1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains SQLite's grammar for SQL. Process this file 13 ** using the lemon parser generator to generate C code that runs 14 ** the parser. Lemon will also generate a header file containing 15 ** numeric codes for all of the tokens. 16 */ 17 18 // All token codes are small integers with #defines that begin with "TK_" 19 %token_prefix TK_ 20 21 // The type of the data attached to each token is Token. This is also the 22 // default type for non-terminals. 23 // 24 %token_type {Token} 25 %default_type {Token} 26 27 // An extra argument to the constructor for the parser, which is available 28 // to all actions. 29 %extra_context {Parse *pParse} 30 31 // This code runs whenever there is a syntax error 32 // 33 %syntax_error { 34 UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */ 35 if( TOKEN.z[0] ){ 36 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN); 37 }else{ 38 sqlite3ErrorMsg(pParse, "incomplete input"); 39 } 40 } 41 %stack_overflow { 42 sqlite3ErrorMsg(pParse, "parser stack overflow"); 43 } 44 45 // The name of the generated procedure that implements the parser 46 // is as follows: 47 %name sqlite3Parser 48 49 // The following text is included near the beginning of the C source 50 // code file that implements the parser. 51 // 52 %include { 53 #include "sqliteInt.h" 54 55 /* 56 ** Disable all error recovery processing in the parser push-down 57 ** automaton. 58 */ 59 #define YYNOERRORRECOVERY 1 60 61 /* 62 ** Make yytestcase() the same as testcase() 63 */ 64 #define yytestcase(X) testcase(X) 65 66 /* 67 ** Indicate that sqlite3ParserFree() will never be called with a null 68 ** pointer. 69 */ 70 #define YYPARSEFREENEVERNULL 1 71 72 /* 73 ** In the amalgamation, the parse.c file generated by lemon and the 74 ** tokenize.c file are concatenated. In that case, sqlite3RunParser() 75 ** has access to the the size of the yyParser object and so the parser 76 ** engine can be allocated from stack. In that case, only the 77 ** sqlite3ParserInit() and sqlite3ParserFinalize() routines are invoked 78 ** and the sqlite3ParserAlloc() and sqlite3ParserFree() routines can be 79 ** omitted. 80 */ 81 #ifdef SQLITE_AMALGAMATION 82 # define sqlite3Parser_ENGINEALWAYSONSTACK 1 83 #endif 84 85 /* 86 ** Alternative datatype for the argument to the malloc() routine passed 87 ** into sqlite3ParserAlloc(). The default is size_t. 88 */ 89 #define YYMALLOCARGTYPE u64 90 91 /* 92 ** An instance of the following structure describes the event of a 93 ** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT, 94 ** TK_DELETE, or TK_INSTEAD. If the event is of the form 95 ** 96 ** UPDATE ON (a,b,c) 97 ** 98 ** Then the "b" IdList records the list "a,b,c". 99 */ 100 struct TrigEvent { int a; IdList * b; }; 101 102 struct FrameBound { int eType; Expr *pExpr; }; 103 104 /* 105 ** Disable lookaside memory allocation for objects that might be 106 ** shared across database connections. 107 */ 108 static void disableLookaside(Parse *pParse){ 109 pParse->disableLookaside++; 110 pParse->db->lookaside.bDisable++; 111 } 112 113 } // end %include 114 115 // Input is a single SQL command 116 input ::= cmdlist. 117 cmdlist ::= cmdlist ecmd. 118 cmdlist ::= ecmd. 119 ecmd ::= SEMI. 120 ecmd ::= cmdx SEMI. 121 %ifndef SQLITE_OMIT_EXPLAIN 122 ecmd ::= explain cmdx. 123 explain ::= EXPLAIN. { pParse->explain = 1; } 124 explain ::= EXPLAIN QUERY PLAN. { pParse->explain = 2; } 125 %endif SQLITE_OMIT_EXPLAIN 126 cmdx ::= cmd. { sqlite3FinishCoding(pParse); } 127 128 ///////////////////// Begin and end transactions. //////////////////////////// 129 // 130 131 cmd ::= BEGIN transtype(Y) trans_opt. {sqlite3BeginTransaction(pParse, Y);} 132 trans_opt ::= . 133 trans_opt ::= TRANSACTION. 134 trans_opt ::= TRANSACTION nm. 135 %type transtype {int} 136 transtype(A) ::= . {A = TK_DEFERRED;} 137 transtype(A) ::= DEFERRED(X). {A = @X; /*A-overwrites-X*/} 138 transtype(A) ::= IMMEDIATE(X). {A = @X; /*A-overwrites-X*/} 139 transtype(A) ::= EXCLUSIVE(X). {A = @X; /*A-overwrites-X*/} 140 cmd ::= COMMIT|END(X) trans_opt. {sqlite3EndTransaction(pParse,@X);} 141 cmd ::= ROLLBACK(X) trans_opt. {sqlite3EndTransaction(pParse,@X);} 142 143 savepoint_opt ::= SAVEPOINT. 144 savepoint_opt ::= . 145 cmd ::= SAVEPOINT nm(X). { 146 sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X); 147 } 148 cmd ::= RELEASE savepoint_opt nm(X). { 149 sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X); 150 } 151 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). { 152 sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X); 153 } 154 155 ///////////////////// The CREATE TABLE statement //////////////////////////// 156 // 157 cmd ::= create_table create_table_args. 158 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). { 159 sqlite3StartTable(pParse,&Y,&Z,T,0,0,E); 160 } 161 createkw(A) ::= CREATE(A). {disableLookaside(pParse);} 162 163 %type ifnotexists {int} 164 ifnotexists(A) ::= . {A = 0;} 165 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;} 166 %type temp {int} 167 %ifndef SQLITE_OMIT_TEMPDB 168 temp(A) ::= TEMP. {A = 1;} 169 %endif SQLITE_OMIT_TEMPDB 170 temp(A) ::= . {A = 0;} 171 create_table_args ::= LP columnlist conslist_opt(X) RP(E) table_options(F). { 172 sqlite3EndTable(pParse,&X,&E,F,0); 173 } 174 create_table_args ::= AS select(S). { 175 sqlite3EndTable(pParse,0,0,0,S); 176 sqlite3SelectDelete(pParse->db, S); 177 } 178 %type table_options {int} 179 table_options(A) ::= . {A = 0;} 180 table_options(A) ::= WITHOUT nm(X). { 181 if( X.n==5 && sqlite3_strnicmp(X.z,"rowid",5)==0 ){ 182 A = TF_WithoutRowid | TF_NoVisibleRowid; 183 }else{ 184 A = 0; 185 sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z); 186 } 187 } 188 columnlist ::= columnlist COMMA columnname carglist. 189 columnlist ::= columnname carglist. 190 columnname(A) ::= nm(A) typetoken(Y). {sqlite3AddColumn(pParse,&A,&Y);} 191 192 // Declare some tokens early in order to influence their values, to 193 // improve performance and reduce the executable size. The goal here is 194 // to get the "jump" operations in ISNULL through ESCAPE to have numeric 195 // values that are early enough so that all jump operations are clustered 196 // at the beginning, but also so that the comparison tokens NE through GE 197 // are as large as possible so that they are near to FUNCTION, which is a 198 // token synthesized by addopcodes.tcl. 199 // 200 %token ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST. 201 %token CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL. 202 %token OR AND NOT IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. 203 %token GT LE LT GE ESCAPE. 204 205 // The following directive causes tokens ABORT, AFTER, ASC, etc. to 206 // fallback to ID if they will not parse as their original value. 207 // This obviates the need for the "id" nonterminal. 208 // 209 %fallback ID 210 ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW 211 CONFLICT DATABASE DEFERRED DESC DETACH DO 212 EACH END EXCLUSIVE EXPLAIN FAIL FOR 213 IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN 214 QUERY KEY OF OFFSET PRAGMA RAISE RECURSIVE RELEASE REPLACE RESTRICT ROW ROWS 215 ROLLBACK SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL WITH WITHOUT 216 %ifdef SQLITE_OMIT_COMPOUND_SELECT 217 EXCEPT INTERSECT UNION 218 %endif SQLITE_OMIT_COMPOUND_SELECT 219 %ifndef SQLITE_OMIT_WINDOWFUNC 220 CURRENT FOLLOWING PARTITION PRECEDING RANGE UNBOUNDED 221 %endif SQLITE_OMIT_WINDOWFUNC 222 REINDEX RENAME CTIME_KW IF 223 . 224 %wildcard ANY. 225 226 // Define operator precedence early so that this is the first occurrence 227 // of the operator tokens in the grammer. Keeping the operators together 228 // causes them to be assigned integer values that are close together, 229 // which keeps parser tables smaller. 230 // 231 // The token values assigned to these symbols is determined by the order 232 // in which lemon first sees them. It must be the case that ISNULL/NOTNULL, 233 // NE/EQ, GT/LE, and GE/LT are separated by only a single value. See 234 // the sqlite3ExprIfFalse() routine for additional information on this 235 // constraint. 236 // 237 %left OR. 238 %left AND. 239 %right NOT. 240 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. 241 %left GT LE LT GE. 242 %right ESCAPE. 243 %left BITAND BITOR LSHIFT RSHIFT. 244 %left PLUS MINUS. 245 %left STAR SLASH REM. 246 %left CONCAT. 247 %left COLLATE. 248 %right BITNOT. 249 %nonassoc ON. 250 251 // An IDENTIFIER can be a generic identifier, or one of several 252 // keywords. Any non-standard keyword can also be an identifier. 253 // 254 %token_class id ID|INDEXED. 255 256 257 // And "ids" is an identifer-or-string. 258 // 259 %token_class ids ID|STRING. 260 261 // The name of a column or table can be any of the following: 262 // 263 %type nm {Token} 264 nm(A) ::= id(A). 265 nm(A) ::= STRING(A). 266 nm(A) ::= JOIN_KW(A). 267 268 // A typetoken is really zero or more tokens that form a type name such 269 // as can be found after the column name in a CREATE TABLE statement. 270 // Multiple tokens are concatenated to form the value of the typetoken. 271 // 272 %type typetoken {Token} 273 typetoken(A) ::= . {A.n = 0; A.z = 0;} 274 typetoken(A) ::= typename(A). 275 typetoken(A) ::= typename(A) LP signed RP(Y). { 276 A.n = (int)(&Y.z[Y.n] - A.z); 277 } 278 typetoken(A) ::= typename(A) LP signed COMMA signed RP(Y). { 279 A.n = (int)(&Y.z[Y.n] - A.z); 280 } 281 %type typename {Token} 282 typename(A) ::= ids(A). 283 typename(A) ::= typename(A) ids(Y). {A.n=Y.n+(int)(Y.z-A.z);} 284 signed ::= plus_num. 285 signed ::= minus_num. 286 287 // The scanpt non-terminal takes a value which is a pointer to the 288 // input text just past the last token that has been shifted into 289 // the parser. By surrounding some phrase in the grammar with two 290 // scanpt non-terminals, we can capture the input text for that phrase. 291 // For example: 292 // 293 // something ::= .... scanpt(A) phrase scanpt(Z). 294 // 295 // The text that is parsed as "phrase" is a string starting at A 296 // and containing (int)(Z-A) characters. There might be some extra 297 // whitespace on either end of the text, but that can be removed in 298 // post-processing, if needed. 299 // 300 %type scanpt {const char*} 301 scanpt(A) ::= . { 302 assert( yyLookahead!=YYNOCODE ); 303 A = yyLookaheadToken.z; 304 } 305 306 // "carglist" is a list of additional constraints that come after the 307 // column name and column type in a CREATE TABLE statement. 308 // 309 carglist ::= carglist ccons. 310 carglist ::= . 311 ccons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} 312 ccons ::= DEFAULT scanpt(A) term(X) scanpt(Z). 313 {sqlite3AddDefaultValue(pParse,X,A,Z);} 314 ccons ::= DEFAULT LP(A) expr(X) RP(Z). 315 {sqlite3AddDefaultValue(pParse,X,A.z+1,Z.z);} 316 ccons ::= DEFAULT PLUS(A) term(X) scanpt(Z). 317 {sqlite3AddDefaultValue(pParse,X,A.z,Z);} 318 ccons ::= DEFAULT MINUS(A) term(X) scanpt(Z). { 319 Expr *p = sqlite3PExpr(pParse, TK_UMINUS, X, 0); 320 sqlite3AddDefaultValue(pParse,p,A.z,Z); 321 } 322 ccons ::= DEFAULT scanpt id(X). { 323 Expr *p = tokenExpr(pParse, TK_STRING, X); 324 if( p ){ 325 sqlite3ExprIdToTrueFalse(p); 326 testcase( p->op==TK_TRUEFALSE && sqlite3ExprTruthValue(p) ); 327 } 328 sqlite3AddDefaultValue(pParse,p,X.z,X.z+X.n); 329 } 330 331 // In addition to the type name, we also care about the primary key and 332 // UNIQUE constraints. 333 // 334 ccons ::= NULL onconf. 335 ccons ::= NOT NULL onconf(R). {sqlite3AddNotNull(pParse, R);} 336 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I). 337 {sqlite3AddPrimaryKey(pParse,0,R,I,Z);} 338 ccons ::= UNIQUE onconf(R). {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0, 339 SQLITE_IDXTYPE_UNIQUE);} 340 ccons ::= CHECK LP expr(X) RP. {sqlite3AddCheckConstraint(pParse,X);} 341 ccons ::= REFERENCES nm(T) eidlist_opt(TA) refargs(R). 342 {sqlite3CreateForeignKey(pParse,0,&T,TA,R);} 343 ccons ::= defer_subclause(D). {sqlite3DeferForeignKey(pParse,D);} 344 ccons ::= COLLATE ids(C). {sqlite3AddCollateType(pParse, &C);} 345 346 // The optional AUTOINCREMENT keyword 347 %type autoinc {int} 348 autoinc(X) ::= . {X = 0;} 349 autoinc(X) ::= AUTOINCR. {X = 1;} 350 351 // The next group of rules parses the arguments to a REFERENCES clause 352 // that determine if the referential integrity checking is deferred or 353 // or immediate and which determine what action to take if a ref-integ 354 // check fails. 355 // 356 %type refargs {int} 357 refargs(A) ::= . { A = OE_None*0x0101; /* EV: R-19803-45884 */} 358 refargs(A) ::= refargs(A) refarg(Y). { A = (A & ~Y.mask) | Y.value; } 359 %type refarg {struct {int value; int mask;}} 360 refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; } 361 refarg(A) ::= ON INSERT refact. { A.value = 0; A.mask = 0x000000; } 362 refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; } 363 refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; } 364 %type refact {int} 365 refact(A) ::= SET NULL. { A = OE_SetNull; /* EV: R-33326-45252 */} 366 refact(A) ::= SET DEFAULT. { A = OE_SetDflt; /* EV: R-33326-45252 */} 367 refact(A) ::= CASCADE. { A = OE_Cascade; /* EV: R-33326-45252 */} 368 refact(A) ::= RESTRICT. { A = OE_Restrict; /* EV: R-33326-45252 */} 369 refact(A) ::= NO ACTION. { A = OE_None; /* EV: R-33326-45252 */} 370 %type defer_subclause {int} 371 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt. {A = 0;} 372 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;} 373 %type init_deferred_pred_opt {int} 374 init_deferred_pred_opt(A) ::= . {A = 0;} 375 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;} 376 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;} 377 378 conslist_opt(A) ::= . {A.n = 0; A.z = 0;} 379 conslist_opt(A) ::= COMMA(A) conslist. 380 conslist ::= conslist tconscomma tcons. 381 conslist ::= tcons. 382 tconscomma ::= COMMA. {pParse->constraintName.n = 0;} 383 tconscomma ::= . 384 tcons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} 385 tcons ::= PRIMARY KEY LP sortlist(X) autoinc(I) RP onconf(R). 386 {sqlite3AddPrimaryKey(pParse,X,R,I,0);} 387 tcons ::= UNIQUE LP sortlist(X) RP onconf(R). 388 {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0, 389 SQLITE_IDXTYPE_UNIQUE);} 390 tcons ::= CHECK LP expr(E) RP onconf. 391 {sqlite3AddCheckConstraint(pParse,E);} 392 tcons ::= FOREIGN KEY LP eidlist(FA) RP 393 REFERENCES nm(T) eidlist_opt(TA) refargs(R) defer_subclause_opt(D). { 394 sqlite3CreateForeignKey(pParse, FA, &T, TA, R); 395 sqlite3DeferForeignKey(pParse, D); 396 } 397 %type defer_subclause_opt {int} 398 defer_subclause_opt(A) ::= . {A = 0;} 399 defer_subclause_opt(A) ::= defer_subclause(A). 400 401 // The following is a non-standard extension that allows us to declare the 402 // default behavior when there is a constraint conflict. 403 // 404 %type onconf {int} 405 %type orconf {int} 406 %type resolvetype {int} 407 onconf(A) ::= . {A = OE_Default;} 408 onconf(A) ::= ON CONFLICT resolvetype(X). {A = X;} 409 orconf(A) ::= . {A = OE_Default;} 410 orconf(A) ::= OR resolvetype(X). {A = X;} 411 resolvetype(A) ::= raisetype(A). 412 resolvetype(A) ::= IGNORE. {A = OE_Ignore;} 413 resolvetype(A) ::= REPLACE. {A = OE_Replace;} 414 415 ////////////////////////// The DROP TABLE ///////////////////////////////////// 416 // 417 cmd ::= DROP TABLE ifexists(E) fullname(X). { 418 sqlite3DropTable(pParse, X, 0, E); 419 } 420 %type ifexists {int} 421 ifexists(A) ::= IF EXISTS. {A = 1;} 422 ifexists(A) ::= . {A = 0;} 423 424 ///////////////////// The CREATE VIEW statement ///////////////////////////// 425 // 426 %ifndef SQLITE_OMIT_VIEW 427 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) eidlist_opt(C) 428 AS select(S). { 429 sqlite3CreateView(pParse, &X, &Y, &Z, C, S, T, E); 430 } 431 cmd ::= DROP VIEW ifexists(E) fullname(X). { 432 sqlite3DropTable(pParse, X, 1, E); 433 } 434 %endif SQLITE_OMIT_VIEW 435 436 //////////////////////// The SELECT statement ///////////////////////////////// 437 // 438 cmd ::= select(X). { 439 SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0}; 440 sqlite3Select(pParse, X, &dest); 441 sqlite3SelectDelete(pParse->db, X); 442 } 443 444 %type select {Select*} 445 %destructor select {sqlite3SelectDelete(pParse->db, $$);} 446 %type selectnowith {Select*} 447 %destructor selectnowith {sqlite3SelectDelete(pParse->db, $$);} 448 %type oneselect {Select*} 449 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);} 450 451 %include { 452 /* 453 ** For a compound SELECT statement, make sure p->pPrior->pNext==p for 454 ** all elements in the list. And make sure list length does not exceed 455 ** SQLITE_LIMIT_COMPOUND_SELECT. 456 */ 457 static void parserDoubleLinkSelect(Parse *pParse, Select *p){ 458 if( p->pPrior ){ 459 Select *pNext = 0, *pLoop; 460 int mxSelect, cnt = 0; 461 for(pLoop=p; pLoop; pNext=pLoop, pLoop=pLoop->pPrior, cnt++){ 462 pLoop->pNext = pNext; 463 pLoop->selFlags |= SF_Compound; 464 } 465 if( (p->selFlags & SF_MultiValue)==0 && 466 (mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT])>0 && 467 cnt>mxSelect 468 ){ 469 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 470 } 471 } 472 } 473 } 474 475 %ifndef SQLITE_OMIT_CTE 476 select(A) ::= WITH wqlist(W) selectnowith(X). { 477 Select *p = X; 478 if( p ){ 479 p->pWith = W; 480 parserDoubleLinkSelect(pParse, p); 481 }else{ 482 sqlite3WithDelete(pParse->db, W); 483 } 484 A = p; 485 } 486 select(A) ::= WITH RECURSIVE wqlist(W) selectnowith(X). { 487 Select *p = X; 488 if( p ){ 489 p->pWith = W; 490 parserDoubleLinkSelect(pParse, p); 491 }else{ 492 sqlite3WithDelete(pParse->db, W); 493 } 494 A = p; 495 } 496 %endif /* SQLITE_OMIT_CTE */ 497 select(A) ::= selectnowith(X). { 498 Select *p = X; 499 if( p ){ 500 parserDoubleLinkSelect(pParse, p); 501 } 502 A = p; /*A-overwrites-X*/ 503 } 504 505 selectnowith(A) ::= oneselect(A). 506 %ifndef SQLITE_OMIT_COMPOUND_SELECT 507 selectnowith(A) ::= selectnowith(A) multiselect_op(Y) oneselect(Z). { 508 Select *pRhs = Z; 509 Select *pLhs = A; 510 if( pRhs && pRhs->pPrior ){ 511 SrcList *pFrom; 512 Token x; 513 x.n = 0; 514 parserDoubleLinkSelect(pParse, pRhs); 515 pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0); 516 pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0); 517 } 518 if( pRhs ){ 519 pRhs->op = (u8)Y; 520 pRhs->pPrior = pLhs; 521 if( ALWAYS(pLhs) ) pLhs->selFlags &= ~SF_MultiValue; 522 pRhs->selFlags &= ~SF_MultiValue; 523 if( Y!=TK_ALL ) pParse->hasCompound = 1; 524 }else{ 525 sqlite3SelectDelete(pParse->db, pLhs); 526 } 527 A = pRhs; 528 } 529 %type multiselect_op {int} 530 multiselect_op(A) ::= UNION(OP). {A = @OP; /*A-overwrites-OP*/} 531 multiselect_op(A) ::= UNION ALL. {A = TK_ALL;} 532 multiselect_op(A) ::= EXCEPT|INTERSECT(OP). {A = @OP; /*A-overwrites-OP*/} 533 %endif SQLITE_OMIT_COMPOUND_SELECT 534 535 oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y) 536 groupby_opt(P) having_opt(Q) 537 orderby_opt(Z) limit_opt(L). { 538 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L); 539 } 540 %ifndef SQLITE_OMIT_WINDOWFUNC 541 oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y) 542 groupby_opt(P) having_opt(Q) window_clause(R) 543 orderby_opt(Z) limit_opt(L). { 544 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L); 545 if( A ){ 546 A->pWinDefn = R; 547 }else{ 548 sqlite3WindowListDelete(pParse->db, R); 549 } 550 } 551 %endif 552 553 554 oneselect(A) ::= values(A). 555 556 %type values {Select*} 557 %destructor values {sqlite3SelectDelete(pParse->db, $$);} 558 values(A) ::= VALUES LP nexprlist(X) RP. { 559 A = sqlite3SelectNew(pParse,X,0,0,0,0,0,SF_Values,0); 560 } 561 values(A) ::= values(A) COMMA LP nexprlist(Y) RP. { 562 Select *pRight, *pLeft = A; 563 pRight = sqlite3SelectNew(pParse,Y,0,0,0,0,0,SF_Values|SF_MultiValue,0); 564 if( ALWAYS(pLeft) ) pLeft->selFlags &= ~SF_MultiValue; 565 if( pRight ){ 566 pRight->op = TK_ALL; 567 pRight->pPrior = pLeft; 568 A = pRight; 569 }else{ 570 A = pLeft; 571 } 572 } 573 574 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is 575 // present and false (0) if it is not. 576 // 577 %type distinct {int} 578 distinct(A) ::= DISTINCT. {A = SF_Distinct;} 579 distinct(A) ::= ALL. {A = SF_All;} 580 distinct(A) ::= . {A = 0;} 581 582 // selcollist is a list of expressions that are to become the return 583 // values of the SELECT statement. The "*" in statements like 584 // "SELECT * FROM ..." is encoded as a special expression with an 585 // opcode of TK_ASTERISK. 586 // 587 %type selcollist {ExprList*} 588 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);} 589 %type sclp {ExprList*} 590 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);} 591 sclp(A) ::= selcollist(A) COMMA. 592 sclp(A) ::= . {A = 0;} 593 selcollist(A) ::= sclp(A) scanpt(B) expr(X) scanpt(Z) as(Y). { 594 A = sqlite3ExprListAppend(pParse, A, X); 595 if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1); 596 sqlite3ExprListSetSpan(pParse,A,B,Z); 597 } 598 selcollist(A) ::= sclp(A) scanpt STAR. { 599 Expr *p = sqlite3Expr(pParse->db, TK_ASTERISK, 0); 600 A = sqlite3ExprListAppend(pParse, A, p); 601 } 602 selcollist(A) ::= sclp(A) scanpt nm(X) DOT STAR. { 603 Expr *pRight = sqlite3PExpr(pParse, TK_ASTERISK, 0, 0); 604 Expr *pLeft = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1); 605 Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 606 A = sqlite3ExprListAppend(pParse,A, pDot); 607 } 608 609 // An option "AS <id>" phrase that can follow one of the expressions that 610 // define the result set, or one of the tables in the FROM clause. 611 // 612 %type as {Token} 613 as(X) ::= AS nm(Y). {X = Y;} 614 as(X) ::= ids(X). 615 as(X) ::= . {X.n = 0; X.z = 0;} 616 617 618 %type seltablist {SrcList*} 619 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);} 620 %type stl_prefix {SrcList*} 621 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);} 622 %type from {SrcList*} 623 %destructor from {sqlite3SrcListDelete(pParse->db, $$);} 624 625 // A complete FROM clause. 626 // 627 from(A) ::= . {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));} 628 from(A) ::= FROM seltablist(X). { 629 A = X; 630 sqlite3SrcListShiftJoinType(A); 631 } 632 633 // "seltablist" is a "Select Table List" - the content of the FROM clause 634 // in a SELECT statement. "stl_prefix" is a prefix of this list. 635 // 636 stl_prefix(A) ::= seltablist(A) joinop(Y). { 637 if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].fg.jointype = (u8)Y; 638 } 639 stl_prefix(A) ::= . {A = 0;} 640 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) as(Z) indexed_opt(I) 641 on_opt(N) using_opt(U). { 642 A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U); 643 sqlite3SrcListIndexedBy(pParse, A, &I); 644 } 645 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) LP exprlist(E) RP as(Z) 646 on_opt(N) using_opt(U). { 647 A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U); 648 sqlite3SrcListFuncArgs(pParse, A, E); 649 } 650 %ifndef SQLITE_OMIT_SUBQUERY 651 seltablist(A) ::= stl_prefix(A) LP select(S) RP 652 as(Z) on_opt(N) using_opt(U). { 653 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,S,N,U); 654 } 655 seltablist(A) ::= stl_prefix(A) LP seltablist(F) RP 656 as(Z) on_opt(N) using_opt(U). { 657 if( A==0 && Z.n==0 && N==0 && U==0 ){ 658 A = F; 659 }else if( F->nSrc==1 ){ 660 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,0,N,U); 661 if( A ){ 662 struct SrcList_item *pNew = &A->a[A->nSrc-1]; 663 struct SrcList_item *pOld = F->a; 664 pNew->zName = pOld->zName; 665 pNew->zDatabase = pOld->zDatabase; 666 pNew->pSelect = pOld->pSelect; 667 pOld->zName = pOld->zDatabase = 0; 668 pOld->pSelect = 0; 669 } 670 sqlite3SrcListDelete(pParse->db, F); 671 }else{ 672 Select *pSubquery; 673 sqlite3SrcListShiftJoinType(F); 674 pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,SF_NestedFrom,0); 675 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,pSubquery,N,U); 676 } 677 } 678 %endif SQLITE_OMIT_SUBQUERY 679 680 %type dbnm {Token} 681 dbnm(A) ::= . {A.z=0; A.n=0;} 682 dbnm(A) ::= DOT nm(X). {A = X;} 683 684 %type fullname {SrcList*} 685 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);} 686 fullname(A) ::= nm(X). { 687 A = sqlite3SrcListAppend(pParse->db,0,&X,0); 688 if( IN_RENAME_OBJECT && A ) sqlite3RenameTokenMap(pParse, A->a[0].zName, &X); 689 } 690 fullname(A) ::= nm(X) DOT nm(Y). { 691 A = sqlite3SrcListAppend(pParse->db,0,&X,&Y); 692 if( IN_RENAME_OBJECT && A ) sqlite3RenameTokenMap(pParse, A->a[0].zName, &Y); 693 } 694 695 %type xfullname {SrcList*} 696 %destructor xfullname {sqlite3SrcListDelete(pParse->db, $$);} 697 xfullname(A) ::= nm(X). 698 {A = sqlite3SrcListAppend(pParse->db,0,&X,0); /*A-overwrites-X*/} 699 xfullname(A) ::= nm(X) DOT nm(Y). 700 {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y); /*A-overwrites-X*/} 701 xfullname(A) ::= nm(X) DOT nm(Y) AS nm(Z). { 702 A = sqlite3SrcListAppend(pParse->db,0,&X,&Y); /*A-overwrites-X*/ 703 if( A ) A->a[0].zAlias = sqlite3NameFromToken(pParse->db, &Z); 704 } 705 xfullname(A) ::= nm(X) AS nm(Z). { 706 A = sqlite3SrcListAppend(pParse->db,0,&X,0); /*A-overwrites-X*/ 707 if( A ) A->a[0].zAlias = sqlite3NameFromToken(pParse->db, &Z); 708 } 709 710 %type joinop {int} 711 joinop(X) ::= COMMA|JOIN. { X = JT_INNER; } 712 joinop(X) ::= JOIN_KW(A) JOIN. 713 {X = sqlite3JoinType(pParse,&A,0,0); /*X-overwrites-A*/} 714 joinop(X) ::= JOIN_KW(A) nm(B) JOIN. 715 {X = sqlite3JoinType(pParse,&A,&B,0); /*X-overwrites-A*/} 716 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN. 717 {X = sqlite3JoinType(pParse,&A,&B,&C);/*X-overwrites-A*/} 718 719 // There is a parsing abiguity in an upsert statement that uses a 720 // SELECT on the RHS of a the INSERT: 721 // 722 // INSERT INTO tab SELECT * FROM aaa JOIN bbb ON CONFLICT ... 723 // here ----^^ 724 // 725 // When the ON token is encountered, the parser does not know if it is 726 // the beginning of an ON CONFLICT clause, or the beginning of an ON 727 // clause associated with the JOIN. The conflict is resolved in favor 728 // of the JOIN. If an ON CONFLICT clause is intended, insert a dummy 729 // WHERE clause in between, like this: 730 // 731 // INSERT INTO tab SELECT * FROM aaa JOIN bbb WHERE true ON CONFLICT ... 732 // 733 // The [AND] and [OR] precedence marks in the rules for on_opt cause the 734 // ON in this context to always be interpreted as belonging to the JOIN. 735 // 736 %type on_opt {Expr*} 737 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);} 738 on_opt(N) ::= ON expr(E). {N = E;} 739 on_opt(N) ::= . [OR] {N = 0;} 740 741 // Note that this block abuses the Token type just a little. If there is 742 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If 743 // there is an INDEXED BY clause, then the token is populated as per normal, 744 // with z pointing to the token data and n containing the number of bytes 745 // in the token. 746 // 747 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is 748 // normally illegal. The sqlite3SrcListIndexedBy() function 749 // recognizes and interprets this as a special case. 750 // 751 %type indexed_opt {Token} 752 indexed_opt(A) ::= . {A.z=0; A.n=0;} 753 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;} 754 indexed_opt(A) ::= NOT INDEXED. {A.z=0; A.n=1;} 755 756 %type using_opt {IdList*} 757 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);} 758 using_opt(U) ::= USING LP idlist(L) RP. {U = L;} 759 using_opt(U) ::= . {U = 0;} 760 761 762 %type orderby_opt {ExprList*} 763 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);} 764 765 // the sortlist non-terminal stores a list of expression where each 766 // expression is optionally followed by ASC or DESC to indicate the 767 // sort order. 768 // 769 %type sortlist {ExprList*} 770 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);} 771 772 orderby_opt(A) ::= . {A = 0;} 773 orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;} 774 sortlist(A) ::= sortlist(A) COMMA expr(Y) sortorder(Z). { 775 A = sqlite3ExprListAppend(pParse,A,Y); 776 sqlite3ExprListSetSortOrder(A,Z); 777 } 778 sortlist(A) ::= expr(Y) sortorder(Z). { 779 A = sqlite3ExprListAppend(pParse,0,Y); /*A-overwrites-Y*/ 780 sqlite3ExprListSetSortOrder(A,Z); 781 } 782 783 %type sortorder {int} 784 785 sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;} 786 sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;} 787 sortorder(A) ::= . {A = SQLITE_SO_UNDEFINED;} 788 789 %type groupby_opt {ExprList*} 790 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);} 791 groupby_opt(A) ::= . {A = 0;} 792 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;} 793 794 %type having_opt {Expr*} 795 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);} 796 having_opt(A) ::= . {A = 0;} 797 having_opt(A) ::= HAVING expr(X). {A = X;} 798 799 %type limit_opt {Expr*} 800 801 // The destructor for limit_opt will never fire in the current grammar. 802 // The limit_opt non-terminal only occurs at the end of a single production 803 // rule for SELECT statements. As soon as the rule that create the 804 // limit_opt non-terminal reduces, the SELECT statement rule will also 805 // reduce. So there is never a limit_opt non-terminal on the stack 806 // except as a transient. So there is never anything to destroy. 807 // 808 //%destructor limit_opt {sqlite3ExprDelete(pParse->db, $$);} 809 limit_opt(A) ::= . {A = 0;} 810 limit_opt(A) ::= LIMIT expr(X). 811 {A = sqlite3PExpr(pParse,TK_LIMIT,X,0);} 812 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y). 813 {A = sqlite3PExpr(pParse,TK_LIMIT,X,Y);} 814 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y). 815 {A = sqlite3PExpr(pParse,TK_LIMIT,Y,X);} 816 817 /////////////////////////// The DELETE statement ///////////////////////////// 818 // 819 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 820 cmd ::= with DELETE FROM xfullname(X) indexed_opt(I) where_opt(W) 821 orderby_opt(O) limit_opt(L). { 822 sqlite3SrcListIndexedBy(pParse, X, &I); 823 sqlite3DeleteFrom(pParse,X,W,O,L); 824 } 825 %endif 826 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 827 cmd ::= with DELETE FROM xfullname(X) indexed_opt(I) where_opt(W). { 828 sqlite3SrcListIndexedBy(pParse, X, &I); 829 sqlite3DeleteFrom(pParse,X,W,0,0); 830 } 831 %endif 832 833 %type where_opt {Expr*} 834 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);} 835 836 where_opt(A) ::= . {A = 0;} 837 where_opt(A) ::= WHERE expr(X). {A = X;} 838 839 ////////////////////////// The UPDATE command //////////////////////////////// 840 // 841 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 842 cmd ::= with UPDATE orconf(R) xfullname(X) indexed_opt(I) SET setlist(Y) 843 where_opt(W) orderby_opt(O) limit_opt(L). { 844 sqlite3SrcListIndexedBy(pParse, X, &I); 845 sqlite3ExprListCheckLength(pParse,Y,"set list"); 846 sqlite3Update(pParse,X,Y,W,R,O,L,0); 847 } 848 %endif 849 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 850 cmd ::= with UPDATE orconf(R) xfullname(X) indexed_opt(I) SET setlist(Y) 851 where_opt(W). { 852 sqlite3SrcListIndexedBy(pParse, X, &I); 853 sqlite3ExprListCheckLength(pParse,Y,"set list"); 854 sqlite3Update(pParse,X,Y,W,R,0,0,0); 855 } 856 %endif 857 858 %type setlist {ExprList*} 859 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);} 860 861 setlist(A) ::= setlist(A) COMMA nm(X) EQ expr(Y). { 862 A = sqlite3ExprListAppend(pParse, A, Y); 863 sqlite3ExprListSetName(pParse, A, &X, 1); 864 } 865 setlist(A) ::= setlist(A) COMMA LP idlist(X) RP EQ expr(Y). { 866 A = sqlite3ExprListAppendVector(pParse, A, X, Y); 867 } 868 setlist(A) ::= nm(X) EQ expr(Y). { 869 A = sqlite3ExprListAppend(pParse, 0, Y); 870 sqlite3ExprListSetName(pParse, A, &X, 1); 871 } 872 setlist(A) ::= LP idlist(X) RP EQ expr(Y). { 873 A = sqlite3ExprListAppendVector(pParse, 0, X, Y); 874 } 875 876 ////////////////////////// The INSERT command ///////////////////////////////// 877 // 878 cmd ::= with insert_cmd(R) INTO xfullname(X) idlist_opt(F) select(S) 879 upsert(U). { 880 sqlite3Insert(pParse, X, S, F, R, U); 881 } 882 cmd ::= with insert_cmd(R) INTO xfullname(X) idlist_opt(F) DEFAULT VALUES. 883 { 884 sqlite3Insert(pParse, X, 0, F, R, 0); 885 } 886 887 %type upsert {Upsert*} 888 889 // Because upsert only occurs at the tip end of the INSERT rule for cmd, 890 // there is never a case where the value of the upsert pointer will not 891 // be destroyed by the cmd action. So comment-out the destructor to 892 // avoid unreachable code. 893 //%destructor upsert {sqlite3UpsertDelete(pParse->db,$$);} 894 upsert(A) ::= . { A = 0; } 895 upsert(A) ::= ON CONFLICT LP sortlist(T) RP where_opt(TW) 896 DO UPDATE SET setlist(Z) where_opt(W). 897 { A = sqlite3UpsertNew(pParse->db,T,TW,Z,W);} 898 upsert(A) ::= ON CONFLICT LP sortlist(T) RP where_opt(TW) DO NOTHING. 899 { A = sqlite3UpsertNew(pParse->db,T,TW,0,0); } 900 upsert(A) ::= ON CONFLICT DO NOTHING. 901 { A = sqlite3UpsertNew(pParse->db,0,0,0,0); } 902 903 %type insert_cmd {int} 904 insert_cmd(A) ::= INSERT orconf(R). {A = R;} 905 insert_cmd(A) ::= REPLACE. {A = OE_Replace;} 906 907 %type idlist_opt {IdList*} 908 %destructor idlist_opt {sqlite3IdListDelete(pParse->db, $$);} 909 %type idlist {IdList*} 910 %destructor idlist {sqlite3IdListDelete(pParse->db, $$);} 911 912 idlist_opt(A) ::= . {A = 0;} 913 idlist_opt(A) ::= LP idlist(X) RP. {A = X;} 914 idlist(A) ::= idlist(A) COMMA nm(Y). 915 {A = sqlite3IdListAppend(pParse,A,&Y);} 916 idlist(A) ::= nm(Y). 917 {A = sqlite3IdListAppend(pParse,0,&Y); /*A-overwrites-Y*/} 918 919 /////////////////////////// Expression Processing ///////////////////////////// 920 // 921 922 %type expr {Expr*} 923 %destructor expr {sqlite3ExprDelete(pParse->db, $$);} 924 %type term {Expr*} 925 %destructor term {sqlite3ExprDelete(pParse->db, $$);} 926 927 %include { 928 929 /* Construct a new Expr object from a single identifier. Use the 930 ** new Expr to populate pOut. Set the span of pOut to be the identifier 931 ** that created the expression. 932 */ 933 static Expr *tokenExpr(Parse *pParse, int op, Token t){ 934 Expr *p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)+t.n+1); 935 if( p ){ 936 /* memset(p, 0, sizeof(Expr)); */ 937 p->op = (u8)op; 938 p->affinity = 0; 939 p->flags = EP_Leaf; 940 p->iAgg = -1; 941 p->pLeft = p->pRight = 0; 942 p->x.pList = 0; 943 p->pAggInfo = 0; 944 p->pTab = 0; 945 p->op2 = 0; 946 p->iTable = 0; 947 p->iColumn = 0; 948 #ifndef SQLITE_OMIT_WINDOWFUNC 949 p->pWin = 0; 950 #endif 951 p->u.zToken = (char*)&p[1]; 952 memcpy(p->u.zToken, t.z, t.n); 953 p->u.zToken[t.n] = 0; 954 if( sqlite3Isquote(p->u.zToken[0]) ){ 955 if( p->u.zToken[0]=='"' ) p->flags |= EP_DblQuoted; 956 sqlite3Dequote(p->u.zToken); 957 } 958 #if SQLITE_MAX_EXPR_DEPTH>0 959 p->nHeight = 1; 960 #endif 961 if( IN_RENAME_OBJECT ){ 962 return (Expr*)sqlite3RenameTokenMap(pParse, (void*)p, &t); 963 } 964 } 965 return p; 966 } 967 968 } 969 970 expr(A) ::= term(A). 971 expr(A) ::= LP expr(X) RP. {A = X;} 972 expr(A) ::= id(X). {A=tokenExpr(pParse,TK_ID,X); /*A-overwrites-X*/} 973 expr(A) ::= JOIN_KW(X). {A=tokenExpr(pParse,TK_ID,X); /*A-overwrites-X*/} 974 expr(A) ::= nm(X) DOT nm(Y). { 975 Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1); 976 Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1); 977 if( IN_RENAME_OBJECT ){ 978 sqlite3RenameTokenMap(pParse, (void*)temp2, &Y); 979 sqlite3RenameTokenMap(pParse, (void*)temp1, &X); 980 } 981 A = sqlite3PExpr(pParse, TK_DOT, temp1, temp2); 982 } 983 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). { 984 Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1); 985 Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1); 986 Expr *temp3 = sqlite3ExprAlloc(pParse->db, TK_ID, &Z, 1); 987 Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3); 988 if( IN_RENAME_OBJECT ){ 989 sqlite3RenameTokenMap(pParse, (void*)temp3, &Z); 990 sqlite3RenameTokenMap(pParse, (void*)temp2, &Y); 991 } 992 A = sqlite3PExpr(pParse, TK_DOT, temp1, temp4); 993 } 994 term(A) ::= NULL|FLOAT|BLOB(X). {A=tokenExpr(pParse,@X,X); /*A-overwrites-X*/} 995 term(A) ::= STRING(X). {A=tokenExpr(pParse,@X,X); /*A-overwrites-X*/} 996 term(A) ::= INTEGER(X). { 997 A = sqlite3ExprAlloc(pParse->db, TK_INTEGER, &X, 1); 998 } 999 expr(A) ::= VARIABLE(X). { 1000 if( !(X.z[0]=='#' && sqlite3Isdigit(X.z[1])) ){ 1001 u32 n = X.n; 1002 A = tokenExpr(pParse, TK_VARIABLE, X); 1003 sqlite3ExprAssignVarNumber(pParse, A, n); 1004 }else{ 1005 /* When doing a nested parse, one can include terms in an expression 1006 ** that look like this: #1 #2 ... These terms refer to registers 1007 ** in the virtual machine. #N is the N-th register. */ 1008 Token t = X; /*A-overwrites-X*/ 1009 assert( t.n>=2 ); 1010 if( pParse->nested==0 ){ 1011 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &t); 1012 A = 0; 1013 }else{ 1014 A = sqlite3PExpr(pParse, TK_REGISTER, 0, 0); 1015 if( A ) sqlite3GetInt32(&t.z[1], &A->iTable); 1016 } 1017 } 1018 } 1019 expr(A) ::= expr(A) COLLATE ids(C). { 1020 A = sqlite3ExprAddCollateToken(pParse, A, &C, 1); 1021 } 1022 %ifndef SQLITE_OMIT_CAST 1023 expr(A) ::= CAST LP expr(E) AS typetoken(T) RP. { 1024 A = sqlite3ExprAlloc(pParse->db, TK_CAST, &T, 1); 1025 sqlite3ExprAttachSubtrees(pParse->db, A, E, 0); 1026 } 1027 %endif SQLITE_OMIT_CAST 1028 1029 1030 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP. { 1031 A = sqlite3ExprFunction(pParse, Y, &X, D); 1032 } 1033 expr(A) ::= id(X) LP STAR RP. { 1034 A = sqlite3ExprFunction(pParse, 0, &X, 0); 1035 } 1036 1037 %ifndef SQLITE_OMIT_WINDOWFUNC 1038 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP over_clause(Z). { 1039 A = sqlite3ExprFunction(pParse, Y, &X, D); 1040 sqlite3WindowAttach(pParse, A, Z); 1041 } 1042 expr(A) ::= id(X) LP STAR RP over_clause(Z). { 1043 A = sqlite3ExprFunction(pParse, 0, &X, 0); 1044 sqlite3WindowAttach(pParse, A, Z); 1045 } 1046 %endif 1047 1048 term(A) ::= CTIME_KW(OP). { 1049 A = sqlite3ExprFunction(pParse, 0, &OP, 0); 1050 } 1051 1052 expr(A) ::= LP nexprlist(X) COMMA expr(Y) RP. { 1053 ExprList *pList = sqlite3ExprListAppend(pParse, X, Y); 1054 A = sqlite3PExpr(pParse, TK_VECTOR, 0, 0); 1055 if( A ){ 1056 A->x.pList = pList; 1057 }else{ 1058 sqlite3ExprListDelete(pParse->db, pList); 1059 } 1060 } 1061 1062 expr(A) ::= expr(A) AND(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 1063 expr(A) ::= expr(A) OR(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 1064 expr(A) ::= expr(A) LT|GT|GE|LE(OP) expr(Y). 1065 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1066 expr(A) ::= expr(A) EQ|NE(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 1067 expr(A) ::= expr(A) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y). 1068 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1069 expr(A) ::= expr(A) PLUS|MINUS(OP) expr(Y). 1070 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1071 expr(A) ::= expr(A) STAR|SLASH|REM(OP) expr(Y). 1072 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1073 expr(A) ::= expr(A) CONCAT(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 1074 %type likeop {Token} 1075 likeop(A) ::= LIKE_KW|MATCH(A). 1076 likeop(A) ::= NOT LIKE_KW|MATCH(X). {A=X; A.n|=0x80000000; /*A-overwrite-X*/} 1077 expr(A) ::= expr(A) likeop(OP) expr(Y). [LIKE_KW] { 1078 ExprList *pList; 1079 int bNot = OP.n & 0x80000000; 1080 OP.n &= 0x7fffffff; 1081 pList = sqlite3ExprListAppend(pParse,0, Y); 1082 pList = sqlite3ExprListAppend(pParse,pList, A); 1083 A = sqlite3ExprFunction(pParse, pList, &OP, 0); 1084 if( bNot ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1085 if( A ) A->flags |= EP_InfixFunc; 1086 } 1087 expr(A) ::= expr(A) likeop(OP) expr(Y) ESCAPE expr(E). [LIKE_KW] { 1088 ExprList *pList; 1089 int bNot = OP.n & 0x80000000; 1090 OP.n &= 0x7fffffff; 1091 pList = sqlite3ExprListAppend(pParse,0, Y); 1092 pList = sqlite3ExprListAppend(pParse,pList, A); 1093 pList = sqlite3ExprListAppend(pParse,pList, E); 1094 A = sqlite3ExprFunction(pParse, pList, &OP, 0); 1095 if( bNot ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1096 if( A ) A->flags |= EP_InfixFunc; 1097 } 1098 1099 expr(A) ::= expr(A) ISNULL|NOTNULL(E). {A = sqlite3PExpr(pParse,@E,A,0);} 1100 expr(A) ::= expr(A) NOT NULL. {A = sqlite3PExpr(pParse,TK_NOTNULL,A,0);} 1101 1102 %include { 1103 /* A routine to convert a binary TK_IS or TK_ISNOT expression into a 1104 ** unary TK_ISNULL or TK_NOTNULL expression. */ 1105 static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){ 1106 sqlite3 *db = pParse->db; 1107 if( pA && pY && pY->op==TK_NULL && !IN_RENAME_OBJECT ){ 1108 pA->op = (u8)op; 1109 sqlite3ExprDelete(db, pA->pRight); 1110 pA->pRight = 0; 1111 } 1112 } 1113 } 1114 1115 // expr1 IS expr2 1116 // expr1 IS NOT expr2 1117 // 1118 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL. If expr2 1119 // is any other expression, code as TK_IS or TK_ISNOT. 1120 // 1121 expr(A) ::= expr(A) IS expr(Y). { 1122 A = sqlite3PExpr(pParse,TK_IS,A,Y); 1123 binaryToUnaryIfNull(pParse, Y, A, TK_ISNULL); 1124 } 1125 expr(A) ::= expr(A) IS NOT expr(Y). { 1126 A = sqlite3PExpr(pParse,TK_ISNOT,A,Y); 1127 binaryToUnaryIfNull(pParse, Y, A, TK_NOTNULL); 1128 } 1129 1130 expr(A) ::= NOT(B) expr(X). 1131 {A = sqlite3PExpr(pParse, @B, X, 0);/*A-overwrites-B*/} 1132 expr(A) ::= BITNOT(B) expr(X). 1133 {A = sqlite3PExpr(pParse, @B, X, 0);/*A-overwrites-B*/} 1134 expr(A) ::= PLUS|MINUS(B) expr(X). [BITNOT] { 1135 A = sqlite3PExpr(pParse, @B==TK_PLUS ? TK_UPLUS : TK_UMINUS, X, 0); 1136 /*A-overwrites-B*/ 1137 } 1138 1139 %type between_op {int} 1140 between_op(A) ::= BETWEEN. {A = 0;} 1141 between_op(A) ::= NOT BETWEEN. {A = 1;} 1142 expr(A) ::= expr(A) between_op(N) expr(X) AND expr(Y). [BETWEEN] { 1143 ExprList *pList = sqlite3ExprListAppend(pParse,0, X); 1144 pList = sqlite3ExprListAppend(pParse,pList, Y); 1145 A = sqlite3PExpr(pParse, TK_BETWEEN, A, 0); 1146 if( A ){ 1147 A->x.pList = pList; 1148 }else{ 1149 sqlite3ExprListDelete(pParse->db, pList); 1150 } 1151 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1152 } 1153 %ifndef SQLITE_OMIT_SUBQUERY 1154 %type in_op {int} 1155 in_op(A) ::= IN. {A = 0;} 1156 in_op(A) ::= NOT IN. {A = 1;} 1157 expr(A) ::= expr(A) in_op(N) LP exprlist(Y) RP. [IN] { 1158 if( Y==0 ){ 1159 /* Expressions of the form 1160 ** 1161 ** expr1 IN () 1162 ** expr1 NOT IN () 1163 ** 1164 ** simplify to constants 0 (false) and 1 (true), respectively, 1165 ** regardless of the value of expr1. 1166 */ 1167 sqlite3ExprDelete(pParse->db, A); 1168 A = sqlite3ExprAlloc(pParse->db, TK_INTEGER,&sqlite3IntTokens[N],1); 1169 }else if( Y->nExpr==1 ){ 1170 /* Expressions of the form: 1171 ** 1172 ** expr1 IN (?1) 1173 ** expr1 NOT IN (?2) 1174 ** 1175 ** with exactly one value on the RHS can be simplified to something 1176 ** like this: 1177 ** 1178 ** expr1 == ?1 1179 ** expr1 <> ?2 1180 ** 1181 ** But, the RHS of the == or <> is marked with the EP_Generic flag 1182 ** so that it may not contribute to the computation of comparison 1183 ** affinity or the collating sequence to use for comparison. Otherwise, 1184 ** the semantics would be subtly different from IN or NOT IN. 1185 */ 1186 Expr *pRHS = Y->a[0].pExpr; 1187 Y->a[0].pExpr = 0; 1188 sqlite3ExprListDelete(pParse->db, Y); 1189 /* pRHS cannot be NULL because a malloc error would have been detected 1190 ** before now and control would have never reached this point */ 1191 if( ALWAYS(pRHS) ){ 1192 pRHS->flags &= ~EP_Collate; 1193 pRHS->flags |= EP_Generic; 1194 } 1195 A = sqlite3PExpr(pParse, N ? TK_NE : TK_EQ, A, pRHS); 1196 }else{ 1197 A = sqlite3PExpr(pParse, TK_IN, A, 0); 1198 if( A ){ 1199 A->x.pList = Y; 1200 sqlite3ExprSetHeightAndFlags(pParse, A); 1201 }else{ 1202 sqlite3ExprListDelete(pParse->db, Y); 1203 } 1204 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1205 } 1206 } 1207 expr(A) ::= LP select(X) RP. { 1208 A = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 1209 sqlite3PExprAddSelect(pParse, A, X); 1210 } 1211 expr(A) ::= expr(A) in_op(N) LP select(Y) RP. [IN] { 1212 A = sqlite3PExpr(pParse, TK_IN, A, 0); 1213 sqlite3PExprAddSelect(pParse, A, Y); 1214 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1215 } 1216 expr(A) ::= expr(A) in_op(N) nm(Y) dbnm(Z) paren_exprlist(E). [IN] { 1217 SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z); 1218 Select *pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0); 1219 if( E ) sqlite3SrcListFuncArgs(pParse, pSelect ? pSrc : 0, E); 1220 A = sqlite3PExpr(pParse, TK_IN, A, 0); 1221 sqlite3PExprAddSelect(pParse, A, pSelect); 1222 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1223 } 1224 expr(A) ::= EXISTS LP select(Y) RP. { 1225 Expr *p; 1226 p = A = sqlite3PExpr(pParse, TK_EXISTS, 0, 0); 1227 sqlite3PExprAddSelect(pParse, p, Y); 1228 } 1229 %endif SQLITE_OMIT_SUBQUERY 1230 1231 /* CASE expressions */ 1232 expr(A) ::= CASE case_operand(X) case_exprlist(Y) case_else(Z) END. { 1233 A = sqlite3PExpr(pParse, TK_CASE, X, 0); 1234 if( A ){ 1235 A->x.pList = Z ? sqlite3ExprListAppend(pParse,Y,Z) : Y; 1236 sqlite3ExprSetHeightAndFlags(pParse, A); 1237 }else{ 1238 sqlite3ExprListDelete(pParse->db, Y); 1239 sqlite3ExprDelete(pParse->db, Z); 1240 } 1241 } 1242 %type case_exprlist {ExprList*} 1243 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1244 case_exprlist(A) ::= case_exprlist(A) WHEN expr(Y) THEN expr(Z). { 1245 A = sqlite3ExprListAppend(pParse,A, Y); 1246 A = sqlite3ExprListAppend(pParse,A, Z); 1247 } 1248 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). { 1249 A = sqlite3ExprListAppend(pParse,0, Y); 1250 A = sqlite3ExprListAppend(pParse,A, Z); 1251 } 1252 %type case_else {Expr*} 1253 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);} 1254 case_else(A) ::= ELSE expr(X). {A = X;} 1255 case_else(A) ::= . {A = 0;} 1256 %type case_operand {Expr*} 1257 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);} 1258 case_operand(A) ::= expr(X). {A = X; /*A-overwrites-X*/} 1259 case_operand(A) ::= . {A = 0;} 1260 1261 %type exprlist {ExprList*} 1262 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1263 %type nexprlist {ExprList*} 1264 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);} 1265 1266 exprlist(A) ::= nexprlist(A). 1267 exprlist(A) ::= . {A = 0;} 1268 nexprlist(A) ::= nexprlist(A) COMMA expr(Y). 1269 {A = sqlite3ExprListAppend(pParse,A,Y);} 1270 nexprlist(A) ::= expr(Y). 1271 {A = sqlite3ExprListAppend(pParse,0,Y); /*A-overwrites-Y*/} 1272 1273 %ifndef SQLITE_OMIT_SUBQUERY 1274 /* A paren_exprlist is an optional expression list contained inside 1275 ** of parenthesis */ 1276 %type paren_exprlist {ExprList*} 1277 %destructor paren_exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1278 paren_exprlist(A) ::= . {A = 0;} 1279 paren_exprlist(A) ::= LP exprlist(X) RP. {A = X;} 1280 %endif SQLITE_OMIT_SUBQUERY 1281 1282 1283 ///////////////////////////// The CREATE INDEX command /////////////////////// 1284 // 1285 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D) 1286 ON nm(Y) LP sortlist(Z) RP where_opt(W). { 1287 sqlite3CreateIndex(pParse, &X, &D, 1288 sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U, 1289 &S, W, SQLITE_SO_ASC, NE, SQLITE_IDXTYPE_APPDEF); 1290 if( IN_RENAME_OBJECT && pParse->pNewIndex ){ 1291 sqlite3RenameTokenMap(pParse, pParse->pNewIndex->zName, &Y); 1292 } 1293 } 1294 1295 %type uniqueflag {int} 1296 uniqueflag(A) ::= UNIQUE. {A = OE_Abort;} 1297 uniqueflag(A) ::= . {A = OE_None;} 1298 1299 1300 // The eidlist non-terminal (Expression Id List) generates an ExprList 1301 // from a list of identifiers. The identifier names are in ExprList.a[].zName. 1302 // This list is stored in an ExprList rather than an IdList so that it 1303 // can be easily sent to sqlite3ColumnsExprList(). 1304 // 1305 // eidlist is grouped with CREATE INDEX because it used to be the non-terminal 1306 // used for the arguments to an index. That is just an historical accident. 1307 // 1308 // IMPORTANT COMPATIBILITY NOTE: Some prior versions of SQLite accepted 1309 // COLLATE clauses and ASC or DESC keywords on ID lists in inappropriate 1310 // places - places that might have been stored in the sqlite_master schema. 1311 // Those extra features were ignored. But because they might be in some 1312 // (busted) old databases, we need to continue parsing them when loading 1313 // historical schemas. 1314 // 1315 %type eidlist {ExprList*} 1316 %destructor eidlist {sqlite3ExprListDelete(pParse->db, $$);} 1317 %type eidlist_opt {ExprList*} 1318 %destructor eidlist_opt {sqlite3ExprListDelete(pParse->db, $$);} 1319 1320 %include { 1321 /* Add a single new term to an ExprList that is used to store a 1322 ** list of identifiers. Report an error if the ID list contains 1323 ** a COLLATE clause or an ASC or DESC keyword, except ignore the 1324 ** error while parsing a legacy schema. 1325 */ 1326 static ExprList *parserAddExprIdListTerm( 1327 Parse *pParse, 1328 ExprList *pPrior, 1329 Token *pIdToken, 1330 int hasCollate, 1331 int sortOrder 1332 ){ 1333 ExprList *p = sqlite3ExprListAppend(pParse, pPrior, 0); 1334 if( (hasCollate || sortOrder!=SQLITE_SO_UNDEFINED) 1335 && pParse->db->init.busy==0 1336 ){ 1337 sqlite3ErrorMsg(pParse, "syntax error after column name \"%.*s\"", 1338 pIdToken->n, pIdToken->z); 1339 } 1340 sqlite3ExprListSetName(pParse, p, pIdToken, 1); 1341 return p; 1342 } 1343 } // end %include 1344 1345 eidlist_opt(A) ::= . {A = 0;} 1346 eidlist_opt(A) ::= LP eidlist(X) RP. {A = X;} 1347 eidlist(A) ::= eidlist(A) COMMA nm(Y) collate(C) sortorder(Z). { 1348 A = parserAddExprIdListTerm(pParse, A, &Y, C, Z); 1349 } 1350 eidlist(A) ::= nm(Y) collate(C) sortorder(Z). { 1351 A = parserAddExprIdListTerm(pParse, 0, &Y, C, Z); /*A-overwrites-Y*/ 1352 } 1353 1354 %type collate {int} 1355 collate(C) ::= . {C = 0;} 1356 collate(C) ::= COLLATE ids. {C = 1;} 1357 1358 1359 ///////////////////////////// The DROP INDEX command ///////////////////////// 1360 // 1361 cmd ::= DROP INDEX ifexists(E) fullname(X). {sqlite3DropIndex(pParse, X, E);} 1362 1363 ///////////////////////////// The VACUUM command ///////////////////////////// 1364 // 1365 %ifndef SQLITE_OMIT_VACUUM 1366 %ifndef SQLITE_OMIT_ATTACH 1367 cmd ::= VACUUM. {sqlite3Vacuum(pParse,0);} 1368 cmd ::= VACUUM nm(X). {sqlite3Vacuum(pParse,&X);} 1369 %endif SQLITE_OMIT_ATTACH 1370 %endif SQLITE_OMIT_VACUUM 1371 1372 ///////////////////////////// The PRAGMA command ///////////////////////////// 1373 // 1374 %ifndef SQLITE_OMIT_PRAGMA 1375 cmd ::= PRAGMA nm(X) dbnm(Z). {sqlite3Pragma(pParse,&X,&Z,0,0);} 1376 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1377 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1378 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y). 1379 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1380 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP. 1381 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1382 1383 nmnum(A) ::= plus_num(A). 1384 nmnum(A) ::= nm(A). 1385 nmnum(A) ::= ON(A). 1386 nmnum(A) ::= DELETE(A). 1387 nmnum(A) ::= DEFAULT(A). 1388 %endif SQLITE_OMIT_PRAGMA 1389 %token_class number INTEGER|FLOAT. 1390 plus_num(A) ::= PLUS number(X). {A = X;} 1391 plus_num(A) ::= number(A). 1392 minus_num(A) ::= MINUS number(X). {A = X;} 1393 //////////////////////////// The CREATE TRIGGER command ///////////////////// 1394 1395 %ifndef SQLITE_OMIT_TRIGGER 1396 1397 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). { 1398 Token all; 1399 all.z = A.z; 1400 all.n = (int)(Z.z - A.z) + Z.n; 1401 sqlite3FinishTrigger(pParse, S, &all); 1402 } 1403 1404 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z) 1405 trigger_time(C) trigger_event(D) 1406 ON fullname(E) foreach_clause when_clause(G). { 1407 sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR); 1408 A = (Z.n==0?B:Z); /*A-overwrites-T*/ 1409 } 1410 1411 %type trigger_time {int} 1412 trigger_time(A) ::= BEFORE|AFTER(X). { A = @X; /*A-overwrites-X*/ } 1413 trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;} 1414 trigger_time(A) ::= . { A = TK_BEFORE; } 1415 1416 %type trigger_event {struct TrigEvent} 1417 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);} 1418 trigger_event(A) ::= DELETE|INSERT(X). {A.a = @X; /*A-overwrites-X*/ A.b = 0;} 1419 trigger_event(A) ::= UPDATE(X). {A.a = @X; /*A-overwrites-X*/ A.b = 0;} 1420 trigger_event(A) ::= UPDATE OF idlist(X).{A.a = TK_UPDATE; A.b = X;} 1421 1422 foreach_clause ::= . 1423 foreach_clause ::= FOR EACH ROW. 1424 1425 %type when_clause {Expr*} 1426 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);} 1427 when_clause(A) ::= . { A = 0; } 1428 when_clause(A) ::= WHEN expr(X). { A = X; } 1429 1430 %type trigger_cmd_list {TriggerStep*} 1431 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);} 1432 trigger_cmd_list(A) ::= trigger_cmd_list(A) trigger_cmd(X) SEMI. { 1433 assert( A!=0 ); 1434 A->pLast->pNext = X; 1435 A->pLast = X; 1436 } 1437 trigger_cmd_list(A) ::= trigger_cmd(A) SEMI. { 1438 assert( A!=0 ); 1439 A->pLast = A; 1440 } 1441 1442 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements 1443 // within a trigger. The table to INSERT, UPDATE, or DELETE is always in 1444 // the same database as the table that the trigger fires on. 1445 // 1446 %type trnm {Token} 1447 trnm(A) ::= nm(A). 1448 trnm(A) ::= nm DOT nm(X). { 1449 A = X; 1450 sqlite3ErrorMsg(pParse, 1451 "qualified table names are not allowed on INSERT, UPDATE, and DELETE " 1452 "statements within triggers"); 1453 } 1454 1455 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE 1456 // statements within triggers. We make a specific error message for this 1457 // since it is an exception to the default grammar rules. 1458 // 1459 tridxby ::= . 1460 tridxby ::= INDEXED BY nm. { 1461 sqlite3ErrorMsg(pParse, 1462 "the INDEXED BY clause is not allowed on UPDATE or DELETE statements " 1463 "within triggers"); 1464 } 1465 tridxby ::= NOT INDEXED. { 1466 sqlite3ErrorMsg(pParse, 1467 "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements " 1468 "within triggers"); 1469 } 1470 1471 1472 1473 %type trigger_cmd {TriggerStep*} 1474 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);} 1475 // UPDATE 1476 trigger_cmd(A) ::= 1477 UPDATE(B) orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z) scanpt(E). 1478 {A = sqlite3TriggerUpdateStep(pParse, &X, Y, Z, R, B.z, E);} 1479 1480 // INSERT 1481 trigger_cmd(A) ::= scanpt(B) insert_cmd(R) INTO 1482 trnm(X) idlist_opt(F) select(S) upsert(U) scanpt(Z). { 1483 A = sqlite3TriggerInsertStep(pParse,&X,F,S,R,U,B,Z);/*A-overwrites-R*/ 1484 } 1485 // DELETE 1486 trigger_cmd(A) ::= DELETE(B) FROM trnm(X) tridxby where_opt(Y) scanpt(E). 1487 {A = sqlite3TriggerDeleteStep(pParse, &X, Y, B.z, E);} 1488 1489 // SELECT 1490 trigger_cmd(A) ::= scanpt(B) select(X) scanpt(E). 1491 {A = sqlite3TriggerSelectStep(pParse->db, X, B, E); /*A-overwrites-X*/} 1492 1493 // The special RAISE expression that may occur in trigger programs 1494 expr(A) ::= RAISE LP IGNORE RP. { 1495 A = sqlite3PExpr(pParse, TK_RAISE, 0, 0); 1496 if( A ){ 1497 A->affinity = OE_Ignore; 1498 } 1499 } 1500 expr(A) ::= RAISE LP raisetype(T) COMMA nm(Z) RP. { 1501 A = sqlite3ExprAlloc(pParse->db, TK_RAISE, &Z, 1); 1502 if( A ) { 1503 A->affinity = (char)T; 1504 } 1505 } 1506 %endif !SQLITE_OMIT_TRIGGER 1507 1508 %type raisetype {int} 1509 raisetype(A) ::= ROLLBACK. {A = OE_Rollback;} 1510 raisetype(A) ::= ABORT. {A = OE_Abort;} 1511 raisetype(A) ::= FAIL. {A = OE_Fail;} 1512 1513 1514 //////////////////////// DROP TRIGGER statement ////////////////////////////// 1515 %ifndef SQLITE_OMIT_TRIGGER 1516 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). { 1517 sqlite3DropTrigger(pParse,X,NOERR); 1518 } 1519 %endif !SQLITE_OMIT_TRIGGER 1520 1521 //////////////////////// ATTACH DATABASE file AS name ///////////////////////// 1522 %ifndef SQLITE_OMIT_ATTACH 1523 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). { 1524 sqlite3Attach(pParse, F, D, K); 1525 } 1526 cmd ::= DETACH database_kw_opt expr(D). { 1527 sqlite3Detach(pParse, D); 1528 } 1529 1530 %type key_opt {Expr*} 1531 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);} 1532 key_opt(A) ::= . { A = 0; } 1533 key_opt(A) ::= KEY expr(X). { A = X; } 1534 1535 database_kw_opt ::= DATABASE. 1536 database_kw_opt ::= . 1537 %endif SQLITE_OMIT_ATTACH 1538 1539 ////////////////////////// REINDEX collation ////////////////////////////////// 1540 %ifndef SQLITE_OMIT_REINDEX 1541 cmd ::= REINDEX. {sqlite3Reindex(pParse, 0, 0);} 1542 cmd ::= REINDEX nm(X) dbnm(Y). {sqlite3Reindex(pParse, &X, &Y);} 1543 %endif SQLITE_OMIT_REINDEX 1544 1545 /////////////////////////////////// ANALYZE /////////////////////////////////// 1546 %ifndef SQLITE_OMIT_ANALYZE 1547 cmd ::= ANALYZE. {sqlite3Analyze(pParse, 0, 0);} 1548 cmd ::= ANALYZE nm(X) dbnm(Y). {sqlite3Analyze(pParse, &X, &Y);} 1549 %endif 1550 1551 //////////////////////// ALTER TABLE table ... //////////////////////////////// 1552 %ifndef SQLITE_OMIT_ALTERTABLE 1553 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). { 1554 sqlite3AlterRenameTable(pParse,X,&Z); 1555 } 1556 cmd ::= ALTER TABLE add_column_fullname 1557 ADD kwcolumn_opt columnname(Y) carglist. { 1558 Y.n = (int)(pParse->sLastToken.z-Y.z) + pParse->sLastToken.n; 1559 sqlite3AlterFinishAddColumn(pParse, &Y); 1560 } 1561 add_column_fullname ::= fullname(X). { 1562 disableLookaside(pParse); 1563 sqlite3AlterBeginAddColumn(pParse, X); 1564 } 1565 cmd ::= ALTER TABLE fullname(X) RENAME kwcolumn_opt nm(Y) TO nm(Z). { 1566 sqlite3AlterRenameColumn(pParse, X, &Y, &Z); 1567 } 1568 1569 kwcolumn_opt ::= . 1570 kwcolumn_opt ::= COLUMNKW. 1571 1572 %endif SQLITE_OMIT_ALTERTABLE 1573 1574 //////////////////////// CREATE VIRTUAL TABLE ... ///////////////////////////// 1575 %ifndef SQLITE_OMIT_VIRTUALTABLE 1576 cmd ::= create_vtab. {sqlite3VtabFinishParse(pParse,0);} 1577 cmd ::= create_vtab LP vtabarglist RP(X). {sqlite3VtabFinishParse(pParse,&X);} 1578 create_vtab ::= createkw VIRTUAL TABLE ifnotexists(E) 1579 nm(X) dbnm(Y) USING nm(Z). { 1580 sqlite3VtabBeginParse(pParse, &X, &Y, &Z, E); 1581 } 1582 vtabarglist ::= vtabarg. 1583 vtabarglist ::= vtabarglist COMMA vtabarg. 1584 vtabarg ::= . {sqlite3VtabArgInit(pParse);} 1585 vtabarg ::= vtabarg vtabargtoken. 1586 vtabargtoken ::= ANY(X). {sqlite3VtabArgExtend(pParse,&X);} 1587 vtabargtoken ::= lp anylist RP(X). {sqlite3VtabArgExtend(pParse,&X);} 1588 lp ::= LP(X). {sqlite3VtabArgExtend(pParse,&X);} 1589 anylist ::= . 1590 anylist ::= anylist LP anylist RP. 1591 anylist ::= anylist ANY. 1592 %endif SQLITE_OMIT_VIRTUALTABLE 1593 1594 1595 //////////////////////// COMMON TABLE EXPRESSIONS //////////////////////////// 1596 %type wqlist {With*} 1597 %destructor wqlist {sqlite3WithDelete(pParse->db, $$);} 1598 1599 with ::= . 1600 %ifndef SQLITE_OMIT_CTE 1601 with ::= WITH wqlist(W). { sqlite3WithPush(pParse, W, 1); } 1602 with ::= WITH RECURSIVE wqlist(W). { sqlite3WithPush(pParse, W, 1); } 1603 1604 wqlist(A) ::= nm(X) eidlist_opt(Y) AS LP select(Z) RP. { 1605 A = sqlite3WithAdd(pParse, 0, &X, Y, Z); /*A-overwrites-X*/ 1606 } 1607 wqlist(A) ::= wqlist(A) COMMA nm(X) eidlist_opt(Y) AS LP select(Z) RP. { 1608 A = sqlite3WithAdd(pParse, A, &X, Y, Z); 1609 } 1610 %endif SQLITE_OMIT_CTE 1611 1612 //////////////////////// WINDOW FUNCTION EXPRESSIONS ///////////////////////// 1613 // These must be at the end of this file. Specifically, the rules that 1614 // introduce tokens WINDOW, OVER and FILTER must appear last. This causes 1615 // the integer values assigned to these tokens to be larger than all other 1616 // tokens that may be output by the tokenizer except TK_SPACE and TK_ILLEGAL. 1617 // 1618 %ifndef SQLITE_OMIT_WINDOWFUNC 1619 %type windowdefn_list {Window*} 1620 %destructor windowdefn_list {sqlite3WindowListDelete(pParse->db, $$);} 1621 windowdefn_list(A) ::= windowdefn(Z). { A = Z; } 1622 windowdefn_list(A) ::= windowdefn_list(Y) COMMA windowdefn(Z). { 1623 assert( Z!=0 ); 1624 Z->pNextWin = Y; 1625 A = Z; 1626 } 1627 1628 %type windowdefn {Window*} 1629 %destructor windowdefn {sqlite3WindowDelete(pParse->db, $$);} 1630 windowdefn(A) ::= nm(X) AS window(Y). { 1631 if( ALWAYS(Y) ){ 1632 Y->zName = sqlite3DbStrNDup(pParse->db, X.z, X.n); 1633 } 1634 A = Y; 1635 } 1636 1637 %type window {Window*} 1638 %destructor window {sqlite3WindowDelete(pParse->db, $$);} 1639 1640 %type frame_opt {Window*} 1641 %destructor frame_opt {sqlite3WindowDelete(pParse->db, $$);} 1642 1643 %type part_opt {ExprList*} 1644 %destructor part_opt {sqlite3ExprListDelete(pParse->db, $$);} 1645 1646 %type filter_opt {Expr*} 1647 %destructor filter_opt {sqlite3ExprDelete(pParse->db, $$);} 1648 1649 %type range_or_rows {int} 1650 1651 %type frame_bound {struct FrameBound} 1652 %destructor frame_bound {sqlite3ExprDelete(pParse->db, $$.pExpr);} 1653 %type frame_bound_s {struct FrameBound} 1654 %destructor frame_bound_s {sqlite3ExprDelete(pParse->db, $$.pExpr);} 1655 %type frame_bound_e {struct FrameBound} 1656 %destructor frame_bound_e {sqlite3ExprDelete(pParse->db, $$.pExpr);} 1657 1658 window(A) ::= LP part_opt(X) orderby_opt(Y) frame_opt(Z) RP. { 1659 A = Z; 1660 if( ALWAYS(A) ){ 1661 A->pPartition = X; 1662 A->pOrderBy = Y; 1663 } 1664 } 1665 1666 part_opt(A) ::= PARTITION BY nexprlist(X). { A = X; } 1667 part_opt(A) ::= . { A = 0; } 1668 1669 frame_opt(A) ::= . { 1670 A = sqlite3WindowAlloc(pParse, TK_RANGE, TK_UNBOUNDED, 0, TK_CURRENT, 0); 1671 } 1672 frame_opt(A) ::= range_or_rows(X) frame_bound_s(Y). { 1673 A = sqlite3WindowAlloc(pParse, X, Y.eType, Y.pExpr, TK_CURRENT, 0); 1674 } 1675 frame_opt(A) ::= range_or_rows(X) BETWEEN frame_bound_s(Y) AND frame_bound_e(Z). { 1676 A = sqlite3WindowAlloc(pParse, X, Y.eType, Y.pExpr, Z.eType, Z.pExpr); 1677 } 1678 1679 range_or_rows(A) ::= RANGE. { A = TK_RANGE; } 1680 range_or_rows(A) ::= ROWS. { A = TK_ROWS; } 1681 1682 1683 frame_bound_s(A) ::= frame_bound(X). { A = X; } 1684 frame_bound_s(A) ::= UNBOUNDED PRECEDING. {A.eType = TK_UNBOUNDED; A.pExpr = 0;} 1685 frame_bound_e(A) ::= frame_bound(X). { A = X; } 1686 frame_bound_e(A) ::= UNBOUNDED FOLLOWING. {A.eType = TK_UNBOUNDED; A.pExpr = 0;} 1687 1688 frame_bound(A) ::= expr(X) PRECEDING. { A.eType = TK_PRECEDING; A.pExpr = X; } 1689 frame_bound(A) ::= CURRENT ROW. { A.eType = TK_CURRENT ; A.pExpr = 0; } 1690 frame_bound(A) ::= expr(X) FOLLOWING. { A.eType = TK_FOLLOWING; A.pExpr = X; } 1691 1692 %type window_clause {Window*} 1693 %destructor window_clause {sqlite3WindowListDelete(pParse->db, $$);} 1694 window_clause(A) ::= WINDOW windowdefn_list(B). { A = B; } 1695 1696 %type over_clause {Window*} 1697 %destructor over_clause {sqlite3WindowDelete(pParse->db, $$);} 1698 over_clause(A) ::= filter_opt(W) OVER window(Z). { 1699 A = Z; 1700 assert( A!=0 ); 1701 A->pFilter = W; 1702 } 1703 over_clause(A) ::= filter_opt(W) OVER nm(Z). { 1704 A = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); 1705 if( A ){ 1706 A->zName = sqlite3DbStrNDup(pParse->db, Z.z, Z.n); 1707 A->pFilter = W; 1708 }else{ 1709 sqlite3ExprDelete(pParse->db, W); 1710 } 1711 } 1712 1713 filter_opt(A) ::= . { A = 0; } 1714 filter_opt(A) ::= FILTER LP WHERE expr(X) RP. { A = X; } 1715 %endif /* SQLITE_OMIT_WINDOWFUNC */ 1716