xref: /sqlite-3.40.0/src/parse.y (revision 60c71b02)
1 %include {
2 /*
3 ** 2001-09-15
4 **
5 ** The author disclaims copyright to this source code.  In place of
6 ** a legal notice, here is a blessing:
7 **
8 **    May you do good and not evil.
9 **    May you find forgiveness for yourself and forgive others.
10 **    May you share freely, never taking more than you give.
11 **
12 *************************************************************************
13 ** This file contains SQLite's SQL parser.
14 **
15 ** The canonical source code to this file ("parse.y") is a Lemon grammar
16 ** file that specifies the input grammar and actions to take while parsing.
17 ** That input file is processed by Lemon to generate a C-language
18 ** implementation of a parser for the given grammer.  You might be reading
19 ** this comment as part of the translated C-code.  Edits should be made
20 ** to the original parse.y sources.
21 */
22 }
23 
24 // All token codes are small integers with #defines that begin with "TK_"
25 %token_prefix TK_
26 
27 // The type of the data attached to each token is Token.  This is also the
28 // default type for non-terminals.
29 //
30 %token_type {Token}
31 %default_type {Token}
32 
33 // An extra argument to the constructor for the parser, which is available
34 // to all actions.
35 %extra_context {Parse *pParse}
36 
37 // This code runs whenever there is a syntax error
38 //
39 %syntax_error {
40   UNUSED_PARAMETER(yymajor);  /* Silence some compiler warnings */
41   if( TOKEN.z[0] ){
42     sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);
43   }else{
44     sqlite3ErrorMsg(pParse, "incomplete input");
45   }
46 }
47 %stack_overflow {
48   sqlite3ErrorMsg(pParse, "parser stack overflow");
49 }
50 
51 // The name of the generated procedure that implements the parser
52 // is as follows:
53 %name sqlite3Parser
54 
55 // The following text is included near the beginning of the C source
56 // code file that implements the parser.
57 //
58 %include {
59 #include "sqliteInt.h"
60 
61 /*
62 ** Disable all error recovery processing in the parser push-down
63 ** automaton.
64 */
65 #define YYNOERRORRECOVERY 1
66 
67 /*
68 ** Make yytestcase() the same as testcase()
69 */
70 #define yytestcase(X) testcase(X)
71 
72 /*
73 ** Indicate that sqlite3ParserFree() will never be called with a null
74 ** pointer.
75 */
76 #define YYPARSEFREENEVERNULL 1
77 
78 /*
79 ** In the amalgamation, the parse.c file generated by lemon and the
80 ** tokenize.c file are concatenated.  In that case, sqlite3RunParser()
81 ** has access to the the size of the yyParser object and so the parser
82 ** engine can be allocated from stack.  In that case, only the
83 ** sqlite3ParserInit() and sqlite3ParserFinalize() routines are invoked
84 ** and the sqlite3ParserAlloc() and sqlite3ParserFree() routines can be
85 ** omitted.
86 */
87 #ifdef SQLITE_AMALGAMATION
88 # define sqlite3Parser_ENGINEALWAYSONSTACK 1
89 #endif
90 
91 /*
92 ** Alternative datatype for the argument to the malloc() routine passed
93 ** into sqlite3ParserAlloc().  The default is size_t.
94 */
95 #define YYMALLOCARGTYPE  u64
96 
97 /*
98 ** An instance of the following structure describes the event of a
99 ** TRIGGER.  "a" is the event type, one of TK_UPDATE, TK_INSERT,
100 ** TK_DELETE, or TK_INSTEAD.  If the event is of the form
101 **
102 **      UPDATE ON (a,b,c)
103 **
104 ** Then the "b" IdList records the list "a,b,c".
105 */
106 struct TrigEvent { int a; IdList * b; };
107 
108 struct FrameBound     { int eType; Expr *pExpr; };
109 
110 /*
111 ** Disable lookaside memory allocation for objects that might be
112 ** shared across database connections.
113 */
114 static void disableLookaside(Parse *pParse){
115   sqlite3 *db = pParse->db;
116   pParse->disableLookaside++;
117   DisableLookaside;
118 }
119 
120 #if !defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) \
121  && defined(SQLITE_UDL_CAPABLE_PARSER)
122 /*
123 ** Issue an error message if an ORDER BY or LIMIT clause occurs on an
124 ** UPDATE or DELETE statement.
125 */
126 static void updateDeleteLimitError(
127   Parse *pParse,
128   ExprList *pOrderBy,
129   Expr *pLimit
130 ){
131   if( pOrderBy ){
132     sqlite3ErrorMsg(pParse, "syntax error near \"ORDER BY\"");
133   }else{
134     sqlite3ErrorMsg(pParse, "syntax error near \"LIMIT\"");
135   }
136   sqlite3ExprListDelete(pParse->db, pOrderBy);
137   sqlite3ExprDelete(pParse->db, pLimit);
138 }
139 #endif /* SQLITE_ENABLE_UPDATE_DELETE_LIMIT */
140 
141 } // end %include
142 
143 // Input is a single SQL command
144 input ::= cmdlist.
145 cmdlist ::= cmdlist ecmd.
146 cmdlist ::= ecmd.
147 ecmd ::= SEMI.
148 ecmd ::= cmdx SEMI.
149 %ifndef SQLITE_OMIT_EXPLAIN
150 ecmd ::= explain cmdx SEMI.       {NEVER-REDUCE}
151 explain ::= EXPLAIN.              { pParse->explain = 1; }
152 explain ::= EXPLAIN QUERY PLAN.   { pParse->explain = 2; }
153 %endif  SQLITE_OMIT_EXPLAIN
154 cmdx ::= cmd.           { sqlite3FinishCoding(pParse); }
155 
156 ///////////////////// Begin and end transactions. ////////////////////////////
157 //
158 
159 cmd ::= BEGIN transtype(Y) trans_opt.  {sqlite3BeginTransaction(pParse, Y);}
160 trans_opt ::= .
161 trans_opt ::= TRANSACTION.
162 trans_opt ::= TRANSACTION nm.
163 %type transtype {int}
164 transtype(A) ::= .             {A = TK_DEFERRED;}
165 transtype(A) ::= DEFERRED(X).  {A = @X; /*A-overwrites-X*/}
166 transtype(A) ::= IMMEDIATE(X). {A = @X; /*A-overwrites-X*/}
167 transtype(A) ::= EXCLUSIVE(X). {A = @X; /*A-overwrites-X*/}
168 cmd ::= COMMIT|END(X) trans_opt.   {sqlite3EndTransaction(pParse,@X);}
169 cmd ::= ROLLBACK(X) trans_opt.     {sqlite3EndTransaction(pParse,@X);}
170 
171 savepoint_opt ::= SAVEPOINT.
172 savepoint_opt ::= .
173 cmd ::= SAVEPOINT nm(X). {
174   sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X);
175 }
176 cmd ::= RELEASE savepoint_opt nm(X). {
177   sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X);
178 }
179 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). {
180   sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X);
181 }
182 
183 ///////////////////// The CREATE TABLE statement ////////////////////////////
184 //
185 cmd ::= create_table create_table_args.
186 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). {
187    sqlite3StartTable(pParse,&Y,&Z,T,0,0,E);
188 }
189 createkw(A) ::= CREATE(A).  {disableLookaside(pParse);}
190 
191 %type ifnotexists {int}
192 ifnotexists(A) ::= .              {A = 0;}
193 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;}
194 %type temp {int}
195 %ifndef SQLITE_OMIT_TEMPDB
196 temp(A) ::= TEMP.  {A = 1;}
197 %endif  SQLITE_OMIT_TEMPDB
198 temp(A) ::= .      {A = 0;}
199 create_table_args ::= LP columnlist conslist_opt(X) RP(E) table_options(F). {
200   sqlite3EndTable(pParse,&X,&E,F,0);
201 }
202 create_table_args ::= AS select(S). {
203   sqlite3EndTable(pParse,0,0,0,S);
204   sqlite3SelectDelete(pParse->db, S);
205 }
206 %type table_options {int}
207 table_options(A) ::= .    {A = 0;}
208 table_options(A) ::= WITHOUT nm(X). {
209   if( X.n==5 && sqlite3_strnicmp(X.z,"rowid",5)==0 ){
210     A = TF_WithoutRowid | TF_NoVisibleRowid;
211   }else{
212     A = 0;
213     sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z);
214   }
215 }
216 columnlist ::= columnlist COMMA columnname carglist.
217 columnlist ::= columnname carglist.
218 columnname(A) ::= nm(A) typetoken(Y). {sqlite3AddColumn(pParse,&A,&Y);}
219 
220 // Declare some tokens early in order to influence their values, to
221 // improve performance and reduce the executable size.  The goal here is
222 // to get the "jump" operations in ISNULL through ESCAPE to have numeric
223 // values that are early enough so that all jump operations are clustered
224 // at the beginning.
225 //
226 %token ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST.
227 %token CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL.
228 %token OR AND NOT IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ.
229 %token GT LE LT GE ESCAPE.
230 
231 // The following directive causes tokens ABORT, AFTER, ASC, etc. to
232 // fallback to ID if they will not parse as their original value.
233 // This obviates the need for the "id" nonterminal.
234 //
235 %fallback ID
236   ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW
237   CONFLICT DATABASE DEFERRED DESC DETACH DO
238   EACH END EXCLUSIVE EXPLAIN FAIL FOR
239   IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN
240   QUERY KEY OF OFFSET PRAGMA RAISE RECURSIVE RELEASE REPLACE RESTRICT ROW ROWS
241   ROLLBACK SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL WITH WITHOUT
242   NULLS FIRST LAST
243 %ifdef SQLITE_OMIT_COMPOUND_SELECT
244   EXCEPT INTERSECT UNION
245 %endif SQLITE_OMIT_COMPOUND_SELECT
246 %ifndef SQLITE_OMIT_WINDOWFUNC
247   CURRENT FOLLOWING PARTITION PRECEDING RANGE UNBOUNDED
248   EXCLUDE GROUPS OTHERS TIES
249 %endif SQLITE_OMIT_WINDOWFUNC
250 %ifndef SQLITE_OMIT_GENERATED_COLUMNS
251   GENERATED ALWAYS
252 %endif
253   REINDEX RENAME CTIME_KW IF
254   .
255 %wildcard ANY.
256 
257 // Define operator precedence early so that this is the first occurrence
258 // of the operator tokens in the grammer.  Keeping the operators together
259 // causes them to be assigned integer values that are close together,
260 // which keeps parser tables smaller.
261 //
262 // The token values assigned to these symbols is determined by the order
263 // in which lemon first sees them.  It must be the case that ISNULL/NOTNULL,
264 // NE/EQ, GT/LE, and GE/LT are separated by only a single value.  See
265 // the sqlite3ExprIfFalse() routine for additional information on this
266 // constraint.
267 //
268 %left OR.
269 %left AND.
270 %right NOT.
271 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ.
272 %left GT LE LT GE.
273 %right ESCAPE.
274 %left BITAND BITOR LSHIFT RSHIFT.
275 %left PLUS MINUS.
276 %left STAR SLASH REM.
277 %left CONCAT.
278 %left COLLATE.
279 %right BITNOT.
280 %nonassoc ON.
281 
282 // An IDENTIFIER can be a generic identifier, or one of several
283 // keywords.  Any non-standard keyword can also be an identifier.
284 //
285 %token_class id  ID|INDEXED.
286 
287 
288 // And "ids" is an identifer-or-string.
289 //
290 %token_class ids  ID|STRING.
291 
292 // The name of a column or table can be any of the following:
293 //
294 %type nm {Token}
295 nm(A) ::= id(A).
296 nm(A) ::= STRING(A).
297 nm(A) ::= JOIN_KW(A).
298 
299 // A typetoken is really zero or more tokens that form a type name such
300 // as can be found after the column name in a CREATE TABLE statement.
301 // Multiple tokens are concatenated to form the value of the typetoken.
302 //
303 %type typetoken {Token}
304 typetoken(A) ::= .   {A.n = 0; A.z = 0;}
305 typetoken(A) ::= typename(A).
306 typetoken(A) ::= typename(A) LP signed RP(Y). {
307   A.n = (int)(&Y.z[Y.n] - A.z);
308 }
309 typetoken(A) ::= typename(A) LP signed COMMA signed RP(Y). {
310   A.n = (int)(&Y.z[Y.n] - A.z);
311 }
312 %type typename {Token}
313 typename(A) ::= ids(A).
314 typename(A) ::= typename(A) ids(Y). {A.n=Y.n+(int)(Y.z-A.z);}
315 signed ::= plus_num.
316 signed ::= minus_num.
317 
318 // The scanpt non-terminal takes a value which is a pointer to the
319 // input text just past the last token that has been shifted into
320 // the parser.  By surrounding some phrase in the grammar with two
321 // scanpt non-terminals, we can capture the input text for that phrase.
322 // For example:
323 //
324 //      something ::= .... scanpt(A) phrase scanpt(Z).
325 //
326 // The text that is parsed as "phrase" is a string starting at A
327 // and containing (int)(Z-A) characters.  There might be some extra
328 // whitespace on either end of the text, but that can be removed in
329 // post-processing, if needed.
330 //
331 %type scanpt {const char*}
332 scanpt(A) ::= . {
333   assert( yyLookahead!=YYNOCODE );
334   A = yyLookaheadToken.z;
335 }
336 scantok(A) ::= . {
337   assert( yyLookahead!=YYNOCODE );
338   A = yyLookaheadToken;
339 }
340 
341 // "carglist" is a list of additional constraints that come after the
342 // column name and column type in a CREATE TABLE statement.
343 //
344 carglist ::= carglist ccons.
345 carglist ::= .
346 ccons ::= CONSTRAINT nm(X).           {pParse->constraintName = X;}
347 ccons ::= DEFAULT scantok(A) term(X).
348                             {sqlite3AddDefaultValue(pParse,X,A.z,&A.z[A.n]);}
349 ccons ::= DEFAULT LP(A) expr(X) RP(Z).
350                             {sqlite3AddDefaultValue(pParse,X,A.z+1,Z.z);}
351 ccons ::= DEFAULT PLUS(A) scantok(Z) term(X).
352                             {sqlite3AddDefaultValue(pParse,X,A.z,&Z.z[Z.n]);}
353 ccons ::= DEFAULT MINUS(A) scantok(Z) term(X). {
354   Expr *p = sqlite3PExpr(pParse, TK_UMINUS, X, 0);
355   sqlite3AddDefaultValue(pParse,p,A.z,&Z.z[Z.n]);
356 }
357 ccons ::= DEFAULT scantok id(X).       {
358   Expr *p = tokenExpr(pParse, TK_STRING, X);
359   if( p ){
360     sqlite3ExprIdToTrueFalse(p);
361     testcase( p->op==TK_TRUEFALSE && sqlite3ExprTruthValue(p) );
362   }
363     sqlite3AddDefaultValue(pParse,p,X.z,X.z+X.n);
364 }
365 
366 // In addition to the type name, we also care about the primary key and
367 // UNIQUE constraints.
368 //
369 ccons ::= NULL onconf.
370 ccons ::= NOT NULL onconf(R).    {sqlite3AddNotNull(pParse, R);}
371 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I).
372                                  {sqlite3AddPrimaryKey(pParse,0,R,I,Z);}
373 ccons ::= UNIQUE onconf(R).      {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0,
374                                    SQLITE_IDXTYPE_UNIQUE);}
375 ccons ::= CHECK LP(A) expr(X) RP(B).  {sqlite3AddCheckConstraint(pParse,X,A.z,B.z);}
376 ccons ::= REFERENCES nm(T) eidlist_opt(TA) refargs(R).
377                                  {sqlite3CreateForeignKey(pParse,0,&T,TA,R);}
378 ccons ::= defer_subclause(D).    {sqlite3DeferForeignKey(pParse,D);}
379 ccons ::= COLLATE ids(C).        {sqlite3AddCollateType(pParse, &C);}
380 ccons ::= GENERATED ALWAYS AS generated.
381 ccons ::= AS generated.
382 generated ::= LP expr(E) RP.          {sqlite3AddGenerated(pParse,E,0);}
383 generated ::= LP expr(E) RP ID(TYPE). {sqlite3AddGenerated(pParse,E,&TYPE);}
384 
385 // The optional AUTOINCREMENT keyword
386 %type autoinc {int}
387 autoinc(X) ::= .          {X = 0;}
388 autoinc(X) ::= AUTOINCR.  {X = 1;}
389 
390 // The next group of rules parses the arguments to a REFERENCES clause
391 // that determine if the referential integrity checking is deferred or
392 // or immediate and which determine what action to take if a ref-integ
393 // check fails.
394 //
395 %type refargs {int}
396 refargs(A) ::= .                  { A = OE_None*0x0101; /* EV: R-19803-45884 */}
397 refargs(A) ::= refargs(A) refarg(Y). { A = (A & ~Y.mask) | Y.value; }
398 %type refarg {struct {int value; int mask;}}
399 refarg(A) ::= MATCH nm.              { A.value = 0;     A.mask = 0x000000; }
400 refarg(A) ::= ON INSERT refact.      { A.value = 0;     A.mask = 0x000000; }
401 refarg(A) ::= ON DELETE refact(X).   { A.value = X;     A.mask = 0x0000ff; }
402 refarg(A) ::= ON UPDATE refact(X).   { A.value = X<<8;  A.mask = 0x00ff00; }
403 %type refact {int}
404 refact(A) ::= SET NULL.              { A = OE_SetNull;  /* EV: R-33326-45252 */}
405 refact(A) ::= SET DEFAULT.           { A = OE_SetDflt;  /* EV: R-33326-45252 */}
406 refact(A) ::= CASCADE.               { A = OE_Cascade;  /* EV: R-33326-45252 */}
407 refact(A) ::= RESTRICT.              { A = OE_Restrict; /* EV: R-33326-45252 */}
408 refact(A) ::= NO ACTION.             { A = OE_None;     /* EV: R-33326-45252 */}
409 %type defer_subclause {int}
410 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt.     {A = 0;}
411 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X).      {A = X;}
412 %type init_deferred_pred_opt {int}
413 init_deferred_pred_opt(A) ::= .                       {A = 0;}
414 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED.     {A = 1;}
415 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE.    {A = 0;}
416 
417 conslist_opt(A) ::= .                         {A.n = 0; A.z = 0;}
418 conslist_opt(A) ::= COMMA(A) conslist.
419 conslist ::= conslist tconscomma tcons.
420 conslist ::= tcons.
421 tconscomma ::= COMMA.            {pParse->constraintName.n = 0;}
422 tconscomma ::= .
423 tcons ::= CONSTRAINT nm(X).      {pParse->constraintName = X;}
424 tcons ::= PRIMARY KEY LP sortlist(X) autoinc(I) RP onconf(R).
425                                  {sqlite3AddPrimaryKey(pParse,X,R,I,0);}
426 tcons ::= UNIQUE LP sortlist(X) RP onconf(R).
427                                  {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0,
428                                        SQLITE_IDXTYPE_UNIQUE);}
429 tcons ::= CHECK LP(A) expr(E) RP(B) onconf.
430                                  {sqlite3AddCheckConstraint(pParse,E,A.z,B.z);}
431 tcons ::= FOREIGN KEY LP eidlist(FA) RP
432           REFERENCES nm(T) eidlist_opt(TA) refargs(R) defer_subclause_opt(D). {
433     sqlite3CreateForeignKey(pParse, FA, &T, TA, R);
434     sqlite3DeferForeignKey(pParse, D);
435 }
436 %type defer_subclause_opt {int}
437 defer_subclause_opt(A) ::= .                    {A = 0;}
438 defer_subclause_opt(A) ::= defer_subclause(A).
439 
440 // The following is a non-standard extension that allows us to declare the
441 // default behavior when there is a constraint conflict.
442 //
443 %type onconf {int}
444 %type orconf {int}
445 %type resolvetype {int}
446 onconf(A) ::= .                              {A = OE_Default;}
447 onconf(A) ::= ON CONFLICT resolvetype(X).    {A = X;}
448 orconf(A) ::= .                              {A = OE_Default;}
449 orconf(A) ::= OR resolvetype(X).             {A = X;}
450 resolvetype(A) ::= raisetype(A).
451 resolvetype(A) ::= IGNORE.                   {A = OE_Ignore;}
452 resolvetype(A) ::= REPLACE.                  {A = OE_Replace;}
453 
454 ////////////////////////// The DROP TABLE /////////////////////////////////////
455 //
456 cmd ::= DROP TABLE ifexists(E) fullname(X). {
457   sqlite3DropTable(pParse, X, 0, E);
458 }
459 %type ifexists {int}
460 ifexists(A) ::= IF EXISTS.   {A = 1;}
461 ifexists(A) ::= .            {A = 0;}
462 
463 ///////////////////// The CREATE VIEW statement /////////////////////////////
464 //
465 %ifndef SQLITE_OMIT_VIEW
466 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) eidlist_opt(C)
467           AS select(S). {
468   sqlite3CreateView(pParse, &X, &Y, &Z, C, S, T, E);
469 }
470 cmd ::= DROP VIEW ifexists(E) fullname(X). {
471   sqlite3DropTable(pParse, X, 1, E);
472 }
473 %endif  SQLITE_OMIT_VIEW
474 
475 //////////////////////// The SELECT statement /////////////////////////////////
476 //
477 cmd ::= select(X).  {
478   SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0, 0};
479   sqlite3Select(pParse, X, &dest);
480   sqlite3SelectDelete(pParse->db, X);
481 }
482 
483 %type select {Select*}
484 %destructor select {sqlite3SelectDelete(pParse->db, $$);}
485 %type selectnowith {Select*}
486 %destructor selectnowith {sqlite3SelectDelete(pParse->db, $$);}
487 %type oneselect {Select*}
488 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);}
489 
490 %include {
491   /*
492   ** For a compound SELECT statement, make sure p->pPrior->pNext==p for
493   ** all elements in the list.  And make sure list length does not exceed
494   ** SQLITE_LIMIT_COMPOUND_SELECT.
495   */
496   static void parserDoubleLinkSelect(Parse *pParse, Select *p){
497     assert( p!=0 );
498     if( p->pPrior ){
499       Select *pNext = 0, *pLoop;
500       int mxSelect, cnt = 0;
501       for(pLoop=p; pLoop; pNext=pLoop, pLoop=pLoop->pPrior, cnt++){
502         pLoop->pNext = pNext;
503         pLoop->selFlags |= SF_Compound;
504       }
505       if( (p->selFlags & SF_MultiValue)==0 &&
506         (mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT])>0 &&
507         cnt>mxSelect
508       ){
509         sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
510       }
511     }
512   }
513 }
514 
515 %ifndef SQLITE_OMIT_CTE
516 select(A) ::= WITH wqlist(W) selectnowith(X). {
517   Select *p = X;
518   if( p ){
519     p->pWith = W;
520     parserDoubleLinkSelect(pParse, p);
521   }else{
522     sqlite3WithDelete(pParse->db, W);
523   }
524   A = p;
525 }
526 select(A) ::= WITH RECURSIVE wqlist(W) selectnowith(X). {
527   Select *p = X;
528   if( p ){
529     p->pWith = W;
530     parserDoubleLinkSelect(pParse, p);
531   }else{
532     sqlite3WithDelete(pParse->db, W);
533   }
534   A = p;
535 }
536 %endif /* SQLITE_OMIT_CTE */
537 select(A) ::= selectnowith(X). {
538   Select *p = X;
539   if( p ){
540     parserDoubleLinkSelect(pParse, p);
541   }
542   A = p; /*A-overwrites-X*/
543 }
544 
545 selectnowith(A) ::= oneselect(A).
546 %ifndef SQLITE_OMIT_COMPOUND_SELECT
547 selectnowith(A) ::= selectnowith(A) multiselect_op(Y) oneselect(Z).  {
548   Select *pRhs = Z;
549   Select *pLhs = A;
550   if( pRhs && pRhs->pPrior ){
551     SrcList *pFrom;
552     Token x;
553     x.n = 0;
554     parserDoubleLinkSelect(pParse, pRhs);
555     pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0);
556     pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0);
557   }
558   if( pRhs ){
559     pRhs->op = (u8)Y;
560     pRhs->pPrior = pLhs;
561     if( ALWAYS(pLhs) ) pLhs->selFlags &= ~SF_MultiValue;
562     pRhs->selFlags &= ~SF_MultiValue;
563     if( Y!=TK_ALL ) pParse->hasCompound = 1;
564   }else{
565     sqlite3SelectDelete(pParse->db, pLhs);
566   }
567   A = pRhs;
568 }
569 %type multiselect_op {int}
570 multiselect_op(A) ::= UNION(OP).             {A = @OP; /*A-overwrites-OP*/}
571 multiselect_op(A) ::= UNION ALL.             {A = TK_ALL;}
572 multiselect_op(A) ::= EXCEPT|INTERSECT(OP).  {A = @OP; /*A-overwrites-OP*/}
573 %endif SQLITE_OMIT_COMPOUND_SELECT
574 
575 oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y)
576                  groupby_opt(P) having_opt(Q)
577                  orderby_opt(Z) limit_opt(L). {
578   A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L);
579 }
580 %ifndef SQLITE_OMIT_WINDOWFUNC
581 oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y)
582                  groupby_opt(P) having_opt(Q) window_clause(R)
583                  orderby_opt(Z) limit_opt(L). {
584   A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L);
585   if( A ){
586     A->pWinDefn = R;
587   }else{
588     sqlite3WindowListDelete(pParse->db, R);
589   }
590 }
591 %endif
592 
593 
594 oneselect(A) ::= values(A).
595 
596 %type values {Select*}
597 %destructor values {sqlite3SelectDelete(pParse->db, $$);}
598 values(A) ::= VALUES LP nexprlist(X) RP. {
599   A = sqlite3SelectNew(pParse,X,0,0,0,0,0,SF_Values,0);
600 }
601 values(A) ::= values(A) COMMA LP nexprlist(Y) RP. {
602   Select *pRight, *pLeft = A;
603   pRight = sqlite3SelectNew(pParse,Y,0,0,0,0,0,SF_Values|SF_MultiValue,0);
604   if( ALWAYS(pLeft) ) pLeft->selFlags &= ~SF_MultiValue;
605   if( pRight ){
606     pRight->op = TK_ALL;
607     pRight->pPrior = pLeft;
608     A = pRight;
609   }else{
610     A = pLeft;
611   }
612 }
613 
614 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is
615 // present and false (0) if it is not.
616 //
617 %type distinct {int}
618 distinct(A) ::= DISTINCT.   {A = SF_Distinct;}
619 distinct(A) ::= ALL.        {A = SF_All;}
620 distinct(A) ::= .           {A = 0;}
621 
622 // selcollist is a list of expressions that are to become the return
623 // values of the SELECT statement.  The "*" in statements like
624 // "SELECT * FROM ..." is encoded as a special expression with an
625 // opcode of TK_ASTERISK.
626 //
627 %type selcollist {ExprList*}
628 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);}
629 %type sclp {ExprList*}
630 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);}
631 sclp(A) ::= selcollist(A) COMMA.
632 sclp(A) ::= .                                {A = 0;}
633 selcollist(A) ::= sclp(A) scanpt(B) expr(X) scanpt(Z) as(Y).     {
634    A = sqlite3ExprListAppend(pParse, A, X);
635    if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1);
636    sqlite3ExprListSetSpan(pParse,A,B,Z);
637 }
638 selcollist(A) ::= sclp(A) scanpt STAR. {
639   Expr *p = sqlite3Expr(pParse->db, TK_ASTERISK, 0);
640   A = sqlite3ExprListAppend(pParse, A, p);
641 }
642 selcollist(A) ::= sclp(A) scanpt nm(X) DOT STAR. {
643   Expr *pRight = sqlite3PExpr(pParse, TK_ASTERISK, 0, 0);
644   Expr *pLeft = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1);
645   Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
646   A = sqlite3ExprListAppend(pParse,A, pDot);
647 }
648 
649 // An option "AS <id>" phrase that can follow one of the expressions that
650 // define the result set, or one of the tables in the FROM clause.
651 //
652 %type as {Token}
653 as(X) ::= AS nm(Y).    {X = Y;}
654 as(X) ::= ids(X).
655 as(X) ::= .            {X.n = 0; X.z = 0;}
656 
657 
658 %type seltablist {SrcList*}
659 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);}
660 %type stl_prefix {SrcList*}
661 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);}
662 %type from {SrcList*}
663 %destructor from {sqlite3SrcListDelete(pParse->db, $$);}
664 
665 // A complete FROM clause.
666 //
667 from(A) ::= .                {A = 0;}
668 from(A) ::= FROM seltablist(X). {
669   A = X;
670   sqlite3SrcListShiftJoinType(A);
671 }
672 
673 // "seltablist" is a "Select Table List" - the content of the FROM clause
674 // in a SELECT statement.  "stl_prefix" is a prefix of this list.
675 //
676 stl_prefix(A) ::= seltablist(A) joinop(Y).    {
677    if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].fg.jointype = (u8)Y;
678 }
679 stl_prefix(A) ::= .                           {A = 0;}
680 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) as(Z) indexed_opt(I)
681                   on_opt(N) using_opt(U). {
682   A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U);
683   sqlite3SrcListIndexedBy(pParse, A, &I);
684 }
685 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) LP exprlist(E) RP as(Z)
686                   on_opt(N) using_opt(U). {
687   A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U);
688   sqlite3SrcListFuncArgs(pParse, A, E);
689 }
690 %ifndef SQLITE_OMIT_SUBQUERY
691   seltablist(A) ::= stl_prefix(A) LP select(S) RP
692                     as(Z) on_opt(N) using_opt(U). {
693     A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,S,N,U);
694   }
695   seltablist(A) ::= stl_prefix(A) LP seltablist(F) RP
696                     as(Z) on_opt(N) using_opt(U). {
697     if( A==0 && Z.n==0 && N==0 && U==0 ){
698       A = F;
699     }else if( F->nSrc==1 ){
700       A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,0,N,U);
701       if( A ){
702         struct SrcList_item *pNew = &A->a[A->nSrc-1];
703         struct SrcList_item *pOld = F->a;
704         pNew->zName = pOld->zName;
705         pNew->zDatabase = pOld->zDatabase;
706         pNew->pSelect = pOld->pSelect;
707         if( pOld->fg.isTabFunc ){
708           pNew->u1.pFuncArg = pOld->u1.pFuncArg;
709           pOld->u1.pFuncArg = 0;
710           pOld->fg.isTabFunc = 0;
711           pNew->fg.isTabFunc = 1;
712         }
713         pOld->zName = pOld->zDatabase = 0;
714         pOld->pSelect = 0;
715       }
716       sqlite3SrcListDelete(pParse->db, F);
717     }else{
718       Select *pSubquery;
719       sqlite3SrcListShiftJoinType(F);
720       pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,SF_NestedFrom,0);
721       A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,pSubquery,N,U);
722     }
723   }
724 %endif  SQLITE_OMIT_SUBQUERY
725 
726 %type dbnm {Token}
727 dbnm(A) ::= .          {A.z=0; A.n=0;}
728 dbnm(A) ::= DOT nm(X). {A = X;}
729 
730 %type fullname {SrcList*}
731 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);}
732 fullname(A) ::= nm(X).  {
733   A = sqlite3SrcListAppend(pParse,0,&X,0);
734   if( IN_RENAME_OBJECT && A ) sqlite3RenameTokenMap(pParse, A->a[0].zName, &X);
735 }
736 fullname(A) ::= nm(X) DOT nm(Y). {
737   A = sqlite3SrcListAppend(pParse,0,&X,&Y);
738   if( IN_RENAME_OBJECT && A ) sqlite3RenameTokenMap(pParse, A->a[0].zName, &Y);
739 }
740 
741 %type xfullname {SrcList*}
742 %destructor xfullname {sqlite3SrcListDelete(pParse->db, $$);}
743 xfullname(A) ::= nm(X).
744    {A = sqlite3SrcListAppend(pParse,0,&X,0); /*A-overwrites-X*/}
745 xfullname(A) ::= nm(X) DOT nm(Y).
746    {A = sqlite3SrcListAppend(pParse,0,&X,&Y); /*A-overwrites-X*/}
747 xfullname(A) ::= nm(X) DOT nm(Y) AS nm(Z).  {
748    A = sqlite3SrcListAppend(pParse,0,&X,&Y); /*A-overwrites-X*/
749    if( A ) A->a[0].zAlias = sqlite3NameFromToken(pParse->db, &Z);
750 }
751 xfullname(A) ::= nm(X) AS nm(Z). {
752    A = sqlite3SrcListAppend(pParse,0,&X,0); /*A-overwrites-X*/
753    if( A ) A->a[0].zAlias = sqlite3NameFromToken(pParse->db, &Z);
754 }
755 
756 %type joinop {int}
757 joinop(X) ::= COMMA|JOIN.              { X = JT_INNER; }
758 joinop(X) ::= JOIN_KW(A) JOIN.
759                   {X = sqlite3JoinType(pParse,&A,0,0);  /*X-overwrites-A*/}
760 joinop(X) ::= JOIN_KW(A) nm(B) JOIN.
761                   {X = sqlite3JoinType(pParse,&A,&B,0); /*X-overwrites-A*/}
762 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN.
763                   {X = sqlite3JoinType(pParse,&A,&B,&C);/*X-overwrites-A*/}
764 
765 // There is a parsing abiguity in an upsert statement that uses a
766 // SELECT on the RHS of a the INSERT:
767 //
768 //      INSERT INTO tab SELECT * FROM aaa JOIN bbb ON CONFLICT ...
769 //                                        here ----^^
770 //
771 // When the ON token is encountered, the parser does not know if it is
772 // the beginning of an ON CONFLICT clause, or the beginning of an ON
773 // clause associated with the JOIN.  The conflict is resolved in favor
774 // of the JOIN.  If an ON CONFLICT clause is intended, insert a dummy
775 // WHERE clause in between, like this:
776 //
777 //      INSERT INTO tab SELECT * FROM aaa JOIN bbb WHERE true ON CONFLICT ...
778 //
779 // The [AND] and [OR] precedence marks in the rules for on_opt cause the
780 // ON in this context to always be interpreted as belonging to the JOIN.
781 //
782 %type on_opt {Expr*}
783 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);}
784 on_opt(N) ::= ON expr(E).  {N = E;}
785 on_opt(N) ::= .     [OR]   {N = 0;}
786 
787 // Note that this block abuses the Token type just a little. If there is
788 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If
789 // there is an INDEXED BY clause, then the token is populated as per normal,
790 // with z pointing to the token data and n containing the number of bytes
791 // in the token.
792 //
793 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is
794 // normally illegal. The sqlite3SrcListIndexedBy() function
795 // recognizes and interprets this as a special case.
796 //
797 %type indexed_opt {Token}
798 indexed_opt(A) ::= .                 {A.z=0; A.n=0;}
799 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;}
800 indexed_opt(A) ::= NOT INDEXED.      {A.z=0; A.n=1;}
801 
802 %type using_opt {IdList*}
803 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);}
804 using_opt(U) ::= USING LP idlist(L) RP.  {U = L;}
805 using_opt(U) ::= .                        {U = 0;}
806 
807 
808 %type orderby_opt {ExprList*}
809 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);}
810 
811 // the sortlist non-terminal stores a list of expression where each
812 // expression is optionally followed by ASC or DESC to indicate the
813 // sort order.
814 //
815 %type sortlist {ExprList*}
816 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);}
817 
818 orderby_opt(A) ::= .                          {A = 0;}
819 orderby_opt(A) ::= ORDER BY sortlist(X).      {A = X;}
820 sortlist(A) ::= sortlist(A) COMMA expr(Y) sortorder(Z) nulls(X). {
821   A = sqlite3ExprListAppend(pParse,A,Y);
822   sqlite3ExprListSetSortOrder(A,Z,X);
823 }
824 sortlist(A) ::= expr(Y) sortorder(Z) nulls(X). {
825   A = sqlite3ExprListAppend(pParse,0,Y); /*A-overwrites-Y*/
826   sqlite3ExprListSetSortOrder(A,Z,X);
827 }
828 
829 %type sortorder {int}
830 
831 sortorder(A) ::= ASC.           {A = SQLITE_SO_ASC;}
832 sortorder(A) ::= DESC.          {A = SQLITE_SO_DESC;}
833 sortorder(A) ::= .              {A = SQLITE_SO_UNDEFINED;}
834 
835 %type nulls {int}
836 nulls(A) ::= NULLS FIRST.       {A = SQLITE_SO_ASC;}
837 nulls(A) ::= NULLS LAST.        {A = SQLITE_SO_DESC;}
838 nulls(A) ::= .                  {A = SQLITE_SO_UNDEFINED;}
839 
840 %type groupby_opt {ExprList*}
841 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);}
842 groupby_opt(A) ::= .                      {A = 0;}
843 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;}
844 
845 %type having_opt {Expr*}
846 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);}
847 having_opt(A) ::= .                {A = 0;}
848 having_opt(A) ::= HAVING expr(X).  {A = X;}
849 
850 %type limit_opt {Expr*}
851 
852 // The destructor for limit_opt will never fire in the current grammar.
853 // The limit_opt non-terminal only occurs at the end of a single production
854 // rule for SELECT statements.  As soon as the rule that create the
855 // limit_opt non-terminal reduces, the SELECT statement rule will also
856 // reduce.  So there is never a limit_opt non-terminal on the stack
857 // except as a transient.  So there is never anything to destroy.
858 //
859 //%destructor limit_opt {sqlite3ExprDelete(pParse->db, $$);}
860 limit_opt(A) ::= .       {A = 0;}
861 limit_opt(A) ::= LIMIT expr(X).
862                          {A = sqlite3PExpr(pParse,TK_LIMIT,X,0);}
863 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y).
864                          {A = sqlite3PExpr(pParse,TK_LIMIT,X,Y);}
865 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y).
866                          {A = sqlite3PExpr(pParse,TK_LIMIT,Y,X);}
867 
868 /////////////////////////// The DELETE statement /////////////////////////////
869 //
870 %if SQLITE_ENABLE_UPDATE_DELETE_LIMIT || SQLITE_UDL_CAPABLE_PARSER
871 cmd ::= with DELETE FROM xfullname(X) indexed_opt(I) where_opt(W)
872         orderby_opt(O) limit_opt(L). {
873   sqlite3SrcListIndexedBy(pParse, X, &I);
874 #ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
875   if( O || L ){
876     updateDeleteLimitError(pParse,O,L);
877     O = 0;
878     L = 0;
879   }
880 #endif
881   sqlite3DeleteFrom(pParse,X,W,O,L);
882 }
883 %else
884 cmd ::= with DELETE FROM xfullname(X) indexed_opt(I) where_opt(W). {
885   sqlite3SrcListIndexedBy(pParse, X, &I);
886   sqlite3DeleteFrom(pParse,X,W,0,0);
887 }
888 %endif
889 
890 %type where_opt {Expr*}
891 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);}
892 
893 where_opt(A) ::= .                    {A = 0;}
894 where_opt(A) ::= WHERE expr(X).       {A = X;}
895 
896 ////////////////////////// The UPDATE command ////////////////////////////////
897 //
898 %if SQLITE_ENABLE_UPDATE_DELETE_LIMIT || SQLITE_UDL_CAPABLE_PARSER
899 cmd ::= with UPDATE orconf(R) xfullname(X) indexed_opt(I) SET setlist(Y) from(F)
900         where_opt(W) orderby_opt(O) limit_opt(L).  {
901   sqlite3SrcListIndexedBy(pParse, X, &I);
902   X = sqlite3SrcListAppendList(pParse, X, F);
903   sqlite3ExprListCheckLength(pParse,Y,"set list");
904 #ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
905   if( O || L ){
906     updateDeleteLimitError(pParse,O,L);
907     O = 0;
908     L = 0;
909   }
910 #endif
911   sqlite3Update(pParse,X,Y,W,R,O,L,0);
912 }
913 %else
914 cmd ::= with UPDATE orconf(R) xfullname(X) indexed_opt(I) SET setlist(Y) from(F)
915         where_opt(W). {
916   sqlite3SrcListIndexedBy(pParse, X, &I);
917   sqlite3ExprListCheckLength(pParse,Y,"set list");
918   X = sqlite3SrcListAppendList(pParse, X, F);
919   sqlite3Update(pParse,X,Y,W,R,0,0,0);
920 }
921 %endif
922 
923 
924 
925 %type setlist {ExprList*}
926 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);}
927 
928 setlist(A) ::= setlist(A) COMMA nm(X) EQ expr(Y). {
929   A = sqlite3ExprListAppend(pParse, A, Y);
930   sqlite3ExprListSetName(pParse, A, &X, 1);
931 }
932 setlist(A) ::= setlist(A) COMMA LP idlist(X) RP EQ expr(Y). {
933   A = sqlite3ExprListAppendVector(pParse, A, X, Y);
934 }
935 setlist(A) ::= nm(X) EQ expr(Y). {
936   A = sqlite3ExprListAppend(pParse, 0, Y);
937   sqlite3ExprListSetName(pParse, A, &X, 1);
938 }
939 setlist(A) ::= LP idlist(X) RP EQ expr(Y). {
940   A = sqlite3ExprListAppendVector(pParse, 0, X, Y);
941 }
942 
943 ////////////////////////// The INSERT command /////////////////////////////////
944 //
945 cmd ::= with insert_cmd(R) INTO xfullname(X) idlist_opt(F) select(S)
946         upsert(U). {
947   sqlite3Insert(pParse, X, S, F, R, U);
948 }
949 cmd ::= with insert_cmd(R) INTO xfullname(X) idlist_opt(F) DEFAULT VALUES.
950 {
951   sqlite3Insert(pParse, X, 0, F, R, 0);
952 }
953 
954 %type upsert {Upsert*}
955 
956 // Because upsert only occurs at the tip end of the INSERT rule for cmd,
957 // there is never a case where the value of the upsert pointer will not
958 // be destroyed by the cmd action.  So comment-out the destructor to
959 // avoid unreachable code.
960 //%destructor upsert {sqlite3UpsertDelete(pParse->db,$$);}
961 upsert(A) ::= . { A = 0; }
962 upsert(A) ::= ON CONFLICT LP sortlist(T) RP where_opt(TW)
963               DO UPDATE SET setlist(Z) where_opt(W).
964               { A = sqlite3UpsertNew(pParse->db,T,TW,Z,W);}
965 upsert(A) ::= ON CONFLICT LP sortlist(T) RP where_opt(TW) DO NOTHING.
966               { A = sqlite3UpsertNew(pParse->db,T,TW,0,0); }
967 upsert(A) ::= ON CONFLICT DO NOTHING.
968               { A = sqlite3UpsertNew(pParse->db,0,0,0,0); }
969 
970 %type insert_cmd {int}
971 insert_cmd(A) ::= INSERT orconf(R).   {A = R;}
972 insert_cmd(A) ::= REPLACE.            {A = OE_Replace;}
973 
974 %type idlist_opt {IdList*}
975 %destructor idlist_opt {sqlite3IdListDelete(pParse->db, $$);}
976 %type idlist {IdList*}
977 %destructor idlist {sqlite3IdListDelete(pParse->db, $$);}
978 
979 idlist_opt(A) ::= .                       {A = 0;}
980 idlist_opt(A) ::= LP idlist(X) RP.    {A = X;}
981 idlist(A) ::= idlist(A) COMMA nm(Y).
982     {A = sqlite3IdListAppend(pParse,A,&Y);}
983 idlist(A) ::= nm(Y).
984     {A = sqlite3IdListAppend(pParse,0,&Y); /*A-overwrites-Y*/}
985 
986 /////////////////////////// Expression Processing /////////////////////////////
987 //
988 
989 %type expr {Expr*}
990 %destructor expr {sqlite3ExprDelete(pParse->db, $$);}
991 %type term {Expr*}
992 %destructor term {sqlite3ExprDelete(pParse->db, $$);}
993 
994 %include {
995 
996   /* Construct a new Expr object from a single identifier.  Use the
997   ** new Expr to populate pOut.  Set the span of pOut to be the identifier
998   ** that created the expression.
999   */
1000   static Expr *tokenExpr(Parse *pParse, int op, Token t){
1001     Expr *p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)+t.n+1);
1002     if( p ){
1003       /* memset(p, 0, sizeof(Expr)); */
1004       p->op = (u8)op;
1005       p->affExpr = 0;
1006       p->flags = EP_Leaf;
1007       ExprClearVVAProperties(p);
1008       p->iAgg = -1;
1009       p->pLeft = p->pRight = 0;
1010       p->x.pList = 0;
1011       p->pAggInfo = 0;
1012       p->y.pTab = 0;
1013       p->op2 = 0;
1014       p->iTable = 0;
1015       p->iColumn = 0;
1016       p->u.zToken = (char*)&p[1];
1017       memcpy(p->u.zToken, t.z, t.n);
1018       p->u.zToken[t.n] = 0;
1019       if( sqlite3Isquote(p->u.zToken[0]) ){
1020         sqlite3DequoteExpr(p);
1021       }
1022 #if SQLITE_MAX_EXPR_DEPTH>0
1023       p->nHeight = 1;
1024 #endif
1025       if( IN_RENAME_OBJECT ){
1026         return (Expr*)sqlite3RenameTokenMap(pParse, (void*)p, &t);
1027       }
1028     }
1029     return p;
1030   }
1031 
1032 }
1033 
1034 expr(A) ::= term(A).
1035 expr(A) ::= LP expr(X) RP. {A = X;}
1036 expr(A) ::= id(X).          {A=tokenExpr(pParse,TK_ID,X); /*A-overwrites-X*/}
1037 expr(A) ::= JOIN_KW(X).     {A=tokenExpr(pParse,TK_ID,X); /*A-overwrites-X*/}
1038 expr(A) ::= nm(X) DOT nm(Y). {
1039   Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1);
1040   Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1);
1041   if( IN_RENAME_OBJECT ){
1042     sqlite3RenameTokenMap(pParse, (void*)temp2, &Y);
1043     sqlite3RenameTokenMap(pParse, (void*)temp1, &X);
1044   }
1045   A = sqlite3PExpr(pParse, TK_DOT, temp1, temp2);
1046 }
1047 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). {
1048   Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1);
1049   Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1);
1050   Expr *temp3 = sqlite3ExprAlloc(pParse->db, TK_ID, &Z, 1);
1051   Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3);
1052   if( IN_RENAME_OBJECT ){
1053     sqlite3RenameTokenMap(pParse, (void*)temp3, &Z);
1054     sqlite3RenameTokenMap(pParse, (void*)temp2, &Y);
1055   }
1056   A = sqlite3PExpr(pParse, TK_DOT, temp1, temp4);
1057 }
1058 term(A) ::= NULL|FLOAT|BLOB(X). {A=tokenExpr(pParse,@X,X); /*A-overwrites-X*/}
1059 term(A) ::= STRING(X).          {A=tokenExpr(pParse,@X,X); /*A-overwrites-X*/}
1060 term(A) ::= INTEGER(X). {
1061   A = sqlite3ExprAlloc(pParse->db, TK_INTEGER, &X, 1);
1062 }
1063 expr(A) ::= VARIABLE(X).     {
1064   if( !(X.z[0]=='#' && sqlite3Isdigit(X.z[1])) ){
1065     u32 n = X.n;
1066     A = tokenExpr(pParse, TK_VARIABLE, X);
1067     sqlite3ExprAssignVarNumber(pParse, A, n);
1068   }else{
1069     /* When doing a nested parse, one can include terms in an expression
1070     ** that look like this:   #1 #2 ...  These terms refer to registers
1071     ** in the virtual machine.  #N is the N-th register. */
1072     Token t = X; /*A-overwrites-X*/
1073     assert( t.n>=2 );
1074     if( pParse->nested==0 ){
1075       sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &t);
1076       A = 0;
1077     }else{
1078       A = sqlite3PExpr(pParse, TK_REGISTER, 0, 0);
1079       if( A ) sqlite3GetInt32(&t.z[1], &A->iTable);
1080     }
1081   }
1082 }
1083 expr(A) ::= expr(A) COLLATE ids(C). {
1084   A = sqlite3ExprAddCollateToken(pParse, A, &C, 1);
1085 }
1086 %ifndef SQLITE_OMIT_CAST
1087 expr(A) ::= CAST LP expr(E) AS typetoken(T) RP. {
1088   A = sqlite3ExprAlloc(pParse->db, TK_CAST, &T, 1);
1089   sqlite3ExprAttachSubtrees(pParse->db, A, E, 0);
1090 }
1091 %endif  SQLITE_OMIT_CAST
1092 
1093 
1094 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP. {
1095   A = sqlite3ExprFunction(pParse, Y, &X, D);
1096 }
1097 expr(A) ::= id(X) LP STAR RP. {
1098   A = sqlite3ExprFunction(pParse, 0, &X, 0);
1099 }
1100 
1101 %ifndef SQLITE_OMIT_WINDOWFUNC
1102 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP filter_over(Z). {
1103   A = sqlite3ExprFunction(pParse, Y, &X, D);
1104   sqlite3WindowAttach(pParse, A, Z);
1105 }
1106 expr(A) ::= id(X) LP STAR RP filter_over(Z). {
1107   A = sqlite3ExprFunction(pParse, 0, &X, 0);
1108   sqlite3WindowAttach(pParse, A, Z);
1109 }
1110 %endif
1111 
1112 term(A) ::= CTIME_KW(OP). {
1113   A = sqlite3ExprFunction(pParse, 0, &OP, 0);
1114 }
1115 
1116 expr(A) ::= LP nexprlist(X) COMMA expr(Y) RP. {
1117   ExprList *pList = sqlite3ExprListAppend(pParse, X, Y);
1118   A = sqlite3PExpr(pParse, TK_VECTOR, 0, 0);
1119   if( A ){
1120     A->x.pList = pList;
1121     if( ALWAYS(pList->nExpr) ){
1122       A->flags |= pList->a[0].pExpr->flags & EP_Propagate;
1123     }
1124   }else{
1125     sqlite3ExprListDelete(pParse->db, pList);
1126   }
1127 }
1128 
1129 expr(A) ::= expr(A) AND expr(Y).        {A=sqlite3ExprAnd(pParse,A,Y);}
1130 expr(A) ::= expr(A) OR(OP) expr(Y).     {A=sqlite3PExpr(pParse,@OP,A,Y);}
1131 expr(A) ::= expr(A) LT|GT|GE|LE(OP) expr(Y).
1132                                         {A=sqlite3PExpr(pParse,@OP,A,Y);}
1133 expr(A) ::= expr(A) EQ|NE(OP) expr(Y).  {A=sqlite3PExpr(pParse,@OP,A,Y);}
1134 expr(A) ::= expr(A) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y).
1135                                         {A=sqlite3PExpr(pParse,@OP,A,Y);}
1136 expr(A) ::= expr(A) PLUS|MINUS(OP) expr(Y).
1137                                         {A=sqlite3PExpr(pParse,@OP,A,Y);}
1138 expr(A) ::= expr(A) STAR|SLASH|REM(OP) expr(Y).
1139                                         {A=sqlite3PExpr(pParse,@OP,A,Y);}
1140 expr(A) ::= expr(A) CONCAT(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);}
1141 %type likeop {Token}
1142 likeop(A) ::= LIKE_KW|MATCH(A).
1143 likeop(A) ::= NOT LIKE_KW|MATCH(X). {A=X; A.n|=0x80000000; /*A-overwrite-X*/}
1144 expr(A) ::= expr(A) likeop(OP) expr(Y).  [LIKE_KW]  {
1145   ExprList *pList;
1146   int bNot = OP.n & 0x80000000;
1147   OP.n &= 0x7fffffff;
1148   pList = sqlite3ExprListAppend(pParse,0, Y);
1149   pList = sqlite3ExprListAppend(pParse,pList, A);
1150   A = sqlite3ExprFunction(pParse, pList, &OP, 0);
1151   if( bNot ) A = sqlite3PExpr(pParse, TK_NOT, A, 0);
1152   if( A ) A->flags |= EP_InfixFunc;
1153 }
1154 expr(A) ::= expr(A) likeop(OP) expr(Y) ESCAPE expr(E).  [LIKE_KW]  {
1155   ExprList *pList;
1156   int bNot = OP.n & 0x80000000;
1157   OP.n &= 0x7fffffff;
1158   pList = sqlite3ExprListAppend(pParse,0, Y);
1159   pList = sqlite3ExprListAppend(pParse,pList, A);
1160   pList = sqlite3ExprListAppend(pParse,pList, E);
1161   A = sqlite3ExprFunction(pParse, pList, &OP, 0);
1162   if( bNot ) A = sqlite3PExpr(pParse, TK_NOT, A, 0);
1163   if( A ) A->flags |= EP_InfixFunc;
1164 }
1165 
1166 expr(A) ::= expr(A) ISNULL|NOTNULL(E).   {A = sqlite3PExpr(pParse,@E,A,0);}
1167 expr(A) ::= expr(A) NOT NULL.    {A = sqlite3PExpr(pParse,TK_NOTNULL,A,0);}
1168 
1169 %include {
1170   /* A routine to convert a binary TK_IS or TK_ISNOT expression into a
1171   ** unary TK_ISNULL or TK_NOTNULL expression. */
1172   static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){
1173     sqlite3 *db = pParse->db;
1174     if( pA && pY && pY->op==TK_NULL && !IN_RENAME_OBJECT ){
1175       pA->op = (u8)op;
1176       sqlite3ExprDelete(db, pA->pRight);
1177       pA->pRight = 0;
1178     }
1179   }
1180 }
1181 
1182 //    expr1 IS expr2
1183 //    expr1 IS NOT expr2
1184 //
1185 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL.  If expr2
1186 // is any other expression, code as TK_IS or TK_ISNOT.
1187 //
1188 expr(A) ::= expr(A) IS expr(Y).     {
1189   A = sqlite3PExpr(pParse,TK_IS,A,Y);
1190   binaryToUnaryIfNull(pParse, Y, A, TK_ISNULL);
1191 }
1192 expr(A) ::= expr(A) IS NOT expr(Y). {
1193   A = sqlite3PExpr(pParse,TK_ISNOT,A,Y);
1194   binaryToUnaryIfNull(pParse, Y, A, TK_NOTNULL);
1195 }
1196 
1197 expr(A) ::= NOT(B) expr(X).
1198               {A = sqlite3PExpr(pParse, @B, X, 0);/*A-overwrites-B*/}
1199 expr(A) ::= BITNOT(B) expr(X).
1200               {A = sqlite3PExpr(pParse, @B, X, 0);/*A-overwrites-B*/}
1201 expr(A) ::= PLUS|MINUS(B) expr(X). [BITNOT] {
1202   A = sqlite3PExpr(pParse, @B==TK_PLUS ? TK_UPLUS : TK_UMINUS, X, 0);
1203   /*A-overwrites-B*/
1204 }
1205 
1206 %type between_op {int}
1207 between_op(A) ::= BETWEEN.     {A = 0;}
1208 between_op(A) ::= NOT BETWEEN. {A = 1;}
1209 expr(A) ::= expr(A) between_op(N) expr(X) AND expr(Y). [BETWEEN] {
1210   ExprList *pList = sqlite3ExprListAppend(pParse,0, X);
1211   pList = sqlite3ExprListAppend(pParse,pList, Y);
1212   A = sqlite3PExpr(pParse, TK_BETWEEN, A, 0);
1213   if( A ){
1214     A->x.pList = pList;
1215   }else{
1216     sqlite3ExprListDelete(pParse->db, pList);
1217   }
1218   if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0);
1219 }
1220 %ifndef SQLITE_OMIT_SUBQUERY
1221   %type in_op {int}
1222   in_op(A) ::= IN.      {A = 0;}
1223   in_op(A) ::= NOT IN.  {A = 1;}
1224   expr(A) ::= expr(A) in_op(N) LP exprlist(Y) RP. [IN] {
1225     if( Y==0 ){
1226       /* Expressions of the form
1227       **
1228       **      expr1 IN ()
1229       **      expr1 NOT IN ()
1230       **
1231       ** simplify to constants 0 (false) and 1 (true), respectively,
1232       ** regardless of the value of expr1.
1233       */
1234       sqlite3ExprUnmapAndDelete(pParse, A);
1235       A = sqlite3Expr(pParse->db, TK_INTEGER, N ? "1" : "0");
1236     }else if( Y->nExpr==1 && sqlite3ExprIsConstant(Y->a[0].pExpr) ){
1237       Expr *pRHS = Y->a[0].pExpr;
1238       Y->a[0].pExpr = 0;
1239       sqlite3ExprListDelete(pParse->db, Y);
1240       pRHS = sqlite3PExpr(pParse, TK_UPLUS, pRHS, 0);
1241       A = sqlite3PExpr(pParse, TK_EQ, A, pRHS);
1242       if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0);
1243     }else{
1244       A = sqlite3PExpr(pParse, TK_IN, A, 0);
1245       if( A ){
1246         A->x.pList = Y;
1247         sqlite3ExprSetHeightAndFlags(pParse, A);
1248       }else{
1249         sqlite3ExprListDelete(pParse->db, Y);
1250       }
1251       if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0);
1252     }
1253   }
1254   expr(A) ::= LP select(X) RP. {
1255     A = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
1256     sqlite3PExprAddSelect(pParse, A, X);
1257   }
1258   expr(A) ::= expr(A) in_op(N) LP select(Y) RP.  [IN] {
1259     A = sqlite3PExpr(pParse, TK_IN, A, 0);
1260     sqlite3PExprAddSelect(pParse, A, Y);
1261     if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0);
1262   }
1263   expr(A) ::= expr(A) in_op(N) nm(Y) dbnm(Z) paren_exprlist(E). [IN] {
1264     SrcList *pSrc = sqlite3SrcListAppend(pParse, 0,&Y,&Z);
1265     Select *pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0);
1266     if( E )  sqlite3SrcListFuncArgs(pParse, pSelect ? pSrc : 0, E);
1267     A = sqlite3PExpr(pParse, TK_IN, A, 0);
1268     sqlite3PExprAddSelect(pParse, A, pSelect);
1269     if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0);
1270   }
1271   expr(A) ::= EXISTS LP select(Y) RP. {
1272     Expr *p;
1273     p = A = sqlite3PExpr(pParse, TK_EXISTS, 0, 0);
1274     sqlite3PExprAddSelect(pParse, p, Y);
1275   }
1276 %endif SQLITE_OMIT_SUBQUERY
1277 
1278 /* CASE expressions */
1279 expr(A) ::= CASE case_operand(X) case_exprlist(Y) case_else(Z) END. {
1280   A = sqlite3PExpr(pParse, TK_CASE, X, 0);
1281   if( A ){
1282     A->x.pList = Z ? sqlite3ExprListAppend(pParse,Y,Z) : Y;
1283     sqlite3ExprSetHeightAndFlags(pParse, A);
1284   }else{
1285     sqlite3ExprListDelete(pParse->db, Y);
1286     sqlite3ExprDelete(pParse->db, Z);
1287   }
1288 }
1289 %type case_exprlist {ExprList*}
1290 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);}
1291 case_exprlist(A) ::= case_exprlist(A) WHEN expr(Y) THEN expr(Z). {
1292   A = sqlite3ExprListAppend(pParse,A, Y);
1293   A = sqlite3ExprListAppend(pParse,A, Z);
1294 }
1295 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). {
1296   A = sqlite3ExprListAppend(pParse,0, Y);
1297   A = sqlite3ExprListAppend(pParse,A, Z);
1298 }
1299 %type case_else {Expr*}
1300 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);}
1301 case_else(A) ::=  ELSE expr(X).         {A = X;}
1302 case_else(A) ::=  .                     {A = 0;}
1303 %type case_operand {Expr*}
1304 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);}
1305 case_operand(A) ::= expr(X).            {A = X; /*A-overwrites-X*/}
1306 case_operand(A) ::= .                   {A = 0;}
1307 
1308 %type exprlist {ExprList*}
1309 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);}
1310 %type nexprlist {ExprList*}
1311 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);}
1312 
1313 exprlist(A) ::= nexprlist(A).
1314 exprlist(A) ::= .                            {A = 0;}
1315 nexprlist(A) ::= nexprlist(A) COMMA expr(Y).
1316     {A = sqlite3ExprListAppend(pParse,A,Y);}
1317 nexprlist(A) ::= expr(Y).
1318     {A = sqlite3ExprListAppend(pParse,0,Y); /*A-overwrites-Y*/}
1319 
1320 %ifndef SQLITE_OMIT_SUBQUERY
1321 /* A paren_exprlist is an optional expression list contained inside
1322 ** of parenthesis */
1323 %type paren_exprlist {ExprList*}
1324 %destructor paren_exprlist {sqlite3ExprListDelete(pParse->db, $$);}
1325 paren_exprlist(A) ::= .   {A = 0;}
1326 paren_exprlist(A) ::= LP exprlist(X) RP.  {A = X;}
1327 %endif SQLITE_OMIT_SUBQUERY
1328 
1329 
1330 ///////////////////////////// The CREATE INDEX command ///////////////////////
1331 //
1332 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D)
1333         ON nm(Y) LP sortlist(Z) RP where_opt(W). {
1334   sqlite3CreateIndex(pParse, &X, &D,
1335                      sqlite3SrcListAppend(pParse,0,&Y,0), Z, U,
1336                       &S, W, SQLITE_SO_ASC, NE, SQLITE_IDXTYPE_APPDEF);
1337   if( IN_RENAME_OBJECT && pParse->pNewIndex ){
1338     sqlite3RenameTokenMap(pParse, pParse->pNewIndex->zName, &Y);
1339   }
1340 }
1341 
1342 %type uniqueflag {int}
1343 uniqueflag(A) ::= UNIQUE.  {A = OE_Abort;}
1344 uniqueflag(A) ::= .        {A = OE_None;}
1345 
1346 
1347 // The eidlist non-terminal (Expression Id List) generates an ExprList
1348 // from a list of identifiers.  The identifier names are in ExprList.a[].zName.
1349 // This list is stored in an ExprList rather than an IdList so that it
1350 // can be easily sent to sqlite3ColumnsExprList().
1351 //
1352 // eidlist is grouped with CREATE INDEX because it used to be the non-terminal
1353 // used for the arguments to an index.  That is just an historical accident.
1354 //
1355 // IMPORTANT COMPATIBILITY NOTE:  Some prior versions of SQLite accepted
1356 // COLLATE clauses and ASC or DESC keywords on ID lists in inappropriate
1357 // places - places that might have been stored in the sqlite_schema table.
1358 // Those extra features were ignored.  But because they might be in some
1359 // (busted) old databases, we need to continue parsing them when loading
1360 // historical schemas.
1361 //
1362 %type eidlist {ExprList*}
1363 %destructor eidlist {sqlite3ExprListDelete(pParse->db, $$);}
1364 %type eidlist_opt {ExprList*}
1365 %destructor eidlist_opt {sqlite3ExprListDelete(pParse->db, $$);}
1366 
1367 %include {
1368   /* Add a single new term to an ExprList that is used to store a
1369   ** list of identifiers.  Report an error if the ID list contains
1370   ** a COLLATE clause or an ASC or DESC keyword, except ignore the
1371   ** error while parsing a legacy schema.
1372   */
1373   static ExprList *parserAddExprIdListTerm(
1374     Parse *pParse,
1375     ExprList *pPrior,
1376     Token *pIdToken,
1377     int hasCollate,
1378     int sortOrder
1379   ){
1380     ExprList *p = sqlite3ExprListAppend(pParse, pPrior, 0);
1381     if( (hasCollate || sortOrder!=SQLITE_SO_UNDEFINED)
1382         && pParse->db->init.busy==0
1383     ){
1384       sqlite3ErrorMsg(pParse, "syntax error after column name \"%.*s\"",
1385                          pIdToken->n, pIdToken->z);
1386     }
1387     sqlite3ExprListSetName(pParse, p, pIdToken, 1);
1388     return p;
1389   }
1390 } // end %include
1391 
1392 eidlist_opt(A) ::= .                         {A = 0;}
1393 eidlist_opt(A) ::= LP eidlist(X) RP.         {A = X;}
1394 eidlist(A) ::= eidlist(A) COMMA nm(Y) collate(C) sortorder(Z).  {
1395   A = parserAddExprIdListTerm(pParse, A, &Y, C, Z);
1396 }
1397 eidlist(A) ::= nm(Y) collate(C) sortorder(Z). {
1398   A = parserAddExprIdListTerm(pParse, 0, &Y, C, Z); /*A-overwrites-Y*/
1399 }
1400 
1401 %type collate {int}
1402 collate(C) ::= .              {C = 0;}
1403 collate(C) ::= COLLATE ids.   {C = 1;}
1404 
1405 
1406 ///////////////////////////// The DROP INDEX command /////////////////////////
1407 //
1408 cmd ::= DROP INDEX ifexists(E) fullname(X).   {sqlite3DropIndex(pParse, X, E);}
1409 
1410 ///////////////////////////// The VACUUM command /////////////////////////////
1411 //
1412 %if !SQLITE_OMIT_VACUUM && !SQLITE_OMIT_ATTACH
1413 %type vinto {Expr*}
1414 %destructor vinto {sqlite3ExprDelete(pParse->db, $$);}
1415 cmd ::= VACUUM vinto(Y).                {sqlite3Vacuum(pParse,0,Y);}
1416 cmd ::= VACUUM nm(X) vinto(Y).          {sqlite3Vacuum(pParse,&X,Y);}
1417 vinto(A) ::= INTO expr(X).              {A = X;}
1418 vinto(A) ::= .                          {A = 0;}
1419 %endif
1420 
1421 ///////////////////////////// The PRAGMA command /////////////////////////////
1422 //
1423 %ifndef SQLITE_OMIT_PRAGMA
1424 cmd ::= PRAGMA nm(X) dbnm(Z).                {sqlite3Pragma(pParse,&X,&Z,0,0);}
1425 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y).    {sqlite3Pragma(pParse,&X,&Z,&Y,0);}
1426 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);}
1427 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y).
1428                                              {sqlite3Pragma(pParse,&X,&Z,&Y,1);}
1429 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP.
1430                                              {sqlite3Pragma(pParse,&X,&Z,&Y,1);}
1431 
1432 nmnum(A) ::= plus_num(A).
1433 nmnum(A) ::= nm(A).
1434 nmnum(A) ::= ON(A).
1435 nmnum(A) ::= DELETE(A).
1436 nmnum(A) ::= DEFAULT(A).
1437 %endif SQLITE_OMIT_PRAGMA
1438 %token_class number INTEGER|FLOAT.
1439 plus_num(A) ::= PLUS number(X).       {A = X;}
1440 plus_num(A) ::= number(A).
1441 minus_num(A) ::= MINUS number(X).     {A = X;}
1442 //////////////////////////// The CREATE TRIGGER command /////////////////////
1443 
1444 %ifndef SQLITE_OMIT_TRIGGER
1445 
1446 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). {
1447   Token all;
1448   all.z = A.z;
1449   all.n = (int)(Z.z - A.z) + Z.n;
1450   sqlite3FinishTrigger(pParse, S, &all);
1451 }
1452 
1453 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z)
1454                     trigger_time(C) trigger_event(D)
1455                     ON fullname(E) foreach_clause when_clause(G). {
1456   sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR);
1457   A = (Z.n==0?B:Z); /*A-overwrites-T*/
1458 }
1459 
1460 %type trigger_time {int}
1461 trigger_time(A) ::= BEFORE|AFTER(X).  { A = @X; /*A-overwrites-X*/ }
1462 trigger_time(A) ::= INSTEAD OF.  { A = TK_INSTEAD;}
1463 trigger_time(A) ::= .            { A = TK_BEFORE; }
1464 
1465 %type trigger_event {struct TrigEvent}
1466 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);}
1467 trigger_event(A) ::= DELETE|INSERT(X).   {A.a = @X; /*A-overwrites-X*/ A.b = 0;}
1468 trigger_event(A) ::= UPDATE(X).          {A.a = @X; /*A-overwrites-X*/ A.b = 0;}
1469 trigger_event(A) ::= UPDATE OF idlist(X).{A.a = TK_UPDATE; A.b = X;}
1470 
1471 foreach_clause ::= .
1472 foreach_clause ::= FOR EACH ROW.
1473 
1474 %type when_clause {Expr*}
1475 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);}
1476 when_clause(A) ::= .             { A = 0; }
1477 when_clause(A) ::= WHEN expr(X). { A = X; }
1478 
1479 %type trigger_cmd_list {TriggerStep*}
1480 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);}
1481 trigger_cmd_list(A) ::= trigger_cmd_list(A) trigger_cmd(X) SEMI. {
1482   assert( A!=0 );
1483   A->pLast->pNext = X;
1484   A->pLast = X;
1485 }
1486 trigger_cmd_list(A) ::= trigger_cmd(A) SEMI. {
1487   assert( A!=0 );
1488   A->pLast = A;
1489 }
1490 
1491 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements
1492 // within a trigger.  The table to INSERT, UPDATE, or DELETE is always in
1493 // the same database as the table that the trigger fires on.
1494 //
1495 %type trnm {Token}
1496 trnm(A) ::= nm(A).
1497 trnm(A) ::= nm DOT nm(X). {
1498   A = X;
1499   sqlite3ErrorMsg(pParse,
1500         "qualified table names are not allowed on INSERT, UPDATE, and DELETE "
1501         "statements within triggers");
1502 }
1503 
1504 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE
1505 // statements within triggers.  We make a specific error message for this
1506 // since it is an exception to the default grammar rules.
1507 //
1508 tridxby ::= .
1509 tridxby ::= INDEXED BY nm. {
1510   sqlite3ErrorMsg(pParse,
1511         "the INDEXED BY clause is not allowed on UPDATE or DELETE statements "
1512         "within triggers");
1513 }
1514 tridxby ::= NOT INDEXED. {
1515   sqlite3ErrorMsg(pParse,
1516         "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements "
1517         "within triggers");
1518 }
1519 
1520 
1521 
1522 %type trigger_cmd {TriggerStep*}
1523 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);}
1524 // UPDATE
1525 trigger_cmd(A) ::=
1526    UPDATE(B) orconf(R) trnm(X) tridxby SET setlist(Y) from(F) where_opt(Z) scanpt(E).
1527    {A = sqlite3TriggerUpdateStep(pParse, &X, F, Y, Z, R, B.z, E);}
1528 
1529 // INSERT
1530 trigger_cmd(A) ::= scanpt(B) insert_cmd(R) INTO
1531                       trnm(X) idlist_opt(F) select(S) upsert(U) scanpt(Z). {
1532    A = sqlite3TriggerInsertStep(pParse,&X,F,S,R,U,B,Z);/*A-overwrites-R*/
1533 }
1534 // DELETE
1535 trigger_cmd(A) ::= DELETE(B) FROM trnm(X) tridxby where_opt(Y) scanpt(E).
1536    {A = sqlite3TriggerDeleteStep(pParse, &X, Y, B.z, E);}
1537 
1538 // SELECT
1539 trigger_cmd(A) ::= scanpt(B) select(X) scanpt(E).
1540    {A = sqlite3TriggerSelectStep(pParse->db, X, B, E); /*A-overwrites-X*/}
1541 
1542 // The special RAISE expression that may occur in trigger programs
1543 expr(A) ::= RAISE LP IGNORE RP.  {
1544   A = sqlite3PExpr(pParse, TK_RAISE, 0, 0);
1545   if( A ){
1546     A->affExpr = OE_Ignore;
1547   }
1548 }
1549 expr(A) ::= RAISE LP raisetype(T) COMMA nm(Z) RP.  {
1550   A = sqlite3ExprAlloc(pParse->db, TK_RAISE, &Z, 1);
1551   if( A ) {
1552     A->affExpr = (char)T;
1553   }
1554 }
1555 %endif  !SQLITE_OMIT_TRIGGER
1556 
1557 %type raisetype {int}
1558 raisetype(A) ::= ROLLBACK.  {A = OE_Rollback;}
1559 raisetype(A) ::= ABORT.     {A = OE_Abort;}
1560 raisetype(A) ::= FAIL.      {A = OE_Fail;}
1561 
1562 
1563 ////////////////////////  DROP TRIGGER statement //////////////////////////////
1564 %ifndef SQLITE_OMIT_TRIGGER
1565 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). {
1566   sqlite3DropTrigger(pParse,X,NOERR);
1567 }
1568 %endif  !SQLITE_OMIT_TRIGGER
1569 
1570 //////////////////////// ATTACH DATABASE file AS name /////////////////////////
1571 %ifndef SQLITE_OMIT_ATTACH
1572 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). {
1573   sqlite3Attach(pParse, F, D, K);
1574 }
1575 cmd ::= DETACH database_kw_opt expr(D). {
1576   sqlite3Detach(pParse, D);
1577 }
1578 
1579 %type key_opt {Expr*}
1580 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);}
1581 key_opt(A) ::= .                     { A = 0; }
1582 key_opt(A) ::= KEY expr(X).          { A = X; }
1583 
1584 database_kw_opt ::= DATABASE.
1585 database_kw_opt ::= .
1586 %endif SQLITE_OMIT_ATTACH
1587 
1588 ////////////////////////// REINDEX collation //////////////////////////////////
1589 %ifndef SQLITE_OMIT_REINDEX
1590 cmd ::= REINDEX.                {sqlite3Reindex(pParse, 0, 0);}
1591 cmd ::= REINDEX nm(X) dbnm(Y).  {sqlite3Reindex(pParse, &X, &Y);}
1592 %endif  SQLITE_OMIT_REINDEX
1593 
1594 /////////////////////////////////// ANALYZE ///////////////////////////////////
1595 %ifndef SQLITE_OMIT_ANALYZE
1596 cmd ::= ANALYZE.                {sqlite3Analyze(pParse, 0, 0);}
1597 cmd ::= ANALYZE nm(X) dbnm(Y).  {sqlite3Analyze(pParse, &X, &Y);}
1598 %endif
1599 
1600 //////////////////////// ALTER TABLE table ... ////////////////////////////////
1601 %ifndef SQLITE_OMIT_ALTERTABLE
1602 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). {
1603   sqlite3AlterRenameTable(pParse,X,&Z);
1604 }
1605 cmd ::= ALTER TABLE add_column_fullname
1606         ADD kwcolumn_opt columnname(Y) carglist. {
1607   Y.n = (int)(pParse->sLastToken.z-Y.z) + pParse->sLastToken.n;
1608   sqlite3AlterFinishAddColumn(pParse, &Y);
1609 }
1610 add_column_fullname ::= fullname(X). {
1611   disableLookaside(pParse);
1612   sqlite3AlterBeginAddColumn(pParse, X);
1613 }
1614 cmd ::= ALTER TABLE fullname(X) RENAME kwcolumn_opt nm(Y) TO nm(Z). {
1615   sqlite3AlterRenameColumn(pParse, X, &Y, &Z);
1616 }
1617 
1618 kwcolumn_opt ::= .
1619 kwcolumn_opt ::= COLUMNKW.
1620 
1621 %endif  SQLITE_OMIT_ALTERTABLE
1622 
1623 //////////////////////// CREATE VIRTUAL TABLE ... /////////////////////////////
1624 %ifndef SQLITE_OMIT_VIRTUALTABLE
1625 cmd ::= create_vtab.                       {sqlite3VtabFinishParse(pParse,0);}
1626 cmd ::= create_vtab LP vtabarglist RP(X).  {sqlite3VtabFinishParse(pParse,&X);}
1627 create_vtab ::= createkw VIRTUAL TABLE ifnotexists(E)
1628                 nm(X) dbnm(Y) USING nm(Z). {
1629     sqlite3VtabBeginParse(pParse, &X, &Y, &Z, E);
1630 }
1631 vtabarglist ::= vtabarg.
1632 vtabarglist ::= vtabarglist COMMA vtabarg.
1633 vtabarg ::= .                       {sqlite3VtabArgInit(pParse);}
1634 vtabarg ::= vtabarg vtabargtoken.
1635 vtabargtoken ::= ANY(X).            {sqlite3VtabArgExtend(pParse,&X);}
1636 vtabargtoken ::= lp anylist RP(X).  {sqlite3VtabArgExtend(pParse,&X);}
1637 lp ::= LP(X).                       {sqlite3VtabArgExtend(pParse,&X);}
1638 anylist ::= .
1639 anylist ::= anylist LP anylist RP.
1640 anylist ::= anylist ANY.
1641 %endif  SQLITE_OMIT_VIRTUALTABLE
1642 
1643 
1644 //////////////////////// COMMON TABLE EXPRESSIONS ////////////////////////////
1645 %type wqlist {With*}
1646 %destructor wqlist {sqlite3WithDelete(pParse->db, $$);}
1647 
1648 with ::= .
1649 %ifndef SQLITE_OMIT_CTE
1650 with ::= WITH wqlist(W).              { sqlite3WithPush(pParse, W, 1); }
1651 with ::= WITH RECURSIVE wqlist(W).    { sqlite3WithPush(pParse, W, 1); }
1652 
1653 wqlist(A) ::= nm(X) eidlist_opt(Y) AS LP select(Z) RP. {
1654   A = sqlite3WithAdd(pParse, 0, &X, Y, Z); /*A-overwrites-X*/
1655 }
1656 wqlist(A) ::= wqlist(A) COMMA nm(X) eidlist_opt(Y) AS LP select(Z) RP. {
1657   A = sqlite3WithAdd(pParse, A, &X, Y, Z);
1658 }
1659 %endif  SQLITE_OMIT_CTE
1660 
1661 //////////////////////// WINDOW FUNCTION EXPRESSIONS /////////////////////////
1662 // These must be at the end of this file. Specifically, the rules that
1663 // introduce tokens WINDOW, OVER and FILTER must appear last. This causes
1664 // the integer values assigned to these tokens to be larger than all other
1665 // tokens that may be output by the tokenizer except TK_SPACE and TK_ILLEGAL.
1666 //
1667 %ifndef SQLITE_OMIT_WINDOWFUNC
1668 %type windowdefn_list {Window*}
1669 %destructor windowdefn_list {sqlite3WindowListDelete(pParse->db, $$);}
1670 windowdefn_list(A) ::= windowdefn(Z). { A = Z; }
1671 windowdefn_list(A) ::= windowdefn_list(Y) COMMA windowdefn(Z). {
1672   assert( Z!=0 );
1673   sqlite3WindowChain(pParse, Z, Y);
1674   Z->pNextWin = Y;
1675   A = Z;
1676 }
1677 
1678 %type windowdefn {Window*}
1679 %destructor windowdefn {sqlite3WindowDelete(pParse->db, $$);}
1680 windowdefn(A) ::= nm(X) AS LP window(Y) RP. {
1681   if( ALWAYS(Y) ){
1682     Y->zName = sqlite3DbStrNDup(pParse->db, X.z, X.n);
1683   }
1684   A = Y;
1685 }
1686 
1687 %type window {Window*}
1688 %destructor window {sqlite3WindowDelete(pParse->db, $$);}
1689 
1690 %type frame_opt {Window*}
1691 %destructor frame_opt {sqlite3WindowDelete(pParse->db, $$);}
1692 
1693 %type part_opt {ExprList*}
1694 %destructor part_opt {sqlite3ExprListDelete(pParse->db, $$);}
1695 
1696 %type filter_clause {Expr*}
1697 %destructor filter_clause {sqlite3ExprDelete(pParse->db, $$);}
1698 
1699 %type over_clause {Window*}
1700 %destructor over_clause {sqlite3WindowDelete(pParse->db, $$);}
1701 
1702 %type filter_over {Window*}
1703 %destructor filter_over {sqlite3WindowDelete(pParse->db, $$);}
1704 
1705 %type range_or_rows {int}
1706 
1707 %type frame_bound {struct FrameBound}
1708 %destructor frame_bound {sqlite3ExprDelete(pParse->db, $$.pExpr);}
1709 %type frame_bound_s {struct FrameBound}
1710 %destructor frame_bound_s {sqlite3ExprDelete(pParse->db, $$.pExpr);}
1711 %type frame_bound_e {struct FrameBound}
1712 %destructor frame_bound_e {sqlite3ExprDelete(pParse->db, $$.pExpr);}
1713 
1714 window(A) ::= PARTITION BY nexprlist(X) orderby_opt(Y) frame_opt(Z). {
1715   A = sqlite3WindowAssemble(pParse, Z, X, Y, 0);
1716 }
1717 window(A) ::= nm(W) PARTITION BY nexprlist(X) orderby_opt(Y) frame_opt(Z). {
1718   A = sqlite3WindowAssemble(pParse, Z, X, Y, &W);
1719 }
1720 window(A) ::= ORDER BY sortlist(Y) frame_opt(Z). {
1721   A = sqlite3WindowAssemble(pParse, Z, 0, Y, 0);
1722 }
1723 window(A) ::= nm(W) ORDER BY sortlist(Y) frame_opt(Z). {
1724   A = sqlite3WindowAssemble(pParse, Z, 0, Y, &W);
1725 }
1726 window(A) ::= frame_opt(Z). {
1727   A = Z;
1728 }
1729 window(A) ::= nm(W) frame_opt(Z). {
1730   A = sqlite3WindowAssemble(pParse, Z, 0, 0, &W);
1731 }
1732 
1733 frame_opt(A) ::= .                             {
1734   A = sqlite3WindowAlloc(pParse, 0, TK_UNBOUNDED, 0, TK_CURRENT, 0, 0);
1735 }
1736 frame_opt(A) ::= range_or_rows(X) frame_bound_s(Y) frame_exclude_opt(Z). {
1737   A = sqlite3WindowAlloc(pParse, X, Y.eType, Y.pExpr, TK_CURRENT, 0, Z);
1738 }
1739 frame_opt(A) ::= range_or_rows(X) BETWEEN frame_bound_s(Y) AND
1740                           frame_bound_e(Z) frame_exclude_opt(W). {
1741   A = sqlite3WindowAlloc(pParse, X, Y.eType, Y.pExpr, Z.eType, Z.pExpr, W);
1742 }
1743 
1744 range_or_rows(A) ::= RANGE|ROWS|GROUPS(X).   {A = @X; /*A-overwrites-X*/}
1745 
1746 frame_bound_s(A) ::= frame_bound(X).         {A = X;}
1747 frame_bound_s(A) ::= UNBOUNDED(X) PRECEDING. {A.eType = @X; A.pExpr = 0;}
1748 frame_bound_e(A) ::= frame_bound(X).         {A = X;}
1749 frame_bound_e(A) ::= UNBOUNDED(X) FOLLOWING. {A.eType = @X; A.pExpr = 0;}
1750 
1751 frame_bound(A) ::= expr(X) PRECEDING|FOLLOWING(Y).
1752                                              {A.eType = @Y; A.pExpr = X;}
1753 frame_bound(A) ::= CURRENT(X) ROW.           {A.eType = @X; A.pExpr = 0;}
1754 
1755 %type frame_exclude_opt {u8}
1756 frame_exclude_opt(A) ::= . {A = 0;}
1757 frame_exclude_opt(A) ::= EXCLUDE frame_exclude(X). {A = X;}
1758 
1759 %type frame_exclude {u8}
1760 frame_exclude(A) ::= NO(X) OTHERS.   {A = @X; /*A-overwrites-X*/}
1761 frame_exclude(A) ::= CURRENT(X) ROW. {A = @X; /*A-overwrites-X*/}
1762 frame_exclude(A) ::= GROUP|TIES(X).  {A = @X; /*A-overwrites-X*/}
1763 
1764 
1765 %type window_clause {Window*}
1766 %destructor window_clause {sqlite3WindowListDelete(pParse->db, $$);}
1767 window_clause(A) ::= WINDOW windowdefn_list(B). { A = B; }
1768 
1769 filter_over(A) ::= filter_clause(F) over_clause(O). {
1770   O->pFilter = F;
1771   A = O;
1772 }
1773 filter_over(A) ::= over_clause(O). {
1774   A = O;
1775 }
1776 filter_over(A) ::= filter_clause(F). {
1777   A = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window));
1778   if( A ){
1779     A->eFrmType = TK_FILTER;
1780     A->pFilter = F;
1781   }else{
1782     sqlite3ExprDelete(pParse->db, F);
1783   }
1784 }
1785 
1786 over_clause(A) ::= OVER LP window(Z) RP. {
1787   A = Z;
1788   assert( A!=0 );
1789 }
1790 over_clause(A) ::= OVER nm(Z). {
1791   A = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window));
1792   if( A ){
1793     A->zName = sqlite3DbStrNDup(pParse->db, Z.z, Z.n);
1794   }
1795 }
1796 
1797 filter_clause(A) ::= FILTER LP WHERE expr(X) RP.  { A = X; }
1798 %endif /* SQLITE_OMIT_WINDOWFUNC */
1799 
1800 /*
1801 ** The code generator needs some extra TK_ token values for tokens that
1802 ** are synthesized and do not actually appear in the grammar:
1803 */
1804 %token
1805   COLUMN          /* Reference to a table column */
1806   AGG_FUNCTION    /* An aggregate function */
1807   AGG_COLUMN      /* An aggregated column */
1808   TRUEFALSE       /* True or false keyword */
1809   ISNOT           /* Combination of IS and NOT */
1810   FUNCTION        /* A function invocation */
1811   UMINUS          /* Unary minus */
1812   UPLUS           /* Unary plus */
1813   TRUTH           /* IS TRUE or IS FALSE or IS NOT TRUE or IS NOT FALSE */
1814   REGISTER        /* Reference to a VDBE register */
1815   VECTOR          /* Vector */
1816   SELECT_COLUMN   /* Choose a single column from a multi-column SELECT */
1817   IF_NULL_ROW     /* the if-null-row operator */
1818   ASTERISK        /* The "*" in count(*) and similar */
1819   SPAN            /* The span operator */
1820 .
1821 /* There must be no more than 255 tokens defined above.  If this grammar
1822 ** is extended with new rules and tokens, they must either be so few in
1823 ** number that TK_SPAN is no more than 255, or else the new tokens must
1824 ** appear after this line.
1825 */
1826 %include {
1827 #if TK_SPAN>255
1828 # error too many tokens in the grammar
1829 #endif
1830 }
1831 
1832 /*
1833 ** The TK_SPACE and TK_ILLEGAL tokens must be the last two tokens.  The
1834 ** parser depends on this.  Those tokens are not used in any grammar rule.
1835 ** They are only used by the tokenizer.  Declare them last so that they
1836 ** are guaranteed to be the last two tokens
1837 */
1838 %token SPACE ILLEGAL.
1839