1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains SQLite's grammar for SQL. Process this file 13 ** using the lemon parser generator to generate C code that runs 14 ** the parser. Lemon will also generate a header file containing 15 ** numeric codes for all of the tokens. 16 */ 17 18 // All token codes are small integers with #defines that begin with "TK_" 19 %token_prefix TK_ 20 21 // The type of the data attached to each token is Token. This is also the 22 // default type for non-terminals. 23 // 24 %token_type {Token} 25 %default_type {Token} 26 27 // An extra argument to the constructor for the parser, which is available 28 // to all actions. 29 %extra_context {Parse *pParse} 30 31 // This code runs whenever there is a syntax error 32 // 33 %syntax_error { 34 UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */ 35 if( TOKEN.z[0] ){ 36 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN); 37 }else{ 38 sqlite3ErrorMsg(pParse, "incomplete input"); 39 } 40 } 41 %stack_overflow { 42 sqlite3ErrorMsg(pParse, "parser stack overflow"); 43 } 44 45 // The name of the generated procedure that implements the parser 46 // is as follows: 47 %name sqlite3Parser 48 49 // The following text is included near the beginning of the C source 50 // code file that implements the parser. 51 // 52 %include { 53 #include "sqliteInt.h" 54 55 /* 56 ** Disable all error recovery processing in the parser push-down 57 ** automaton. 58 */ 59 #define YYNOERRORRECOVERY 1 60 61 /* 62 ** Make yytestcase() the same as testcase() 63 */ 64 #define yytestcase(X) testcase(X) 65 66 /* 67 ** Indicate that sqlite3ParserFree() will never be called with a null 68 ** pointer. 69 */ 70 #define YYPARSEFREENEVERNULL 1 71 72 /* 73 ** In the amalgamation, the parse.c file generated by lemon and the 74 ** tokenize.c file are concatenated. In that case, sqlite3RunParser() 75 ** has access to the the size of the yyParser object and so the parser 76 ** engine can be allocated from stack. In that case, only the 77 ** sqlite3ParserInit() and sqlite3ParserFinalize() routines are invoked 78 ** and the sqlite3ParserAlloc() and sqlite3ParserFree() routines can be 79 ** omitted. 80 */ 81 #ifdef SQLITE_AMALGAMATION 82 # define sqlite3Parser_ENGINEALWAYSONSTACK 1 83 #endif 84 85 /* 86 ** Alternative datatype for the argument to the malloc() routine passed 87 ** into sqlite3ParserAlloc(). The default is size_t. 88 */ 89 #define YYMALLOCARGTYPE u64 90 91 /* 92 ** An instance of the following structure describes the event of a 93 ** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT, 94 ** TK_DELETE, or TK_INSTEAD. If the event is of the form 95 ** 96 ** UPDATE ON (a,b,c) 97 ** 98 ** Then the "b" IdList records the list "a,b,c". 99 */ 100 struct TrigEvent { int a; IdList * b; }; 101 102 struct FrameBound { int eType; Expr *pExpr; }; 103 104 /* 105 ** Disable lookaside memory allocation for objects that might be 106 ** shared across database connections. 107 */ 108 static void disableLookaside(Parse *pParse){ 109 pParse->disableLookaside++; 110 pParse->db->lookaside.bDisable++; 111 } 112 113 } // end %include 114 115 // Input is a single SQL command 116 input ::= cmdlist. 117 cmdlist ::= cmdlist ecmd. 118 cmdlist ::= ecmd. 119 ecmd ::= SEMI. 120 ecmd ::= cmdx SEMI. 121 %ifndef SQLITE_OMIT_EXPLAIN 122 ecmd ::= explain cmdx. 123 explain ::= EXPLAIN. { pParse->explain = 1; } 124 explain ::= EXPLAIN QUERY PLAN. { pParse->explain = 2; } 125 %endif SQLITE_OMIT_EXPLAIN 126 cmdx ::= cmd. { sqlite3FinishCoding(pParse); } 127 128 ///////////////////// Begin and end transactions. //////////////////////////// 129 // 130 131 cmd ::= BEGIN transtype(Y) trans_opt. {sqlite3BeginTransaction(pParse, Y);} 132 trans_opt ::= . 133 trans_opt ::= TRANSACTION. 134 trans_opt ::= TRANSACTION nm. 135 %type transtype {int} 136 transtype(A) ::= . {A = TK_DEFERRED;} 137 transtype(A) ::= DEFERRED(X). {A = @X; /*A-overwrites-X*/} 138 transtype(A) ::= IMMEDIATE(X). {A = @X; /*A-overwrites-X*/} 139 transtype(A) ::= EXCLUSIVE(X). {A = @X; /*A-overwrites-X*/} 140 cmd ::= COMMIT|END(X) trans_opt. {sqlite3EndTransaction(pParse,@X);} 141 cmd ::= ROLLBACK(X) trans_opt. {sqlite3EndTransaction(pParse,@X);} 142 143 savepoint_opt ::= SAVEPOINT. 144 savepoint_opt ::= . 145 cmd ::= SAVEPOINT nm(X). { 146 sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X); 147 } 148 cmd ::= RELEASE savepoint_opt nm(X). { 149 sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X); 150 } 151 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). { 152 sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X); 153 } 154 155 ///////////////////// The CREATE TABLE statement //////////////////////////// 156 // 157 cmd ::= create_table create_table_args. 158 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). { 159 sqlite3StartTable(pParse,&Y,&Z,T,0,0,E); 160 } 161 createkw(A) ::= CREATE(A). {disableLookaside(pParse);} 162 163 %type ifnotexists {int} 164 ifnotexists(A) ::= . {A = 0;} 165 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;} 166 %type temp {int} 167 %ifndef SQLITE_OMIT_TEMPDB 168 temp(A) ::= TEMP. {A = 1;} 169 %endif SQLITE_OMIT_TEMPDB 170 temp(A) ::= . {A = 0;} 171 create_table_args ::= LP columnlist conslist_opt(X) RP(E) table_options(F). { 172 sqlite3EndTable(pParse,&X,&E,F,0); 173 } 174 create_table_args ::= AS select(S). { 175 sqlite3EndTable(pParse,0,0,0,S); 176 sqlite3SelectDelete(pParse->db, S); 177 } 178 %type table_options {int} 179 table_options(A) ::= . {A = 0;} 180 table_options(A) ::= WITHOUT nm(X). { 181 if( X.n==5 && sqlite3_strnicmp(X.z,"rowid",5)==0 ){ 182 A = TF_WithoutRowid | TF_NoVisibleRowid; 183 }else{ 184 A = 0; 185 sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z); 186 } 187 } 188 columnlist ::= columnlist COMMA columnname carglist. 189 columnlist ::= columnname carglist. 190 columnname(A) ::= nm(A) typetoken(Y). {sqlite3AddColumn(pParse,&A,&Y);} 191 192 // Declare some tokens early in order to influence their values, to 193 // improve performance and reduce the executable size. The goal here is 194 // to get the "jump" operations in ISNULL through ESCAPE to have numeric 195 // values that are early enough so that all jump operations are clustered 196 // at the beginning, but also so that the comparison tokens NE through GE 197 // are as large as possible so that they are near to FUNCTION, which is a 198 // token synthesized by addopcodes.tcl. 199 // 200 %token ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST. 201 %token CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL. 202 %token OR AND NOT IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. 203 %token GT LE LT GE ESCAPE. 204 205 // The following directive causes tokens ABORT, AFTER, ASC, etc. to 206 // fallback to ID if they will not parse as their original value. 207 // This obviates the need for the "id" nonterminal. 208 // 209 %fallback ID 210 ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW 211 CONFLICT DATABASE DEFERRED DESC DETACH DO 212 EACH END EXCLUSIVE EXPLAIN FAIL FOR 213 IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN 214 QUERY KEY OF OFFSET PRAGMA RAISE RECURSIVE RELEASE REPLACE RESTRICT ROW ROWS 215 ROLLBACK SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL WITH WITHOUT 216 %ifdef SQLITE_OMIT_COMPOUND_SELECT 217 EXCEPT INTERSECT UNION 218 %endif SQLITE_OMIT_COMPOUND_SELECT 219 %ifndef SQLITE_OMIT_WINDOWFUNC 220 CURRENT FOLLOWING PARTITION PRECEDING RANGE UNBOUNDED 221 %endif SQLITE_OMIT_WINDOWFUNC 222 REINDEX RENAME CTIME_KW IF 223 . 224 %wildcard ANY. 225 226 // Define operator precedence early so that this is the first occurrence 227 // of the operator tokens in the grammer. Keeping the operators together 228 // causes them to be assigned integer values that are close together, 229 // which keeps parser tables smaller. 230 // 231 // The token values assigned to these symbols is determined by the order 232 // in which lemon first sees them. It must be the case that ISNULL/NOTNULL, 233 // NE/EQ, GT/LE, and GE/LT are separated by only a single value. See 234 // the sqlite3ExprIfFalse() routine for additional information on this 235 // constraint. 236 // 237 %left OR. 238 %left AND. 239 %right NOT. 240 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. 241 %left GT LE LT GE. 242 %right ESCAPE. 243 %left BITAND BITOR LSHIFT RSHIFT. 244 %left PLUS MINUS. 245 %left STAR SLASH REM. 246 %left CONCAT. 247 %left COLLATE. 248 %right BITNOT. 249 %nonassoc ON. 250 251 // An IDENTIFIER can be a generic identifier, or one of several 252 // keywords. Any non-standard keyword can also be an identifier. 253 // 254 %token_class id ID|INDEXED. 255 256 257 // And "ids" is an identifer-or-string. 258 // 259 %token_class ids ID|STRING. 260 261 // The name of a column or table can be any of the following: 262 // 263 %type nm {Token} 264 nm(A) ::= id(A). 265 nm(A) ::= STRING(A). 266 nm(A) ::= JOIN_KW(A). 267 268 // A typetoken is really zero or more tokens that form a type name such 269 // as can be found after the column name in a CREATE TABLE statement. 270 // Multiple tokens are concatenated to form the value of the typetoken. 271 // 272 %type typetoken {Token} 273 typetoken(A) ::= . {A.n = 0; A.z = 0;} 274 typetoken(A) ::= typename(A). 275 typetoken(A) ::= typename(A) LP signed RP(Y). { 276 A.n = (int)(&Y.z[Y.n] - A.z); 277 } 278 typetoken(A) ::= typename(A) LP signed COMMA signed RP(Y). { 279 A.n = (int)(&Y.z[Y.n] - A.z); 280 } 281 %type typename {Token} 282 typename(A) ::= ids(A). 283 typename(A) ::= typename(A) ids(Y). {A.n=Y.n+(int)(Y.z-A.z);} 284 signed ::= plus_num. 285 signed ::= minus_num. 286 287 // The scanpt non-terminal takes a value which is a pointer to the 288 // input text just past the last token that has been shifted into 289 // the parser. By surrounding some phrase in the grammar with two 290 // scanpt non-terminals, we can capture the input text for that phrase. 291 // For example: 292 // 293 // something ::= .... scanpt(A) phrase scanpt(Z). 294 // 295 // The text that is parsed as "phrase" is a string starting at A 296 // and containing (int)(Z-A) characters. There might be some extra 297 // whitespace on either end of the text, but that can be removed in 298 // post-processing, if needed. 299 // 300 %type scanpt {const char*} 301 scanpt(A) ::= . { 302 assert( yyLookahead!=YYNOCODE ); 303 A = yyLookaheadToken.z; 304 } 305 306 // "carglist" is a list of additional constraints that come after the 307 // column name and column type in a CREATE TABLE statement. 308 // 309 carglist ::= carglist ccons. 310 carglist ::= . 311 ccons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} 312 ccons ::= DEFAULT scanpt(A) term(X) scanpt(Z). 313 {sqlite3AddDefaultValue(pParse,X,A,Z);} 314 ccons ::= DEFAULT LP(A) expr(X) RP(Z). 315 {sqlite3AddDefaultValue(pParse,X,A.z+1,Z.z);} 316 ccons ::= DEFAULT PLUS(A) term(X) scanpt(Z). 317 {sqlite3AddDefaultValue(pParse,X,A.z,Z);} 318 ccons ::= DEFAULT MINUS(A) term(X) scanpt(Z). { 319 Expr *p = sqlite3PExpr(pParse, TK_UMINUS, X, 0); 320 sqlite3AddDefaultValue(pParse,p,A.z,Z); 321 } 322 ccons ::= DEFAULT scanpt id(X). { 323 Expr *p = tokenExpr(pParse, TK_STRING, X); 324 if( p ){ 325 sqlite3ExprIdToTrueFalse(p); 326 testcase( p->op==TK_TRUEFALSE && sqlite3ExprTruthValue(p) ); 327 } 328 sqlite3AddDefaultValue(pParse,p,X.z,X.z+X.n); 329 } 330 331 // In addition to the type name, we also care about the primary key and 332 // UNIQUE constraints. 333 // 334 ccons ::= NULL onconf. 335 ccons ::= NOT NULL onconf(R). {sqlite3AddNotNull(pParse, R);} 336 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I). 337 {sqlite3AddPrimaryKey(pParse,0,R,I,Z);} 338 ccons ::= UNIQUE onconf(R). {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0, 339 SQLITE_IDXTYPE_UNIQUE);} 340 ccons ::= CHECK LP expr(X) RP. {sqlite3AddCheckConstraint(pParse,X);} 341 ccons ::= REFERENCES nm(T) eidlist_opt(TA) refargs(R). 342 {sqlite3CreateForeignKey(pParse,0,&T,TA,R);} 343 ccons ::= defer_subclause(D). {sqlite3DeferForeignKey(pParse,D);} 344 ccons ::= COLLATE ids(C). {sqlite3AddCollateType(pParse, &C);} 345 346 // The optional AUTOINCREMENT keyword 347 %type autoinc {int} 348 autoinc(X) ::= . {X = 0;} 349 autoinc(X) ::= AUTOINCR. {X = 1;} 350 351 // The next group of rules parses the arguments to a REFERENCES clause 352 // that determine if the referential integrity checking is deferred or 353 // or immediate and which determine what action to take if a ref-integ 354 // check fails. 355 // 356 %type refargs {int} 357 refargs(A) ::= . { A = OE_None*0x0101; /* EV: R-19803-45884 */} 358 refargs(A) ::= refargs(A) refarg(Y). { A = (A & ~Y.mask) | Y.value; } 359 %type refarg {struct {int value; int mask;}} 360 refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; } 361 refarg(A) ::= ON INSERT refact. { A.value = 0; A.mask = 0x000000; } 362 refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; } 363 refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; } 364 %type refact {int} 365 refact(A) ::= SET NULL. { A = OE_SetNull; /* EV: R-33326-45252 */} 366 refact(A) ::= SET DEFAULT. { A = OE_SetDflt; /* EV: R-33326-45252 */} 367 refact(A) ::= CASCADE. { A = OE_Cascade; /* EV: R-33326-45252 */} 368 refact(A) ::= RESTRICT. { A = OE_Restrict; /* EV: R-33326-45252 */} 369 refact(A) ::= NO ACTION. { A = OE_None; /* EV: R-33326-45252 */} 370 %type defer_subclause {int} 371 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt. {A = 0;} 372 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;} 373 %type init_deferred_pred_opt {int} 374 init_deferred_pred_opt(A) ::= . {A = 0;} 375 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;} 376 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;} 377 378 conslist_opt(A) ::= . {A.n = 0; A.z = 0;} 379 conslist_opt(A) ::= COMMA(A) conslist. 380 conslist ::= conslist tconscomma tcons. 381 conslist ::= tcons. 382 tconscomma ::= COMMA. {pParse->constraintName.n = 0;} 383 tconscomma ::= . 384 tcons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} 385 tcons ::= PRIMARY KEY LP sortlist(X) autoinc(I) RP onconf(R). 386 {sqlite3AddPrimaryKey(pParse,X,R,I,0);} 387 tcons ::= UNIQUE LP sortlist(X) RP onconf(R). 388 {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0, 389 SQLITE_IDXTYPE_UNIQUE);} 390 tcons ::= CHECK LP expr(E) RP onconf. 391 {sqlite3AddCheckConstraint(pParse,E);} 392 tcons ::= FOREIGN KEY LP eidlist(FA) RP 393 REFERENCES nm(T) eidlist_opt(TA) refargs(R) defer_subclause_opt(D). { 394 sqlite3CreateForeignKey(pParse, FA, &T, TA, R); 395 sqlite3DeferForeignKey(pParse, D); 396 } 397 %type defer_subclause_opt {int} 398 defer_subclause_opt(A) ::= . {A = 0;} 399 defer_subclause_opt(A) ::= defer_subclause(A). 400 401 // The following is a non-standard extension that allows us to declare the 402 // default behavior when there is a constraint conflict. 403 // 404 %type onconf {int} 405 %type orconf {int} 406 %type resolvetype {int} 407 onconf(A) ::= . {A = OE_Default;} 408 onconf(A) ::= ON CONFLICT resolvetype(X). {A = X;} 409 orconf(A) ::= . {A = OE_Default;} 410 orconf(A) ::= OR resolvetype(X). {A = X;} 411 resolvetype(A) ::= raisetype(A). 412 resolvetype(A) ::= IGNORE. {A = OE_Ignore;} 413 resolvetype(A) ::= REPLACE. {A = OE_Replace;} 414 415 ////////////////////////// The DROP TABLE ///////////////////////////////////// 416 // 417 cmd ::= DROP TABLE ifexists(E) fullname(X). { 418 sqlite3DropTable(pParse, X, 0, E); 419 } 420 %type ifexists {int} 421 ifexists(A) ::= IF EXISTS. {A = 1;} 422 ifexists(A) ::= . {A = 0;} 423 424 ///////////////////// The CREATE VIEW statement ///////////////////////////// 425 // 426 %ifndef SQLITE_OMIT_VIEW 427 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) eidlist_opt(C) 428 AS select(S). { 429 sqlite3CreateView(pParse, &X, &Y, &Z, C, S, T, E); 430 } 431 cmd ::= DROP VIEW ifexists(E) fullname(X). { 432 sqlite3DropTable(pParse, X, 1, E); 433 } 434 %endif SQLITE_OMIT_VIEW 435 436 //////////////////////// The SELECT statement ///////////////////////////////// 437 // 438 cmd ::= select(X). { 439 SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0}; 440 sqlite3Select(pParse, X, &dest); 441 sqlite3SelectDelete(pParse->db, X); 442 } 443 444 %type select {Select*} 445 %destructor select {sqlite3SelectDelete(pParse->db, $$);} 446 %type selectnowith {Select*} 447 %destructor selectnowith {sqlite3SelectDelete(pParse->db, $$);} 448 %type oneselect {Select*} 449 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);} 450 451 %include { 452 /* 453 ** For a compound SELECT statement, make sure p->pPrior->pNext==p for 454 ** all elements in the list. And make sure list length does not exceed 455 ** SQLITE_LIMIT_COMPOUND_SELECT. 456 */ 457 static void parserDoubleLinkSelect(Parse *pParse, Select *p){ 458 if( p->pPrior ){ 459 Select *pNext = 0, *pLoop; 460 int mxSelect, cnt = 0; 461 for(pLoop=p; pLoop; pNext=pLoop, pLoop=pLoop->pPrior, cnt++){ 462 pLoop->pNext = pNext; 463 pLoop->selFlags |= SF_Compound; 464 } 465 if( (p->selFlags & SF_MultiValue)==0 && 466 (mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT])>0 && 467 cnt>mxSelect 468 ){ 469 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 470 } 471 } 472 } 473 } 474 475 %ifndef SQLITE_OMIT_CTE 476 select(A) ::= WITH wqlist(W) selectnowith(X). { 477 Select *p = X; 478 if( p ){ 479 p->pWith = W; 480 parserDoubleLinkSelect(pParse, p); 481 }else{ 482 sqlite3WithDelete(pParse->db, W); 483 } 484 A = p; 485 } 486 select(A) ::= WITH RECURSIVE wqlist(W) selectnowith(X). { 487 Select *p = X; 488 if( p ){ 489 p->pWith = W; 490 parserDoubleLinkSelect(pParse, p); 491 }else{ 492 sqlite3WithDelete(pParse->db, W); 493 } 494 A = p; 495 } 496 %endif /* SQLITE_OMIT_CTE */ 497 select(A) ::= selectnowith(X). { 498 Select *p = X; 499 if( p ){ 500 parserDoubleLinkSelect(pParse, p); 501 } 502 A = p; /*A-overwrites-X*/ 503 } 504 505 selectnowith(A) ::= oneselect(A). 506 %ifndef SQLITE_OMIT_COMPOUND_SELECT 507 selectnowith(A) ::= selectnowith(A) multiselect_op(Y) oneselect(Z). { 508 Select *pRhs = Z; 509 Select *pLhs = A; 510 if( pRhs && pRhs->pPrior ){ 511 SrcList *pFrom; 512 Token x; 513 x.n = 0; 514 parserDoubleLinkSelect(pParse, pRhs); 515 pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0); 516 pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0); 517 } 518 if( pRhs ){ 519 pRhs->op = (u8)Y; 520 pRhs->pPrior = pLhs; 521 if( ALWAYS(pLhs) ) pLhs->selFlags &= ~SF_MultiValue; 522 pRhs->selFlags &= ~SF_MultiValue; 523 if( Y!=TK_ALL ) pParse->hasCompound = 1; 524 }else{ 525 sqlite3SelectDelete(pParse->db, pLhs); 526 } 527 A = pRhs; 528 } 529 %type multiselect_op {int} 530 multiselect_op(A) ::= UNION(OP). {A = @OP; /*A-overwrites-OP*/} 531 multiselect_op(A) ::= UNION ALL. {A = TK_ALL;} 532 multiselect_op(A) ::= EXCEPT|INTERSECT(OP). {A = @OP; /*A-overwrites-OP*/} 533 %endif SQLITE_OMIT_COMPOUND_SELECT 534 535 oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y) 536 groupby_opt(P) having_opt(Q) 537 orderby_opt(Z) limit_opt(L). { 538 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L); 539 } 540 %ifndef SQLITE_OMIT_WINDOWFUNC 541 oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y) 542 groupby_opt(P) having_opt(Q) window_clause(R) 543 orderby_opt(Z) limit_opt(L). { 544 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L); 545 if( A ){ 546 A->pWinDefn = R; 547 }else{ 548 sqlite3WindowListDelete(pParse->db, R); 549 } 550 } 551 %endif 552 553 554 oneselect(A) ::= values(A). 555 556 %type values {Select*} 557 %destructor values {sqlite3SelectDelete(pParse->db, $$);} 558 values(A) ::= VALUES LP nexprlist(X) RP. { 559 A = sqlite3SelectNew(pParse,X,0,0,0,0,0,SF_Values,0); 560 } 561 values(A) ::= values(A) COMMA LP nexprlist(Y) RP. { 562 Select *pRight, *pLeft = A; 563 pRight = sqlite3SelectNew(pParse,Y,0,0,0,0,0,SF_Values|SF_MultiValue,0); 564 if( ALWAYS(pLeft) ) pLeft->selFlags &= ~SF_MultiValue; 565 if( pRight ){ 566 pRight->op = TK_ALL; 567 pRight->pPrior = pLeft; 568 A = pRight; 569 }else{ 570 A = pLeft; 571 } 572 } 573 574 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is 575 // present and false (0) if it is not. 576 // 577 %type distinct {int} 578 distinct(A) ::= DISTINCT. {A = SF_Distinct;} 579 distinct(A) ::= ALL. {A = SF_All;} 580 distinct(A) ::= . {A = 0;} 581 582 // selcollist is a list of expressions that are to become the return 583 // values of the SELECT statement. The "*" in statements like 584 // "SELECT * FROM ..." is encoded as a special expression with an 585 // opcode of TK_ASTERISK. 586 // 587 %type selcollist {ExprList*} 588 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);} 589 %type sclp {ExprList*} 590 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);} 591 sclp(A) ::= selcollist(A) COMMA. 592 sclp(A) ::= . {A = 0;} 593 selcollist(A) ::= sclp(A) scanpt(B) expr(X) scanpt(Z) as(Y). { 594 A = sqlite3ExprListAppend(pParse, A, X); 595 if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1); 596 sqlite3ExprListSetSpan(pParse,A,B,Z); 597 } 598 selcollist(A) ::= sclp(A) scanpt STAR. { 599 Expr *p = sqlite3Expr(pParse->db, TK_ASTERISK, 0); 600 A = sqlite3ExprListAppend(pParse, A, p); 601 } 602 selcollist(A) ::= sclp(A) scanpt nm(X) DOT STAR. { 603 Expr *pRight = sqlite3PExpr(pParse, TK_ASTERISK, 0, 0); 604 Expr *pLeft = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1); 605 Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 606 A = sqlite3ExprListAppend(pParse,A, pDot); 607 } 608 609 // An option "AS <id>" phrase that can follow one of the expressions that 610 // define the result set, or one of the tables in the FROM clause. 611 // 612 %type as {Token} 613 as(X) ::= AS nm(Y). {X = Y;} 614 as(X) ::= ids(X). 615 as(X) ::= . {X.n = 0; X.z = 0;} 616 617 618 %type seltablist {SrcList*} 619 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);} 620 %type stl_prefix {SrcList*} 621 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);} 622 %type from {SrcList*} 623 %destructor from {sqlite3SrcListDelete(pParse->db, $$);} 624 625 // A complete FROM clause. 626 // 627 from(A) ::= . {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));} 628 from(A) ::= FROM seltablist(X). { 629 A = X; 630 sqlite3SrcListShiftJoinType(A); 631 } 632 633 // "seltablist" is a "Select Table List" - the content of the FROM clause 634 // in a SELECT statement. "stl_prefix" is a prefix of this list. 635 // 636 stl_prefix(A) ::= seltablist(A) joinop(Y). { 637 if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].fg.jointype = (u8)Y; 638 } 639 stl_prefix(A) ::= . {A = 0;} 640 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) as(Z) indexed_opt(I) 641 on_opt(N) using_opt(U). { 642 A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U); 643 sqlite3SrcListIndexedBy(pParse, A, &I); 644 } 645 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) LP exprlist(E) RP as(Z) 646 on_opt(N) using_opt(U). { 647 A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U); 648 sqlite3SrcListFuncArgs(pParse, A, E); 649 } 650 %ifndef SQLITE_OMIT_SUBQUERY 651 seltablist(A) ::= stl_prefix(A) LP select(S) RP 652 as(Z) on_opt(N) using_opt(U). { 653 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,S,N,U); 654 } 655 seltablist(A) ::= stl_prefix(A) LP seltablist(F) RP 656 as(Z) on_opt(N) using_opt(U). { 657 if( A==0 && Z.n==0 && N==0 && U==0 ){ 658 A = F; 659 }else if( F->nSrc==1 ){ 660 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,0,N,U); 661 if( A ){ 662 struct SrcList_item *pNew = &A->a[A->nSrc-1]; 663 struct SrcList_item *pOld = F->a; 664 pNew->zName = pOld->zName; 665 pNew->zDatabase = pOld->zDatabase; 666 pNew->pSelect = pOld->pSelect; 667 pOld->zName = pOld->zDatabase = 0; 668 pOld->pSelect = 0; 669 } 670 sqlite3SrcListDelete(pParse->db, F); 671 }else{ 672 Select *pSubquery; 673 sqlite3SrcListShiftJoinType(F); 674 pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,SF_NestedFrom,0); 675 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,pSubquery,N,U); 676 } 677 } 678 %endif SQLITE_OMIT_SUBQUERY 679 680 %type dbnm {Token} 681 dbnm(A) ::= . {A.z=0; A.n=0;} 682 dbnm(A) ::= DOT nm(X). {A = X;} 683 684 %type fullname {SrcList*} 685 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);} 686 fullname(A) ::= nm(X). { 687 A = sqlite3SrcListAppend(pParse->db,0,&X,0); 688 if( IN_RENAME_OBJECT && A ) sqlite3RenameTokenMap(pParse, A->a[0].zName, &X); 689 } 690 fullname(A) ::= nm(X) DOT nm(Y). { 691 A = sqlite3SrcListAppend(pParse->db,0,&X,&Y); 692 if( IN_RENAME_OBJECT && A ) sqlite3RenameTokenMap(pParse, A->a[0].zName, &Y); 693 } 694 695 %type xfullname {SrcList*} 696 %destructor xfullname {sqlite3SrcListDelete(pParse->db, $$);} 697 xfullname(A) ::= nm(X). 698 {A = sqlite3SrcListAppend(pParse->db,0,&X,0); /*A-overwrites-X*/} 699 xfullname(A) ::= nm(X) DOT nm(Y). 700 {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y); /*A-overwrites-X*/} 701 xfullname(A) ::= nm(X) DOT nm(Y) AS nm(Z). { 702 A = sqlite3SrcListAppend(pParse->db,0,&X,&Y); /*A-overwrites-X*/ 703 if( A ) A->a[0].zAlias = sqlite3NameFromToken(pParse->db, &Z); 704 } 705 xfullname(A) ::= nm(X) AS nm(Z). { 706 A = sqlite3SrcListAppend(pParse->db,0,&X,0); /*A-overwrites-X*/ 707 if( A ) A->a[0].zAlias = sqlite3NameFromToken(pParse->db, &Z); 708 } 709 710 %type joinop {int} 711 joinop(X) ::= COMMA|JOIN. { X = JT_INNER; } 712 joinop(X) ::= JOIN_KW(A) JOIN. 713 {X = sqlite3JoinType(pParse,&A,0,0); /*X-overwrites-A*/} 714 joinop(X) ::= JOIN_KW(A) nm(B) JOIN. 715 {X = sqlite3JoinType(pParse,&A,&B,0); /*X-overwrites-A*/} 716 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN. 717 {X = sqlite3JoinType(pParse,&A,&B,&C);/*X-overwrites-A*/} 718 719 // There is a parsing abiguity in an upsert statement that uses a 720 // SELECT on the RHS of a the INSERT: 721 // 722 // INSERT INTO tab SELECT * FROM aaa JOIN bbb ON CONFLICT ... 723 // here ----^^ 724 // 725 // When the ON token is encountered, the parser does not know if it is 726 // the beginning of an ON CONFLICT clause, or the beginning of an ON 727 // clause associated with the JOIN. The conflict is resolved in favor 728 // of the JOIN. If an ON CONFLICT clause is intended, insert a dummy 729 // WHERE clause in between, like this: 730 // 731 // INSERT INTO tab SELECT * FROM aaa JOIN bbb WHERE true ON CONFLICT ... 732 // 733 // The [AND] and [OR] precedence marks in the rules for on_opt cause the 734 // ON in this context to always be interpreted as belonging to the JOIN. 735 // 736 %type on_opt {Expr*} 737 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);} 738 on_opt(N) ::= ON expr(E). {N = E;} 739 on_opt(N) ::= . [OR] {N = 0;} 740 741 // Note that this block abuses the Token type just a little. If there is 742 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If 743 // there is an INDEXED BY clause, then the token is populated as per normal, 744 // with z pointing to the token data and n containing the number of bytes 745 // in the token. 746 // 747 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is 748 // normally illegal. The sqlite3SrcListIndexedBy() function 749 // recognizes and interprets this as a special case. 750 // 751 %type indexed_opt {Token} 752 indexed_opt(A) ::= . {A.z=0; A.n=0;} 753 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;} 754 indexed_opt(A) ::= NOT INDEXED. {A.z=0; A.n=1;} 755 756 %type using_opt {IdList*} 757 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);} 758 using_opt(U) ::= USING LP idlist(L) RP. {U = L;} 759 using_opt(U) ::= . {U = 0;} 760 761 762 %type orderby_opt {ExprList*} 763 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);} 764 765 // the sortlist non-terminal stores a list of expression where each 766 // expression is optionally followed by ASC or DESC to indicate the 767 // sort order. 768 // 769 %type sortlist {ExprList*} 770 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);} 771 772 orderby_opt(A) ::= . {A = 0;} 773 orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;} 774 sortlist(A) ::= sortlist(A) COMMA expr(Y) sortorder(Z). { 775 A = sqlite3ExprListAppend(pParse,A,Y); 776 sqlite3ExprListSetSortOrder(A,Z); 777 } 778 sortlist(A) ::= expr(Y) sortorder(Z). { 779 A = sqlite3ExprListAppend(pParse,0,Y); /*A-overwrites-Y*/ 780 sqlite3ExprListSetSortOrder(A,Z); 781 } 782 783 %type sortorder {int} 784 785 sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;} 786 sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;} 787 sortorder(A) ::= . {A = SQLITE_SO_UNDEFINED;} 788 789 %type groupby_opt {ExprList*} 790 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);} 791 groupby_opt(A) ::= . {A = 0;} 792 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;} 793 794 %type having_opt {Expr*} 795 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);} 796 having_opt(A) ::= . {A = 0;} 797 having_opt(A) ::= HAVING expr(X). {A = X;} 798 799 %type limit_opt {Expr*} 800 801 // The destructor for limit_opt will never fire in the current grammar. 802 // The limit_opt non-terminal only occurs at the end of a single production 803 // rule for SELECT statements. As soon as the rule that create the 804 // limit_opt non-terminal reduces, the SELECT statement rule will also 805 // reduce. So there is never a limit_opt non-terminal on the stack 806 // except as a transient. So there is never anything to destroy. 807 // 808 //%destructor limit_opt {sqlite3ExprDelete(pParse->db, $$);} 809 limit_opt(A) ::= . {A = 0;} 810 limit_opt(A) ::= LIMIT expr(X). 811 {A = sqlite3PExpr(pParse,TK_LIMIT,X,0);} 812 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y). 813 {A = sqlite3PExpr(pParse,TK_LIMIT,X,Y);} 814 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y). 815 {A = sqlite3PExpr(pParse,TK_LIMIT,Y,X);} 816 817 /////////////////////////// The DELETE statement ///////////////////////////// 818 // 819 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 820 cmd ::= with DELETE FROM xfullname(X) indexed_opt(I) where_opt(W) 821 orderby_opt(O) limit_opt(L). { 822 sqlite3SrcListIndexedBy(pParse, X, &I); 823 sqlite3DeleteFrom(pParse,X,W,O,L); 824 } 825 %endif 826 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 827 cmd ::= with DELETE FROM xfullname(X) indexed_opt(I) where_opt(W). { 828 sqlite3SrcListIndexedBy(pParse, X, &I); 829 sqlite3DeleteFrom(pParse,X,W,0,0); 830 } 831 %endif 832 833 %type where_opt {Expr*} 834 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);} 835 836 where_opt(A) ::= . {A = 0;} 837 where_opt(A) ::= WHERE expr(X). {A = X;} 838 839 ////////////////////////// The UPDATE command //////////////////////////////// 840 // 841 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 842 cmd ::= with UPDATE orconf(R) xfullname(X) indexed_opt(I) SET setlist(Y) 843 where_opt(W) orderby_opt(O) limit_opt(L). { 844 sqlite3SrcListIndexedBy(pParse, X, &I); 845 sqlite3ExprListCheckLength(pParse,Y,"set list"); 846 sqlite3Update(pParse,X,Y,W,R,O,L,0); 847 } 848 %endif 849 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 850 cmd ::= with UPDATE orconf(R) xfullname(X) indexed_opt(I) SET setlist(Y) 851 where_opt(W). { 852 sqlite3SrcListIndexedBy(pParse, X, &I); 853 sqlite3ExprListCheckLength(pParse,Y,"set list"); 854 sqlite3Update(pParse,X,Y,W,R,0,0,0); 855 } 856 %endif 857 858 %type setlist {ExprList*} 859 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);} 860 861 setlist(A) ::= setlist(A) COMMA nm(X) EQ expr(Y). { 862 A = sqlite3ExprListAppend(pParse, A, Y); 863 sqlite3ExprListSetName(pParse, A, &X, 1); 864 } 865 setlist(A) ::= setlist(A) COMMA LP idlist(X) RP EQ expr(Y). { 866 A = sqlite3ExprListAppendVector(pParse, A, X, Y); 867 } 868 setlist(A) ::= nm(X) EQ expr(Y). { 869 A = sqlite3ExprListAppend(pParse, 0, Y); 870 sqlite3ExprListSetName(pParse, A, &X, 1); 871 } 872 setlist(A) ::= LP idlist(X) RP EQ expr(Y). { 873 A = sqlite3ExprListAppendVector(pParse, 0, X, Y); 874 } 875 876 ////////////////////////// The INSERT command ///////////////////////////////// 877 // 878 cmd ::= with insert_cmd(R) INTO xfullname(X) idlist_opt(F) select(S) 879 upsert(U). { 880 sqlite3Insert(pParse, X, S, F, R, U); 881 } 882 cmd ::= with insert_cmd(R) INTO xfullname(X) idlist_opt(F) DEFAULT VALUES. 883 { 884 sqlite3Insert(pParse, X, 0, F, R, 0); 885 } 886 887 %type upsert {Upsert*} 888 889 // Because upsert only occurs at the tip end of the INSERT rule for cmd, 890 // there is never a case where the value of the upsert pointer will not 891 // be destroyed by the cmd action. So comment-out the destructor to 892 // avoid unreachable code. 893 //%destructor upsert {sqlite3UpsertDelete(pParse->db,$$);} 894 upsert(A) ::= . { A = 0; } 895 upsert(A) ::= ON CONFLICT LP sortlist(T) RP where_opt(TW) 896 DO UPDATE SET setlist(Z) where_opt(W). 897 { A = sqlite3UpsertNew(pParse->db,T,TW,Z,W);} 898 upsert(A) ::= ON CONFLICT LP sortlist(T) RP where_opt(TW) DO NOTHING. 899 { A = sqlite3UpsertNew(pParse->db,T,TW,0,0); } 900 upsert(A) ::= ON CONFLICT DO NOTHING. 901 { A = sqlite3UpsertNew(pParse->db,0,0,0,0); } 902 903 %type insert_cmd {int} 904 insert_cmd(A) ::= INSERT orconf(R). {A = R;} 905 insert_cmd(A) ::= REPLACE. {A = OE_Replace;} 906 907 %type idlist_opt {IdList*} 908 %destructor idlist_opt {sqlite3IdListDelete(pParse->db, $$);} 909 %type idlist {IdList*} 910 %destructor idlist {sqlite3IdListDelete(pParse->db, $$);} 911 912 idlist_opt(A) ::= . {A = 0;} 913 idlist_opt(A) ::= LP idlist(X) RP. {A = X;} 914 idlist(A) ::= idlist(A) COMMA nm(Y). 915 {A = sqlite3IdListAppend(pParse,A,&Y);} 916 idlist(A) ::= nm(Y). 917 {A = sqlite3IdListAppend(pParse,0,&Y); /*A-overwrites-Y*/} 918 919 /////////////////////////// Expression Processing ///////////////////////////// 920 // 921 922 %type expr {Expr*} 923 %destructor expr {sqlite3ExprDelete(pParse->db, $$);} 924 %type term {Expr*} 925 %destructor term {sqlite3ExprDelete(pParse->db, $$);} 926 927 %include { 928 929 /* Construct a new Expr object from a single identifier. Use the 930 ** new Expr to populate pOut. Set the span of pOut to be the identifier 931 ** that created the expression. 932 */ 933 static Expr *tokenExpr(Parse *pParse, int op, Token t){ 934 Expr *p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)+t.n+1); 935 if( p ){ 936 /* memset(p, 0, sizeof(Expr)); */ 937 p->op = (u8)op; 938 p->affinity = 0; 939 p->flags = EP_Leaf; 940 p->iAgg = -1; 941 p->pLeft = p->pRight = 0; 942 p->x.pList = 0; 943 p->pAggInfo = 0; 944 p->y.pTab = 0; 945 p->op2 = 0; 946 p->iTable = 0; 947 p->iColumn = 0; 948 p->u.zToken = (char*)&p[1]; 949 memcpy(p->u.zToken, t.z, t.n); 950 p->u.zToken[t.n] = 0; 951 if( sqlite3Isquote(p->u.zToken[0]) ){ 952 if( p->u.zToken[0]=='"' ) p->flags |= EP_DblQuoted; 953 sqlite3Dequote(p->u.zToken); 954 } 955 #if SQLITE_MAX_EXPR_DEPTH>0 956 p->nHeight = 1; 957 #endif 958 if( IN_RENAME_OBJECT ){ 959 return (Expr*)sqlite3RenameTokenMap(pParse, (void*)p, &t); 960 } 961 } 962 return p; 963 } 964 965 } 966 967 expr(A) ::= term(A). 968 expr(A) ::= LP expr(X) RP. {A = X;} 969 expr(A) ::= id(X). {A=tokenExpr(pParse,TK_ID,X); /*A-overwrites-X*/} 970 expr(A) ::= JOIN_KW(X). {A=tokenExpr(pParse,TK_ID,X); /*A-overwrites-X*/} 971 expr(A) ::= nm(X) DOT nm(Y). { 972 Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1); 973 Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1); 974 if( IN_RENAME_OBJECT ){ 975 sqlite3RenameTokenMap(pParse, (void*)temp2, &Y); 976 sqlite3RenameTokenMap(pParse, (void*)temp1, &X); 977 } 978 A = sqlite3PExpr(pParse, TK_DOT, temp1, temp2); 979 } 980 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). { 981 Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1); 982 Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1); 983 Expr *temp3 = sqlite3ExprAlloc(pParse->db, TK_ID, &Z, 1); 984 Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3); 985 if( IN_RENAME_OBJECT ){ 986 sqlite3RenameTokenMap(pParse, (void*)temp3, &Z); 987 sqlite3RenameTokenMap(pParse, (void*)temp2, &Y); 988 } 989 A = sqlite3PExpr(pParse, TK_DOT, temp1, temp4); 990 } 991 term(A) ::= NULL|FLOAT|BLOB(X). {A=tokenExpr(pParse,@X,X); /*A-overwrites-X*/} 992 term(A) ::= STRING(X). {A=tokenExpr(pParse,@X,X); /*A-overwrites-X*/} 993 term(A) ::= INTEGER(X). { 994 A = sqlite3ExprAlloc(pParse->db, TK_INTEGER, &X, 1); 995 } 996 expr(A) ::= VARIABLE(X). { 997 if( !(X.z[0]=='#' && sqlite3Isdigit(X.z[1])) ){ 998 u32 n = X.n; 999 A = tokenExpr(pParse, TK_VARIABLE, X); 1000 sqlite3ExprAssignVarNumber(pParse, A, n); 1001 }else{ 1002 /* When doing a nested parse, one can include terms in an expression 1003 ** that look like this: #1 #2 ... These terms refer to registers 1004 ** in the virtual machine. #N is the N-th register. */ 1005 Token t = X; /*A-overwrites-X*/ 1006 assert( t.n>=2 ); 1007 if( pParse->nested==0 ){ 1008 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &t); 1009 A = 0; 1010 }else{ 1011 A = sqlite3PExpr(pParse, TK_REGISTER, 0, 0); 1012 if( A ) sqlite3GetInt32(&t.z[1], &A->iTable); 1013 } 1014 } 1015 } 1016 expr(A) ::= expr(A) COLLATE ids(C). { 1017 A = sqlite3ExprAddCollateToken(pParse, A, &C, 1); 1018 } 1019 %ifndef SQLITE_OMIT_CAST 1020 expr(A) ::= CAST LP expr(E) AS typetoken(T) RP. { 1021 A = sqlite3ExprAlloc(pParse->db, TK_CAST, &T, 1); 1022 sqlite3ExprAttachSubtrees(pParse->db, A, E, 0); 1023 } 1024 %endif SQLITE_OMIT_CAST 1025 1026 1027 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP. { 1028 A = sqlite3ExprFunction(pParse, Y, &X, D); 1029 } 1030 expr(A) ::= id(X) LP STAR RP. { 1031 A = sqlite3ExprFunction(pParse, 0, &X, 0); 1032 } 1033 1034 %ifndef SQLITE_OMIT_WINDOWFUNC 1035 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP over_clause(Z). { 1036 A = sqlite3ExprFunction(pParse, Y, &X, D); 1037 sqlite3WindowAttach(pParse, A, Z); 1038 } 1039 expr(A) ::= id(X) LP STAR RP over_clause(Z). { 1040 A = sqlite3ExprFunction(pParse, 0, &X, 0); 1041 sqlite3WindowAttach(pParse, A, Z); 1042 } 1043 %endif 1044 1045 term(A) ::= CTIME_KW(OP). { 1046 A = sqlite3ExprFunction(pParse, 0, &OP, 0); 1047 } 1048 1049 expr(A) ::= LP nexprlist(X) COMMA expr(Y) RP. { 1050 ExprList *pList = sqlite3ExprListAppend(pParse, X, Y); 1051 A = sqlite3PExpr(pParse, TK_VECTOR, 0, 0); 1052 if( A ){ 1053 A->x.pList = pList; 1054 }else{ 1055 sqlite3ExprListDelete(pParse->db, pList); 1056 } 1057 } 1058 1059 expr(A) ::= expr(A) AND(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 1060 expr(A) ::= expr(A) OR(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 1061 expr(A) ::= expr(A) LT|GT|GE|LE(OP) expr(Y). 1062 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1063 expr(A) ::= expr(A) EQ|NE(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 1064 expr(A) ::= expr(A) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y). 1065 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1066 expr(A) ::= expr(A) PLUS|MINUS(OP) expr(Y). 1067 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1068 expr(A) ::= expr(A) STAR|SLASH|REM(OP) expr(Y). 1069 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1070 expr(A) ::= expr(A) CONCAT(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 1071 %type likeop {Token} 1072 likeop(A) ::= LIKE_KW|MATCH(A). 1073 likeop(A) ::= NOT LIKE_KW|MATCH(X). {A=X; A.n|=0x80000000; /*A-overwrite-X*/} 1074 expr(A) ::= expr(A) likeop(OP) expr(Y). [LIKE_KW] { 1075 ExprList *pList; 1076 int bNot = OP.n & 0x80000000; 1077 OP.n &= 0x7fffffff; 1078 pList = sqlite3ExprListAppend(pParse,0, Y); 1079 pList = sqlite3ExprListAppend(pParse,pList, A); 1080 A = sqlite3ExprFunction(pParse, pList, &OP, 0); 1081 if( bNot ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1082 if( A ) A->flags |= EP_InfixFunc; 1083 } 1084 expr(A) ::= expr(A) likeop(OP) expr(Y) ESCAPE expr(E). [LIKE_KW] { 1085 ExprList *pList; 1086 int bNot = OP.n & 0x80000000; 1087 OP.n &= 0x7fffffff; 1088 pList = sqlite3ExprListAppend(pParse,0, Y); 1089 pList = sqlite3ExprListAppend(pParse,pList, A); 1090 pList = sqlite3ExprListAppend(pParse,pList, E); 1091 A = sqlite3ExprFunction(pParse, pList, &OP, 0); 1092 if( bNot ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1093 if( A ) A->flags |= EP_InfixFunc; 1094 } 1095 1096 expr(A) ::= expr(A) ISNULL|NOTNULL(E). {A = sqlite3PExpr(pParse,@E,A,0);} 1097 expr(A) ::= expr(A) NOT NULL. {A = sqlite3PExpr(pParse,TK_NOTNULL,A,0);} 1098 1099 %include { 1100 /* A routine to convert a binary TK_IS or TK_ISNOT expression into a 1101 ** unary TK_ISNULL or TK_NOTNULL expression. */ 1102 static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){ 1103 sqlite3 *db = pParse->db; 1104 if( pA && pY && pY->op==TK_NULL && !IN_RENAME_OBJECT ){ 1105 pA->op = (u8)op; 1106 sqlite3ExprDelete(db, pA->pRight); 1107 pA->pRight = 0; 1108 } 1109 } 1110 } 1111 1112 // expr1 IS expr2 1113 // expr1 IS NOT expr2 1114 // 1115 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL. If expr2 1116 // is any other expression, code as TK_IS or TK_ISNOT. 1117 // 1118 expr(A) ::= expr(A) IS expr(Y). { 1119 A = sqlite3PExpr(pParse,TK_IS,A,Y); 1120 binaryToUnaryIfNull(pParse, Y, A, TK_ISNULL); 1121 } 1122 expr(A) ::= expr(A) IS NOT expr(Y). { 1123 A = sqlite3PExpr(pParse,TK_ISNOT,A,Y); 1124 binaryToUnaryIfNull(pParse, Y, A, TK_NOTNULL); 1125 } 1126 1127 expr(A) ::= NOT(B) expr(X). 1128 {A = sqlite3PExpr(pParse, @B, X, 0);/*A-overwrites-B*/} 1129 expr(A) ::= BITNOT(B) expr(X). 1130 {A = sqlite3PExpr(pParse, @B, X, 0);/*A-overwrites-B*/} 1131 expr(A) ::= PLUS|MINUS(B) expr(X). [BITNOT] { 1132 A = sqlite3PExpr(pParse, @B==TK_PLUS ? TK_UPLUS : TK_UMINUS, X, 0); 1133 /*A-overwrites-B*/ 1134 } 1135 1136 %type between_op {int} 1137 between_op(A) ::= BETWEEN. {A = 0;} 1138 between_op(A) ::= NOT BETWEEN. {A = 1;} 1139 expr(A) ::= expr(A) between_op(N) expr(X) AND expr(Y). [BETWEEN] { 1140 ExprList *pList = sqlite3ExprListAppend(pParse,0, X); 1141 pList = sqlite3ExprListAppend(pParse,pList, Y); 1142 A = sqlite3PExpr(pParse, TK_BETWEEN, A, 0); 1143 if( A ){ 1144 A->x.pList = pList; 1145 }else{ 1146 sqlite3ExprListDelete(pParse->db, pList); 1147 } 1148 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1149 } 1150 %ifndef SQLITE_OMIT_SUBQUERY 1151 %type in_op {int} 1152 in_op(A) ::= IN. {A = 0;} 1153 in_op(A) ::= NOT IN. {A = 1;} 1154 expr(A) ::= expr(A) in_op(N) LP exprlist(Y) RP. [IN] { 1155 if( Y==0 ){ 1156 /* Expressions of the form 1157 ** 1158 ** expr1 IN () 1159 ** expr1 NOT IN () 1160 ** 1161 ** simplify to constants 0 (false) and 1 (true), respectively, 1162 ** regardless of the value of expr1. 1163 */ 1164 sqlite3ExprDelete(pParse->db, A); 1165 A = sqlite3ExprAlloc(pParse->db, TK_INTEGER,&sqlite3IntTokens[N],1); 1166 }else if( Y->nExpr==1 ){ 1167 /* Expressions of the form: 1168 ** 1169 ** expr1 IN (?1) 1170 ** expr1 NOT IN (?2) 1171 ** 1172 ** with exactly one value on the RHS can be simplified to something 1173 ** like this: 1174 ** 1175 ** expr1 == ?1 1176 ** expr1 <> ?2 1177 ** 1178 ** But, the RHS of the == or <> is marked with the EP_Generic flag 1179 ** so that it may not contribute to the computation of comparison 1180 ** affinity or the collating sequence to use for comparison. Otherwise, 1181 ** the semantics would be subtly different from IN or NOT IN. 1182 */ 1183 Expr *pRHS = Y->a[0].pExpr; 1184 Y->a[0].pExpr = 0; 1185 sqlite3ExprListDelete(pParse->db, Y); 1186 /* pRHS cannot be NULL because a malloc error would have been detected 1187 ** before now and control would have never reached this point */ 1188 if( ALWAYS(pRHS) ){ 1189 pRHS->flags &= ~EP_Collate; 1190 pRHS->flags |= EP_Generic; 1191 } 1192 A = sqlite3PExpr(pParse, N ? TK_NE : TK_EQ, A, pRHS); 1193 }else{ 1194 A = sqlite3PExpr(pParse, TK_IN, A, 0); 1195 if( A ){ 1196 A->x.pList = Y; 1197 sqlite3ExprSetHeightAndFlags(pParse, A); 1198 }else{ 1199 sqlite3ExprListDelete(pParse->db, Y); 1200 } 1201 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1202 } 1203 } 1204 expr(A) ::= LP select(X) RP. { 1205 A = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 1206 sqlite3PExprAddSelect(pParse, A, X); 1207 } 1208 expr(A) ::= expr(A) in_op(N) LP select(Y) RP. [IN] { 1209 A = sqlite3PExpr(pParse, TK_IN, A, 0); 1210 sqlite3PExprAddSelect(pParse, A, Y); 1211 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1212 } 1213 expr(A) ::= expr(A) in_op(N) nm(Y) dbnm(Z) paren_exprlist(E). [IN] { 1214 SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z); 1215 Select *pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0); 1216 if( E ) sqlite3SrcListFuncArgs(pParse, pSelect ? pSrc : 0, E); 1217 A = sqlite3PExpr(pParse, TK_IN, A, 0); 1218 sqlite3PExprAddSelect(pParse, A, pSelect); 1219 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1220 } 1221 expr(A) ::= EXISTS LP select(Y) RP. { 1222 Expr *p; 1223 p = A = sqlite3PExpr(pParse, TK_EXISTS, 0, 0); 1224 sqlite3PExprAddSelect(pParse, p, Y); 1225 } 1226 %endif SQLITE_OMIT_SUBQUERY 1227 1228 /* CASE expressions */ 1229 expr(A) ::= CASE case_operand(X) case_exprlist(Y) case_else(Z) END. { 1230 A = sqlite3PExpr(pParse, TK_CASE, X, 0); 1231 if( A ){ 1232 A->x.pList = Z ? sqlite3ExprListAppend(pParse,Y,Z) : Y; 1233 sqlite3ExprSetHeightAndFlags(pParse, A); 1234 }else{ 1235 sqlite3ExprListDelete(pParse->db, Y); 1236 sqlite3ExprDelete(pParse->db, Z); 1237 } 1238 } 1239 %type case_exprlist {ExprList*} 1240 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1241 case_exprlist(A) ::= case_exprlist(A) WHEN expr(Y) THEN expr(Z). { 1242 A = sqlite3ExprListAppend(pParse,A, Y); 1243 A = sqlite3ExprListAppend(pParse,A, Z); 1244 } 1245 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). { 1246 A = sqlite3ExprListAppend(pParse,0, Y); 1247 A = sqlite3ExprListAppend(pParse,A, Z); 1248 } 1249 %type case_else {Expr*} 1250 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);} 1251 case_else(A) ::= ELSE expr(X). {A = X;} 1252 case_else(A) ::= . {A = 0;} 1253 %type case_operand {Expr*} 1254 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);} 1255 case_operand(A) ::= expr(X). {A = X; /*A-overwrites-X*/} 1256 case_operand(A) ::= . {A = 0;} 1257 1258 %type exprlist {ExprList*} 1259 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1260 %type nexprlist {ExprList*} 1261 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);} 1262 1263 exprlist(A) ::= nexprlist(A). 1264 exprlist(A) ::= . {A = 0;} 1265 nexprlist(A) ::= nexprlist(A) COMMA expr(Y). 1266 {A = sqlite3ExprListAppend(pParse,A,Y);} 1267 nexprlist(A) ::= expr(Y). 1268 {A = sqlite3ExprListAppend(pParse,0,Y); /*A-overwrites-Y*/} 1269 1270 %ifndef SQLITE_OMIT_SUBQUERY 1271 /* A paren_exprlist is an optional expression list contained inside 1272 ** of parenthesis */ 1273 %type paren_exprlist {ExprList*} 1274 %destructor paren_exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1275 paren_exprlist(A) ::= . {A = 0;} 1276 paren_exprlist(A) ::= LP exprlist(X) RP. {A = X;} 1277 %endif SQLITE_OMIT_SUBQUERY 1278 1279 1280 ///////////////////////////// The CREATE INDEX command /////////////////////// 1281 // 1282 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D) 1283 ON nm(Y) LP sortlist(Z) RP where_opt(W). { 1284 sqlite3CreateIndex(pParse, &X, &D, 1285 sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U, 1286 &S, W, SQLITE_SO_ASC, NE, SQLITE_IDXTYPE_APPDEF); 1287 if( IN_RENAME_OBJECT && pParse->pNewIndex ){ 1288 sqlite3RenameTokenMap(pParse, pParse->pNewIndex->zName, &Y); 1289 } 1290 } 1291 1292 %type uniqueflag {int} 1293 uniqueflag(A) ::= UNIQUE. {A = OE_Abort;} 1294 uniqueflag(A) ::= . {A = OE_None;} 1295 1296 1297 // The eidlist non-terminal (Expression Id List) generates an ExprList 1298 // from a list of identifiers. The identifier names are in ExprList.a[].zName. 1299 // This list is stored in an ExprList rather than an IdList so that it 1300 // can be easily sent to sqlite3ColumnsExprList(). 1301 // 1302 // eidlist is grouped with CREATE INDEX because it used to be the non-terminal 1303 // used for the arguments to an index. That is just an historical accident. 1304 // 1305 // IMPORTANT COMPATIBILITY NOTE: Some prior versions of SQLite accepted 1306 // COLLATE clauses and ASC or DESC keywords on ID lists in inappropriate 1307 // places - places that might have been stored in the sqlite_master schema. 1308 // Those extra features were ignored. But because they might be in some 1309 // (busted) old databases, we need to continue parsing them when loading 1310 // historical schemas. 1311 // 1312 %type eidlist {ExprList*} 1313 %destructor eidlist {sqlite3ExprListDelete(pParse->db, $$);} 1314 %type eidlist_opt {ExprList*} 1315 %destructor eidlist_opt {sqlite3ExprListDelete(pParse->db, $$);} 1316 1317 %include { 1318 /* Add a single new term to an ExprList that is used to store a 1319 ** list of identifiers. Report an error if the ID list contains 1320 ** a COLLATE clause or an ASC or DESC keyword, except ignore the 1321 ** error while parsing a legacy schema. 1322 */ 1323 static ExprList *parserAddExprIdListTerm( 1324 Parse *pParse, 1325 ExprList *pPrior, 1326 Token *pIdToken, 1327 int hasCollate, 1328 int sortOrder 1329 ){ 1330 ExprList *p = sqlite3ExprListAppend(pParse, pPrior, 0); 1331 if( (hasCollate || sortOrder!=SQLITE_SO_UNDEFINED) 1332 && pParse->db->init.busy==0 1333 ){ 1334 sqlite3ErrorMsg(pParse, "syntax error after column name \"%.*s\"", 1335 pIdToken->n, pIdToken->z); 1336 } 1337 sqlite3ExprListSetName(pParse, p, pIdToken, 1); 1338 return p; 1339 } 1340 } // end %include 1341 1342 eidlist_opt(A) ::= . {A = 0;} 1343 eidlist_opt(A) ::= LP eidlist(X) RP. {A = X;} 1344 eidlist(A) ::= eidlist(A) COMMA nm(Y) collate(C) sortorder(Z). { 1345 A = parserAddExprIdListTerm(pParse, A, &Y, C, Z); 1346 } 1347 eidlist(A) ::= nm(Y) collate(C) sortorder(Z). { 1348 A = parserAddExprIdListTerm(pParse, 0, &Y, C, Z); /*A-overwrites-Y*/ 1349 } 1350 1351 %type collate {int} 1352 collate(C) ::= . {C = 0;} 1353 collate(C) ::= COLLATE ids. {C = 1;} 1354 1355 1356 ///////////////////////////// The DROP INDEX command ///////////////////////// 1357 // 1358 cmd ::= DROP INDEX ifexists(E) fullname(X). {sqlite3DropIndex(pParse, X, E);} 1359 1360 ///////////////////////////// The VACUUM command ///////////////////////////// 1361 // 1362 %ifndef SQLITE_OMIT_VACUUM 1363 %ifndef SQLITE_OMIT_ATTACH 1364 cmd ::= VACUUM. {sqlite3Vacuum(pParse,0);} 1365 cmd ::= VACUUM nm(X). {sqlite3Vacuum(pParse,&X);} 1366 %endif SQLITE_OMIT_ATTACH 1367 %endif SQLITE_OMIT_VACUUM 1368 1369 ///////////////////////////// The PRAGMA command ///////////////////////////// 1370 // 1371 %ifndef SQLITE_OMIT_PRAGMA 1372 cmd ::= PRAGMA nm(X) dbnm(Z). {sqlite3Pragma(pParse,&X,&Z,0,0);} 1373 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1374 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1375 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y). 1376 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1377 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP. 1378 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1379 1380 nmnum(A) ::= plus_num(A). 1381 nmnum(A) ::= nm(A). 1382 nmnum(A) ::= ON(A). 1383 nmnum(A) ::= DELETE(A). 1384 nmnum(A) ::= DEFAULT(A). 1385 %endif SQLITE_OMIT_PRAGMA 1386 %token_class number INTEGER|FLOAT. 1387 plus_num(A) ::= PLUS number(X). {A = X;} 1388 plus_num(A) ::= number(A). 1389 minus_num(A) ::= MINUS number(X). {A = X;} 1390 //////////////////////////// The CREATE TRIGGER command ///////////////////// 1391 1392 %ifndef SQLITE_OMIT_TRIGGER 1393 1394 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). { 1395 Token all; 1396 all.z = A.z; 1397 all.n = (int)(Z.z - A.z) + Z.n; 1398 sqlite3FinishTrigger(pParse, S, &all); 1399 } 1400 1401 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z) 1402 trigger_time(C) trigger_event(D) 1403 ON fullname(E) foreach_clause when_clause(G). { 1404 sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR); 1405 A = (Z.n==0?B:Z); /*A-overwrites-T*/ 1406 } 1407 1408 %type trigger_time {int} 1409 trigger_time(A) ::= BEFORE|AFTER(X). { A = @X; /*A-overwrites-X*/ } 1410 trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;} 1411 trigger_time(A) ::= . { A = TK_BEFORE; } 1412 1413 %type trigger_event {struct TrigEvent} 1414 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);} 1415 trigger_event(A) ::= DELETE|INSERT(X). {A.a = @X; /*A-overwrites-X*/ A.b = 0;} 1416 trigger_event(A) ::= UPDATE(X). {A.a = @X; /*A-overwrites-X*/ A.b = 0;} 1417 trigger_event(A) ::= UPDATE OF idlist(X).{A.a = TK_UPDATE; A.b = X;} 1418 1419 foreach_clause ::= . 1420 foreach_clause ::= FOR EACH ROW. 1421 1422 %type when_clause {Expr*} 1423 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);} 1424 when_clause(A) ::= . { A = 0; } 1425 when_clause(A) ::= WHEN expr(X). { A = X; } 1426 1427 %type trigger_cmd_list {TriggerStep*} 1428 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);} 1429 trigger_cmd_list(A) ::= trigger_cmd_list(A) trigger_cmd(X) SEMI. { 1430 assert( A!=0 ); 1431 A->pLast->pNext = X; 1432 A->pLast = X; 1433 } 1434 trigger_cmd_list(A) ::= trigger_cmd(A) SEMI. { 1435 assert( A!=0 ); 1436 A->pLast = A; 1437 } 1438 1439 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements 1440 // within a trigger. The table to INSERT, UPDATE, or DELETE is always in 1441 // the same database as the table that the trigger fires on. 1442 // 1443 %type trnm {Token} 1444 trnm(A) ::= nm(A). 1445 trnm(A) ::= nm DOT nm(X). { 1446 A = X; 1447 sqlite3ErrorMsg(pParse, 1448 "qualified table names are not allowed on INSERT, UPDATE, and DELETE " 1449 "statements within triggers"); 1450 } 1451 1452 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE 1453 // statements within triggers. We make a specific error message for this 1454 // since it is an exception to the default grammar rules. 1455 // 1456 tridxby ::= . 1457 tridxby ::= INDEXED BY nm. { 1458 sqlite3ErrorMsg(pParse, 1459 "the INDEXED BY clause is not allowed on UPDATE or DELETE statements " 1460 "within triggers"); 1461 } 1462 tridxby ::= NOT INDEXED. { 1463 sqlite3ErrorMsg(pParse, 1464 "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements " 1465 "within triggers"); 1466 } 1467 1468 1469 1470 %type trigger_cmd {TriggerStep*} 1471 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);} 1472 // UPDATE 1473 trigger_cmd(A) ::= 1474 UPDATE(B) orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z) scanpt(E). 1475 {A = sqlite3TriggerUpdateStep(pParse, &X, Y, Z, R, B.z, E);} 1476 1477 // INSERT 1478 trigger_cmd(A) ::= scanpt(B) insert_cmd(R) INTO 1479 trnm(X) idlist_opt(F) select(S) upsert(U) scanpt(Z). { 1480 A = sqlite3TriggerInsertStep(pParse,&X,F,S,R,U,B,Z);/*A-overwrites-R*/ 1481 } 1482 // DELETE 1483 trigger_cmd(A) ::= DELETE(B) FROM trnm(X) tridxby where_opt(Y) scanpt(E). 1484 {A = sqlite3TriggerDeleteStep(pParse, &X, Y, B.z, E);} 1485 1486 // SELECT 1487 trigger_cmd(A) ::= scanpt(B) select(X) scanpt(E). 1488 {A = sqlite3TriggerSelectStep(pParse->db, X, B, E); /*A-overwrites-X*/} 1489 1490 // The special RAISE expression that may occur in trigger programs 1491 expr(A) ::= RAISE LP IGNORE RP. { 1492 A = sqlite3PExpr(pParse, TK_RAISE, 0, 0); 1493 if( A ){ 1494 A->affinity = OE_Ignore; 1495 } 1496 } 1497 expr(A) ::= RAISE LP raisetype(T) COMMA nm(Z) RP. { 1498 A = sqlite3ExprAlloc(pParse->db, TK_RAISE, &Z, 1); 1499 if( A ) { 1500 A->affinity = (char)T; 1501 } 1502 } 1503 %endif !SQLITE_OMIT_TRIGGER 1504 1505 %type raisetype {int} 1506 raisetype(A) ::= ROLLBACK. {A = OE_Rollback;} 1507 raisetype(A) ::= ABORT. {A = OE_Abort;} 1508 raisetype(A) ::= FAIL. {A = OE_Fail;} 1509 1510 1511 //////////////////////// DROP TRIGGER statement ////////////////////////////// 1512 %ifndef SQLITE_OMIT_TRIGGER 1513 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). { 1514 sqlite3DropTrigger(pParse,X,NOERR); 1515 } 1516 %endif !SQLITE_OMIT_TRIGGER 1517 1518 //////////////////////// ATTACH DATABASE file AS name ///////////////////////// 1519 %ifndef SQLITE_OMIT_ATTACH 1520 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). { 1521 sqlite3Attach(pParse, F, D, K); 1522 } 1523 cmd ::= DETACH database_kw_opt expr(D). { 1524 sqlite3Detach(pParse, D); 1525 } 1526 1527 %type key_opt {Expr*} 1528 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);} 1529 key_opt(A) ::= . { A = 0; } 1530 key_opt(A) ::= KEY expr(X). { A = X; } 1531 1532 database_kw_opt ::= DATABASE. 1533 database_kw_opt ::= . 1534 %endif SQLITE_OMIT_ATTACH 1535 1536 ////////////////////////// REINDEX collation ////////////////////////////////// 1537 %ifndef SQLITE_OMIT_REINDEX 1538 cmd ::= REINDEX. {sqlite3Reindex(pParse, 0, 0);} 1539 cmd ::= REINDEX nm(X) dbnm(Y). {sqlite3Reindex(pParse, &X, &Y);} 1540 %endif SQLITE_OMIT_REINDEX 1541 1542 /////////////////////////////////// ANALYZE /////////////////////////////////// 1543 %ifndef SQLITE_OMIT_ANALYZE 1544 cmd ::= ANALYZE. {sqlite3Analyze(pParse, 0, 0);} 1545 cmd ::= ANALYZE nm(X) dbnm(Y). {sqlite3Analyze(pParse, &X, &Y);} 1546 %endif 1547 1548 //////////////////////// ALTER TABLE table ... //////////////////////////////// 1549 %ifndef SQLITE_OMIT_ALTERTABLE 1550 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). { 1551 sqlite3AlterRenameTable(pParse,X,&Z); 1552 } 1553 cmd ::= ALTER TABLE add_column_fullname 1554 ADD kwcolumn_opt columnname(Y) carglist. { 1555 Y.n = (int)(pParse->sLastToken.z-Y.z) + pParse->sLastToken.n; 1556 sqlite3AlterFinishAddColumn(pParse, &Y); 1557 } 1558 add_column_fullname ::= fullname(X). { 1559 disableLookaside(pParse); 1560 sqlite3AlterBeginAddColumn(pParse, X); 1561 } 1562 cmd ::= ALTER TABLE fullname(X) RENAME kwcolumn_opt nm(Y) TO nm(Z). { 1563 sqlite3AlterRenameColumn(pParse, X, &Y, &Z); 1564 } 1565 1566 kwcolumn_opt ::= . 1567 kwcolumn_opt ::= COLUMNKW. 1568 1569 %endif SQLITE_OMIT_ALTERTABLE 1570 1571 //////////////////////// CREATE VIRTUAL TABLE ... ///////////////////////////// 1572 %ifndef SQLITE_OMIT_VIRTUALTABLE 1573 cmd ::= create_vtab. {sqlite3VtabFinishParse(pParse,0);} 1574 cmd ::= create_vtab LP vtabarglist RP(X). {sqlite3VtabFinishParse(pParse,&X);} 1575 create_vtab ::= createkw VIRTUAL TABLE ifnotexists(E) 1576 nm(X) dbnm(Y) USING nm(Z). { 1577 sqlite3VtabBeginParse(pParse, &X, &Y, &Z, E); 1578 } 1579 vtabarglist ::= vtabarg. 1580 vtabarglist ::= vtabarglist COMMA vtabarg. 1581 vtabarg ::= . {sqlite3VtabArgInit(pParse);} 1582 vtabarg ::= vtabarg vtabargtoken. 1583 vtabargtoken ::= ANY(X). {sqlite3VtabArgExtend(pParse,&X);} 1584 vtabargtoken ::= lp anylist RP(X). {sqlite3VtabArgExtend(pParse,&X);} 1585 lp ::= LP(X). {sqlite3VtabArgExtend(pParse,&X);} 1586 anylist ::= . 1587 anylist ::= anylist LP anylist RP. 1588 anylist ::= anylist ANY. 1589 %endif SQLITE_OMIT_VIRTUALTABLE 1590 1591 1592 //////////////////////// COMMON TABLE EXPRESSIONS //////////////////////////// 1593 %type wqlist {With*} 1594 %destructor wqlist {sqlite3WithDelete(pParse->db, $$);} 1595 1596 with ::= . 1597 %ifndef SQLITE_OMIT_CTE 1598 with ::= WITH wqlist(W). { sqlite3WithPush(pParse, W, 1); } 1599 with ::= WITH RECURSIVE wqlist(W). { sqlite3WithPush(pParse, W, 1); } 1600 1601 wqlist(A) ::= nm(X) eidlist_opt(Y) AS LP select(Z) RP. { 1602 A = sqlite3WithAdd(pParse, 0, &X, Y, Z); /*A-overwrites-X*/ 1603 } 1604 wqlist(A) ::= wqlist(A) COMMA nm(X) eidlist_opt(Y) AS LP select(Z) RP. { 1605 A = sqlite3WithAdd(pParse, A, &X, Y, Z); 1606 } 1607 %endif SQLITE_OMIT_CTE 1608 1609 //////////////////////// WINDOW FUNCTION EXPRESSIONS ///////////////////////// 1610 // These must be at the end of this file. Specifically, the rules that 1611 // introduce tokens WINDOW, OVER and FILTER must appear last. This causes 1612 // the integer values assigned to these tokens to be larger than all other 1613 // tokens that may be output by the tokenizer except TK_SPACE and TK_ILLEGAL. 1614 // 1615 %ifndef SQLITE_OMIT_WINDOWFUNC 1616 %type windowdefn_list {Window*} 1617 %destructor windowdefn_list {sqlite3WindowListDelete(pParse->db, $$);} 1618 windowdefn_list(A) ::= windowdefn(Z). { A = Z; } 1619 windowdefn_list(A) ::= windowdefn_list(Y) COMMA windowdefn(Z). { 1620 assert( Z!=0 ); 1621 Z->pNextWin = Y; 1622 A = Z; 1623 } 1624 1625 %type windowdefn {Window*} 1626 %destructor windowdefn {sqlite3WindowDelete(pParse->db, $$);} 1627 windowdefn(A) ::= nm(X) AS window(Y). { 1628 if( ALWAYS(Y) ){ 1629 Y->zName = sqlite3DbStrNDup(pParse->db, X.z, X.n); 1630 } 1631 A = Y; 1632 } 1633 1634 %type window {Window*} 1635 %destructor window {sqlite3WindowDelete(pParse->db, $$);} 1636 1637 %type frame_opt {Window*} 1638 %destructor frame_opt {sqlite3WindowDelete(pParse->db, $$);} 1639 1640 %type part_opt {ExprList*} 1641 %destructor part_opt {sqlite3ExprListDelete(pParse->db, $$);} 1642 1643 %type filter_opt {Expr*} 1644 %destructor filter_opt {sqlite3ExprDelete(pParse->db, $$);} 1645 1646 %type range_or_rows {int} 1647 1648 %type frame_bound {struct FrameBound} 1649 %destructor frame_bound {sqlite3ExprDelete(pParse->db, $$.pExpr);} 1650 %type frame_bound_s {struct FrameBound} 1651 %destructor frame_bound_s {sqlite3ExprDelete(pParse->db, $$.pExpr);} 1652 %type frame_bound_e {struct FrameBound} 1653 %destructor frame_bound_e {sqlite3ExprDelete(pParse->db, $$.pExpr);} 1654 1655 window(A) ::= LP part_opt(X) orderby_opt(Y) frame_opt(Z) RP. { 1656 A = Z; 1657 if( ALWAYS(A) ){ 1658 A->pPartition = X; 1659 A->pOrderBy = Y; 1660 } 1661 } 1662 1663 part_opt(A) ::= PARTITION BY nexprlist(X). { A = X; } 1664 part_opt(A) ::= . { A = 0; } 1665 1666 frame_opt(A) ::= . { 1667 A = sqlite3WindowAlloc(pParse, TK_RANGE, TK_UNBOUNDED, 0, TK_CURRENT, 0); 1668 } 1669 frame_opt(A) ::= range_or_rows(X) frame_bound_s(Y). { 1670 A = sqlite3WindowAlloc(pParse, X, Y.eType, Y.pExpr, TK_CURRENT, 0); 1671 } 1672 frame_opt(A) ::= range_or_rows(X) BETWEEN frame_bound_s(Y) AND frame_bound_e(Z). { 1673 A = sqlite3WindowAlloc(pParse, X, Y.eType, Y.pExpr, Z.eType, Z.pExpr); 1674 } 1675 1676 range_or_rows(A) ::= RANGE. { A = TK_RANGE; } 1677 range_or_rows(A) ::= ROWS. { A = TK_ROWS; } 1678 1679 1680 frame_bound_s(A) ::= frame_bound(X). { A = X; } 1681 frame_bound_s(A) ::= UNBOUNDED PRECEDING. {A.eType = TK_UNBOUNDED; A.pExpr = 0;} 1682 frame_bound_e(A) ::= frame_bound(X). { A = X; } 1683 frame_bound_e(A) ::= UNBOUNDED FOLLOWING. {A.eType = TK_UNBOUNDED; A.pExpr = 0;} 1684 1685 frame_bound(A) ::= expr(X) PRECEDING. { A.eType = TK_PRECEDING; A.pExpr = X; } 1686 frame_bound(A) ::= CURRENT ROW. { A.eType = TK_CURRENT ; A.pExpr = 0; } 1687 frame_bound(A) ::= expr(X) FOLLOWING. { A.eType = TK_FOLLOWING; A.pExpr = X; } 1688 1689 %type window_clause {Window*} 1690 %destructor window_clause {sqlite3WindowListDelete(pParse->db, $$);} 1691 window_clause(A) ::= WINDOW windowdefn_list(B). { A = B; } 1692 1693 %type over_clause {Window*} 1694 %destructor over_clause {sqlite3WindowDelete(pParse->db, $$);} 1695 over_clause(A) ::= filter_opt(W) OVER window(Z). { 1696 A = Z; 1697 assert( A!=0 ); 1698 A->pFilter = W; 1699 } 1700 over_clause(A) ::= filter_opt(W) OVER nm(Z). { 1701 A = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); 1702 if( A ){ 1703 A->zName = sqlite3DbStrNDup(pParse->db, Z.z, Z.n); 1704 A->pFilter = W; 1705 }else{ 1706 sqlite3ExprDelete(pParse->db, W); 1707 } 1708 } 1709 1710 filter_opt(A) ::= . { A = 0; } 1711 filter_opt(A) ::= FILTER LP WHERE expr(X) RP. { A = X; } 1712 %endif /* SQLITE_OMIT_WINDOWFUNC */ 1713