListAppend(pParse,0, Y); 1088 pList = sqlite3ExprListAppend(pParse,pList, A); 1089 pList = sqlite3ExprListAppend(pParse,pList, E); 1090 A = sqlite3ExprFunction(pParse, pList, &OP); 1091 if( bNot ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1092 if( A ) A->flags |= EP_InfixFunc; 1093 } 1094 1095 expr(A) ::= expr(A) ISNULL|NOTNULL(E). {A = sqlite3PExpr(pParse,@E,A,0);} 1096 expr(A) ::= expr(A) NOT NULL. {A = sqlite3PExpr(pParse,TK_NOTNULL,A,0);} 1097 1098 %include { 1099 /* A routine to convert a binary TK_IS or TK_ISNOT expression into a 1100 ** unary TK_ISNULL or TK_NOTNULL expression. */ 1101 static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){ 1102 sqlite3 *db = pParse->db; 1103 if( pA && pY && pY->op==TK_NULL ){ 1104 pA->op = (u8)op; 1105 sqlite3ExprDelete(db, pA->pRight); 1106 pA->pRight = 0; 1107 } 1108 } 1109 } 1110 1111 // expr1 IS expr2 1112 // expr1 IS NOT expr2 1113 // 1114 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL. If expr2 1115 // is any other expression, code as TK_IS or TK_ISNOT. 1116 // 1117 expr(A) ::= expr(A) IS expr(Y). { 1118 A = sqlite3PExpr(pParse,TK_IS,A,Y); 1119 binaryToUnaryIfNull(pParse, Y, A, TK_ISNULL); 1120 } 1121 expr(A) ::= expr(A) IS NOT expr(Y). { 1122 A = sqlite3PExpr(pParse,TK_ISNOT,A,Y); 1123 binaryToUnaryIfNull(pParse, Y, A, TK_NOTNULL); 1124 } 1125 1126 expr(A) ::= NOT(B) expr(X). 1127 {A = sqlite3PExpr(pParse, @B, X, 0);/*A-overwrites-B*/} 1128 expr(A) ::= BITNOT(B) expr(X). 1129 {A = sqlite3PExpr(pParse, @B, X, 0);/*A-overwrites-B*/} 1130 expr(A) ::= PLUS|MINUS(B) expr(X). [BITNOT] { 1131 A = sqlite3PExpr(pParse, @B==TK_PLUS ? TK_UPLUS : TK_UMINUS, X, 0); 1132 /*A-overwrites-B*/ 1133 } 1134 1135 %type between_op {int} 1136 between_op(A) ::= BETWEEN. {A = 0;} 1137 between_op(A) ::= NOT BETWEEN. {A = 1;} 1138 expr(A) ::= expr(A) between_op(N) expr(X) AND expr(Y). [BETWEEN] { 1139 ExprList *pList = sqlite3ExprListAppend(pParse,0, X); 1140 pList = sqlite3ExprListAppend(pParse,pList, Y); 1141 A = sqlite3PExpr(pParse, TK_BETWEEN, A, 0); 1142 if( A ){ 1143 A->x.pList = pList; 1144 }else{ 1145 sqlite3ExprListDelete(pParse->db, pList); 1146 } 1147 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1148 } 1149 %ifndef SQLITE_OMIT_SUBQUERY 1150 %type in_op {int} 1151 in_op(A) ::= IN. {A = 0;} 1152 in_op(A) ::= NOT IN. {A = 1;} 1153 expr(A) ::= expr(A) in_op(N) LP exprlist(Y) RP. [IN] { 1154 if( Y==0 ){ 1155 /* Expressions of the form 1156 ** 1157 ** expr1 IN () 1158 ** expr1 NOT IN () 1159 ** 1160 ** simplify to constants 0 (false) and 1 (true), respectively, 1161 ** regardless of the value of expr1. 1162 */ 1163 sqlite3ExprDelete(pParse->db, A); 1164 A = sqlite3ExprAlloc(pParse->db, TK_INTEGER,&sqlite3IntTokens[N],1); 1165 }else if( Y->nExpr==1 ){ 1166 /* Expressions of the form: 1167 ** 1168 ** expr1 IN (?1) 1169 ** expr1 NOT IN (?2) 1170 ** 1171 ** with exactly one value on the RHS can be simplified to something 1172 ** like this: 1173 ** 1174 ** expr1 == ?1 1175 ** expr1 <> ?2 1176 ** 1177 ** But, the RHS of the == or <> is marked with the EP_Generic flag 1178 ** so that it may not contribute to the computation of comparison 1179 ** affinity or the collating sequence to use for comparison. Otherwise, 1180 ** the semantics would be subtly different from IN or NOT IN. 1181 */ 1182 Expr *pRHS = Y->a[0].pExpr; 1183 Y->a[0].pExpr = 0; 1184 sqlite3ExprListDelete(pParse->db, Y); 1185 /* pRHS cannot be NULL because a malloc error would have been detected 1186 ** before now and control would have never reached this point */ 1187 if( ALWAYS(pRHS) ){ 1188 pRHS->flags &= ~EP_Collate; 1189 pRHS->flags |= EP_Generic; 1190 } 1191 A = sqlite3PExpr(pParse, N ? TK_NE : TK_EQ, A, pRHS); 1192 }else{ 1193 A = sqlite3PExpr(pParse, TK_IN, A, 0); 1194 if( A ){ 1195 A->x.pList = Y; 1196 sqlite3ExprSetHeightAndFlags(pParse, A); 1197 }else{ 1198 sqlite3ExprListDelete(pParse->db, Y); 1199 } 1200 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1201 } 1202 } 1203 expr(A) ::= LP select(X) RP. { 1204 A = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 1205 sqlite3PExprAddSelect(pParse, A, X); 1206 } 1207 expr(A) ::= expr(A) in_op(N) LP select(Y) RP. [IN] { 1208 A = sqlite3PExpr(pParse, TK_IN, A, 0); 1209 sqlite3PExprAddSelect(pParse, A, Y); 1210 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1211 } 1212 expr(A) ::= expr(A) in_op(N) nm(Y) dbnm(Z) paren_exprlist(E). [IN] { 1213 SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z); 1214 Select *pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0); 1215 if( E ) sqlite3SrcListFuncArgs(pParse, pSelect ? pSrc : 0, E); 1216 A = sqlite3PExpr(pParse, TK_IN, A, 0); 1217 sqlite3PExprAddSelect(pParse, A, pSelect); 1218 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1219 } 1220 expr(A) ::= EXISTS LP select(Y) RP. { 1221 Expr *p; 1222 p = A = sqlite3PExpr(pParse, TK_EXISTS, 0, 0); 1223 sqlite3PExprAddSelect(pParse, p, Y); 1224 } 1225 %endif SQLITE_OMIT_SUBQUERY 1226 1227 /* CASE expressions */ 1228 expr(A) ::= CASE case_operand(X) case_exprlist(Y) case_else(Z) END. { 1229 A = sqlite3PExpr(pParse, TK_CASE, X, 0); 1230 if( A ){ 1231 A->x.pList = Z ? sqlite3ExprListAppend(pParse,Y,Z) : Y; 1232 sqlite3ExprSetHeightAndFlags(pParse, A); 1233 }else{ 1234 sqlite3ExprListDelete(pParse->db, Y); 1235 sqlite3ExprDelete(pParse->db, Z); 1236 } 1237 } 1238 %type case_exprlist {ExprList*} 1239 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1240 case_exprlist(A) ::= case_exprlist(A) WHEN expr(Y) THEN expr(Z). { 1241 A = sqlite3ExprListAppend(pParse,A, Y); 1242 A = sqlite3ExprListAppend(pParse,A, Z); 1243 } 1244 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). { 1245 A = sqlite3ExprListAppend(pParse,0, Y); 1246 A = sqlite3ExprListAppend(pParse,A, Z); 1247 } 1248 %type case_else {Expr*} 1249 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);} 1250 case_else(A) ::= ELSE expr(X). {A = X;} 1251 case_else(A) ::= . {A = 0;} 1252 %type case_operand {Expr*} 1253 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);} 1254 case_operand(A) ::= expr(X). {A = X; /*A-overwrites-X*/} 1255 case_operand(A) ::= . {A = 0;} 1256 1257 %type exprlist {ExprList*} 1258 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1259 %type nexprlist {ExprList*} 1260 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);} 1261 1262 exprlist(A) ::= nexprlist(A). 1263 exprlist(A) ::= . {A = 0;} 1264 nexprlist(A) ::= nexprlist(A) COMMA expr(Y). 1265 {A = sqlite3ExprListAppend(pParse,A,Y);} 1266 nexprlist(A) ::= expr(Y). 1267 {A = sqlite3ExprListAppend(pParse,0,Y); /*A-overwrites-Y*/} 1268 1269 %ifndef SQLITE_OMIT_SUBQUERY 1270 /* A paren_exprlist is an optional expression list contained inside 1271 ** of parenthesis */ 1272 %type paren_exprlist {ExprList*} 1273 %destructor paren_exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1274 paren_exprlist(A) ::= . {A = 0;} 1275 paren_exprlist(A) ::= LP exprlist(X) RP. {A = X;} 1276 %endif SQLITE_OMIT_SUBQUERY 1277 1278 1279 ///////////////////////////// The CREATE INDEX command /////////////////////// 1280 // 1281 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D) 1282 ON nm(Y) LP sortlist(Z) RP where_opt(W). { 1283 sqlite3CreateIndex(pParse, &X, &D, 1284 sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U, 1285 &S, W, SQLITE_SO_ASC, NE, SQLITE_IDXTYPE_APPDEF); 1286 } 1287 1288 %type uniqueflag {int} 1289 uniqueflag(A) ::= UNIQUE. {A = OE_Abort;} 1290 uniqueflag(A) ::= . {A = OE_None;} 1291 1292 1293 // The eidlist non-terminal (Expression Id List) generates an ExprList 1294 // from a list of identifiers. The identifier names are in ExprList.a[].zName. 1295 // This list is stored in an ExprList rather than an IdList so that it 1296 // can be easily sent to sqlite3ColumnsExprList(). 1297 // 1298 // eidlist is grouped with CREATE INDEX because it used to be the non-terminal 1299 // used for the arguments to an index. That is just an historical accident. 1300 // 1301 // IMPORTANT COMPATIBILITY NOTE: Some prior versions of SQLite accepted 1302 // COLLATE clauses and ASC or DESC keywords on ID lists in inappropriate 1303 // places - places that might have been stored in the sqlite_master schema. 1304 // Those extra features were ignored. But because they might be in some 1305 // (busted) old databases, we need to continue parsing them when loading 1306 // historical schemas. 1307 // 1308 %type eidlist {ExprList*} 1309 %destructor eidlist {sqlite3ExprListDelete(pParse->db, $$);} 1310 %type eidlist_opt {ExprList*} 1311 %destructor eidlist_opt {sqlite3ExprListDelete(pParse->db, $$);} 1312 1313 %include { 1314 /* Add a single new term to an ExprList that is used to store a 1315 ** list of identifiers. Report an error if the ID list contains 1316 ** a COLLATE clause or an ASC or DESC keyword, except ignore the 1317 ** error while parsing a legacy schema. 1318 */ 1319 static ExprList *parserAddExprIdListTerm( 1320 Parse *pParse, 1321 ExprList *pPrior, 1322 Token *pIdToken, 1323 int hasCollate, 1324 int sortOrder 1325 ){ 1326 ExprList *p = sqlite3ExprListAppend(pParse, pPrior, 0); 1327 if( (hasCollate || sortOrder!=SQLITE_SO_UNDEFINED) 1328 && pParse->db->init.busy==0 1329 ){ 1330 sqlite3ErrorMsg(pParse, "syntax error after column name \"%.*s\"", 1331 pIdToken->n, pIdToken->z); 1332 } 1333 sqlite3ExprListSetName(pParse, p, pIdToken, 1); 1334 return p; 1335 } 1336 } // end %include 1337 1338 eidlist_opt(A) ::= . {A = 0;} 1339 eidlist_opt(A) ::= LP eidlist(X) RP. {A = X;} 1340 eidlist(A) ::= eidlist(A) COMMA nm(Y) collate(C) sortorder(Z). { 1341 A = parserAddExprIdListTerm(pParse, A, &Y, C, Z); 1342 } 1343 eidlist(A) ::= nm(Y) collate(C) sortorder(Z). { 1344 A = parserAddExprIdListTerm(pParse, 0, &Y, C, Z); /*A-overwrites-Y*/ 1345 } 1346 1347 %type collate {int} 1348 collate(C) ::= . {C = 0;} 1349 collate(C) ::= COLLATE ids. {C = 1;} 1350 1351 1352 ///////////////////////////// The DROP INDEX command ///////////////////////// 1353 // 1354 cmd ::= DROP INDEX ifexists(E) fullname(X). {sqlite3DropIndex(pParse, X, E);} 1355 1356 ///////////////////////////// The VACUUM command ///////////////////////////// 1357 // 1358 %ifndef SQLITE_OMIT_VACUUM 1359 %ifndef SQLITE_OMIT_ATTACH 1360 cmd ::= VACUUM. {sqlite3Vacuum(pParse,0);} 1361 cmd ::= VACUUM nm(X). {sqlite3Vacuum(pParse,&X);} 1362 %endif SQLITE_OMIT_ATTACH 1363 %endif SQLITE_OMIT_VACUUM 1364 1365 ///////////////////////////// The PRAGMA command ///////////////////////////// 1366 // 1367 %ifndef SQLITE_OMIT_PRAGMA 1368 cmd ::= PRAGMA nm(X) dbnm(Z). {sqlite3Pragma(pParse,&X,&Z,0,0);} 1369 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1370 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1371 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y). 1372 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1373 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP. 1374 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1375 1376 nmnum(A) ::= plus_num(A). 1377 nmnum(A) ::= nm(A). 1378 nmnum(A) ::= ON(A). 1379 nmnum(A) ::= DELETE(A). 1380 nmnum(A) ::= DEFAULT(A). 1381 %endif SQLITE_OMIT_PRAGMA 1382 %token_class number INTEGER|FLOAT. 1383 plus_num(A) ::= PLUS number(X). {A = X;} 1384 plus_num(A) ::= number(A). 1385 minus_num(A) ::= MINUS number(X). {A = X;} 1386 //////////////////////////// The CREATE TRIGGER command ///////////////////// 1387 1388 %ifndef SQLITE_OMIT_TRIGGER 1389 1390 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). { 1391 Token all; 1392 all.z = A.z; 1393 all.n = (int)(Z.z - A.z) + Z.n; 1394 sqlite3FinishTrigger(pParse, S, &all); 1395 } 1396 1397 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z) 1398 trigger_time(C) trigger_event(D) 1399 ON fullname(E) foreach_clause when_clause(G). { 1400 sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR); 1401 A = (Z.n==0?B:Z); /*A-overwrites-T*/ 1402 } 1403 1404 %type trigger_time {int} 1405 trigger_time(A) ::= BEFORE|AFTER(X). { A = @X; /*A-overwrites-X*/ } 1406 trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;} 1407 trigger_time(A) ::= . { A = TK_BEFORE; } 1408 1409 %type trigger_event {struct TrigEvent} 1410 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);} 1411 trigger_event(A) ::= DELETE|INSERT(X). {A.a = @X; /*A-overwrites-X*/ A.b = 0;} 1412 trigger_event(A) ::= UPDATE(X). {A.a = @X; /*A-overwrites-X*/ A.b = 0;} 1413 trigger_event(A) ::= UPDATE OF idlist(X).{A.a = TK_UPDATE; A.b = X;} 1414 1415 foreach_clause ::= . 1416 foreach_clause ::= FOR EACH ROW. 1417 1418 %type when_clause {Expr*} 1419 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);} 1420 when_clause(A) ::= . { A = 0; } 1421 when_clause(A) ::= WHEN expr(X). { A = X; } 1422 1423 %type trigger_cmd_list {TriggerStep*} 1424 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);} 1425 trigger_cmd_list(A) ::= trigger_cmd_list(A) trigger_cmd(X) SEMI. { 1426 assert( A!=0 ); 1427 A->pLast->pNext = X; 1428 A->pLast = X; 1429 } 1430 trigger_cmd_list(A) ::= trigger_cmd(A) SEMI. { 1431 assert( A!=0 ); 1432 A->pLast = A; 1433 } 1434 1435 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements 1436 // within a trigger. The table to INSERT, UPDATE, or DELETE is always in 1437 // the same database as the table that the trigger fires on. 1438 // 1439 %type trnm {Token} 1440 trnm(A) ::= nm(A). 1441 trnm(A) ::= nm DOT nm(X). { 1442 A = X; 1443 sqlite3ErrorMsg(pParse, 1444 "qualified table names are not allowed on INSERT, UPDATE, and DELETE " 1445 "statements within triggers"); 1446 } 1447 1448 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE 1449 // statements within triggers. We make a specific error message for this 1450 // since it is an exception to the default grammar rules. 1451 // 1452 tridxby ::= . 1453 tridxby ::= INDEXED BY nm. { 1454 sqlite3ErrorMsg(pParse, 1455 "the INDEXED BY clause is not allowed on UPDATE or DELETE statements " 1456 "within triggers"); 1457 } 1458 tridxby ::= NOT INDEXED. { 1459 sqlite3ErrorMsg(pParse, 1460 "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements " 1461 "within triggers"); 1462 } 1463 1464 1465 1466 %type trigger_cmd {TriggerStep*} 1467 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);} 1468 // UPDATE 1469 trigger_cmd(A) ::= 1470 UPDATE(B) orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z) scanpt(E). 1471 {A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R, B.z, E);} 1472 1473 // INSERT 1474 trigger_cmd(A) ::= scanpt(B) insert_cmd(R) INTO 1475 trnm(X) idlist_opt(F) select(S) upsert(U) scanpt(Z). { 1476 A = sqlite3TriggerInsertStep(pParse->db,&X,F,S,R,U,B,Z);/*A-overwrites-R*/ 1477 } 1478 // DELETE 1479 trigger_cmd(A) ::= DELETE(B) FROM trnm(X) tridxby where_opt(Y) scanpt(E). 1480 {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y, B.z, E);} 1481 1482 // SELECT 1483 trigger_cmd(A) ::= scanpt(B) select(X) scanpt(E). 1484 {A = sqlite3TriggerSelectStep(pParse->db, X, B, E); /*A-overwrites-X*/} 1485 1486 // The special RAISE expression that may occur in trigger programs 1487 expr(A) ::= RAISE LP IGNORE RP. { 1488 A = sqlite3PExpr(pParse, TK_RAISE, 0, 0); 1489 if( A ){ 1490 A->affinity = OE_Ignore; 1491 } 1492 } 1493 expr(A) ::= RAISE LP raisetype(T) COMMA nm(Z) RP. { 1494 A = sqlite3ExprAlloc(pParse->db, TK_RAISE, &Z, 1); 1495 if( A ) { 1496 A->affinity = (char)T; 1497 } 1498 } 1499 %endif !SQLITE_OMIT_TRIGGER 1500 1501 %type raisetype {int} 1502 raisetype(A) ::= ROLLBACK. {A = OE_Rollback;} 1503 raisetype(A) ::= ABORT. {A = OE_Abort;} 1504 raisetype(A) ::= FAIL. {A = OE_Fail;} 1505 1506 1507 //////////////////////// DROP TRIGGER statement ////////////////////////////// 1508 %ifndef SQLITE_OMIT_TRIGGER 1509 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). { 1510 sqlite3DropTrigger(pParse,X,NOERR); 1511 } 1512 %endif !SQLITE_OMIT_TRIGGER 1513 1514 //////////////////////// ATTACH DATABASE file AS name ///////////////////////// 1515 %ifndef SQLITE_OMIT_ATTACH 1516 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). { 1517 sqlite3Attach(pParse, F, D, K); 1518 } 1519 cmd ::= DETACH database_kw_opt expr(D). { 1520 sqlite3Detach(pParse, D); 1521 } 1522 1523 %type key_opt {Expr*} 1524 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);} 1525 key_opt(A) ::= . { A = 0; } 1526 key_opt(A) ::= KEY expr(X). { A = X; } 1527 1528 database_kw_opt ::= DATABASE. 1529 database_kw_opt ::= . 1530 %endif SQLITE_OMIT_ATTACH 1531 1532 ////////////////////////// REINDEX collation ////////////////////////////////// 1533 %ifndef SQLITE_OMIT_REINDEX 1534 cmd ::= REINDEX. {sqlite3Reindex(pParse, 0, 0);} 1535 cmd ::= REINDEX nm(X) dbnm(Y). {sqlite3Reindex(pParse, &X, &Y);} 1536 %endif SQLITE_OMIT_REINDEX 1537 1538 /////////////////////////////////// ANALYZE /////////////////////////////////// 1539 %ifndef SQLITE_OMIT_ANALYZE 1540 cmd ::= ANALYZE. {sqlite3Analyze(pParse, 0, 0);} 1541 cmd ::= ANALYZE nm(X) dbnm(Y). {sqlite3Analyze(pParse, &X, &Y);} 1542 %endif 1543 1544 //////////////////////// ALTER TABLE table ... //////////////////////////////// 1545 %ifndef SQLITE_OMIT_ALTERTABLE 1546 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). { 1547 sqlite3AlterRenameTable(pParse,X,&Z); 1548 } 1549 cmd ::= ALTER TABLE add_column_fullname 1550 ADD kwcolumn_opt columnname(Y) carglist. { 1551 Y.n = (int)(pParse->sLastToken.z-Y.z) + pParse->sLastToken.n; 1552 sqlite3AlterFinishAddColumn(pParse, &Y); 1553 } 1554 add_column_fullname ::= fullname(X). { 1555 disableLookaside(pParse); 1556 sqlite3AlterBeginAddColumn(pParse, X); 1557 } 1558 kwcolumn_opt ::= . 1559 kwcolumn_opt ::= COLUMNKW. 1560 %endif SQLITE_OMIT_ALTERTABLE 1561 1562 //////////////////////// CREATE VIRTUAL TABLE ... ///////////////////////////// 1563 %ifndef SQLITE_OMIT_VIRTUALTABLE 1564 cmd ::= create_vtab. {sqlite3VtabFinishParse(pParse,0);} 1565 cmd ::= create_vtab LP vtabarglist RP(X). {sqlite3VtabFinishParse(pParse,&X);} 1566 create_vtab ::= createkw VIRTUAL TABLE ifnotexists(E) 1567 nm(X) dbnm(Y) USING nm(Z). { 1568 sqlite3VtabBeginParse(pParse, &X, &Y, &Z, E); 1569 } 1570 vtabarglist ::= vtabarg. 1571 vtabarglist ::= vtabarglist COMMA vtabarg. 1572 vtabarg ::= . {sqlite3VtabArgInit(pParse);} 1573 vtabarg ::= vtabarg vtabargtoken. 1574 vtabargtoken ::= ANY(X). {sqlite3VtabArgExtend(pParse,&X);} 1575 vtabargtoken ::= lp anylist RP(X). {sqlite3VtabArgExtend(pParse,&X);} 1576 lp ::= LP(X). {sqlite3VtabArgExtend(pParse,&X);} 1577 anylist ::= . 1578 anylist ::= anylist LP anylist RP. 1579 anylist ::= anylist ANY. 1580 %endif SQLITE_OMIT_VIRTUALTABLE 1581 1582 1583 //////////////////////// COMMON TABLE EXPRESSIONS //////////////////////////// 1584 %type wqlist {With*} 1585 %destructor wqlist {sqlite3WithDelete(pParse->db, $$);} 1586 1587 with ::= . 1588 %ifndef SQLITE_OMIT_CTE 1589 with ::= WITH wqlist(W). { sqlite3WithPush(pParse, W, 1); } 1590 with ::= WITH RECURSIVE wqlist(W). { sqlite3WithPush(pParse, W, 1); } 1591 1592 wqlist(A) ::= nm(X) eidlist_opt(Y) AS LP select(Z) RP. { 1593 A = sqlite3WithAdd(pParse, 0, &X, Y, Z); /*A-overwrites-X*/ 1594 } 1595 wqlist(A) ::= wqlist(A) COMMA nm(X) eidlist_opt(Y) AS LP select(Z) RP. { 1596 A = sqlite3WithAdd(pParse, A, &X, Y, Z); 1597 } 1598 %endif SQLITE_OMIT_CTE 1599 1600 //////////////////////// WINDOW FUNCTION EXPRESSIONS ///////////////////////// 1601 // These must be at the end of this file. Specifically, the rules that 1602 // introduce tokens WINDOW, OVER and FILTER must appear last. This causes 1603 // the integer values assigned to these tokens to be larger than all other 1604 // tokens that may be output by the tokenizer except TK_SPACE and TK_ILLEGAL. 1605 // 1606 %ifndef SQLITE_OMIT_WINDOWFUNC 1607 %type windowdefn_list {Window*} 1608 %destructor windowdefn_list {sqlite3WindowDelete(pParse->db, $$);} 1609 windowdefn_list(A) ::= windowdefn(Z). { A = Z; } 1610 windowdefn_list(A) ::= windowdefn_list(Y) COMMA windowdefn(Z). { 1611 if( Z ) Z->pNextWin = Y; 1612 A = Z; 1613 } 1614 1615 %type windowdefn {Window*} 1616 %destructor windowdefn {sqlite3WindowDelete(pParse->db, $$);} 1617 windowdefn(A) ::= nm(X) AS window(Y). { 1618 if( Y ){ 1619 Y->zName = sqlite3DbStrNDup(pParse->db, X.z, X.n); 1620 } 1621 A = Y; 1622 } 1623 1624 %type window {Window*} 1625 %destructor window {sqlite3WindowDelete(pParse->db, $$);} 1626 1627 %type frame_opt {Window*} 1628 %destructor frame_opt {sqlite3WindowDelete(pParse->db, $$);} 1629 1630 %type window_or_nm {Window*} 1631 %destructor window_or_nm { 1632 sqlite3WindowDelete(pParse->db, $$);} 1633 1634 %type part_opt {ExprList*} 1635 %destructor part_opt {sqlite3ExprListDelete(pParse->db, $$);} 1636 1637 %type filter_opt {Expr*} 1638 %destructor filter_opt {sqlite3ExprDelete(pParse->db, $$);} 1639 1640 %type range_or_rows {int} 1641 1642 %type frame_bound {struct FrameBound} 1643 %destructor frame_bound {sqlite3ExprDelete(pParse->db, $$.pExpr);} 1644 %type frame_bound_s {struct FrameBound} 1645 %destructor frame_bound_s {sqlite3ExprDelete(pParse->db, $$.pExpr);} 1646 %type frame_bound_e {struct FrameBound} 1647 %destructor frame_bound_e {sqlite3ExprDelete(pParse->db, $$.pExpr);} 1648 1649 window_or_nm(A) ::= window(Z). {A = Z;} 1650 window_or_nm(A) ::= nm(Z). { 1651 A = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); 1652 if( A ){ 1653 A->zName = sqlite3DbStrNDup(pParse->db, Z.z, Z.n); 1654 } 1655 } 1656 1657 window(A) ::= LP part_opt(X) orderby_opt(Y) frame_opt(Z) RP. { 1658 A = Z; 1659 if( A ){ 1660 A->pPartition = X; 1661 A->pOrderBy = Y; 1662 } 1663 } 1664 1665 part_opt(A) ::= PARTITION BY exprlist(X). { A = X; } 1666 part_opt(A) ::= . { A = 0; } 1667 1668 frame_opt(A) ::= . { 1669 A = sqlite3WindowAlloc(pParse, TK_RANGE, TK_UNBOUNDED, 0, TK_CURRENT, 0); 1670 } 1671 frame_opt(A) ::= range_or_rows(X) frame_bound_s(Y). { 1672 A = sqlite3WindowAlloc(pParse, X, Y.eType, Y.pExpr, TK_CURRENT, 0); 1673 } 1674 frame_opt(A) ::= range_or_rows(X) BETWEEN frame_bound_s(Y) AND frame_bound_e(Z). { 1675 A = sqlite3WindowAlloc(pParse, X, Y.eType, Y.pExpr, Z.eType, Z.pExpr); 1676 } 1677 1678 range_or_rows(A) ::= RANGE. { A = TK_RANGE; } 1679 range_or_rows(A) ::= ROWS. { A = TK_ROWS; } 1680 1681 1682 frame_bound_s(A) ::= frame_bound(X). { A = X; } 1683 frame_bound_s(A) ::= UNBOUNDED PRECEDING. {A.eType = TK_UNBOUNDED; A.pExpr = 0;} 1684 frame_bound_e(A) ::= frame_bound(X). { A = X; } 1685 frame_bound_e(A) ::= UNBOUNDED FOLLOWING. {A.eType = TK_UNBOUNDED; A.pExpr = 0;} 1686 1687 frame_bound(A) ::= expr(X) PRECEDING. { A.eType = TK_PRECEDING; A.pExpr = X; } 1688 frame_bound(A) ::= CURRENT ROW. { A.eType = TK_CURRENT ; A.pExpr = 0; } 1689 frame_bound(A) ::= expr(X) FOLLOWING. { A.eType = TK_FOLLOWING; A.pExpr = X; } 1690 1691 %type windowdefn_opt {Window*} 1692 %destructor windowdefn_opt {sqlite3WindowDelete(pParse->db, $$);} 1693 windowdefn_opt(A) ::= . { A = 0; } 1694 windowdefn_opt(A) ::= WINDOW windowdefn_list(B). { A = B; } 1695 1696 %type over_opt {Window*} 1697 %destructor over_opt {sqlite3WindowDelete(pParse->db, $$);} 1698 over_opt(A) ::= . { A = 0; } 1699 over_opt(A) ::= filter_opt(W) OVER window_or_nm(Z). { 1700 A = Z; 1701 if( A ) A->pFilter = W; 1702 } 1703 1704 filter_opt(A) ::= . { A = 0; } 1705 filter_opt(A) ::= FILTER LP WHERE expr(X) RP. { A = X; } 1706 %endif // SQLITE_OMIT_WINDOWFUNC 1707 1708