1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains SQLite's grammar for SQL. Process this file 13 ** using the lemon parser generator to generate C code that runs 14 ** the parser. Lemon will also generate a header file containing 15 ** numeric codes for all of the tokens. 16 */ 17 18 // All token codes are small integers with #defines that begin with "TK_" 19 %token_prefix TK_ 20 21 // The type of the data attached to each token is Token. This is also the 22 // default type for non-terminals. 23 // 24 %token_type {Token} 25 %default_type {Token} 26 27 // An extra argument to the constructor for the parser, which is available 28 // to all actions. 29 %extra_context {Parse *pParse} 30 31 // This code runs whenever there is a syntax error 32 // 33 %syntax_error { 34 UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */ 35 if( TOKEN.z[0] ){ 36 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN); 37 }else{ 38 sqlite3ErrorMsg(pParse, "incomplete input"); 39 } 40 } 41 %stack_overflow { 42 sqlite3ErrorMsg(pParse, "parser stack overflow"); 43 } 44 45 // The name of the generated procedure that implements the parser 46 // is as follows: 47 %name sqlite3Parser 48 49 // The following text is included near the beginning of the C source 50 // code file that implements the parser. 51 // 52 %include { 53 #include "sqliteInt.h" 54 55 /* 56 ** Disable all error recovery processing in the parser push-down 57 ** automaton. 58 */ 59 #define YYNOERRORRECOVERY 1 60 61 /* 62 ** Make yytestcase() the same as testcase() 63 */ 64 #define yytestcase(X) testcase(X) 65 66 /* 67 ** Indicate that sqlite3ParserFree() will never be called with a null 68 ** pointer. 69 */ 70 #define YYPARSEFREENEVERNULL 1 71 72 /* 73 ** In the amalgamation, the parse.c file generated by lemon and the 74 ** tokenize.c file are concatenated. In that case, sqlite3RunParser() 75 ** has access to the the size of the yyParser object and so the parser 76 ** engine can be allocated from stack. In that case, only the 77 ** sqlite3ParserInit() and sqlite3ParserFinalize() routines are invoked 78 ** and the sqlite3ParserAlloc() and sqlite3ParserFree() routines can be 79 ** omitted. 80 */ 81 #ifdef SQLITE_AMALGAMATION 82 # define sqlite3Parser_ENGINEALWAYSONSTACK 1 83 #endif 84 85 /* 86 ** Alternative datatype for the argument to the malloc() routine passed 87 ** into sqlite3ParserAlloc(). The default is size_t. 88 */ 89 #define YYMALLOCARGTYPE u64 90 91 /* 92 ** An instance of the following structure describes the event of a 93 ** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT, 94 ** TK_DELETE, or TK_INSTEAD. If the event is of the form 95 ** 96 ** UPDATE ON (a,b,c) 97 ** 98 ** Then the "b" IdList records the list "a,b,c". 99 */ 100 struct TrigEvent { int a; IdList * b; }; 101 102 struct FrameBound { int eType; Expr *pExpr; }; 103 104 /* 105 ** Disable lookaside memory allocation for objects that might be 106 ** shared across database connections. 107 */ 108 static void disableLookaside(Parse *pParse){ 109 pParse->disableLookaside++; 110 pParse->db->lookaside.bDisable++; 111 } 112 113 } // end %include 114 115 // Input is a single SQL command 116 input ::= cmdlist. 117 cmdlist ::= cmdlist ecmd. 118 cmdlist ::= ecmd. 119 ecmd ::= SEMI. 120 ecmd ::= cmdx SEMI. 121 %ifndef SQLITE_OMIT_EXPLAIN 122 ecmd ::= explain cmdx. 123 explain ::= EXPLAIN. { pParse->explain = 1; } 124 explain ::= EXPLAIN QUERY PLAN. { pParse->explain = 2; } 125 %endif SQLITE_OMIT_EXPLAIN 126 cmdx ::= cmd. { sqlite3FinishCoding(pParse); } 127 128 ///////////////////// Begin and end transactions. //////////////////////////// 129 // 130 131 cmd ::= BEGIN transtype(Y) trans_opt. {sqlite3BeginTransaction(pParse, Y);} 132 trans_opt ::= . 133 trans_opt ::= TRANSACTION. 134 trans_opt ::= TRANSACTION nm. 135 %type transtype {int} 136 transtype(A) ::= . {A = TK_DEFERRED;} 137 transtype(A) ::= DEFERRED(X). {A = @X; /*A-overwrites-X*/} 138 transtype(A) ::= IMMEDIATE(X). {A = @X; /*A-overwrites-X*/} 139 transtype(A) ::= EXCLUSIVE(X). {A = @X; /*A-overwrites-X*/} 140 cmd ::= COMMIT|END(X) trans_opt. {sqlite3EndTransaction(pParse,@X);} 141 cmd ::= ROLLBACK(X) trans_opt. {sqlite3EndTransaction(pParse,@X);} 142 143 savepoint_opt ::= SAVEPOINT. 144 savepoint_opt ::= . 145 cmd ::= SAVEPOINT nm(X). { 146 sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X); 147 } 148 cmd ::= RELEASE savepoint_opt nm(X). { 149 sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X); 150 } 151 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). { 152 sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X); 153 } 154 155 ///////////////////// The CREATE TABLE statement //////////////////////////// 156 // 157 cmd ::= create_table create_table_args. 158 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). { 159 sqlite3StartTable(pParse,&Y,&Z,T,0,0,E); 160 } 161 createkw(A) ::= CREATE(A). {disableLookaside(pParse);} 162 163 %type ifnotexists {int} 164 ifnotexists(A) ::= . {A = 0;} 165 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;} 166 %type temp {int} 167 %ifndef SQLITE_OMIT_TEMPDB 168 temp(A) ::= TEMP. {A = 1;} 169 %endif SQLITE_OMIT_TEMPDB 170 temp(A) ::= . {A = 0;} 171 create_table_args ::= LP columnlist conslist_opt(X) RP(E) table_options(F). { 172 sqlite3EndTable(pParse,&X,&E,F,0); 173 } 174 create_table_args ::= AS select(S). { 175 sqlite3EndTable(pParse,0,0,0,S); 176 sqlite3SelectDelete(pParse->db, S); 177 } 178 %type table_options {int} 179 table_options(A) ::= . {A = 0;} 180 table_options(A) ::= WITHOUT nm(X). { 181 if( X.n==5 && sqlite3_strnicmp(X.z,"rowid",5)==0 ){ 182 A = TF_WithoutRowid | TF_NoVisibleRowid; 183 }else{ 184 A = 0; 185 sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z); 186 } 187 } 188 columnlist ::= columnlist COMMA columnname carglist. 189 columnlist ::= columnname carglist. 190 columnname(A) ::= nm(A) typetoken(Y). {sqlite3AddColumn(pParse,&A,&Y);} 191 192 // Declare some tokens early in order to influence their values, to 193 // improve performance and reduce the executable size. The goal here is 194 // to get the "jump" operations in ISNULL through ESCAPE to have numeric 195 // values that are early enough so that all jump operations are clustered 196 // at the beginning, but also so that the comparison tokens NE through GE 197 // are as large as possible so that they are near to FUNCTION, which is a 198 // token synthesized by addopcodes.tcl. 199 // 200 %token ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST. 201 %token CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL. 202 %token OR AND NOT IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. 203 %token GT LE LT GE ESCAPE. 204 205 // The following directive causes tokens ABORT, AFTER, ASC, etc. to 206 // fallback to ID if they will not parse as their original value. 207 // This obviates the need for the "id" nonterminal. 208 // 209 %fallback ID 210 ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW 211 CONFLICT DATABASE DEFERRED DESC DETACH DO 212 EACH END EXCLUSIVE EXPLAIN FAIL FOR 213 IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN 214 QUERY KEY OF OFFSET PRAGMA RAISE RECURSIVE RELEASE REPLACE RESTRICT ROW ROWS 215 ROLLBACK SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL WITH WITHOUT 216 %ifdef SQLITE_OMIT_COMPOUND_SELECT 217 EXCEPT INTERSECT UNION 218 %endif SQLITE_OMIT_COMPOUND_SELECT 219 %ifndef SQLITE_OMIT_WINDOWFUNC 220 CURRENT FOLLOWING PARTITION PRECEDING RANGE UNBOUNDED 221 %endif SQLITE_OMIT_WINDOWFUNC 222 REINDEX RENAME CTIME_KW IF 223 . 224 %wildcard ANY. 225 226 // Define operator precedence early so that this is the first occurrence 227 // of the operator tokens in the grammer. Keeping the operators together 228 // causes them to be assigned integer values that are close together, 229 // which keeps parser tables smaller. 230 // 231 // The token values assigned to these symbols is determined by the order 232 // in which lemon first sees them. It must be the case that ISNULL/NOTNULL, 233 // NE/EQ, GT/LE, and GE/LT are separated by only a single value. See 234 // the sqlite3ExprIfFalse() routine for additional information on this 235 // constraint. 236 // 237 %left OR. 238 %left AND. 239 %right NOT. 240 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. 241 %left GT LE LT GE. 242 %right ESCAPE. 243 %left BITAND BITOR LSHIFT RSHIFT. 244 %left PLUS MINUS. 245 %left STAR SLASH REM. 246 %left CONCAT. 247 %left COLLATE. 248 %right BITNOT. 249 %nonassoc ON. 250 251 // An IDENTIFIER can be a generic identifier, or one of several 252 // keywords. Any non-standard keyword can also be an identifier. 253 // 254 %token_class id ID|INDEXED. 255 256 257 // And "ids" is an identifer-or-string. 258 // 259 %token_class ids ID|STRING. 260 261 // The name of a column or table can be any of the following: 262 // 263 %type nm {Token} 264 nm(A) ::= id(A). 265 nm(A) ::= STRING(A). 266 nm(A) ::= JOIN_KW(A). 267 268 // A typetoken is really zero or more tokens that form a type name such 269 // as can be found after the column name in a CREATE TABLE statement. 270 // Multiple tokens are concatenated to form the value of the typetoken. 271 // 272 %type typetoken {Token} 273 typetoken(A) ::= . {A.n = 0; A.z = 0;} 274 typetoken(A) ::= typename(A). 275 typetoken(A) ::= typename(A) LP signed RP(Y). { 276 A.n = (int)(&Y.z[Y.n] - A.z); 277 } 278 typetoken(A) ::= typename(A) LP signed COMMA signed RP(Y). { 279 A.n = (int)(&Y.z[Y.n] - A.z); 280 } 281 %type typename {Token} 282 typename(A) ::= ids(A). 283 typename(A) ::= typename(A) ids(Y). {A.n=Y.n+(int)(Y.z-A.z);} 284 signed ::= plus_num. 285 signed ::= minus_num. 286 287 // The scanpt non-terminal takes a value which is a pointer to the 288 // input text just past the last token that has been shifted into 289 // the parser. By surrounding some phrase in the grammar with two 290 // scanpt non-terminals, we can capture the input text for that phrase. 291 // For example: 292 // 293 // something ::= .... scanpt(A) phrase scanpt(Z). 294 // 295 // The text that is parsed as "phrase" is a string starting at A 296 // and containing (int)(Z-A) characters. There might be some extra 297 // whitespace on either end of the text, but that can be removed in 298 // post-processing, if needed. 299 // 300 %type scanpt {const char*} 301 scanpt(A) ::= . { 302 assert( yyLookahead!=YYNOCODE ); 303 A = yyLookaheadToken.z; 304 } 305 306 // "carglist" is a list of additional constraints that come after the 307 // column name and column type in a CREATE TABLE statement. 308 // 309 carglist ::= carglist ccons. 310 carglist ::= . 311 ccons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} 312 ccons ::= DEFAULT scanpt(A) term(X) scanpt(Z). 313 {sqlite3AddDefaultValue(pParse,X,A,Z);} 314 ccons ::= DEFAULT LP(A) expr(X) RP(Z). 315 {sqlite3AddDefaultValue(pParse,X,A.z+1,Z.z);} 316 ccons ::= DEFAULT PLUS(A) term(X) scanpt(Z). 317 {sqlite3AddDefaultValue(pParse,X,A.z,Z);} 318 ccons ::= DEFAULT MINUS(A) term(X) scanpt(Z). { 319 Expr *p = sqlite3PExpr(pParse, TK_UMINUS, X, 0); 320 sqlite3AddDefaultValue(pParse,p,A.z,Z); 321 } 322 ccons ::= DEFAULT scanpt id(X). { 323 Expr *p = tokenExpr(pParse, TK_STRING, X); 324 if( p ){ 325 sqlite3ExprIdToTrueFalse(p); 326 testcase( p->op==TK_TRUEFALSE && sqlite3ExprTruthValue(p) ); 327 } 328 sqlite3AddDefaultValue(pParse,p,X.z,X.z+X.n); 329 } 330 331 // In addition to the type name, we also care about the primary key and 332 // UNIQUE constraints. 333 // 334 ccons ::= NULL onconf. 335 ccons ::= NOT NULL onconf(R). {sqlite3AddNotNull(pParse, R);} 336 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I). 337 {sqlite3AddPrimaryKey(pParse,0,R,I,Z);} 338 ccons ::= UNIQUE onconf(R). {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0, 339 SQLITE_IDXTYPE_UNIQUE);} 340 ccons ::= CHECK LP expr(X) RP. {sqlite3AddCheckConstraint(pParse,X);} 341 ccons ::= REFERENCES nm(T) eidlist_opt(TA) refargs(R). 342 {sqlite3CreateForeignKey(pParse,0,&T,TA,R);} 343 ccons ::= defer_subclause(D). {sqlite3DeferForeignKey(pParse,D);} 344 ccons ::= COLLATE ids(C). {sqlite3AddCollateType(pParse, &C);} 345 346 // The optional AUTOINCREMENT keyword 347 %type autoinc {int} 348 autoinc(X) ::= . {X = 0;} 349 autoinc(X) ::= AUTOINCR. {X = 1;} 350 351 // The next group of rules parses the arguments to a REFERENCES clause 352 // that determine if the referential integrity checking is deferred or 353 // or immediate and which determine what action to take if a ref-integ 354 // check fails. 355 // 356 %type refargs {int} 357 refargs(A) ::= . { A = OE_None*0x0101; /* EV: R-19803-45884 */} 358 refargs(A) ::= refargs(A) refarg(Y). { A = (A & ~Y.mask) | Y.value; } 359 %type refarg {struct {int value; int mask;}} 360 refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; } 361 refarg(A) ::= ON INSERT refact. { A.value = 0; A.mask = 0x000000; } 362 refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; } 363 refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; } 364 %type refact {int} 365 refact(A) ::= SET NULL. { A = OE_SetNull; /* EV: R-33326-45252 */} 366 refact(A) ::= SET DEFAULT. { A = OE_SetDflt; /* EV: R-33326-45252 */} 367 refact(A) ::= CASCADE. { A = OE_Cascade; /* EV: R-33326-45252 */} 368 refact(A) ::= RESTRICT. { A = OE_Restrict; /* EV: R-33326-45252 */} 369 refact(A) ::= NO ACTION. { A = OE_None; /* EV: R-33326-45252 */} 370 %type defer_subclause {int} 371 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt. {A = 0;} 372 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;} 373 %type init_deferred_pred_opt {int} 374 init_deferred_pred_opt(A) ::= . {A = 0;} 375 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;} 376 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;} 377 378 conslist_opt(A) ::= . {A.n = 0; A.z = 0;} 379 conslist_opt(A) ::= COMMA(A) conslist. 380 conslist ::= conslist tconscomma tcons. 381 conslist ::= tcons. 382 tconscomma ::= COMMA. {pParse->constraintName.n = 0;} 383 tconscomma ::= . 384 tcons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} 385 tcons ::= PRIMARY KEY LP sortlist(X) autoinc(I) RP onconf(R). 386 {sqlite3AddPrimaryKey(pParse,X,R,I,0);} 387 tcons ::= UNIQUE LP sortlist(X) RP onconf(R). 388 {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0, 389 SQLITE_IDXTYPE_UNIQUE);} 390 tcons ::= CHECK LP expr(E) RP onconf. 391 {sqlite3AddCheckConstraint(pParse,E);} 392 tcons ::= FOREIGN KEY LP eidlist(FA) RP 393 REFERENCES nm(T) eidlist_opt(TA) refargs(R) defer_subclause_opt(D). { 394 sqlite3CreateForeignKey(pParse, FA, &T, TA, R); 395 sqlite3DeferForeignKey(pParse, D); 396 } 397 %type defer_subclause_opt {int} 398 defer_subclause_opt(A) ::= . {A = 0;} 399 defer_subclause_opt(A) ::= defer_subclause(A). 400 401 // The following is a non-standard extension that allows us to declare the 402 // default behavior when there is a constraint conflict. 403 // 404 %type onconf {int} 405 %type orconf {int} 406 %type resolvetype {int} 407 onconf(A) ::= . {A = OE_Default;} 408 onconf(A) ::= ON CONFLICT resolvetype(X). {A = X;} 409 orconf(A) ::= . {A = OE_Default;} 410 orconf(A) ::= OR resolvetype(X). {A = X;} 411 resolvetype(A) ::= raisetype(A). 412 resolvetype(A) ::= IGNORE. {A = OE_Ignore;} 413 resolvetype(A) ::= REPLACE. {A = OE_Replace;} 414 415 ////////////////////////// The DROP TABLE ///////////////////////////////////// 416 // 417 cmd ::= DROP TABLE ifexists(E) fullname(X). { 418 sqlite3DropTable(pParse, X, 0, E); 419 } 420 %type ifexists {int} 421 ifexists(A) ::= IF EXISTS. {A = 1;} 422 ifexists(A) ::= . {A = 0;} 423 424 ///////////////////// The CREATE VIEW statement ///////////////////////////// 425 // 426 %ifndef SQLITE_OMIT_VIEW 427 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) eidlist_opt(C) 428 AS select(S). { 429 sqlite3CreateView(pParse, &X, &Y, &Z, C, S, T, E); 430 } 431 cmd ::= DROP VIEW ifexists(E) fullname(X). { 432 sqlite3DropTable(pParse, X, 1, E); 433 } 434 %endif SQLITE_OMIT_VIEW 435 436 //////////////////////// The SELECT statement ///////////////////////////////// 437 // 438 cmd ::= select(X). { 439 SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0}; 440 sqlite3Select(pParse, X, &dest); 441 sqlite3SelectDelete(pParse->db, X); 442 } 443 444 %type select {Select*} 445 %destructor select {sqlite3SelectDelete(pParse->db, $$);} 446 %type selectnowith {Select*} 447 %destructor selectnowith {sqlite3SelectDelete(pParse->db, $$);} 448 %type oneselect {Select*} 449 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);} 450 451 %include { 452 /* 453 ** For a compound SELECT statement, make sure p->pPrior->pNext==p for 454 ** all elements in the list. And make sure list length does not exceed 455 ** SQLITE_LIMIT_COMPOUND_SELECT. 456 */ 457 static void parserDoubleLinkSelect(Parse *pParse, Select *p){ 458 if( p->pPrior ){ 459 Select *pNext = 0, *pLoop; 460 int mxSelect, cnt = 0; 461 for(pLoop=p; pLoop; pNext=pLoop, pLoop=pLoop->pPrior, cnt++){ 462 pLoop->pNext = pNext; 463 pLoop->selFlags |= SF_Compound; 464 } 465 if( (p->selFlags & SF_MultiValue)==0 && 466 (mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT])>0 && 467 cnt>mxSelect 468 ){ 469 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 470 } 471 } 472 } 473 } 474 475 %ifndef SQLITE_OMIT_CTE 476 select(A) ::= WITH wqlist(W) selectnowith(X). { 477 Select *p = X; 478 if( p ){ 479 p->pWith = W; 480 parserDoubleLinkSelect(pParse, p); 481 }else{ 482 sqlite3WithDelete(pParse->db, W); 483 } 484 A = p; 485 } 486 select(A) ::= WITH RECURSIVE wqlist(W) selectnowith(X). { 487 Select *p = X; 488 if( p ){ 489 p->pWith = W; 490 parserDoubleLinkSelect(pParse, p); 491 }else{ 492 sqlite3WithDelete(pParse->db, W); 493 } 494 A = p; 495 } 496 %endif /* SQLITE_OMIT_CTE */ 497 select(A) ::= selectnowith(X). { 498 Select *p = X; 499 if( p ){ 500 parserDoubleLinkSelect(pParse, p); 501 } 502 A = p; /*A-overwrites-X*/ 503 } 504 505 selectnowith(A) ::= oneselect(A). 506 %ifndef SQLITE_OMIT_COMPOUND_SELECT 507 selectnowith(A) ::= selectnowith(A) multiselect_op(Y) oneselect(Z). { 508 Select *pRhs = Z; 509 Select *pLhs = A; 510 if( pRhs && pRhs->pPrior ){ 511 SrcList *pFrom; 512 Token x; 513 x.n = 0; 514 parserDoubleLinkSelect(pParse, pRhs); 515 pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0); 516 pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0); 517 } 518 if( pRhs ){ 519 pRhs->op = (u8)Y; 520 pRhs->pPrior = pLhs; 521 if( ALWAYS(pLhs) ) pLhs->selFlags &= ~SF_MultiValue; 522 pRhs->selFlags &= ~SF_MultiValue; 523 if( Y!=TK_ALL ) pParse->hasCompound = 1; 524 }else{ 525 sqlite3SelectDelete(pParse->db, pLhs); 526 } 527 A = pRhs; 528 } 529 %type multiselect_op {int} 530 multiselect_op(A) ::= UNION(OP). {A = @OP; /*A-overwrites-OP*/} 531 multiselect_op(A) ::= UNION ALL. {A = TK_ALL;} 532 multiselect_op(A) ::= EXCEPT|INTERSECT(OP). {A = @OP; /*A-overwrites-OP*/} 533 %endif SQLITE_OMIT_COMPOUND_SELECT 534 535 oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y) 536 groupby_opt(P) having_opt(Q) 537 orderby_opt(Z) limit_opt(L). { 538 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L); 539 } 540 %ifndef SQLITE_OMIT_WINDOWFUNC 541 oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y) 542 groupby_opt(P) having_opt(Q) window_clause(R) 543 orderby_opt(Z) limit_opt(L). { 544 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L); 545 if( A ){ 546 A->pWinDefn = R; 547 }else{ 548 sqlite3WindowListDelete(pParse->db, R); 549 } 550 } 551 %endif 552 553 554 oneselect(A) ::= values(A). 555 556 %type values {Select*} 557 %destructor values {sqlite3SelectDelete(pParse->db, $$);} 558 values(A) ::= VALUES LP nexprlist(X) RP. { 559 A = sqlite3SelectNew(pParse,X,0,0,0,0,0,SF_Values,0); 560 } 561 values(A) ::= values(A) COMMA LP nexprlist(Y) RP. { 562 Select *pRight, *pLeft = A; 563 pRight = sqlite3SelectNew(pParse,Y,0,0,0,0,0,SF_Values|SF_MultiValue,0); 564 if( ALWAYS(pLeft) ) pLeft->selFlags &= ~SF_MultiValue; 565 if( pRight ){ 566 pRight->op = TK_ALL; 567 pRight->pPrior = pLeft; 568 A = pRight; 569 }else{ 570 A = pLeft; 571 } 572 } 573 574 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is 575 // present and false (0) if it is not. 576 // 577 %type distinct {int} 578 distinct(A) ::= DISTINCT. {A = SF_Distinct;} 579 distinct(A) ::= ALL. {A = SF_All;} 580 distinct(A) ::= . {A = 0;} 581 582 // selcollist is a list of expressions that are to become the return 583 // values of the SELECT statement. The "*" in statements like 584 // "SELECT * FROM ..." is encoded as a special expression with an 585 // opcode of TK_ASTERISK. 586 // 587 %type selcollist {ExprList*} 588 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);} 589 %type sclp {ExprList*} 590 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);} 591 sclp(A) ::= selcollist(A) COMMA. 592 sclp(A) ::= . {A = 0;} 593 selcollist(A) ::= sclp(A) scanpt(B) expr(X) scanpt(Z) as(Y). { 594 A = sqlite3ExprListAppend(pParse, A, X); 595 if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1); 596 sqlite3ExprListSetSpan(pParse,A,B,Z); 597 } 598 selcollist(A) ::= sclp(A) scanpt STAR. { 599 Expr *p = sqlite3Expr(pParse->db, TK_ASTERISK, 0); 600 A = sqlite3ExprListAppend(pParse, A, p); 601 } 602 selcollist(A) ::= sclp(A) scanpt nm(X) DOT STAR. { 603 Expr *pRight = sqlite3PExpr(pParse, TK_ASTERISK, 0, 0); 604 Expr *pLeft = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1); 605 Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 606 A = sqlite3ExprListAppend(pParse,A, pDot); 607 } 608 609 // An option "AS <id>" phrase that can follow one of the expressions that 610 // define the result set, or one of the tables in the FROM clause. 611 // 612 %type as {Token} 613 as(X) ::= AS nm(Y). {X = Y;} 614 as(X) ::= ids(X). 615 as(X) ::= . {X.n = 0; X.z = 0;} 616 617 618 %type seltablist {SrcList*} 619 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);} 620 %type stl_prefix {SrcList*} 621 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);} 622 %type from {SrcList*} 623 %destructor from {sqlite3SrcListDelete(pParse->db, $$);} 624 625 // A complete FROM clause. 626 // 627 from(A) ::= . {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));} 628 from(A) ::= FROM seltablist(X). { 629 A = X; 630 sqlite3SrcListShiftJoinType(A); 631 } 632 633 // "seltablist" is a "Select Table List" - the content of the FROM clause 634 // in a SELECT statement. "stl_prefix" is a prefix of this list. 635 // 636 stl_prefix(A) ::= seltablist(A) joinop(Y). { 637 if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].fg.jointype = (u8)Y; 638 } 639 stl_prefix(A) ::= . {A = 0;} 640 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) as(Z) indexed_opt(I) 641 on_opt(N) using_opt(U). { 642 A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U); 643 sqlite3SrcListIndexedBy(pParse, A, &I); 644 } 645 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) LP exprlist(E) RP as(Z) 646 on_opt(N) using_opt(U). { 647 A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U); 648 sqlite3SrcListFuncArgs(pParse, A, E); 649 } 650 %ifndef SQLITE_OMIT_SUBQUERY 651 seltablist(A) ::= stl_prefix(A) LP select(S) RP 652 as(Z) on_opt(N) using_opt(U). { 653 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,S,N,U); 654 } 655 seltablist(A) ::= stl_prefix(A) LP seltablist(F) RP 656 as(Z) on_opt(N) using_opt(U). { 657 if( A==0 && Z.n==0 && N==0 && U==0 ){ 658 A = F; 659 }else if( F->nSrc==1 ){ 660 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,0,N,U); 661 if( A ){ 662 struct SrcList_item *pNew = &A->a[A->nSrc-1]; 663 struct SrcList_item *pOld = F->a; 664 pNew->zName = pOld->zName; 665 pNew->zDatabase = pOld->zDatabase; 666 pNew->pSelect = pOld->pSelect; 667 pOld->zName = pOld->zDatabase = 0; 668 pOld->pSelect = 0; 669 } 670 sqlite3SrcListDelete(pParse->db, F); 671 }else{ 672 Select *pSubquery; 673 sqlite3SrcListShiftJoinType(F); 674 pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,SF_NestedFrom,0); 675 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,pSubquery,N,U); 676 } 677 } 678 %endif SQLITE_OMIT_SUBQUERY 679 680 %type dbnm {Token} 681 dbnm(A) ::= . {A.z=0; A.n=0;} 682 dbnm(A) ::= DOT nm(X). {A = X;} 683 684 %type fullname {SrcList*} 685 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);} 686 fullname(A) ::= nm(X). 687 {A = sqlite3SrcListAppend(pParse->db,0,&X,0); /*A-overwrites-X*/} 688 fullname(A) ::= nm(X) DOT nm(Y). 689 {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y); /*A-overwrites-X*/} 690 691 %type xfullname {SrcList*} 692 %destructor xfullname {sqlite3SrcListDelete(pParse->db, $$);} 693 xfullname(A) ::= nm(X). 694 {A = sqlite3SrcListAppend(pParse->db,0,&X,0); /*A-overwrites-X*/} 695 xfullname(A) ::= nm(X) DOT nm(Y). 696 {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y); /*A-overwrites-X*/} 697 xfullname(A) ::= nm(X) DOT nm(Y) AS nm(Z). { 698 A = sqlite3SrcListAppend(pParse->db,0,&X,&Y); /*A-overwrites-X*/ 699 if( A ) A->a[0].zAlias = sqlite3NameFromToken(pParse->db, &Z); 700 } 701 xfullname(A) ::= nm(X) AS nm(Z). { 702 A = sqlite3SrcListAppend(pParse->db,0,&X,0); /*A-overwrites-X*/ 703 if( A ) A->a[0].zAlias = sqlite3NameFromToken(pParse->db, &Z); 704 } 705 706 %type joinop {int} 707 joinop(X) ::= COMMA|JOIN. { X = JT_INNER; } 708 joinop(X) ::= JOIN_KW(A) JOIN. 709 {X = sqlite3JoinType(pParse,&A,0,0); /*X-overwrites-A*/} 710 joinop(X) ::= JOIN_KW(A) nm(B) JOIN. 711 {X = sqlite3JoinType(pParse,&A,&B,0); /*X-overwrites-A*/} 712 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN. 713 {X = sqlite3JoinType(pParse,&A,&B,&C);/*X-overwrites-A*/} 714 715 // There is a parsing abiguity in an upsert statement that uses a 716 // SELECT on the RHS of a the INSERT: 717 // 718 // INSERT INTO tab SELECT * FROM aaa JOIN bbb ON CONFLICT ... 719 // here ----^^ 720 // 721 // When the ON token is encountered, the parser does not know if it is 722 // the beginning of an ON CONFLICT clause, or the beginning of an ON 723 // clause associated with the JOIN. The conflict is resolved in favor 724 // of the JOIN. If an ON CONFLICT clause is intended, insert a dummy 725 // WHERE clause in between, like this: 726 // 727 // INSERT INTO tab SELECT * FROM aaa JOIN bbb WHERE true ON CONFLICT ... 728 // 729 // The [AND] and [OR] precedence marks in the rules for on_opt cause the 730 // ON in this context to always be interpreted as belonging to the JOIN. 731 // 732 %type on_opt {Expr*} 733 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);} 734 on_opt(N) ::= ON expr(E). {N = E;} 735 on_opt(N) ::= . [OR] {N = 0;} 736 737 // Note that this block abuses the Token type just a little. If there is 738 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If 739 // there is an INDEXED BY clause, then the token is populated as per normal, 740 // with z pointing to the token data and n containing the number of bytes 741 // in the token. 742 // 743 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is 744 // normally illegal. The sqlite3SrcListIndexedBy() function 745 // recognizes and interprets this as a special case. 746 // 747 %type indexed_opt {Token} 748 indexed_opt(A) ::= . {A.z=0; A.n=0;} 749 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;} 750 indexed_opt(A) ::= NOT INDEXED. {A.z=0; A.n=1;} 751 752 %type using_opt {IdList*} 753 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);} 754 using_opt(U) ::= USING LP idlist(L) RP. {U = L;} 755 using_opt(U) ::= . {U = 0;} 756 757 758 %type orderby_opt {ExprList*} 759 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);} 760 761 // the sortlist non-terminal stores a list of expression where each 762 // expression is optionally followed by ASC or DESC to indicate the 763 // sort order. 764 // 765 %type sortlist {ExprList*} 766 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);} 767 768 orderby_opt(A) ::= . {A = 0;} 769 orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;} 770 sortlist(A) ::= sortlist(A) COMMA expr(Y) sortorder(Z). { 771 A = sqlite3ExprListAppend(pParse,A,Y); 772 sqlite3ExprListSetSortOrder(A,Z); 773 } 774 sortlist(A) ::= expr(Y) sortorder(Z). { 775 A = sqlite3ExprListAppend(pParse,0,Y); /*A-overwrites-Y*/ 776 sqlite3ExprListSetSortOrder(A,Z); 777 } 778 779 %type sortorder {int} 780 781 sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;} 782 sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;} 783 sortorder(A) ::= . {A = SQLITE_SO_UNDEFINED;} 784 785 %type groupby_opt {ExprList*} 786 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);} 787 groupby_opt(A) ::= . {A = 0;} 788 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;} 789 790 %type having_opt {Expr*} 791 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);} 792 having_opt(A) ::= . {A = 0;} 793 having_opt(A) ::= HAVING expr(X). {A = X;} 794 795 %type limit_opt {Expr*} 796 797 // The destructor for limit_opt will never fire in the current grammar. 798 // The limit_opt non-terminal only occurs at the end of a single production 799 // rule for SELECT statements. As soon as the rule that create the 800 // limit_opt non-terminal reduces, the SELECT statement rule will also 801 // reduce. So there is never a limit_opt non-terminal on the stack 802 // except as a transient. So there is never anything to destroy. 803 // 804 //%destructor limit_opt {sqlite3ExprDelete(pParse->db, $$);} 805 limit_opt(A) ::= . {A = 0;} 806 limit_opt(A) ::= LIMIT expr(X). 807 {A = sqlite3PExpr(pParse,TK_LIMIT,X,0);} 808 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y). 809 {A = sqlite3PExpr(pParse,TK_LIMIT,X,Y);} 810 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y). 811 {A = sqlite3PExpr(pParse,TK_LIMIT,Y,X);} 812 813 /////////////////////////// The DELETE statement ///////////////////////////// 814 // 815 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 816 cmd ::= with DELETE FROM xfullname(X) indexed_opt(I) where_opt(W) 817 orderby_opt(O) limit_opt(L). { 818 sqlite3SrcListIndexedBy(pParse, X, &I); 819 sqlite3DeleteFrom(pParse,X,W,O,L); 820 } 821 %endif 822 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 823 cmd ::= with DELETE FROM xfullname(X) indexed_opt(I) where_opt(W). { 824 sqlite3SrcListIndexedBy(pParse, X, &I); 825 sqlite3DeleteFrom(pParse,X,W,0,0); 826 } 827 %endif 828 829 %type where_opt {Expr*} 830 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);} 831 832 where_opt(A) ::= . {A = 0;} 833 where_opt(A) ::= WHERE expr(X). {A = X;} 834 835 ////////////////////////// The UPDATE command //////////////////////////////// 836 // 837 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 838 cmd ::= with UPDATE orconf(R) xfullname(X) indexed_opt(I) SET setlist(Y) 839 where_opt(W) orderby_opt(O) limit_opt(L). { 840 sqlite3SrcListIndexedBy(pParse, X, &I); 841 sqlite3ExprListCheckLength(pParse,Y,"set list"); 842 sqlite3Update(pParse,X,Y,W,R,O,L,0); 843 } 844 %endif 845 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 846 cmd ::= with UPDATE orconf(R) xfullname(X) indexed_opt(I) SET setlist(Y) 847 where_opt(W). { 848 sqlite3SrcListIndexedBy(pParse, X, &I); 849 sqlite3ExprListCheckLength(pParse,Y,"set list"); 850 sqlite3Update(pParse,X,Y,W,R,0,0,0); 851 } 852 %endif 853 854 %type setlist {ExprList*} 855 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);} 856 857 setlist(A) ::= setlist(A) COMMA nm(X) EQ expr(Y). { 858 A = sqlite3ExprListAppend(pParse, A, Y); 859 sqlite3ExprListSetName(pParse, A, &X, 1); 860 } 861 setlist(A) ::= setlist(A) COMMA LP idlist(X) RP EQ expr(Y). { 862 A = sqlite3ExprListAppendVector(pParse, A, X, Y); 863 } 864 setlist(A) ::= nm(X) EQ expr(Y). { 865 A = sqlite3ExprListAppend(pParse, 0, Y); 866 sqlite3ExprListSetName(pParse, A, &X, 1); 867 } 868 setlist(A) ::= LP idlist(X) RP EQ expr(Y). { 869 A = sqlite3ExprListAppendVector(pParse, 0, X, Y); 870 } 871 872 ////////////////////////// The INSERT command ///////////////////////////////// 873 // 874 cmd ::= with insert_cmd(R) INTO xfullname(X) idlist_opt(F) select(S) 875 upsert(U). { 876 sqlite3Insert(pParse, X, S, F, R, U); 877 } 878 cmd ::= with insert_cmd(R) INTO xfullname(X) idlist_opt(F) DEFAULT VALUES. 879 { 880 sqlite3Insert(pParse, X, 0, F, R, 0); 881 } 882 883 %type upsert {Upsert*} 884 885 // Because upsert only occurs at the tip end of the INSERT rule for cmd, 886 // there is never a case where the value of the upsert pointer will not 887 // be destroyed by the cmd action. So comment-out the destructor to 888 // avoid unreachable code. 889 //%destructor upsert {sqlite3UpsertDelete(pParse->db,$$);} 890 upsert(A) ::= . { A = 0; } 891 upsert(A) ::= ON CONFLICT LP sortlist(T) RP where_opt(TW) 892 DO UPDATE SET setlist(Z) where_opt(W). 893 { A = sqlite3UpsertNew(pParse->db,T,TW,Z,W);} 894 upsert(A) ::= ON CONFLICT LP sortlist(T) RP where_opt(TW) DO NOTHING. 895 { A = sqlite3UpsertNew(pParse->db,T,TW,0,0); } 896 upsert(A) ::= ON CONFLICT DO NOTHING. 897 { A = sqlite3UpsertNew(pParse->db,0,0,0,0); } 898 899 %type insert_cmd {int} 900 insert_cmd(A) ::= INSERT orconf(R). {A = R;} 901 insert_cmd(A) ::= REPLACE. {A = OE_Replace;} 902 903 %type idlist_opt {IdList*} 904 %destructor idlist_opt {sqlite3IdListDelete(pParse->db, $$);} 905 %type idlist {IdList*} 906 %destructor idlist {sqlite3IdListDelete(pParse->db, $$);} 907 908 idlist_opt(A) ::= . {A = 0;} 909 idlist_opt(A) ::= LP idlist(X) RP. {A = X;} 910 idlist(A) ::= idlist(A) COMMA nm(Y). 911 {A = sqlite3IdListAppend(pParse->db,A,&Y);} 912 idlist(A) ::= nm(Y). 913 {A = sqlite3IdListAppend(pParse->db,0,&Y); /*A-overwrites-Y*/} 914 915 /////////////////////////// Expression Processing ///////////////////////////// 916 // 917 918 %type expr {Expr*} 919 %destructor expr {sqlite3ExprDelete(pParse->db, $$);} 920 %type term {Expr*} 921 %destructor term {sqlite3ExprDelete(pParse->db, $$);} 922 923 %include { 924 925 /* Construct a new Expr object from a single identifier. Use the 926 ** new Expr to populate pOut. Set the span of pOut to be the identifier 927 ** that created the expression. 928 */ 929 static Expr *tokenExpr(Parse *pParse, int op, Token t){ 930 Expr *p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)+t.n+1); 931 if( p ){ 932 memset(p, 0, sizeof(Expr)); 933 p->op = (u8)op; 934 p->flags = EP_Leaf; 935 p->iAgg = -1; 936 p->u.zToken = (char*)&p[1]; 937 memcpy(p->u.zToken, t.z, t.n); 938 p->u.zToken[t.n] = 0; 939 if( sqlite3Isquote(p->u.zToken[0]) ){ 940 if( p->u.zToken[0]=='"' ) p->flags |= EP_DblQuoted; 941 sqlite3Dequote(p->u.zToken); 942 } 943 #if SQLITE_MAX_EXPR_DEPTH>0 944 p->nHeight = 1; 945 #endif 946 } 947 return p; 948 } 949 } 950 951 expr(A) ::= term(A). 952 expr(A) ::= LP expr(X) RP. {A = X;} 953 expr(A) ::= id(X). {A=tokenExpr(pParse,TK_ID,X); /*A-overwrites-X*/} 954 expr(A) ::= JOIN_KW(X). {A=tokenExpr(pParse,TK_ID,X); /*A-overwrites-X*/} 955 expr(A) ::= nm(X) DOT nm(Y). { 956 Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1); 957 Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1); 958 A = sqlite3PExpr(pParse, TK_DOT, temp1, temp2); 959 } 960 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). { 961 Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1); 962 Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1); 963 Expr *temp3 = sqlite3ExprAlloc(pParse->db, TK_ID, &Z, 1); 964 Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3); 965 A = sqlite3PExpr(pParse, TK_DOT, temp1, temp4); 966 } 967 term(A) ::= NULL|FLOAT|BLOB(X). {A=tokenExpr(pParse,@X,X); /*A-overwrites-X*/} 968 term(A) ::= STRING(X). {A=tokenExpr(pParse,@X,X); /*A-overwrites-X*/} 969 term(A) ::= INTEGER(X). { 970 A = sqlite3ExprAlloc(pParse->db, TK_INTEGER, &X, 1); 971 } 972 expr(A) ::= VARIABLE(X). { 973 if( !(X.z[0]=='#' && sqlite3Isdigit(X.z[1])) ){ 974 u32 n = X.n; 975 A = tokenExpr(pParse, TK_VARIABLE, X); 976 sqlite3ExprAssignVarNumber(pParse, A, n); 977 }else{ 978 /* When doing a nested parse, one can include terms in an expression 979 ** that look like this: #1 #2 ... These terms refer to registers 980 ** in the virtual machine. #N is the N-th register. */ 981 Token t = X; /*A-overwrites-X*/ 982 assert( t.n>=2 ); 983 if( pParse->nested==0 ){ 984 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &t); 985 A = 0; 986 }else{ 987 A = sqlite3PExpr(pParse, TK_REGISTER, 0, 0); 988 if( A ) sqlite3GetInt32(&t.z[1], &A->iTable); 989 } 990 } 991 } 992 expr(A) ::= expr(A) COLLATE ids(C). { 993 A = sqlite3ExprAddCollateToken(pParse, A, &C, 1); 994 } 995 %ifndef SQLITE_OMIT_CAST 996 expr(A) ::= CAST LP expr(E) AS typetoken(T) RP. { 997 A = sqlite3ExprAlloc(pParse->db, TK_CAST, &T, 1); 998 sqlite3ExprAttachSubtrees(pParse->db, A, E, 0); 999 } 1000 %endif SQLITE_OMIT_CAST 1001 1002 1003 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP. { 1004 A = sqlite3ExprFunction(pParse, Y, &X, D); 1005 } 1006 expr(A) ::= id(X) LP STAR RP. { 1007 A = sqlite3ExprFunction(pParse, 0, &X, 0); 1008 } 1009 1010 %ifndef SQLITE_OMIT_WINDOWFUNC 1011 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP over_clause(Z). { 1012 A = sqlite3ExprFunction(pParse, Y, &X, D); 1013 sqlite3WindowAttach(pParse, A, Z); 1014 } 1015 expr(A) ::= id(X) LP STAR RP over_clause(Z). { 1016 A = sqlite3ExprFunction(pParse, 0, &X, 0); 1017 sqlite3WindowAttach(pParse, A, Z); 1018 } 1019 %endif 1020 1021 term(A) ::= CTIME_KW(OP). { 1022 A = sqlite3ExprFunction(pParse, 0, &OP, 0); 1023 } 1024 1025 expr(A) ::= LP nexprlist(X) COMMA expr(Y) RP. { 1026 ExprList *pList = sqlite3ExprListAppend(pParse, X, Y); 1027 A = sqlite3PExpr(pParse, TK_VECTOR, 0, 0); 1028 if( A ){ 1029 A->x.pList = pList; 1030 }else{ 1031 sqlite3ExprListDelete(pParse->db, pList); 1032 } 1033 } 1034 1035 expr(A) ::= expr(A) AND(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 1036 expr(A) ::= expr(A) OR(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 1037 expr(A) ::= expr(A) LT|GT|GE|LE(OP) expr(Y). 1038 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1039 expr(A) ::= expr(A) EQ|NE(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 1040 expr(A) ::= expr(A) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y). 1041 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1042 expr(A) ::= expr(A) PLUS|MINUS(OP) expr(Y). 1043 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1044 expr(A) ::= expr(A) STAR|SLASH|REM(OP) expr(Y). 1045 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1046 expr(A) ::= expr(A) CONCAT(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 1047 %type likeop {Token} 1048 likeop(A) ::= LIKE_KW|MATCH(A). 1049 likeop(A) ::= NOT LIKE_KW|MATCH(X). {A=X; A.n|=0x80000000; /*A-overwrite-X*/} 1050 expr(A) ::= expr(A) likeop(OP) expr(Y). [LIKE_KW] { 1051 ExprList *pList; 1052 int bNot = OP.n & 0x80000000; 1053 OP.n &= 0x7fffffff; 1054 pList = sqlite3ExprListAppend(pParse,0, Y); 1055 pList = sqlite3ExprListAppend(pParse,pList, A); 1056 A = sqlite3ExprFunction(pParse, pList, &OP, 0); 1057 if( bNot ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1058 if( A ) A->flags |= EP_InfixFunc; 1059 } 1060 expr(A) ::= expr(A) likeop(OP) expr(Y) ESCAPE expr(E). [LIKE_KW] { 1061 ExprList *pList; 1062 int bNot = OP.n & 0x80000000; 1063 OP.n &= 0x7fffffff; 1064 pList = sqlite3ExprListAppend(pParse,0, Y); 1065 pList = sqlite3ExprListAppend(pParse,pList, A); 1066 pList = sqlite3ExprListAppend(pParse,pList, E); 1067 A = sqlite3ExprFunction(pParse, pList, &OP, 0); 1068 if( bNot ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1069 if( A ) A->flags |= EP_InfixFunc; 1070 } 1071 1072 expr(A) ::= expr(A) ISNULL|NOTNULL(E). {A = sqlite3PExpr(pParse,@E,A,0);} 1073 expr(A) ::= expr(A) NOT NULL. {A = sqlite3PExpr(pParse,TK_NOTNULL,A,0);} 1074 1075 %include { 1076 /* A routine to convert a binary TK_IS or TK_ISNOT expression into a 1077 ** unary TK_ISNULL or TK_NOTNULL expression. */ 1078 static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){ 1079 sqlite3 *db = pParse->db; 1080 if( pA && pY && pY->op==TK_NULL ){ 1081 pA->op = (u8)op; 1082 sqlite3ExprDelete(db, pA->pRight); 1083 pA->pRight = 0; 1084 } 1085 } 1086 } 1087 1088 // expr1 IS expr2 1089 // expr1 IS NOT expr2 1090 // 1091 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL. If expr2 1092 // is any other expression, code as TK_IS or TK_ISNOT. 1093 // 1094 expr(A) ::= expr(A) IS expr(Y). { 1095 A = sqlite3PExpr(pParse,TK_IS,A,Y); 1096 binaryToUnaryIfNull(pParse, Y, A, TK_ISNULL); 1097 } 1098 expr(A) ::= expr(A) IS NOT expr(Y). { 1099 A = sqlite3PExpr(pParse,TK_ISNOT,A,Y); 1100 binaryToUnaryIfNull(pParse, Y, A, TK_NOTNULL); 1101 } 1102 1103 expr(A) ::= NOT(B) expr(X). 1104 {A = sqlite3PExpr(pParse, @B, X, 0);/*A-overwrites-B*/} 1105 expr(A) ::= BITNOT(B) expr(X). 1106 {A = sqlite3PExpr(pParse, @B, X, 0);/*A-overwrites-B*/} 1107 expr(A) ::= PLUS|MINUS(B) expr(X). [BITNOT] { 1108 A = sqlite3PExpr(pParse, @B==TK_PLUS ? TK_UPLUS : TK_UMINUS, X, 0); 1109 /*A-overwrites-B*/ 1110 } 1111 1112 %type between_op {int} 1113 between_op(A) ::= BETWEEN. {A = 0;} 1114 between_op(A) ::= NOT BETWEEN. {A = 1;} 1115 expr(A) ::= expr(A) between_op(N) expr(X) AND expr(Y). [BETWEEN] { 1116 ExprList *pList = sqlite3ExprListAppend(pParse,0, X); 1117 pList = sqlite3ExprListAppend(pParse,pList, Y); 1118 A = sqlite3PExpr(pParse, TK_BETWEEN, A, 0); 1119 if( A ){ 1120 A->x.pList = pList; 1121 }else{ 1122 sqlite3ExprListDelete(pParse->db, pList); 1123 } 1124 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1125 } 1126 %ifndef SQLITE_OMIT_SUBQUERY 1127 %type in_op {int} 1128 in_op(A) ::= IN. {A = 0;} 1129 in_op(A) ::= NOT IN. {A = 1;} 1130 expr(A) ::= expr(A) in_op(N) LP exprlist(Y) RP. [IN] { 1131 if( Y==0 ){ 1132 /* Expressions of the form 1133 ** 1134 ** expr1 IN () 1135 ** expr1 NOT IN () 1136 ** 1137 ** simplify to constants 0 (false) and 1 (true), respectively, 1138 ** regardless of the value of expr1. 1139 */ 1140 sqlite3ExprDelete(pParse->db, A); 1141 A = sqlite3ExprAlloc(pParse->db, TK_INTEGER,&sqlite3IntTokens[N],1); 1142 }else if( Y->nExpr==1 ){ 1143 /* Expressions of the form: 1144 ** 1145 ** expr1 IN (?1) 1146 ** expr1 NOT IN (?2) 1147 ** 1148 ** with exactly one value on the RHS can be simplified to something 1149 ** like this: 1150 ** 1151 ** expr1 == ?1 1152 ** expr1 <> ?2 1153 ** 1154 ** But, the RHS of the == or <> is marked with the EP_Generic flag 1155 ** so that it may not contribute to the computation of comparison 1156 ** affinity or the collating sequence to use for comparison. Otherwise, 1157 ** the semantics would be subtly different from IN or NOT IN. 1158 */ 1159 Expr *pRHS = Y->a[0].pExpr; 1160 Y->a[0].pExpr = 0; 1161 sqlite3ExprListDelete(pParse->db, Y); 1162 /* pRHS cannot be NULL because a malloc error would have been detected 1163 ** before now and control would have never reached this point */ 1164 if( ALWAYS(pRHS) ){ 1165 pRHS->flags &= ~EP_Collate; 1166 pRHS->flags |= EP_Generic; 1167 } 1168 A = sqlite3PExpr(pParse, N ? TK_NE : TK_EQ, A, pRHS); 1169 }else{ 1170 A = sqlite3PExpr(pParse, TK_IN, A, 0); 1171 if( A ){ 1172 A->x.pList = Y; 1173 sqlite3ExprSetHeightAndFlags(pParse, A); 1174 }else{ 1175 sqlite3ExprListDelete(pParse->db, Y); 1176 } 1177 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1178 } 1179 } 1180 expr(A) ::= LP select(X) RP. { 1181 A = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 1182 sqlite3PExprAddSelect(pParse, A, X); 1183 } 1184 expr(A) ::= expr(A) in_op(N) LP select(Y) RP. [IN] { 1185 A = sqlite3PExpr(pParse, TK_IN, A, 0); 1186 sqlite3PExprAddSelect(pParse, A, Y); 1187 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1188 } 1189 expr(A) ::= expr(A) in_op(N) nm(Y) dbnm(Z) paren_exprlist(E). [IN] { 1190 SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z); 1191 Select *pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0); 1192 if( E ) sqlite3SrcListFuncArgs(pParse, pSelect ? pSrc : 0, E); 1193 A = sqlite3PExpr(pParse, TK_IN, A, 0); 1194 sqlite3PExprAddSelect(pParse, A, pSelect); 1195 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1196 } 1197 expr(A) ::= EXISTS LP select(Y) RP. { 1198 Expr *p; 1199 p = A = sqlite3PExpr(pParse, TK_EXISTS, 0, 0); 1200 sqlite3PExprAddSelect(pParse, p, Y); 1201 } 1202 %endif SQLITE_OMIT_SUBQUERY 1203 1204 /* CASE expressions */ 1205 expr(A) ::= CASE case_operand(X) case_exprlist(Y) case_else(Z) END. { 1206 A = sqlite3PExpr(pParse, TK_CASE, X, 0); 1207 if( A ){ 1208 A->x.pList = Z ? sqlite3ExprListAppend(pParse,Y,Z) : Y; 1209 sqlite3ExprSetHeightAndFlags(pParse, A); 1210 }else{ 1211 sqlite3ExprListDelete(pParse->db, Y); 1212 sqlite3ExprDelete(pParse->db, Z); 1213 } 1214 } 1215 %type case_exprlist {ExprList*} 1216 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1217 case_exprlist(A) ::= case_exprlist(A) WHEN expr(Y) THEN expr(Z). { 1218 A = sqlite3ExprListAppend(pParse,A, Y); 1219 A = sqlite3ExprListAppend(pParse,A, Z); 1220 } 1221 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). { 1222 A = sqlite3ExprListAppend(pParse,0, Y); 1223 A = sqlite3ExprListAppend(pParse,A, Z); 1224 } 1225 %type case_else {Expr*} 1226 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);} 1227 case_else(A) ::= ELSE expr(X). {A = X;} 1228 case_else(A) ::= . {A = 0;} 1229 %type case_operand {Expr*} 1230 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);} 1231 case_operand(A) ::= expr(X). {A = X; /*A-overwrites-X*/} 1232 case_operand(A) ::= . {A = 0;} 1233 1234 %type exprlist {ExprList*} 1235 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1236 %type nexprlist {ExprList*} 1237 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);} 1238 1239 exprlist(A) ::= nexprlist(A). 1240 exprlist(A) ::= . {A = 0;} 1241 nexprlist(A) ::= nexprlist(A) COMMA expr(Y). 1242 {A = sqlite3ExprListAppend(pParse,A,Y);} 1243 nexprlist(A) ::= expr(Y). 1244 {A = sqlite3ExprListAppend(pParse,0,Y); /*A-overwrites-Y*/} 1245 1246 %ifndef SQLITE_OMIT_SUBQUERY 1247 /* A paren_exprlist is an optional expression list contained inside 1248 ** of parenthesis */ 1249 %type paren_exprlist {ExprList*} 1250 %destructor paren_exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1251 paren_exprlist(A) ::= . {A = 0;} 1252 paren_exprlist(A) ::= LP exprlist(X) RP. {A = X;} 1253 %endif SQLITE_OMIT_SUBQUERY 1254 1255 1256 ///////////////////////////// The CREATE INDEX command /////////////////////// 1257 // 1258 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D) 1259 ON nm(Y) LP sortlist(Z) RP where_opt(W). { 1260 sqlite3CreateIndex(pParse, &X, &D, 1261 sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U, 1262 &S, W, SQLITE_SO_ASC, NE, SQLITE_IDXTYPE_APPDEF); 1263 } 1264 1265 %type uniqueflag {int} 1266 uniqueflag(A) ::= UNIQUE. {A = OE_Abort;} 1267 uniqueflag(A) ::= . {A = OE_None;} 1268 1269 1270 // The eidlist non-terminal (Expression Id List) generates an ExprList 1271 // from a list of identifiers. The identifier names are in ExprList.a[].zName. 1272 // This list is stored in an ExprList rather than an IdList so that it 1273 // can be easily sent to sqlite3ColumnsExprList(). 1274 // 1275 // eidlist is grouped with CREATE INDEX because it used to be the non-terminal 1276 // used for the arguments to an index. That is just an historical accident. 1277 // 1278 // IMPORTANT COMPATIBILITY NOTE: Some prior versions of SQLite accepted 1279 // COLLATE clauses and ASC or DESC keywords on ID lists in inappropriate 1280 // places - places that might have been stored in the sqlite_master schema. 1281 // Those extra features were ignored. But because they might be in some 1282 // (busted) old databases, we need to continue parsing them when loading 1283 // historical schemas. 1284 // 1285 %type eidlist {ExprList*} 1286 %destructor eidlist {sqlite3ExprListDelete(pParse->db, $$);} 1287 %type eidlist_opt {ExprList*} 1288 %destructor eidlist_opt {sqlite3ExprListDelete(pParse->db, $$);} 1289 1290 %include { 1291 /* Add a single new term to an ExprList that is used to store a 1292 ** list of identifiers. Report an error if the ID list contains 1293 ** a COLLATE clause or an ASC or DESC keyword, except ignore the 1294 ** error while parsing a legacy schema. 1295 */ 1296 static ExprList *parserAddExprIdListTerm( 1297 Parse *pParse, 1298 ExprList *pPrior, 1299 Token *pIdToken, 1300 int hasCollate, 1301 int sortOrder 1302 ){ 1303 ExprList *p = sqlite3ExprListAppend(pParse, pPrior, 0); 1304 if( (hasCollate || sortOrder!=SQLITE_SO_UNDEFINED) 1305 && pParse->db->init.busy==0 1306 ){ 1307 sqlite3ErrorMsg(pParse, "syntax error after column name \"%.*s\"", 1308 pIdToken->n, pIdToken->z); 1309 } 1310 sqlite3ExprListSetName(pParse, p, pIdToken, 1); 1311 return p; 1312 } 1313 } // end %include 1314 1315 eidlist_opt(A) ::= . {A = 0;} 1316 eidlist_opt(A) ::= LP eidlist(X) RP. {A = X;} 1317 eidlist(A) ::= eidlist(A) COMMA nm(Y) collate(C) sortorder(Z). { 1318 A = parserAddExprIdListTerm(pParse, A, &Y, C, Z); 1319 } 1320 eidlist(A) ::= nm(Y) collate(C) sortorder(Z). { 1321 A = parserAddExprIdListTerm(pParse, 0, &Y, C, Z); /*A-overwrites-Y*/ 1322 } 1323 1324 %type collate {int} 1325 collate(C) ::= . {C = 0;} 1326 collate(C) ::= COLLATE ids. {C = 1;} 1327 1328 1329 ///////////////////////////// The DROP INDEX command ///////////////////////// 1330 // 1331 cmd ::= DROP INDEX ifexists(E) fullname(X). {sqlite3DropIndex(pParse, X, E);} 1332 1333 ///////////////////////////// The VACUUM command ///////////////////////////// 1334 // 1335 %ifndef SQLITE_OMIT_VACUUM 1336 %ifndef SQLITE_OMIT_ATTACH 1337 cmd ::= VACUUM. {sqlite3Vacuum(pParse,0);} 1338 cmd ::= VACUUM nm(X). {sqlite3Vacuum(pParse,&X);} 1339 %endif SQLITE_OMIT_ATTACH 1340 %endif SQLITE_OMIT_VACUUM 1341 1342 ///////////////////////////// The PRAGMA command ///////////////////////////// 1343 // 1344 %ifndef SQLITE_OMIT_PRAGMA 1345 cmd ::= PRAGMA nm(X) dbnm(Z). {sqlite3Pragma(pParse,&X,&Z,0,0);} 1346 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1347 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1348 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y). 1349 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1350 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP. 1351 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1352 1353 nmnum(A) ::= plus_num(A). 1354 nmnum(A) ::= nm(A). 1355 nmnum(A) ::= ON(A). 1356 nmnum(A) ::= DELETE(A). 1357 nmnum(A) ::= DEFAULT(A). 1358 %endif SQLITE_OMIT_PRAGMA 1359 %token_class number INTEGER|FLOAT. 1360 plus_num(A) ::= PLUS number(X). {A = X;} 1361 plus_num(A) ::= number(A). 1362 minus_num(A) ::= MINUS number(X). {A = X;} 1363 //////////////////////////// The CREATE TRIGGER command ///////////////////// 1364 1365 %ifndef SQLITE_OMIT_TRIGGER 1366 1367 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). { 1368 Token all; 1369 all.z = A.z; 1370 all.n = (int)(Z.z - A.z) + Z.n; 1371 sqlite3FinishTrigger(pParse, S, &all); 1372 } 1373 1374 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z) 1375 trigger_time(C) trigger_event(D) 1376 ON fullname(E) foreach_clause when_clause(G). { 1377 sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR); 1378 A = (Z.n==0?B:Z); /*A-overwrites-T*/ 1379 } 1380 1381 %type trigger_time {int} 1382 trigger_time(A) ::= BEFORE|AFTER(X). { A = @X; /*A-overwrites-X*/ } 1383 trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;} 1384 trigger_time(A) ::= . { A = TK_BEFORE; } 1385 1386 %type trigger_event {struct TrigEvent} 1387 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);} 1388 trigger_event(A) ::= DELETE|INSERT(X). {A.a = @X; /*A-overwrites-X*/ A.b = 0;} 1389 trigger_event(A) ::= UPDATE(X). {A.a = @X; /*A-overwrites-X*/ A.b = 0;} 1390 trigger_event(A) ::= UPDATE OF idlist(X).{A.a = TK_UPDATE; A.b = X;} 1391 1392 foreach_clause ::= . 1393 foreach_clause ::= FOR EACH ROW. 1394 1395 %type when_clause {Expr*} 1396 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);} 1397 when_clause(A) ::= . { A = 0; } 1398 when_clause(A) ::= WHEN expr(X). { A = X; } 1399 1400 %type trigger_cmd_list {TriggerStep*} 1401 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);} 1402 trigger_cmd_list(A) ::= trigger_cmd_list(A) trigger_cmd(X) SEMI. { 1403 assert( A!=0 ); 1404 A->pLast->pNext = X; 1405 A->pLast = X; 1406 } 1407 trigger_cmd_list(A) ::= trigger_cmd(A) SEMI. { 1408 assert( A!=0 ); 1409 A->pLast = A; 1410 } 1411 1412 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements 1413 // within a trigger. The table to INSERT, UPDATE, or DELETE is always in 1414 // the same database as the table that the trigger fires on. 1415 // 1416 %type trnm {Token} 1417 trnm(A) ::= nm(A). 1418 trnm(A) ::= nm DOT nm(X). { 1419 A = X; 1420 sqlite3ErrorMsg(pParse, 1421 "qualified table names are not allowed on INSERT, UPDATE, and DELETE " 1422 "statements within triggers"); 1423 } 1424 1425 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE 1426 // statements within triggers. We make a specific error message for this 1427 // since it is an exception to the default grammar rules. 1428 // 1429 tridxby ::= . 1430 tridxby ::= INDEXED BY nm. { 1431 sqlite3ErrorMsg(pParse, 1432 "the INDEXED BY clause is not allowed on UPDATE or DELETE statements " 1433 "within triggers"); 1434 } 1435 tridxby ::= NOT INDEXED. { 1436 sqlite3ErrorMsg(pParse, 1437 "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements " 1438 "within triggers"); 1439 } 1440 1441 1442 1443 %type trigger_cmd {TriggerStep*} 1444 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);} 1445 // UPDATE 1446 trigger_cmd(A) ::= 1447 UPDATE(B) orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z) scanpt(E). 1448 {A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R, B.z, E);} 1449 1450 // INSERT 1451 trigger_cmd(A) ::= scanpt(B) insert_cmd(R) INTO 1452 trnm(X) idlist_opt(F) select(S) upsert(U) scanpt(Z). { 1453 A = sqlite3TriggerInsertStep(pParse->db,&X,F,S,R,U,B,Z);/*A-overwrites-R*/ 1454 } 1455 // DELETE 1456 trigger_cmd(A) ::= DELETE(B) FROM trnm(X) tridxby where_opt(Y) scanpt(E). 1457 {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y, B.z, E);} 1458 1459 // SELECT 1460 trigger_cmd(A) ::= scanpt(B) select(X) scanpt(E). 1461 {A = sqlite3TriggerSelectStep(pParse->db, X, B, E); /*A-overwrites-X*/} 1462 1463 // The special RAISE expression that may occur in trigger programs 1464 expr(A) ::= RAISE LP IGNORE RP. { 1465 A = sqlite3PExpr(pParse, TK_RAISE, 0, 0); 1466 if( A ){ 1467 A->affinity = OE_Ignore; 1468 } 1469 } 1470 expr(A) ::= RAISE LP raisetype(T) COMMA nm(Z) RP. { 1471 A = sqlite3ExprAlloc(pParse->db, TK_RAISE, &Z, 1); 1472 if( A ) { 1473 A->affinity = (char)T; 1474 } 1475 } 1476 %endif !SQLITE_OMIT_TRIGGER 1477 1478 %type raisetype {int} 1479 raisetype(A) ::= ROLLBACK. {A = OE_Rollback;} 1480 raisetype(A) ::= ABORT. {A = OE_Abort;} 1481 raisetype(A) ::= FAIL. {A = OE_Fail;} 1482 1483 1484 //////////////////////// DROP TRIGGER statement ////////////////////////////// 1485 %ifndef SQLITE_OMIT_TRIGGER 1486 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). { 1487 sqlite3DropTrigger(pParse,X,NOERR); 1488 } 1489 %endif !SQLITE_OMIT_TRIGGER 1490 1491 //////////////////////// ATTACH DATABASE file AS name ///////////////////////// 1492 %ifndef SQLITE_OMIT_ATTACH 1493 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). { 1494 sqlite3Attach(pParse, F, D, K); 1495 } 1496 cmd ::= DETACH database_kw_opt expr(D). { 1497 sqlite3Detach(pParse, D); 1498 } 1499 1500 %type key_opt {Expr*} 1501 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);} 1502 key_opt(A) ::= . { A = 0; } 1503 key_opt(A) ::= KEY expr(X). { A = X; } 1504 1505 database_kw_opt ::= DATABASE. 1506 database_kw_opt ::= . 1507 %endif SQLITE_OMIT_ATTACH 1508 1509 ////////////////////////// REINDEX collation ////////////////////////////////// 1510 %ifndef SQLITE_OMIT_REINDEX 1511 cmd ::= REINDEX. {sqlite3Reindex(pParse, 0, 0);} 1512 cmd ::= REINDEX nm(X) dbnm(Y). {sqlite3Reindex(pParse, &X, &Y);} 1513 %endif SQLITE_OMIT_REINDEX 1514 1515 /////////////////////////////////// ANALYZE /////////////////////////////////// 1516 %ifndef SQLITE_OMIT_ANALYZE 1517 cmd ::= ANALYZE. {sqlite3Analyze(pParse, 0, 0);} 1518 cmd ::= ANALYZE nm(X) dbnm(Y). {sqlite3Analyze(pParse, &X, &Y);} 1519 %endif 1520 1521 //////////////////////// ALTER TABLE table ... //////////////////////////////// 1522 %ifndef SQLITE_OMIT_ALTERTABLE 1523 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). { 1524 sqlite3AlterRenameTable(pParse,X,&Z); 1525 } 1526 cmd ::= ALTER TABLE add_column_fullname 1527 ADD kwcolumn_opt columnname(Y) carglist. { 1528 Y.n = (int)(pParse->sLastToken.z-Y.z) + pParse->sLastToken.n; 1529 sqlite3AlterFinishAddColumn(pParse, &Y); 1530 } 1531 add_column_fullname ::= fullname(X). { 1532 disableLookaside(pParse); 1533 sqlite3AlterBeginAddColumn(pParse, X); 1534 } 1535 kwcolumn_opt ::= . 1536 kwcolumn_opt ::= COLUMNKW. 1537 %endif SQLITE_OMIT_ALTERTABLE 1538 1539 //////////////////////// CREATE VIRTUAL TABLE ... ///////////////////////////// 1540 %ifndef SQLITE_OMIT_VIRTUALTABLE 1541 cmd ::= create_vtab. {sqlite3VtabFinishParse(pParse,0);} 1542 cmd ::= create_vtab LP vtabarglist RP(X). {sqlite3VtabFinishParse(pParse,&X);} 1543 create_vtab ::= createkw VIRTUAL TABLE ifnotexists(E) 1544 nm(X) dbnm(Y) USING nm(Z). { 1545 sqlite3VtabBeginParse(pParse, &X, &Y, &Z, E); 1546 } 1547 vtabarglist ::= vtabarg. 1548 vtabarglist ::= vtabarglist COMMA vtabarg. 1549 vtabarg ::= . {sqlite3VtabArgInit(pParse);} 1550 vtabarg ::= vtabarg vtabargtoken. 1551 vtabargtoken ::= ANY(X). {sqlite3VtabArgExtend(pParse,&X);} 1552 vtabargtoken ::= lp anylist RP(X). {sqlite3VtabArgExtend(pParse,&X);} 1553 lp ::= LP(X). {sqlite3VtabArgExtend(pParse,&X);} 1554 anylist ::= . 1555 anylist ::= anylist LP anylist RP. 1556 anylist ::= anylist ANY. 1557 %endif SQLITE_OMIT_VIRTUALTABLE 1558 1559 1560 //////////////////////// COMMON TABLE EXPRESSIONS //////////////////////////// 1561 %type wqlist {With*} 1562 %destructor wqlist {sqlite3WithDelete(pParse->db, $$);} 1563 1564 with ::= . 1565 %ifndef SQLITE_OMIT_CTE 1566 with ::= WITH wqlist(W). { sqlite3WithPush(pParse, W, 1); } 1567 with ::= WITH RECURSIVE wqlist(W). { sqlite3WithPush(pParse, W, 1); } 1568 1569 wqlist(A) ::= nm(X) eidlist_opt(Y) AS LP select(Z) RP. { 1570 A = sqlite3WithAdd(pParse, 0, &X, Y, Z); /*A-overwrites-X*/ 1571 } 1572 wqlist(A) ::= wqlist(A) COMMA nm(X) eidlist_opt(Y) AS LP select(Z) RP. { 1573 A = sqlite3WithAdd(pParse, A, &X, Y, Z); 1574 } 1575 %endif SQLITE_OMIT_CTE 1576 1577 //////////////////////// WINDOW FUNCTION EXPRESSIONS ///////////////////////// 1578 // These must be at the end of this file. Specifically, the rules that 1579 // introduce tokens WINDOW, OVER and FILTER must appear last. This causes 1580 // the integer values assigned to these tokens to be larger than all other 1581 // tokens that may be output by the tokenizer except TK_SPACE and TK_ILLEGAL. 1582 // 1583 %ifndef SQLITE_OMIT_WINDOWFUNC 1584 %type windowdefn_list {Window*} 1585 %destructor windowdefn_list {sqlite3WindowListDelete(pParse->db, $$);} 1586 windowdefn_list(A) ::= windowdefn(Z). { A = Z; } 1587 windowdefn_list(A) ::= windowdefn_list(Y) COMMA windowdefn(Z). { 1588 assert( Z!=0 ); 1589 Z->pNextWin = Y; 1590 A = Z; 1591 } 1592 1593 %type windowdefn {Window*} 1594 %destructor windowdefn {sqlite3WindowDelete(pParse->db, $$);} 1595 windowdefn(A) ::= nm(X) AS window(Y). { 1596 if( ALWAYS(Y) ){ 1597 Y->zName = sqlite3DbStrNDup(pParse->db, X.z, X.n); 1598 } 1599 A = Y; 1600 } 1601 1602 %type window {Window*} 1603 %destructor window {sqlite3WindowDelete(pParse->db, $$);} 1604 1605 %type frame_opt {Window*} 1606 %destructor frame_opt {sqlite3WindowDelete(pParse->db, $$);} 1607 1608 %type part_opt {ExprList*} 1609 %destructor part_opt {sqlite3ExprListDelete(pParse->db, $$);} 1610 1611 %type filter_opt {Expr*} 1612 %destructor filter_opt {sqlite3ExprDelete(pParse->db, $$);} 1613 1614 %type range_or_rows {int} 1615 1616 %type frame_bound {struct FrameBound} 1617 %destructor frame_bound {sqlite3ExprDelete(pParse->db, $$.pExpr);} 1618 %type frame_bound_s {struct FrameBound} 1619 %destructor frame_bound_s {sqlite3ExprDelete(pParse->db, $$.pExpr);} 1620 %type frame_bound_e {struct FrameBound} 1621 %destructor frame_bound_e {sqlite3ExprDelete(pParse->db, $$.pExpr);} 1622 1623 window(A) ::= LP part_opt(X) orderby_opt(Y) frame_opt(Z) RP. { 1624 A = Z; 1625 if( ALWAYS(A) ){ 1626 A->pPartition = X; 1627 A->pOrderBy = Y; 1628 } 1629 } 1630 1631 part_opt(A) ::= PARTITION BY nexprlist(X). { A = X; } 1632 part_opt(A) ::= . { A = 0; } 1633 1634 frame_opt(A) ::= . { 1635 A = sqlite3WindowAlloc(pParse, TK_RANGE, TK_UNBOUNDED, 0, TK_CURRENT, 0); 1636 } 1637 frame_opt(A) ::= range_or_rows(X) frame_bound_s(Y). { 1638 A = sqlite3WindowAlloc(pParse, X, Y.eType, Y.pExpr, TK_CURRENT, 0); 1639 } 1640 frame_opt(A) ::= range_or_rows(X) BETWEEN frame_bound_s(Y) AND frame_bound_e(Z). { 1641 A = sqlite3WindowAlloc(pParse, X, Y.eType, Y.pExpr, Z.eType, Z.pExpr); 1642 } 1643 1644 range_or_rows(A) ::= RANGE. { A = TK_RANGE; } 1645 range_or_rows(A) ::= ROWS. { A = TK_ROWS; } 1646 1647 1648 frame_bound_s(A) ::= frame_bound(X). { A = X; } 1649 frame_bound_s(A) ::= UNBOUNDED PRECEDING. {A.eType = TK_UNBOUNDED; A.pExpr = 0;} 1650 frame_bound_e(A) ::= frame_bound(X). { A = X; } 1651 frame_bound_e(A) ::= UNBOUNDED FOLLOWING. {A.eType = TK_UNBOUNDED; A.pExpr = 0;} 1652 1653 frame_bound(A) ::= expr(X) PRECEDING. { A.eType = TK_PRECEDING; A.pExpr = X; } 1654 frame_bound(A) ::= CURRENT ROW. { A.eType = TK_CURRENT ; A.pExpr = 0; } 1655 frame_bound(A) ::= expr(X) FOLLOWING. { A.eType = TK_FOLLOWING; A.pExpr = X; } 1656 1657 %type window_clause {Window*} 1658 %destructor window_clause {sqlite3WindowListDelete(pParse->db, $$);} 1659 window_clause(A) ::= WINDOW windowdefn_list(B). { A = B; } 1660 1661 %type over_clause {Window*} 1662 %destructor over_clause {sqlite3WindowDelete(pParse->db, $$);} 1663 over_clause(A) ::= filter_opt(W) OVER window(Z). { 1664 A = Z; 1665 assert( A!=0 ); 1666 A->pFilter = W; 1667 } 1668 over_clause(A) ::= filter_opt(W) OVER nm(Z). { 1669 A = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); 1670 if( A ){ 1671 A->zName = sqlite3DbStrNDup(pParse->db, Z.z, Z.n); 1672 A->pFilter = W; 1673 }else{ 1674 sqlite3ExprDelete(pParse->db, W); 1675 } 1676 } 1677 1678 filter_opt(A) ::= . { A = 0; } 1679 filter_opt(A) ::= FILTER LP WHERE expr(X) RP. { A = X; } 1680 %endif /* SQLITE_OMIT_WINDOWFUNC */ 1681