xref: /sqlite-3.40.0/src/parse.y (revision 87f500ce)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains SQLite's grammar for SQL.  Process this file
13 ** using the lemon parser generator to generate C code that runs
14 ** the parser.  Lemon will also generate a header file containing
15 ** numeric codes for all of the tokens.
16 */
17 
18 // All token codes are small integers with #defines that begin with "TK_"
19 %token_prefix TK_
20 
21 // The type of the data attached to each token is Token.  This is also the
22 // default type for non-terminals.
23 //
24 %token_type {Token}
25 %default_type {Token}
26 
27 // The generated parser function takes a 4th argument as follows:
28 %extra_argument {Parse *pParse}
29 
30 // This code runs whenever there is a syntax error
31 //
32 %syntax_error {
33   UNUSED_PARAMETER(yymajor);  /* Silence some compiler warnings */
34   assert( TOKEN.z[0] );  /* The tokenizer always gives us a token */
35   sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);
36 }
37 %stack_overflow {
38   sqlite3ErrorMsg(pParse, "parser stack overflow");
39 }
40 
41 // The name of the generated procedure that implements the parser
42 // is as follows:
43 %name sqlite3Parser
44 
45 // The following text is included near the beginning of the C source
46 // code file that implements the parser.
47 //
48 %include {
49 #include "sqliteInt.h"
50 
51 /*
52 ** Disable all error recovery processing in the parser push-down
53 ** automaton.
54 */
55 #define YYNOERRORRECOVERY 1
56 
57 /*
58 ** Make yytestcase() the same as testcase()
59 */
60 #define yytestcase(X) testcase(X)
61 
62 /*
63 ** Indicate that sqlite3ParserFree() will never be called with a null
64 ** pointer.
65 */
66 #define YYPARSEFREENEVERNULL 1
67 
68 /*
69 ** Alternative datatype for the argument to the malloc() routine passed
70 ** into sqlite3ParserAlloc().  The default is size_t.
71 */
72 #define YYMALLOCARGTYPE  u64
73 
74 /*
75 ** An instance of this structure holds information about the
76 ** LIMIT clause of a SELECT statement.
77 */
78 struct LimitVal {
79   Expr *pLimit;    /* The LIMIT expression.  NULL if there is no limit */
80   Expr *pOffset;   /* The OFFSET expression.  NULL if there is none */
81 };
82 
83 /*
84 ** An instance of the following structure describes the event of a
85 ** TRIGGER.  "a" is the event type, one of TK_UPDATE, TK_INSERT,
86 ** TK_DELETE, or TK_INSTEAD.  If the event is of the form
87 **
88 **      UPDATE ON (a,b,c)
89 **
90 ** Then the "b" IdList records the list "a,b,c".
91 */
92 struct TrigEvent { int a; IdList * b; };
93 
94 /*
95 ** Disable lookaside memory allocation for objects that might be
96 ** shared across database connections.
97 */
98 static void disableLookaside(Parse *pParse){
99   pParse->disableLookaside++;
100   pParse->db->lookaside.bDisable++;
101 }
102 
103 } // end %include
104 
105 // Input is a single SQL command
106 input ::= cmdlist.
107 cmdlist ::= cmdlist ecmd.
108 cmdlist ::= ecmd.
109 ecmd ::= SEMI.
110 ecmd ::= explain cmdx SEMI.
111 explain ::= .
112 %ifndef SQLITE_OMIT_EXPLAIN
113 explain ::= EXPLAIN.              { pParse->explain = 1; }
114 explain ::= EXPLAIN QUERY PLAN.   { pParse->explain = 2; }
115 %endif  SQLITE_OMIT_EXPLAIN
116 cmdx ::= cmd.           { sqlite3FinishCoding(pParse); }
117 
118 ///////////////////// Begin and end transactions. ////////////////////////////
119 //
120 
121 cmd ::= BEGIN transtype(Y) trans_opt.  {sqlite3BeginTransaction(pParse, Y);}
122 trans_opt ::= .
123 trans_opt ::= TRANSACTION.
124 trans_opt ::= TRANSACTION nm.
125 %type transtype {int}
126 transtype(A) ::= .             {A = TK_DEFERRED;}
127 transtype(A) ::= DEFERRED(X).  {A = @X; /*A-overwrites-X*/}
128 transtype(A) ::= IMMEDIATE(X). {A = @X; /*A-overwrites-X*/}
129 transtype(A) ::= EXCLUSIVE(X). {A = @X; /*A-overwrites-X*/}
130 cmd ::= COMMIT trans_opt.      {sqlite3CommitTransaction(pParse);}
131 cmd ::= END trans_opt.         {sqlite3CommitTransaction(pParse);}
132 cmd ::= ROLLBACK trans_opt.    {sqlite3RollbackTransaction(pParse);}
133 
134 savepoint_opt ::= SAVEPOINT.
135 savepoint_opt ::= .
136 cmd ::= SAVEPOINT nm(X). {
137   sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X);
138 }
139 cmd ::= RELEASE savepoint_opt nm(X). {
140   sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X);
141 }
142 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). {
143   sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X);
144 }
145 
146 ///////////////////// The CREATE TABLE statement ////////////////////////////
147 //
148 cmd ::= create_table create_table_args.
149 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). {
150    sqlite3StartTable(pParse,&Y,&Z,T,0,0,E);
151 }
152 createkw(A) ::= CREATE(A).  {disableLookaside(pParse);}
153 
154 %type ifnotexists {int}
155 ifnotexists(A) ::= .              {A = 0;}
156 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;}
157 %type temp {int}
158 %ifndef SQLITE_OMIT_TEMPDB
159 temp(A) ::= TEMP.  {A = 1;}
160 %endif  SQLITE_OMIT_TEMPDB
161 temp(A) ::= .      {A = 0;}
162 create_table_args ::= LP columnlist conslist_opt(X) RP(E) table_options(F). {
163   sqlite3EndTable(pParse,&X,&E,F,0);
164 }
165 create_table_args ::= AS select(S). {
166   sqlite3EndTable(pParse,0,0,0,S);
167   sqlite3SelectDelete(pParse->db, S);
168 }
169 %type table_options {int}
170 table_options(A) ::= .    {A = 0;}
171 table_options(A) ::= WITHOUT nm(X). {
172   if( X.n==5 && sqlite3_strnicmp(X.z,"rowid",5)==0 ){
173     A = TF_WithoutRowid | TF_NoVisibleRowid;
174   }else{
175     A = 0;
176     sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z);
177   }
178 }
179 columnlist ::= columnlist COMMA columnname carglist.
180 columnlist ::= columnname carglist.
181 columnname(A) ::= nm(A) typetoken(Y). {sqlite3AddColumn(pParse,&A,&Y);}
182 
183 // Define operator precedence early so that this is the first occurrence
184 // of the operator tokens in the grammer.  Keeping the operators together
185 // causes them to be assigned integer values that are close together,
186 // which keeps parser tables smaller.
187 //
188 // The token values assigned to these symbols is determined by the order
189 // in which lemon first sees them.  It must be the case that ISNULL/NOTNULL,
190 // NE/EQ, GT/LE, and GE/LT are separated by only a single value.  See
191 // the sqlite3ExprIfFalse() routine for additional information on this
192 // constraint.
193 //
194 %left OR.
195 %left AND.
196 %right NOT.
197 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ.
198 %left GT LE LT GE.
199 %right ESCAPE.
200 %left BITAND BITOR LSHIFT RSHIFT.
201 %left PLUS MINUS.
202 %left STAR SLASH REM.
203 %left CONCAT.
204 %left COLLATE.
205 %right BITNOT.
206 
207 // An IDENTIFIER can be a generic identifier, or one of several
208 // keywords.  Any non-standard keyword can also be an identifier.
209 //
210 %token_class id  ID|INDEXED.
211 
212 // The following directive causes tokens ABORT, AFTER, ASC, etc. to
213 // fallback to ID if they will not parse as their original value.
214 // This obviates the need for the "id" nonterminal.
215 //
216 %fallback ID
217   ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW
218   CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL FOR
219   IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN
220   QUERY KEY OF OFFSET PRAGMA RAISE RECURSIVE RELEASE REPLACE RESTRICT ROW
221   ROLLBACK SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL WITH WITHOUT
222 %ifdef SQLITE_OMIT_COMPOUND_SELECT
223   EXCEPT INTERSECT UNION
224 %endif SQLITE_OMIT_COMPOUND_SELECT
225   REINDEX RENAME CTIME_KW IF
226   .
227 %wildcard ANY.
228 
229 
230 // And "ids" is an identifer-or-string.
231 //
232 %token_class ids  ID|STRING.
233 
234 // The name of a column or table can be any of the following:
235 //
236 %type nm {Token}
237 nm(A) ::= id(A).
238 nm(A) ::= STRING(A).
239 nm(A) ::= JOIN_KW(A).
240 
241 // A typetoken is really zero or more tokens that form a type name such
242 // as can be found after the column name in a CREATE TABLE statement.
243 // Multiple tokens are concatenated to form the value of the typetoken.
244 //
245 %type typetoken {Token}
246 typetoken(A) ::= .   {A.n = 0; A.z = 0;}
247 typetoken(A) ::= typename(A).
248 typetoken(A) ::= typename(A) LP signed RP(Y). {
249   A.n = (int)(&Y.z[Y.n] - A.z);
250 }
251 typetoken(A) ::= typename(A) LP signed COMMA signed RP(Y). {
252   A.n = (int)(&Y.z[Y.n] - A.z);
253 }
254 %type typename {Token}
255 typename(A) ::= ids(A).
256 typename(A) ::= typename(A) ids(Y). {A.n=Y.n+(int)(Y.z-A.z);}
257 signed ::= plus_num.
258 signed ::= minus_num.
259 
260 // "carglist" is a list of additional constraints that come after the
261 // column name and column type in a CREATE TABLE statement.
262 //
263 carglist ::= carglist ccons.
264 carglist ::= .
265 ccons ::= CONSTRAINT nm(X).           {pParse->constraintName = X;}
266 ccons ::= DEFAULT term(X).            {sqlite3AddDefaultValue(pParse,&X);}
267 ccons ::= DEFAULT LP expr(X) RP.      {sqlite3AddDefaultValue(pParse,&X);}
268 ccons ::= DEFAULT PLUS term(X).       {sqlite3AddDefaultValue(pParse,&X);}
269 ccons ::= DEFAULT MINUS(A) term(X).      {
270   ExprSpan v;
271   v.pExpr = sqlite3PExpr(pParse, TK_UMINUS, X.pExpr, 0);
272   v.zStart = A.z;
273   v.zEnd = X.zEnd;
274   sqlite3AddDefaultValue(pParse,&v);
275 }
276 ccons ::= DEFAULT id(X).              {
277   ExprSpan v;
278   spanExpr(&v, pParse, TK_STRING, X);
279   sqlite3AddDefaultValue(pParse,&v);
280 }
281 
282 // In addition to the type name, we also care about the primary key and
283 // UNIQUE constraints.
284 //
285 ccons ::= NULL onconf.
286 ccons ::= NOT NULL onconf(R).    {sqlite3AddNotNull(pParse, R);}
287 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I).
288                                  {sqlite3AddPrimaryKey(pParse,0,R,I,Z);}
289 ccons ::= UNIQUE onconf(R).      {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0,
290                                    SQLITE_IDXTYPE_UNIQUE);}
291 ccons ::= CHECK LP expr(X) RP.   {sqlite3AddCheckConstraint(pParse,X.pExpr);}
292 ccons ::= REFERENCES nm(T) eidlist_opt(TA) refargs(R).
293                                  {sqlite3CreateForeignKey(pParse,0,&T,TA,R);}
294 ccons ::= defer_subclause(D).    {sqlite3DeferForeignKey(pParse,D);}
295 ccons ::= COLLATE ids(C).        {sqlite3AddCollateType(pParse, &C);}
296 
297 // The optional AUTOINCREMENT keyword
298 %type autoinc {int}
299 autoinc(X) ::= .          {X = 0;}
300 autoinc(X) ::= AUTOINCR.  {X = 1;}
301 
302 // The next group of rules parses the arguments to a REFERENCES clause
303 // that determine if the referential integrity checking is deferred or
304 // or immediate and which determine what action to take if a ref-integ
305 // check fails.
306 //
307 %type refargs {int}
308 refargs(A) ::= .                  { A = OE_None*0x0101; /* EV: R-19803-45884 */}
309 refargs(A) ::= refargs(A) refarg(Y). { A = (A & ~Y.mask) | Y.value; }
310 %type refarg {struct {int value; int mask;}}
311 refarg(A) ::= MATCH nm.              { A.value = 0;     A.mask = 0x000000; }
312 refarg(A) ::= ON INSERT refact.      { A.value = 0;     A.mask = 0x000000; }
313 refarg(A) ::= ON DELETE refact(X).   { A.value = X;     A.mask = 0x0000ff; }
314 refarg(A) ::= ON UPDATE refact(X).   { A.value = X<<8;  A.mask = 0x00ff00; }
315 %type refact {int}
316 refact(A) ::= SET NULL.              { A = OE_SetNull;  /* EV: R-33326-45252 */}
317 refact(A) ::= SET DEFAULT.           { A = OE_SetDflt;  /* EV: R-33326-45252 */}
318 refact(A) ::= CASCADE.               { A = OE_Cascade;  /* EV: R-33326-45252 */}
319 refact(A) ::= RESTRICT.              { A = OE_Restrict; /* EV: R-33326-45252 */}
320 refact(A) ::= NO ACTION.             { A = OE_None;     /* EV: R-33326-45252 */}
321 %type defer_subclause {int}
322 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt.     {A = 0;}
323 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X).      {A = X;}
324 %type init_deferred_pred_opt {int}
325 init_deferred_pred_opt(A) ::= .                       {A = 0;}
326 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED.     {A = 1;}
327 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE.    {A = 0;}
328 
329 conslist_opt(A) ::= .                         {A.n = 0; A.z = 0;}
330 conslist_opt(A) ::= COMMA(A) conslist.
331 conslist ::= conslist tconscomma tcons.
332 conslist ::= tcons.
333 tconscomma ::= COMMA.            {pParse->constraintName.n = 0;}
334 tconscomma ::= .
335 tcons ::= CONSTRAINT nm(X).      {pParse->constraintName = X;}
336 tcons ::= PRIMARY KEY LP sortlist(X) autoinc(I) RP onconf(R).
337                                  {sqlite3AddPrimaryKey(pParse,X,R,I,0);}
338 tcons ::= UNIQUE LP sortlist(X) RP onconf(R).
339                                  {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0,
340                                        SQLITE_IDXTYPE_UNIQUE);}
341 tcons ::= CHECK LP expr(E) RP onconf.
342                                  {sqlite3AddCheckConstraint(pParse,E.pExpr);}
343 tcons ::= FOREIGN KEY LP eidlist(FA) RP
344           REFERENCES nm(T) eidlist_opt(TA) refargs(R) defer_subclause_opt(D). {
345     sqlite3CreateForeignKey(pParse, FA, &T, TA, R);
346     sqlite3DeferForeignKey(pParse, D);
347 }
348 %type defer_subclause_opt {int}
349 defer_subclause_opt(A) ::= .                    {A = 0;}
350 defer_subclause_opt(A) ::= defer_subclause(A).
351 
352 // The following is a non-standard extension that allows us to declare the
353 // default behavior when there is a constraint conflict.
354 //
355 %type onconf {int}
356 %type orconf {int}
357 %type resolvetype {int}
358 onconf(A) ::= .                              {A = OE_Default;}
359 onconf(A) ::= ON CONFLICT resolvetype(X).    {A = X;}
360 orconf(A) ::= .                              {A = OE_Default;}
361 orconf(A) ::= OR resolvetype(X).             {A = X;}
362 resolvetype(A) ::= raisetype(A).
363 resolvetype(A) ::= IGNORE.                   {A = OE_Ignore;}
364 resolvetype(A) ::= REPLACE.                  {A = OE_Replace;}
365 
366 ////////////////////////// The DROP TABLE /////////////////////////////////////
367 //
368 cmd ::= DROP TABLE ifexists(E) fullname(X). {
369   sqlite3DropTable(pParse, X, 0, E);
370 }
371 %type ifexists {int}
372 ifexists(A) ::= IF EXISTS.   {A = 1;}
373 ifexists(A) ::= .            {A = 0;}
374 
375 ///////////////////// The CREATE VIEW statement /////////////////////////////
376 //
377 %ifndef SQLITE_OMIT_VIEW
378 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) eidlist_opt(C)
379           AS select(S). {
380   sqlite3CreateView(pParse, &X, &Y, &Z, C, S, T, E);
381 }
382 cmd ::= DROP VIEW ifexists(E) fullname(X). {
383   sqlite3DropTable(pParse, X, 1, E);
384 }
385 %endif  SQLITE_OMIT_VIEW
386 
387 //////////////////////// The SELECT statement /////////////////////////////////
388 //
389 cmd ::= select(X).  {
390   SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0};
391   sqlite3Select(pParse, X, &dest);
392   sqlite3SelectDelete(pParse->db, X);
393 }
394 
395 %type select {Select*}
396 %destructor select {sqlite3SelectDelete(pParse->db, $$);}
397 %type selectnowith {Select*}
398 %destructor selectnowith {sqlite3SelectDelete(pParse->db, $$);}
399 %type oneselect {Select*}
400 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);}
401 
402 %include {
403   /*
404   ** For a compound SELECT statement, make sure p->pPrior->pNext==p for
405   ** all elements in the list.  And make sure list length does not exceed
406   ** SQLITE_LIMIT_COMPOUND_SELECT.
407   */
408   static void parserDoubleLinkSelect(Parse *pParse, Select *p){
409     if( p->pPrior ){
410       Select *pNext = 0, *pLoop;
411       int mxSelect, cnt = 0;
412       for(pLoop=p; pLoop; pNext=pLoop, pLoop=pLoop->pPrior, cnt++){
413         pLoop->pNext = pNext;
414         pLoop->selFlags |= SF_Compound;
415       }
416       if( (p->selFlags & SF_MultiValue)==0 &&
417         (mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT])>0 &&
418         cnt>mxSelect
419       ){
420         sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
421       }
422     }
423   }
424 }
425 
426 select(A) ::= with(W) selectnowith(X). {
427   Select *p = X;
428   if( p ){
429     p->pWith = W;
430     parserDoubleLinkSelect(pParse, p);
431   }else{
432     sqlite3WithDelete(pParse->db, W);
433   }
434   A = p; /*A-overwrites-W*/
435 }
436 
437 selectnowith(A) ::= oneselect(A).
438 %ifndef SQLITE_OMIT_COMPOUND_SELECT
439 selectnowith(A) ::= selectnowith(A) multiselect_op(Y) oneselect(Z).  {
440   Select *pRhs = Z;
441   Select *pLhs = A;
442   if( pRhs && pRhs->pPrior ){
443     SrcList *pFrom;
444     Token x;
445     x.n = 0;
446     parserDoubleLinkSelect(pParse, pRhs);
447     pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0);
448     pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0,0);
449   }
450   if( pRhs ){
451     pRhs->op = (u8)Y;
452     pRhs->pPrior = pLhs;
453     if( ALWAYS(pLhs) ) pLhs->selFlags &= ~SF_MultiValue;
454     pRhs->selFlags &= ~SF_MultiValue;
455     if( Y!=TK_ALL ) pParse->hasCompound = 1;
456   }else{
457     sqlite3SelectDelete(pParse->db, pLhs);
458   }
459   A = pRhs;
460 }
461 %type multiselect_op {int}
462 multiselect_op(A) ::= UNION(OP).             {A = @OP; /*A-overwrites-OP*/}
463 multiselect_op(A) ::= UNION ALL.             {A = TK_ALL;}
464 multiselect_op(A) ::= EXCEPT|INTERSECT(OP).  {A = @OP; /*A-overwrites-OP*/}
465 %endif SQLITE_OMIT_COMPOUND_SELECT
466 oneselect(A) ::= SELECT(S) distinct(D) selcollist(W) from(X) where_opt(Y)
467                  groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). {
468 #if SELECTTRACE_ENABLED
469   Token s = S; /*A-overwrites-S*/
470 #endif
471   A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L.pLimit,L.pOffset);
472 #if SELECTTRACE_ENABLED
473   /* Populate the Select.zSelName[] string that is used to help with
474   ** query planner debugging, to differentiate between multiple Select
475   ** objects in a complex query.
476   **
477   ** If the SELECT keyword is immediately followed by a C-style comment
478   ** then extract the first few alphanumeric characters from within that
479   ** comment to be the zSelName value.  Otherwise, the label is #N where
480   ** is an integer that is incremented with each SELECT statement seen.
481   */
482   if( A!=0 ){
483     const char *z = s.z+6;
484     int i;
485     sqlite3_snprintf(sizeof(A->zSelName), A->zSelName, "#%d",
486                      ++pParse->nSelect);
487     while( z[0]==' ' ) z++;
488     if( z[0]=='/' && z[1]=='*' ){
489       z += 2;
490       while( z[0]==' ' ) z++;
491       for(i=0; sqlite3Isalnum(z[i]); i++){}
492       sqlite3_snprintf(sizeof(A->zSelName), A->zSelName, "%.*s", i, z);
493     }
494   }
495 #endif /* SELECTRACE_ENABLED */
496 }
497 oneselect(A) ::= values(A).
498 
499 %type values {Select*}
500 %destructor values {sqlite3SelectDelete(pParse->db, $$);}
501 values(A) ::= VALUES LP nexprlist(X) RP. {
502   A = sqlite3SelectNew(pParse,X,0,0,0,0,0,SF_Values,0,0);
503 }
504 values(A) ::= values(A) COMMA LP exprlist(Y) RP. {
505   Select *pRight, *pLeft = A;
506   pRight = sqlite3SelectNew(pParse,Y,0,0,0,0,0,SF_Values|SF_MultiValue,0,0);
507   if( ALWAYS(pLeft) ) pLeft->selFlags &= ~SF_MultiValue;
508   if( pRight ){
509     pRight->op = TK_ALL;
510     pRight->pPrior = pLeft;
511     A = pRight;
512   }else{
513     A = pLeft;
514   }
515 }
516 
517 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is
518 // present and false (0) if it is not.
519 //
520 %type distinct {int}
521 distinct(A) ::= DISTINCT.   {A = SF_Distinct;}
522 distinct(A) ::= ALL.        {A = SF_All;}
523 distinct(A) ::= .           {A = 0;}
524 
525 // selcollist is a list of expressions that are to become the return
526 // values of the SELECT statement.  The "*" in statements like
527 // "SELECT * FROM ..." is encoded as a special expression with an
528 // opcode of TK_ASTERISK.
529 //
530 %type selcollist {ExprList*}
531 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);}
532 %type sclp {ExprList*}
533 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);}
534 sclp(A) ::= selcollist(A) COMMA.
535 sclp(A) ::= .                                {A = 0;}
536 selcollist(A) ::= sclp(A) expr(X) as(Y).     {
537    A = sqlite3ExprListAppend(pParse, A, X.pExpr);
538    if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1);
539    sqlite3ExprListSetSpan(pParse,A,&X);
540 }
541 selcollist(A) ::= sclp(A) STAR. {
542   Expr *p = sqlite3Expr(pParse->db, TK_ASTERISK, 0);
543   A = sqlite3ExprListAppend(pParse, A, p);
544 }
545 selcollist(A) ::= sclp(A) nm(X) DOT STAR. {
546   Expr *pRight = sqlite3PExpr(pParse, TK_ASTERISK, 0, 0);
547   Expr *pLeft = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1);
548   Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
549   A = sqlite3ExprListAppend(pParse,A, pDot);
550 }
551 
552 // An option "AS <id>" phrase that can follow one of the expressions that
553 // define the result set, or one of the tables in the FROM clause.
554 //
555 %type as {Token}
556 as(X) ::= AS nm(Y).    {X = Y;}
557 as(X) ::= ids(X).
558 as(X) ::= .            {X.n = 0; X.z = 0;}
559 
560 
561 %type seltablist {SrcList*}
562 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);}
563 %type stl_prefix {SrcList*}
564 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);}
565 %type from {SrcList*}
566 %destructor from {sqlite3SrcListDelete(pParse->db, $$);}
567 
568 // A complete FROM clause.
569 //
570 from(A) ::= .                {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));}
571 from(A) ::= FROM seltablist(X). {
572   A = X;
573   sqlite3SrcListShiftJoinType(A);
574 }
575 
576 // "seltablist" is a "Select Table List" - the content of the FROM clause
577 // in a SELECT statement.  "stl_prefix" is a prefix of this list.
578 //
579 stl_prefix(A) ::= seltablist(A) joinop(Y).    {
580    if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].fg.jointype = (u8)Y;
581 }
582 stl_prefix(A) ::= .                           {A = 0;}
583 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) as(Z) indexed_opt(I)
584                   on_opt(N) using_opt(U). {
585   A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U);
586   sqlite3SrcListIndexedBy(pParse, A, &I);
587 }
588 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) LP exprlist(E) RP as(Z)
589                   on_opt(N) using_opt(U). {
590   A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U);
591   sqlite3SrcListFuncArgs(pParse, A, E);
592 }
593 %ifndef SQLITE_OMIT_SUBQUERY
594   seltablist(A) ::= stl_prefix(A) LP select(S) RP
595                     as(Z) on_opt(N) using_opt(U). {
596     A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,S,N,U);
597   }
598   seltablist(A) ::= stl_prefix(A) LP seltablist(F) RP
599                     as(Z) on_opt(N) using_opt(U). {
600     if( A==0 && Z.n==0 && N==0 && U==0 ){
601       A = F;
602     }else if( F->nSrc==1 ){
603       A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,0,N,U);
604       if( A ){
605         struct SrcList_item *pNew = &A->a[A->nSrc-1];
606         struct SrcList_item *pOld = F->a;
607         pNew->zName = pOld->zName;
608         pNew->zDatabase = pOld->zDatabase;
609         pNew->pSelect = pOld->pSelect;
610         pOld->zName = pOld->zDatabase = 0;
611         pOld->pSelect = 0;
612       }
613       sqlite3SrcListDelete(pParse->db, F);
614     }else{
615       Select *pSubquery;
616       sqlite3SrcListShiftJoinType(F);
617       pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,SF_NestedFrom,0,0);
618       A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,pSubquery,N,U);
619     }
620   }
621 %endif  SQLITE_OMIT_SUBQUERY
622 
623 %type dbnm {Token}
624 dbnm(A) ::= .          {A.z=0; A.n=0;}
625 dbnm(A) ::= DOT nm(X). {A = X;}
626 
627 %type fullname {SrcList*}
628 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);}
629 fullname(A) ::= nm(X) dbnm(Y).
630    {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y); /*A-overwrites-X*/}
631 
632 %type joinop {int}
633 joinop(X) ::= COMMA|JOIN.              { X = JT_INNER; }
634 joinop(X) ::= JOIN_KW(A) JOIN.
635                   {X = sqlite3JoinType(pParse,&A,0,0);  /*X-overwrites-A*/}
636 joinop(X) ::= JOIN_KW(A) nm(B) JOIN.
637                   {X = sqlite3JoinType(pParse,&A,&B,0); /*X-overwrites-A*/}
638 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN.
639                   {X = sqlite3JoinType(pParse,&A,&B,&C);/*X-overwrites-A*/}
640 
641 %type on_opt {Expr*}
642 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);}
643 on_opt(N) ::= ON expr(E).   {N = E.pExpr;}
644 on_opt(N) ::= .             {N = 0;}
645 
646 // Note that this block abuses the Token type just a little. If there is
647 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If
648 // there is an INDEXED BY clause, then the token is populated as per normal,
649 // with z pointing to the token data and n containing the number of bytes
650 // in the token.
651 //
652 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is
653 // normally illegal. The sqlite3SrcListIndexedBy() function
654 // recognizes and interprets this as a special case.
655 //
656 %type indexed_opt {Token}
657 indexed_opt(A) ::= .                 {A.z=0; A.n=0;}
658 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;}
659 indexed_opt(A) ::= NOT INDEXED.      {A.z=0; A.n=1;}
660 
661 %type using_opt {IdList*}
662 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);}
663 using_opt(U) ::= USING LP idlist(L) RP.  {U = L;}
664 using_opt(U) ::= .                        {U = 0;}
665 
666 
667 %type orderby_opt {ExprList*}
668 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);}
669 
670 // the sortlist non-terminal stores a list of expression where each
671 // expression is optionally followed by ASC or DESC to indicate the
672 // sort order.
673 //
674 %type sortlist {ExprList*}
675 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);}
676 
677 orderby_opt(A) ::= .                          {A = 0;}
678 orderby_opt(A) ::= ORDER BY sortlist(X).      {A = X;}
679 sortlist(A) ::= sortlist(A) COMMA expr(Y) sortorder(Z). {
680   A = sqlite3ExprListAppend(pParse,A,Y.pExpr);
681   sqlite3ExprListSetSortOrder(A,Z);
682 }
683 sortlist(A) ::= expr(Y) sortorder(Z). {
684   A = sqlite3ExprListAppend(pParse,0,Y.pExpr); /*A-overwrites-Y*/
685   sqlite3ExprListSetSortOrder(A,Z);
686 }
687 
688 %type sortorder {int}
689 
690 sortorder(A) ::= ASC.           {A = SQLITE_SO_ASC;}
691 sortorder(A) ::= DESC.          {A = SQLITE_SO_DESC;}
692 sortorder(A) ::= .              {A = SQLITE_SO_UNDEFINED;}
693 
694 %type groupby_opt {ExprList*}
695 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);}
696 groupby_opt(A) ::= .                      {A = 0;}
697 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;}
698 
699 %type having_opt {Expr*}
700 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);}
701 having_opt(A) ::= .                {A = 0;}
702 having_opt(A) ::= HAVING expr(X).  {A = X.pExpr;}
703 
704 %type limit_opt {struct LimitVal}
705 
706 // The destructor for limit_opt will never fire in the current grammar.
707 // The limit_opt non-terminal only occurs at the end of a single production
708 // rule for SELECT statements.  As soon as the rule that create the
709 // limit_opt non-terminal reduces, the SELECT statement rule will also
710 // reduce.  So there is never a limit_opt non-terminal on the stack
711 // except as a transient.  So there is never anything to destroy.
712 //
713 //%destructor limit_opt {
714 //  sqlite3ExprDelete(pParse->db, $$.pLimit);
715 //  sqlite3ExprDelete(pParse->db, $$.pOffset);
716 //}
717 limit_opt(A) ::= .                    {A.pLimit = 0; A.pOffset = 0;}
718 limit_opt(A) ::= LIMIT expr(X).       {A.pLimit = X.pExpr; A.pOffset = 0;}
719 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y).
720                                       {A.pLimit = X.pExpr; A.pOffset = Y.pExpr;}
721 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y).
722                                       {A.pOffset = X.pExpr; A.pLimit = Y.pExpr;}
723 
724 /////////////////////////// The DELETE statement /////////////////////////////
725 //
726 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
727 cmd ::= with(C) DELETE FROM fullname(X) indexed_opt(I) where_opt(W)
728         orderby_opt(O) limit_opt(L). {
729   sqlite3WithPush(pParse, C, 1);
730   sqlite3SrcListIndexedBy(pParse, X, &I);
731   W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "DELETE");
732   sqlite3DeleteFrom(pParse,X,W);
733 }
734 %endif
735 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
736 cmd ::= with(C) DELETE FROM fullname(X) indexed_opt(I) where_opt(W). {
737   sqlite3WithPush(pParse, C, 1);
738   sqlite3SrcListIndexedBy(pParse, X, &I);
739   sqlite3DeleteFrom(pParse,X,W);
740 }
741 %endif
742 
743 %type where_opt {Expr*}
744 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);}
745 
746 where_opt(A) ::= .                    {A = 0;}
747 where_opt(A) ::= WHERE expr(X).       {A = X.pExpr;}
748 
749 ////////////////////////// The UPDATE command ////////////////////////////////
750 //
751 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
752 cmd ::= with(C) UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y)
753         where_opt(W) orderby_opt(O) limit_opt(L).  {
754   sqlite3WithPush(pParse, C, 1);
755   sqlite3SrcListIndexedBy(pParse, X, &I);
756   sqlite3ExprListCheckLength(pParse,Y,"set list");
757   W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "UPDATE");
758   sqlite3Update(pParse,X,Y,W,R);
759 }
760 %endif
761 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
762 cmd ::= with(C) UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y)
763         where_opt(W).  {
764   sqlite3WithPush(pParse, C, 1);
765   sqlite3SrcListIndexedBy(pParse, X, &I);
766   sqlite3ExprListCheckLength(pParse,Y,"set list");
767   sqlite3Update(pParse,X,Y,W,R);
768 }
769 %endif
770 
771 %type setlist {ExprList*}
772 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);}
773 
774 setlist(A) ::= setlist(A) COMMA nm(X) EQ expr(Y). {
775   A = sqlite3ExprListAppend(pParse, A, Y.pExpr);
776   sqlite3ExprListSetName(pParse, A, &X, 1);
777 }
778 setlist(A) ::= setlist(A) COMMA LP idlist(X) RP EQ expr(Y). {
779   A = sqlite3ExprListAppendVector(pParse, A, X, Y.pExpr);
780 }
781 setlist(A) ::= nm(X) EQ expr(Y). {
782   A = sqlite3ExprListAppend(pParse, 0, Y.pExpr);
783   sqlite3ExprListSetName(pParse, A, &X, 1);
784 }
785 setlist(A) ::= LP idlist(X) RP EQ expr(Y). {
786   A = sqlite3ExprListAppendVector(pParse, 0, X, Y.pExpr);
787 }
788 
789 ////////////////////////// The INSERT command /////////////////////////////////
790 //
791 cmd ::= with(W) insert_cmd(R) INTO fullname(X) idlist_opt(F) select(S). {
792   sqlite3WithPush(pParse, W, 1);
793   sqlite3Insert(pParse, X, S, F, R);
794 }
795 cmd ::= with(W) insert_cmd(R) INTO fullname(X) idlist_opt(F) DEFAULT VALUES.
796 {
797   sqlite3WithPush(pParse, W, 1);
798   sqlite3Insert(pParse, X, 0, F, R);
799 }
800 
801 %type insert_cmd {int}
802 insert_cmd(A) ::= INSERT orconf(R).   {A = R;}
803 insert_cmd(A) ::= REPLACE.            {A = OE_Replace;}
804 
805 %type idlist_opt {IdList*}
806 %destructor idlist_opt {sqlite3IdListDelete(pParse->db, $$);}
807 %type idlist {IdList*}
808 %destructor idlist {sqlite3IdListDelete(pParse->db, $$);}
809 
810 idlist_opt(A) ::= .                       {A = 0;}
811 idlist_opt(A) ::= LP idlist(X) RP.    {A = X;}
812 idlist(A) ::= idlist(A) COMMA nm(Y).
813     {A = sqlite3IdListAppend(pParse->db,A,&Y);}
814 idlist(A) ::= nm(Y).
815     {A = sqlite3IdListAppend(pParse->db,0,&Y); /*A-overwrites-Y*/}
816 
817 /////////////////////////// Expression Processing /////////////////////////////
818 //
819 
820 %type expr {ExprSpan}
821 %destructor expr {sqlite3ExprDelete(pParse->db, $$.pExpr);}
822 %type term {ExprSpan}
823 %destructor term {sqlite3ExprDelete(pParse->db, $$.pExpr);}
824 
825 %include {
826   /* This is a utility routine used to set the ExprSpan.zStart and
827   ** ExprSpan.zEnd values of pOut so that the span covers the complete
828   ** range of text beginning with pStart and going to the end of pEnd.
829   */
830   static void spanSet(ExprSpan *pOut, Token *pStart, Token *pEnd){
831     pOut->zStart = pStart->z;
832     pOut->zEnd = &pEnd->z[pEnd->n];
833   }
834 
835   /* Construct a new Expr object from a single identifier.  Use the
836   ** new Expr to populate pOut.  Set the span of pOut to be the identifier
837   ** that created the expression.
838   */
839   static void spanExpr(ExprSpan *pOut, Parse *pParse, int op, Token t){
840     Expr *p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)+t.n+1);
841     if( p ){
842       memset(p, 0, sizeof(Expr));
843       p->op = (u8)op;
844       p->flags = EP_Leaf;
845       p->iAgg = -1;
846       p->u.zToken = (char*)&p[1];
847       memcpy(p->u.zToken, t.z, t.n);
848       p->u.zToken[t.n] = 0;
849       if( sqlite3Isquote(p->u.zToken[0]) ){
850         if( p->u.zToken[0]=='"' ) p->flags |= EP_DblQuoted;
851         sqlite3Dequote(p->u.zToken);
852       }
853 #if SQLITE_MAX_EXPR_DEPTH>0
854       p->nHeight = 1;
855 #endif
856     }
857     pOut->pExpr = p;
858     pOut->zStart = t.z;
859     pOut->zEnd = &t.z[t.n];
860   }
861 }
862 
863 expr(A) ::= term(A).
864 expr(A) ::= LP(B) expr(X) RP(E).
865             {spanSet(&A,&B,&E); /*A-overwrites-B*/  A.pExpr = X.pExpr;}
866 term(A) ::= NULL(X).        {spanExpr(&A,pParse,@X,X);/*A-overwrites-X*/}
867 expr(A) ::= id(X).          {spanExpr(&A,pParse,TK_ID,X); /*A-overwrites-X*/}
868 expr(A) ::= JOIN_KW(X).     {spanExpr(&A,pParse,TK_ID,X); /*A-overwrites-X*/}
869 expr(A) ::= nm(X) DOT nm(Y). {
870   Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1);
871   Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1);
872   spanSet(&A,&X,&Y); /*A-overwrites-X*/
873   A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp2);
874 }
875 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). {
876   Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1);
877   Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1);
878   Expr *temp3 = sqlite3ExprAlloc(pParse->db, TK_ID, &Z, 1);
879   Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3);
880   spanSet(&A,&X,&Z); /*A-overwrites-X*/
881   A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4);
882 }
883 term(A) ::= FLOAT|BLOB(X). {spanExpr(&A,pParse,@X,X);/*A-overwrites-X*/}
884 term(A) ::= STRING(X).     {spanExpr(&A,pParse,@X,X);/*A-overwrites-X*/}
885 term(A) ::= INTEGER(X). {
886   A.pExpr = sqlite3ExprAlloc(pParse->db, TK_INTEGER, &X, 1);
887   A.zStart = X.z;
888   A.zEnd = X.z + X.n;
889   if( A.pExpr ) A.pExpr->flags |= EP_Leaf;
890 }
891 expr(A) ::= VARIABLE(X).     {
892   if( !(X.z[0]=='#' && sqlite3Isdigit(X.z[1])) ){
893     u32 n = X.n;
894     spanExpr(&A, pParse, TK_VARIABLE, X);
895     sqlite3ExprAssignVarNumber(pParse, A.pExpr, n);
896   }else{
897     /* When doing a nested parse, one can include terms in an expression
898     ** that look like this:   #1 #2 ...  These terms refer to registers
899     ** in the virtual machine.  #N is the N-th register. */
900     Token t = X; /*A-overwrites-X*/
901     assert( t.n>=2 );
902     spanSet(&A, &t, &t);
903     if( pParse->nested==0 ){
904       sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &t);
905       A.pExpr = 0;
906     }else{
907       A.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0);
908       if( A.pExpr ) sqlite3GetInt32(&t.z[1], &A.pExpr->iTable);
909     }
910   }
911 }
912 expr(A) ::= expr(A) COLLATE ids(C). {
913   A.pExpr = sqlite3ExprAddCollateToken(pParse, A.pExpr, &C, 1);
914   A.zEnd = &C.z[C.n];
915 }
916 %ifndef SQLITE_OMIT_CAST
917 expr(A) ::= CAST(X) LP expr(E) AS typetoken(T) RP(Y). {
918   spanSet(&A,&X,&Y); /*A-overwrites-X*/
919   A.pExpr = sqlite3ExprAlloc(pParse->db, TK_CAST, &T, 1);
920   sqlite3ExprAttachSubtrees(pParse->db, A.pExpr, E.pExpr, 0);
921 }
922 %endif  SQLITE_OMIT_CAST
923 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP(E). {
924   if( Y && Y->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
925     sqlite3ErrorMsg(pParse, "too many arguments on function %T", &X);
926   }
927   A.pExpr = sqlite3ExprFunction(pParse, Y, &X);
928   spanSet(&A,&X,&E);
929   if( D==SF_Distinct && A.pExpr ){
930     A.pExpr->flags |= EP_Distinct;
931   }
932 }
933 expr(A) ::= id(X) LP STAR RP(E). {
934   A.pExpr = sqlite3ExprFunction(pParse, 0, &X);
935   spanSet(&A,&X,&E);
936 }
937 term(A) ::= CTIME_KW(OP). {
938   A.pExpr = sqlite3ExprFunction(pParse, 0, &OP);
939   spanSet(&A, &OP, &OP);
940 }
941 
942 %include {
943   /* This routine constructs a binary expression node out of two ExprSpan
944   ** objects and uses the result to populate a new ExprSpan object.
945   */
946   static void spanBinaryExpr(
947     Parse *pParse,      /* The parsing context.  Errors accumulate here */
948     int op,             /* The binary operation */
949     ExprSpan *pLeft,    /* The left operand, and output */
950     ExprSpan *pRight    /* The right operand */
951   ){
952     pLeft->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr);
953     pLeft->zEnd = pRight->zEnd;
954   }
955 
956   /* If doNot is true, then add a TK_NOT Expr-node wrapper around the
957   ** outside of *ppExpr.
958   */
959   static void exprNot(Parse *pParse, int doNot, ExprSpan *pSpan){
960     if( doNot ){
961       pSpan->pExpr = sqlite3PExpr(pParse, TK_NOT, pSpan->pExpr, 0);
962     }
963   }
964 }
965 
966 expr(A) ::= LP(L) nexprlist(X) COMMA expr(Y) RP(R). {
967   ExprList *pList = sqlite3ExprListAppend(pParse, X, Y.pExpr);
968   A.pExpr = sqlite3PExpr(pParse, TK_VECTOR, 0, 0);
969   if( A.pExpr ){
970     A.pExpr->x.pList = pList;
971     spanSet(&A, &L, &R);
972   }else{
973     sqlite3ExprListDelete(pParse->db, pList);
974   }
975 }
976 
977 expr(A) ::= expr(A) AND(OP) expr(Y).    {spanBinaryExpr(pParse,@OP,&A,&Y);}
978 expr(A) ::= expr(A) OR(OP) expr(Y).     {spanBinaryExpr(pParse,@OP,&A,&Y);}
979 expr(A) ::= expr(A) LT|GT|GE|LE(OP) expr(Y).
980                                         {spanBinaryExpr(pParse,@OP,&A,&Y);}
981 expr(A) ::= expr(A) EQ|NE(OP) expr(Y).  {spanBinaryExpr(pParse,@OP,&A,&Y);}
982 expr(A) ::= expr(A) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y).
983                                         {spanBinaryExpr(pParse,@OP,&A,&Y);}
984 expr(A) ::= expr(A) PLUS|MINUS(OP) expr(Y).
985                                         {spanBinaryExpr(pParse,@OP,&A,&Y);}
986 expr(A) ::= expr(A) STAR|SLASH|REM(OP) expr(Y).
987                                         {spanBinaryExpr(pParse,@OP,&A,&Y);}
988 expr(A) ::= expr(A) CONCAT(OP) expr(Y). {spanBinaryExpr(pParse,@OP,&A,&Y);}
989 %type likeop {Token}
990 likeop(A) ::= LIKE_KW|MATCH(X).     {A=X;/*A-overwrites-X*/}
991 likeop(A) ::= NOT LIKE_KW|MATCH(X). {A=X; A.n|=0x80000000; /*A-overwrite-X*/}
992 expr(A) ::= expr(A) likeop(OP) expr(Y).  [LIKE_KW]  {
993   ExprList *pList;
994   int bNot = OP.n & 0x80000000;
995   OP.n &= 0x7fffffff;
996   pList = sqlite3ExprListAppend(pParse,0, Y.pExpr);
997   pList = sqlite3ExprListAppend(pParse,pList, A.pExpr);
998   A.pExpr = sqlite3ExprFunction(pParse, pList, &OP);
999   exprNot(pParse, bNot, &A);
1000   A.zEnd = Y.zEnd;
1001   if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc;
1002 }
1003 expr(A) ::= expr(A) likeop(OP) expr(Y) ESCAPE expr(E).  [LIKE_KW]  {
1004   ExprList *pList;
1005   int bNot = OP.n & 0x80000000;
1006   OP.n &= 0x7fffffff;
1007   pList = sqlite3ExprListAppend(pParse,0, Y.pExpr);
1008   pList = sqlite3ExprListAppend(pParse,pList, A.pExpr);
1009   pList = sqlite3ExprListAppend(pParse,pList, E.pExpr);
1010   A.pExpr = sqlite3ExprFunction(pParse, pList, &OP);
1011   exprNot(pParse, bNot, &A);
1012   A.zEnd = E.zEnd;
1013   if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc;
1014 }
1015 
1016 %include {
1017   /* Construct an expression node for a unary postfix operator
1018   */
1019   static void spanUnaryPostfix(
1020     Parse *pParse,         /* Parsing context to record errors */
1021     int op,                /* The operator */
1022     ExprSpan *pOperand,    /* The operand, and output */
1023     Token *pPostOp         /* The operand token for setting the span */
1024   ){
1025     pOperand->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0);
1026     pOperand->zEnd = &pPostOp->z[pPostOp->n];
1027   }
1028 }
1029 
1030 expr(A) ::= expr(A) ISNULL|NOTNULL(E).   {spanUnaryPostfix(pParse,@E,&A,&E);}
1031 expr(A) ::= expr(A) NOT NULL(E). {spanUnaryPostfix(pParse,TK_NOTNULL,&A,&E);}
1032 
1033 %include {
1034   /* A routine to convert a binary TK_IS or TK_ISNOT expression into a
1035   ** unary TK_ISNULL or TK_NOTNULL expression. */
1036   static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){
1037     sqlite3 *db = pParse->db;
1038     if( pA && pY && pY->op==TK_NULL ){
1039       pA->op = (u8)op;
1040       sqlite3ExprDelete(db, pA->pRight);
1041       pA->pRight = 0;
1042     }
1043   }
1044 }
1045 
1046 //    expr1 IS expr2
1047 //    expr1 IS NOT expr2
1048 //
1049 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL.  If expr2
1050 // is any other expression, code as TK_IS or TK_ISNOT.
1051 //
1052 expr(A) ::= expr(A) IS expr(Y).     {
1053   spanBinaryExpr(pParse,TK_IS,&A,&Y);
1054   binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_ISNULL);
1055 }
1056 expr(A) ::= expr(A) IS NOT expr(Y). {
1057   spanBinaryExpr(pParse,TK_ISNOT,&A,&Y);
1058   binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_NOTNULL);
1059 }
1060 
1061 %include {
1062   /* Construct an expression node for a unary prefix operator
1063   */
1064   static void spanUnaryPrefix(
1065     ExprSpan *pOut,        /* Write the new expression node here */
1066     Parse *pParse,         /* Parsing context to record errors */
1067     int op,                /* The operator */
1068     ExprSpan *pOperand,    /* The operand */
1069     Token *pPreOp         /* The operand token for setting the span */
1070   ){
1071     pOut->zStart = pPreOp->z;
1072     pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0);
1073     pOut->zEnd = pOperand->zEnd;
1074   }
1075 }
1076 
1077 
1078 
1079 expr(A) ::= NOT(B) expr(X).
1080               {spanUnaryPrefix(&A,pParse,@B,&X,&B);/*A-overwrites-B*/}
1081 expr(A) ::= BITNOT(B) expr(X).
1082               {spanUnaryPrefix(&A,pParse,@B,&X,&B);/*A-overwrites-B*/}
1083 expr(A) ::= MINUS(B) expr(X). [BITNOT]
1084               {spanUnaryPrefix(&A,pParse,TK_UMINUS,&X,&B);/*A-overwrites-B*/}
1085 expr(A) ::= PLUS(B) expr(X). [BITNOT]
1086               {spanUnaryPrefix(&A,pParse,TK_UPLUS,&X,&B);/*A-overwrites-B*/}
1087 
1088 %type between_op {int}
1089 between_op(A) ::= BETWEEN.     {A = 0;}
1090 between_op(A) ::= NOT BETWEEN. {A = 1;}
1091 expr(A) ::= expr(A) between_op(N) expr(X) AND expr(Y). [BETWEEN] {
1092   ExprList *pList = sqlite3ExprListAppend(pParse,0, X.pExpr);
1093   pList = sqlite3ExprListAppend(pParse,pList, Y.pExpr);
1094   A.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, A.pExpr, 0);
1095   if( A.pExpr ){
1096     A.pExpr->x.pList = pList;
1097   }else{
1098     sqlite3ExprListDelete(pParse->db, pList);
1099   }
1100   exprNot(pParse, N, &A);
1101   A.zEnd = Y.zEnd;
1102 }
1103 %ifndef SQLITE_OMIT_SUBQUERY
1104   %type in_op {int}
1105   in_op(A) ::= IN.      {A = 0;}
1106   in_op(A) ::= NOT IN.  {A = 1;}
1107   expr(A) ::= expr(A) in_op(N) LP exprlist(Y) RP(E). [IN] {
1108     if( Y==0 ){
1109       /* Expressions of the form
1110       **
1111       **      expr1 IN ()
1112       **      expr1 NOT IN ()
1113       **
1114       ** simplify to constants 0 (false) and 1 (true), respectively,
1115       ** regardless of the value of expr1.
1116       */
1117       sqlite3ExprDelete(pParse->db, A.pExpr);
1118       A.pExpr = sqlite3ExprAlloc(pParse->db, TK_INTEGER,&sqlite3IntTokens[N],1);
1119     }else if( Y->nExpr==1 ){
1120       /* Expressions of the form:
1121       **
1122       **      expr1 IN (?1)
1123       **      expr1 NOT IN (?2)
1124       **
1125       ** with exactly one value on the RHS can be simplified to something
1126       ** like this:
1127       **
1128       **      expr1 == ?1
1129       **      expr1 <> ?2
1130       **
1131       ** But, the RHS of the == or <> is marked with the EP_Generic flag
1132       ** so that it may not contribute to the computation of comparison
1133       ** affinity or the collating sequence to use for comparison.  Otherwise,
1134       ** the semantics would be subtly different from IN or NOT IN.
1135       */
1136       Expr *pRHS = Y->a[0].pExpr;
1137       Y->a[0].pExpr = 0;
1138       sqlite3ExprListDelete(pParse->db, Y);
1139       /* pRHS cannot be NULL because a malloc error would have been detected
1140       ** before now and control would have never reached this point */
1141       if( ALWAYS(pRHS) ){
1142         pRHS->flags &= ~EP_Collate;
1143         pRHS->flags |= EP_Generic;
1144       }
1145       A.pExpr = sqlite3PExpr(pParse, N ? TK_NE : TK_EQ, A.pExpr, pRHS);
1146     }else{
1147       A.pExpr = sqlite3PExpr(pParse, TK_IN, A.pExpr, 0);
1148       if( A.pExpr ){
1149         A.pExpr->x.pList = Y;
1150         sqlite3ExprSetHeightAndFlags(pParse, A.pExpr);
1151       }else{
1152         sqlite3ExprListDelete(pParse->db, Y);
1153       }
1154       exprNot(pParse, N, &A);
1155     }
1156     A.zEnd = &E.z[E.n];
1157   }
1158   expr(A) ::= LP(B) select(X) RP(E). {
1159     spanSet(&A,&B,&E); /*A-overwrites-B*/
1160     A.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
1161     sqlite3PExprAddSelect(pParse, A.pExpr, X);
1162   }
1163   expr(A) ::= expr(A) in_op(N) LP select(Y) RP(E).  [IN] {
1164     A.pExpr = sqlite3PExpr(pParse, TK_IN, A.pExpr, 0);
1165     sqlite3PExprAddSelect(pParse, A.pExpr, Y);
1166     exprNot(pParse, N, &A);
1167     A.zEnd = &E.z[E.n];
1168   }
1169   expr(A) ::= expr(A) in_op(N) nm(Y) dbnm(Z) paren_exprlist(E). [IN] {
1170     SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z);
1171     Select *pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0);
1172     if( E )  sqlite3SrcListFuncArgs(pParse, pSelect ? pSrc : 0, E);
1173     A.pExpr = sqlite3PExpr(pParse, TK_IN, A.pExpr, 0);
1174     sqlite3PExprAddSelect(pParse, A.pExpr, pSelect);
1175     exprNot(pParse, N, &A);
1176     A.zEnd = Z.z ? &Z.z[Z.n] : &Y.z[Y.n];
1177   }
1178   expr(A) ::= EXISTS(B) LP select(Y) RP(E). {
1179     Expr *p;
1180     spanSet(&A,&B,&E); /*A-overwrites-B*/
1181     p = A.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0);
1182     sqlite3PExprAddSelect(pParse, p, Y);
1183   }
1184 %endif SQLITE_OMIT_SUBQUERY
1185 
1186 /* CASE expressions */
1187 expr(A) ::= CASE(C) case_operand(X) case_exprlist(Y) case_else(Z) END(E). {
1188   spanSet(&A,&C,&E);  /*A-overwrites-C*/
1189   A.pExpr = sqlite3PExpr(pParse, TK_CASE, X, 0);
1190   if( A.pExpr ){
1191     A.pExpr->x.pList = Z ? sqlite3ExprListAppend(pParse,Y,Z) : Y;
1192     sqlite3ExprSetHeightAndFlags(pParse, A.pExpr);
1193   }else{
1194     sqlite3ExprListDelete(pParse->db, Y);
1195     sqlite3ExprDelete(pParse->db, Z);
1196   }
1197 }
1198 %type case_exprlist {ExprList*}
1199 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);}
1200 case_exprlist(A) ::= case_exprlist(A) WHEN expr(Y) THEN expr(Z). {
1201   A = sqlite3ExprListAppend(pParse,A, Y.pExpr);
1202   A = sqlite3ExprListAppend(pParse,A, Z.pExpr);
1203 }
1204 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). {
1205   A = sqlite3ExprListAppend(pParse,0, Y.pExpr);
1206   A = sqlite3ExprListAppend(pParse,A, Z.pExpr);
1207 }
1208 %type case_else {Expr*}
1209 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);}
1210 case_else(A) ::=  ELSE expr(X).         {A = X.pExpr;}
1211 case_else(A) ::=  .                     {A = 0;}
1212 %type case_operand {Expr*}
1213 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);}
1214 case_operand(A) ::= expr(X).            {A = X.pExpr; /*A-overwrites-X*/}
1215 case_operand(A) ::= .                   {A = 0;}
1216 
1217 %type exprlist {ExprList*}
1218 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);}
1219 %type nexprlist {ExprList*}
1220 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);}
1221 
1222 exprlist(A) ::= nexprlist(A).
1223 exprlist(A) ::= .                            {A = 0;}
1224 nexprlist(A) ::= nexprlist(A) COMMA expr(Y).
1225     {A = sqlite3ExprListAppend(pParse,A,Y.pExpr);}
1226 nexprlist(A) ::= expr(Y).
1227     {A = sqlite3ExprListAppend(pParse,0,Y.pExpr); /*A-overwrites-Y*/}
1228 
1229 %ifndef SQLITE_OMIT_SUBQUERY
1230 /* A paren_exprlist is an optional expression list contained inside
1231 ** of parenthesis */
1232 %type paren_exprlist {ExprList*}
1233 %destructor paren_exprlist {sqlite3ExprListDelete(pParse->db, $$);}
1234 paren_exprlist(A) ::= .   {A = 0;}
1235 paren_exprlist(A) ::= LP exprlist(X) RP.  {A = X;}
1236 %endif SQLITE_OMIT_SUBQUERY
1237 
1238 
1239 ///////////////////////////// The CREATE INDEX command ///////////////////////
1240 //
1241 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D)
1242         ON nm(Y) LP sortlist(Z) RP where_opt(W). {
1243   sqlite3CreateIndex(pParse, &X, &D,
1244                      sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U,
1245                       &S, W, SQLITE_SO_ASC, NE, SQLITE_IDXTYPE_APPDEF);
1246 }
1247 
1248 %type uniqueflag {int}
1249 uniqueflag(A) ::= UNIQUE.  {A = OE_Abort;}
1250 uniqueflag(A) ::= .        {A = OE_None;}
1251 
1252 
1253 // The eidlist non-terminal (Expression Id List) generates an ExprList
1254 // from a list of identifiers.  The identifier names are in ExprList.a[].zName.
1255 // This list is stored in an ExprList rather than an IdList so that it
1256 // can be easily sent to sqlite3ColumnsExprList().
1257 //
1258 // eidlist is grouped with CREATE INDEX because it used to be the non-terminal
1259 // used for the arguments to an index.  That is just an historical accident.
1260 //
1261 // IMPORTANT COMPATIBILITY NOTE:  Some prior versions of SQLite accepted
1262 // COLLATE clauses and ASC or DESC keywords on ID lists in inappropriate
1263 // places - places that might have been stored in the sqlite_master schema.
1264 // Those extra features were ignored.  But because they might be in some
1265 // (busted) old databases, we need to continue parsing them when loading
1266 // historical schemas.
1267 //
1268 %type eidlist {ExprList*}
1269 %destructor eidlist {sqlite3ExprListDelete(pParse->db, $$);}
1270 %type eidlist_opt {ExprList*}
1271 %destructor eidlist_opt {sqlite3ExprListDelete(pParse->db, $$);}
1272 
1273 %include {
1274   /* Add a single new term to an ExprList that is used to store a
1275   ** list of identifiers.  Report an error if the ID list contains
1276   ** a COLLATE clause or an ASC or DESC keyword, except ignore the
1277   ** error while parsing a legacy schema.
1278   */
1279   static ExprList *parserAddExprIdListTerm(
1280     Parse *pParse,
1281     ExprList *pPrior,
1282     Token *pIdToken,
1283     int hasCollate,
1284     int sortOrder
1285   ){
1286     ExprList *p = sqlite3ExprListAppend(pParse, pPrior, 0);
1287     if( (hasCollate || sortOrder!=SQLITE_SO_UNDEFINED)
1288         && pParse->db->init.busy==0
1289     ){
1290       sqlite3ErrorMsg(pParse, "syntax error after column name \"%.*s\"",
1291                          pIdToken->n, pIdToken->z);
1292     }
1293     sqlite3ExprListSetName(pParse, p, pIdToken, 1);
1294     return p;
1295   }
1296 } // end %include
1297 
1298 eidlist_opt(A) ::= .                         {A = 0;}
1299 eidlist_opt(A) ::= LP eidlist(X) RP.         {A = X;}
1300 eidlist(A) ::= eidlist(A) COMMA nm(Y) collate(C) sortorder(Z).  {
1301   A = parserAddExprIdListTerm(pParse, A, &Y, C, Z);
1302 }
1303 eidlist(A) ::= nm(Y) collate(C) sortorder(Z). {
1304   A = parserAddExprIdListTerm(pParse, 0, &Y, C, Z); /*A-overwrites-Y*/
1305 }
1306 
1307 %type collate {int}
1308 collate(C) ::= .              {C = 0;}
1309 collate(C) ::= COLLATE ids.   {C = 1;}
1310 
1311 
1312 ///////////////////////////// The DROP INDEX command /////////////////////////
1313 //
1314 cmd ::= DROP INDEX ifexists(E) fullname(X).   {sqlite3DropIndex(pParse, X, E);}
1315 
1316 ///////////////////////////// The VACUUM command /////////////////////////////
1317 //
1318 %ifndef SQLITE_OMIT_VACUUM
1319 %ifndef SQLITE_OMIT_ATTACH
1320 cmd ::= VACUUM.                {sqlite3Vacuum(pParse,0);}
1321 cmd ::= VACUUM nm(X).          {sqlite3Vacuum(pParse,&X);}
1322 %endif  SQLITE_OMIT_ATTACH
1323 %endif  SQLITE_OMIT_VACUUM
1324 
1325 ///////////////////////////// The PRAGMA command /////////////////////////////
1326 //
1327 %ifndef SQLITE_OMIT_PRAGMA
1328 cmd ::= PRAGMA nm(X) dbnm(Z).                {sqlite3Pragma(pParse,&X,&Z,0,0);}
1329 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y).    {sqlite3Pragma(pParse,&X,&Z,&Y,0);}
1330 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);}
1331 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y).
1332                                              {sqlite3Pragma(pParse,&X,&Z,&Y,1);}
1333 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP.
1334                                              {sqlite3Pragma(pParse,&X,&Z,&Y,1);}
1335 
1336 nmnum(A) ::= plus_num(A).
1337 nmnum(A) ::= nm(A).
1338 nmnum(A) ::= ON(A).
1339 nmnum(A) ::= DELETE(A).
1340 nmnum(A) ::= DEFAULT(A).
1341 %endif SQLITE_OMIT_PRAGMA
1342 %token_class number INTEGER|FLOAT.
1343 plus_num(A) ::= PLUS number(X).       {A = X;}
1344 plus_num(A) ::= number(A).
1345 minus_num(A) ::= MINUS number(X).     {A = X;}
1346 //////////////////////////// The CREATE TRIGGER command /////////////////////
1347 
1348 %ifndef SQLITE_OMIT_TRIGGER
1349 
1350 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). {
1351   Token all;
1352   all.z = A.z;
1353   all.n = (int)(Z.z - A.z) + Z.n;
1354   sqlite3FinishTrigger(pParse, S, &all);
1355 }
1356 
1357 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z)
1358                     trigger_time(C) trigger_event(D)
1359                     ON fullname(E) foreach_clause when_clause(G). {
1360   sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR);
1361   A = (Z.n==0?B:Z); /*A-overwrites-T*/
1362 }
1363 
1364 %type trigger_time {int}
1365 trigger_time(A) ::= BEFORE.      { A = TK_BEFORE; }
1366 trigger_time(A) ::= AFTER.       { A = TK_AFTER;  }
1367 trigger_time(A) ::= INSTEAD OF.  { A = TK_INSTEAD;}
1368 trigger_time(A) ::= .            { A = TK_BEFORE; }
1369 
1370 %type trigger_event {struct TrigEvent}
1371 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);}
1372 trigger_event(A) ::= DELETE|INSERT(X).   {A.a = @X; /*A-overwrites-X*/ A.b = 0;}
1373 trigger_event(A) ::= UPDATE(X).          {A.a = @X; /*A-overwrites-X*/ A.b = 0;}
1374 trigger_event(A) ::= UPDATE OF idlist(X).{A.a = TK_UPDATE; A.b = X;}
1375 
1376 foreach_clause ::= .
1377 foreach_clause ::= FOR EACH ROW.
1378 
1379 %type when_clause {Expr*}
1380 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);}
1381 when_clause(A) ::= .             { A = 0; }
1382 when_clause(A) ::= WHEN expr(X). { A = X.pExpr; }
1383 
1384 %type trigger_cmd_list {TriggerStep*}
1385 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);}
1386 trigger_cmd_list(A) ::= trigger_cmd_list(A) trigger_cmd(X) SEMI. {
1387   assert( A!=0 );
1388   A->pLast->pNext = X;
1389   A->pLast = X;
1390 }
1391 trigger_cmd_list(A) ::= trigger_cmd(A) SEMI. {
1392   assert( A!=0 );
1393   A->pLast = A;
1394 }
1395 
1396 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements
1397 // within a trigger.  The table to INSERT, UPDATE, or DELETE is always in
1398 // the same database as the table that the trigger fires on.
1399 //
1400 %type trnm {Token}
1401 trnm(A) ::= nm(A).
1402 trnm(A) ::= nm DOT nm(X). {
1403   A = X;
1404   sqlite3ErrorMsg(pParse,
1405         "qualified table names are not allowed on INSERT, UPDATE, and DELETE "
1406         "statements within triggers");
1407 }
1408 
1409 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE
1410 // statements within triggers.  We make a specific error message for this
1411 // since it is an exception to the default grammar rules.
1412 //
1413 tridxby ::= .
1414 tridxby ::= INDEXED BY nm. {
1415   sqlite3ErrorMsg(pParse,
1416         "the INDEXED BY clause is not allowed on UPDATE or DELETE statements "
1417         "within triggers");
1418 }
1419 tridxby ::= NOT INDEXED. {
1420   sqlite3ErrorMsg(pParse,
1421         "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements "
1422         "within triggers");
1423 }
1424 
1425 
1426 
1427 %type trigger_cmd {TriggerStep*}
1428 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);}
1429 // UPDATE
1430 trigger_cmd(A) ::=
1431    UPDATE orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z).
1432    {A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R);}
1433 
1434 // INSERT
1435 trigger_cmd(A) ::= insert_cmd(R) INTO trnm(X) idlist_opt(F) select(S).
1436    {A = sqlite3TriggerInsertStep(pParse->db, &X, F, S, R);/*A-overwrites-R*/}
1437 
1438 // DELETE
1439 trigger_cmd(A) ::= DELETE FROM trnm(X) tridxby where_opt(Y).
1440    {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y);}
1441 
1442 // SELECT
1443 trigger_cmd(A) ::= select(X).
1444    {A = sqlite3TriggerSelectStep(pParse->db, X); /*A-overwrites-X*/}
1445 
1446 // The special RAISE expression that may occur in trigger programs
1447 expr(A) ::= RAISE(X) LP IGNORE RP(Y).  {
1448   spanSet(&A,&X,&Y);  /*A-overwrites-X*/
1449   A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0);
1450   if( A.pExpr ){
1451     A.pExpr->affinity = OE_Ignore;
1452   }
1453 }
1454 expr(A) ::= RAISE(X) LP raisetype(T) COMMA nm(Z) RP(Y).  {
1455   spanSet(&A,&X,&Y);  /*A-overwrites-X*/
1456   A.pExpr = sqlite3ExprAlloc(pParse->db, TK_RAISE, &Z, 1);
1457   if( A.pExpr ) {
1458     A.pExpr->affinity = (char)T;
1459   }
1460 }
1461 %endif  !SQLITE_OMIT_TRIGGER
1462 
1463 %type raisetype {int}
1464 raisetype(A) ::= ROLLBACK.  {A = OE_Rollback;}
1465 raisetype(A) ::= ABORT.     {A = OE_Abort;}
1466 raisetype(A) ::= FAIL.      {A = OE_Fail;}
1467 
1468 
1469 ////////////////////////  DROP TRIGGER statement //////////////////////////////
1470 %ifndef SQLITE_OMIT_TRIGGER
1471 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). {
1472   sqlite3DropTrigger(pParse,X,NOERR);
1473 }
1474 %endif  !SQLITE_OMIT_TRIGGER
1475 
1476 //////////////////////// ATTACH DATABASE file AS name /////////////////////////
1477 %ifndef SQLITE_OMIT_ATTACH
1478 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). {
1479   sqlite3Attach(pParse, F.pExpr, D.pExpr, K);
1480 }
1481 cmd ::= DETACH database_kw_opt expr(D). {
1482   sqlite3Detach(pParse, D.pExpr);
1483 }
1484 
1485 %type key_opt {Expr*}
1486 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);}
1487 key_opt(A) ::= .                     { A = 0; }
1488 key_opt(A) ::= KEY expr(X).          { A = X.pExpr; }
1489 
1490 database_kw_opt ::= DATABASE.
1491 database_kw_opt ::= .
1492 %endif SQLITE_OMIT_ATTACH
1493 
1494 ////////////////////////// REINDEX collation //////////////////////////////////
1495 %ifndef SQLITE_OMIT_REINDEX
1496 cmd ::= REINDEX.                {sqlite3Reindex(pParse, 0, 0);}
1497 cmd ::= REINDEX nm(X) dbnm(Y).  {sqlite3Reindex(pParse, &X, &Y);}
1498 %endif  SQLITE_OMIT_REINDEX
1499 
1500 /////////////////////////////////// ANALYZE ///////////////////////////////////
1501 %ifndef SQLITE_OMIT_ANALYZE
1502 cmd ::= ANALYZE.                {sqlite3Analyze(pParse, 0, 0);}
1503 cmd ::= ANALYZE nm(X) dbnm(Y).  {sqlite3Analyze(pParse, &X, &Y);}
1504 %endif
1505 
1506 //////////////////////// ALTER TABLE table ... ////////////////////////////////
1507 %ifndef SQLITE_OMIT_ALTERTABLE
1508 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). {
1509   sqlite3AlterRenameTable(pParse,X,&Z);
1510 }
1511 cmd ::= ALTER TABLE add_column_fullname
1512         ADD kwcolumn_opt columnname(Y) carglist. {
1513   Y.n = (int)(pParse->sLastToken.z-Y.z) + pParse->sLastToken.n;
1514   sqlite3AlterFinishAddColumn(pParse, &Y);
1515 }
1516 add_column_fullname ::= fullname(X). {
1517   disableLookaside(pParse);
1518   sqlite3AlterBeginAddColumn(pParse, X);
1519 }
1520 kwcolumn_opt ::= .
1521 kwcolumn_opt ::= COLUMNKW.
1522 %endif  SQLITE_OMIT_ALTERTABLE
1523 
1524 //////////////////////// CREATE VIRTUAL TABLE ... /////////////////////////////
1525 %ifndef SQLITE_OMIT_VIRTUALTABLE
1526 cmd ::= create_vtab.                       {sqlite3VtabFinishParse(pParse,0);}
1527 cmd ::= create_vtab LP vtabarglist RP(X).  {sqlite3VtabFinishParse(pParse,&X);}
1528 create_vtab ::= createkw VIRTUAL TABLE ifnotexists(E)
1529                 nm(X) dbnm(Y) USING nm(Z). {
1530     sqlite3VtabBeginParse(pParse, &X, &Y, &Z, E);
1531 }
1532 vtabarglist ::= vtabarg.
1533 vtabarglist ::= vtabarglist COMMA vtabarg.
1534 vtabarg ::= .                       {sqlite3VtabArgInit(pParse);}
1535 vtabarg ::= vtabarg vtabargtoken.
1536 vtabargtoken ::= ANY(X).            {sqlite3VtabArgExtend(pParse,&X);}
1537 vtabargtoken ::= lp anylist RP(X).  {sqlite3VtabArgExtend(pParse,&X);}
1538 lp ::= LP(X).                       {sqlite3VtabArgExtend(pParse,&X);}
1539 anylist ::= .
1540 anylist ::= anylist LP anylist RP.
1541 anylist ::= anylist ANY.
1542 %endif  SQLITE_OMIT_VIRTUALTABLE
1543 
1544 
1545 //////////////////////// COMMON TABLE EXPRESSIONS ////////////////////////////
1546 %type with {With*}
1547 %type wqlist {With*}
1548 %destructor with {sqlite3WithDelete(pParse->db, $$);}
1549 %destructor wqlist {sqlite3WithDelete(pParse->db, $$);}
1550 
1551 with(A) ::= . {A = 0;}
1552 %ifndef SQLITE_OMIT_CTE
1553 with(A) ::= WITH wqlist(W).              { A = W; }
1554 with(A) ::= WITH RECURSIVE wqlist(W).    { A = W; }
1555 
1556 wqlist(A) ::= nm(X) eidlist_opt(Y) AS LP select(Z) RP. {
1557   A = sqlite3WithAdd(pParse, 0, &X, Y, Z); /*A-overwrites-X*/
1558 }
1559 wqlist(A) ::= wqlist(A) COMMA nm(X) eidlist_opt(Y) AS LP select(Z) RP. {
1560   A = sqlite3WithAdd(pParse, A, &X, Y, Z);
1561 }
1562 %endif  SQLITE_OMIT_CTE
1563