1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains SQLite's grammar for SQL. Process this file 13 ** using the lemon parser generator to generate C code that runs 14 ** the parser. Lemon will also generate a header file containing 15 ** numeric codes for all of the tokens. 16 */ 17 18 // All token codes are small integers with #defines that begin with "TK_" 19 %token_prefix TK_ 20 21 // The type of the data attached to each token is Token. This is also the 22 // default type for non-terminals. 23 // 24 %token_type {Token} 25 %default_type {Token} 26 27 // The generated parser function takes a 4th argument as follows: 28 %extra_argument {Parse *pParse} 29 30 // This code runs whenever there is a syntax error 31 // 32 %syntax_error { 33 UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */ 34 assert( TOKEN.z[0] ); /* The tokenizer always gives us a token */ 35 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN); 36 } 37 %stack_overflow { 38 sqlite3ErrorMsg(pParse, "parser stack overflow"); 39 } 40 41 // The name of the generated procedure that implements the parser 42 // is as follows: 43 %name sqlite3Parser 44 45 // The following text is included near the beginning of the C source 46 // code file that implements the parser. 47 // 48 %include { 49 #include "sqliteInt.h" 50 51 /* 52 ** Disable all error recovery processing in the parser push-down 53 ** automaton. 54 */ 55 #define YYNOERRORRECOVERY 1 56 57 /* 58 ** Make yytestcase() the same as testcase() 59 */ 60 #define yytestcase(X) testcase(X) 61 62 /* 63 ** Indicate that sqlite3ParserFree() will never be called with a null 64 ** pointer. 65 */ 66 #define YYPARSEFREENEVERNULL 1 67 68 /* 69 ** Alternative datatype for the argument to the malloc() routine passed 70 ** into sqlite3ParserAlloc(). The default is size_t. 71 */ 72 #define YYMALLOCARGTYPE u64 73 74 /* 75 ** An instance of this structure holds information about the 76 ** LIMIT clause of a SELECT statement. 77 */ 78 struct LimitVal { 79 Expr *pLimit; /* The LIMIT expression. NULL if there is no limit */ 80 Expr *pOffset; /* The OFFSET expression. NULL if there is none */ 81 }; 82 83 /* 84 ** An instance of this structure is used to store the LIKE, 85 ** GLOB, NOT LIKE, and NOT GLOB operators. 86 */ 87 struct LikeOp { 88 Token eOperator; /* "like" or "glob" or "regexp" */ 89 int bNot; /* True if the NOT keyword is present */ 90 }; 91 92 /* 93 ** An instance of the following structure describes the event of a 94 ** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT, 95 ** TK_DELETE, or TK_INSTEAD. If the event is of the form 96 ** 97 ** UPDATE ON (a,b,c) 98 ** 99 ** Then the "b" IdList records the list "a,b,c". 100 */ 101 struct TrigEvent { int a; IdList * b; }; 102 103 /* 104 ** An instance of this structure holds the ATTACH key and the key type. 105 */ 106 struct AttachKey { int type; Token key; }; 107 108 /* 109 ** Disable lookaside memory allocation for objects that might be 110 ** shared across database connections. 111 */ 112 static void disableLookaside(Parse *pParse){ 113 pParse->disableLookaside++; 114 pParse->db->lookaside.bDisable++; 115 } 116 117 } // end %include 118 119 // Input is a single SQL command 120 input ::= cmdlist. 121 cmdlist ::= cmdlist ecmd. 122 cmdlist ::= ecmd. 123 ecmd ::= SEMI. 124 ecmd ::= explain cmdx SEMI. 125 explain ::= . 126 %ifndef SQLITE_OMIT_EXPLAIN 127 explain ::= EXPLAIN. { pParse->explain = 1; } 128 explain ::= EXPLAIN QUERY PLAN. { pParse->explain = 2; } 129 %endif SQLITE_OMIT_EXPLAIN 130 cmdx ::= cmd. { sqlite3FinishCoding(pParse); } 131 132 ///////////////////// Begin and end transactions. //////////////////////////// 133 // 134 135 cmd ::= BEGIN transtype(Y) trans_opt. {sqlite3BeginTransaction(pParse, Y);} 136 trans_opt ::= . 137 trans_opt ::= TRANSACTION. 138 trans_opt ::= TRANSACTION nm. 139 %type transtype {int} 140 transtype(A) ::= . {A = TK_DEFERRED;} 141 transtype(A) ::= DEFERRED(X). {A = @X; /*A-overwrites-X*/} 142 transtype(A) ::= IMMEDIATE(X). {A = @X; /*A-overwrites-X*/} 143 transtype(A) ::= EXCLUSIVE(X). {A = @X; /*A-overwrites-X*/} 144 cmd ::= COMMIT trans_opt. {sqlite3CommitTransaction(pParse);} 145 cmd ::= END trans_opt. {sqlite3CommitTransaction(pParse);} 146 cmd ::= ROLLBACK trans_opt. {sqlite3RollbackTransaction(pParse);} 147 148 savepoint_opt ::= SAVEPOINT. 149 savepoint_opt ::= . 150 cmd ::= SAVEPOINT nm(X). { 151 sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X); 152 } 153 cmd ::= RELEASE savepoint_opt nm(X). { 154 sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X); 155 } 156 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). { 157 sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X); 158 } 159 160 ///////////////////// The CREATE TABLE statement //////////////////////////// 161 // 162 cmd ::= create_table create_table_args. 163 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). { 164 sqlite3StartTable(pParse,&Y,&Z,T,0,0,E); 165 } 166 createkw(A) ::= CREATE(A). {disableLookaside(pParse);} 167 168 %type ifnotexists {int} 169 ifnotexists(A) ::= . {A = 0;} 170 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;} 171 %type temp {int} 172 %ifndef SQLITE_OMIT_TEMPDB 173 temp(A) ::= TEMP. {A = 1;} 174 %endif SQLITE_OMIT_TEMPDB 175 temp(A) ::= . {A = 0;} 176 create_table_args ::= LP columnlist conslist_opt(X) RP(E) table_options(F). { 177 sqlite3EndTable(pParse,&X,&E,F,0); 178 } 179 create_table_args ::= AS select(S). { 180 sqlite3EndTable(pParse,0,0,0,S); 181 sqlite3SelectDelete(pParse->db, S); 182 } 183 %type table_options {int} 184 table_options(A) ::= . {A = 0;} 185 table_options(A) ::= WITHOUT nm(X). { 186 if( X.n==5 && sqlite3_strnicmp(X.z,"rowid",5)==0 ){ 187 A = TF_WithoutRowid | TF_NoVisibleRowid; 188 }else{ 189 A = 0; 190 sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z); 191 } 192 } 193 columnlist ::= columnlist COMMA columnname carglist. 194 columnlist ::= columnname carglist. 195 columnname(A) ::= nm(A) typetoken(Y). {sqlite3AddColumn(pParse,&A,&Y);} 196 197 // Define operator precedence early so that this is the first occurrence 198 // of the operator tokens in the grammer. Keeping the operators together 199 // causes them to be assigned integer values that are close together, 200 // which keeps parser tables smaller. 201 // 202 // The token values assigned to these symbols is determined by the order 203 // in which lemon first sees them. It must be the case that ISNULL/NOTNULL, 204 // NE/EQ, GT/LE, and GE/LT are separated by only a single value. See 205 // the sqlite3ExprIfFalse() routine for additional information on this 206 // constraint. 207 // 208 %left OR. 209 %left AND. 210 %right NOT. 211 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. 212 %left GT LE LT GE. 213 %right ESCAPE. 214 %left BITAND BITOR LSHIFT RSHIFT. 215 %left PLUS MINUS. 216 %left STAR SLASH REM. 217 %left CONCAT. 218 %left COLLATE. 219 %right BITNOT. 220 221 // An IDENTIFIER can be a generic identifier, or one of several 222 // keywords. Any non-standard keyword can also be an identifier. 223 // 224 %token_class id ID|INDEXED. 225 226 // The following directive causes tokens ABORT, AFTER, ASC, etc. to 227 // fallback to ID if they will not parse as their original value. 228 // This obviates the need for the "id" nonterminal. 229 // 230 %fallback ID 231 ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW 232 CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL FOR 233 IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN 234 QUERY KEY OF OFFSET PRAGMA RAISE RECURSIVE RELEASE REPLACE RESTRICT ROW 235 ROLLBACK SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL WITH WITHOUT 236 %ifdef SQLITE_OMIT_COMPOUND_SELECT 237 EXCEPT INTERSECT UNION 238 %endif SQLITE_OMIT_COMPOUND_SELECT 239 REINDEX RENAME CTIME_KW IF 240 . 241 %wildcard ANY. 242 243 244 // And "ids" is an identifer-or-string. 245 // 246 %token_class ids ID|STRING. 247 248 // The name of a column or table can be any of the following: 249 // 250 %type nm {Token} 251 nm(A) ::= id(A). 252 nm(A) ::= STRING(A). 253 nm(A) ::= JOIN_KW(A). 254 255 // A typetoken is really zero or more tokens that form a type name such 256 // as can be found after the column name in a CREATE TABLE statement. 257 // Multiple tokens are concatenated to form the value of the typetoken. 258 // 259 %type typetoken {Token} 260 typetoken(A) ::= . {A.n = 0; A.z = 0;} 261 typetoken(A) ::= typename(A). 262 typetoken(A) ::= typename(A) LP signed RP(Y). { 263 A.n = (int)(&Y.z[Y.n] - A.z); 264 } 265 typetoken(A) ::= typename(A) LP signed COMMA signed RP(Y). { 266 A.n = (int)(&Y.z[Y.n] - A.z); 267 } 268 %type typename {Token} 269 typename(A) ::= ids(A). 270 typename(A) ::= typename(A) ids(Y). {A.n=Y.n+(int)(Y.z-A.z);} 271 signed ::= plus_num. 272 signed ::= minus_num. 273 274 // "carglist" is a list of additional constraints that come after the 275 // column name and column type in a CREATE TABLE statement. 276 // 277 carglist ::= carglist ccons. 278 carglist ::= . 279 ccons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} 280 ccons ::= DEFAULT term(X). {sqlite3AddDefaultValue(pParse,&X);} 281 ccons ::= DEFAULT LP expr(X) RP. {sqlite3AddDefaultValue(pParse,&X);} 282 ccons ::= DEFAULT PLUS term(X). {sqlite3AddDefaultValue(pParse,&X);} 283 ccons ::= DEFAULT MINUS(A) term(X). { 284 ExprSpan v; 285 v.pExpr = sqlite3PExpr(pParse, TK_UMINUS, X.pExpr, 0, 0); 286 v.zStart = A.z; 287 v.zEnd = X.zEnd; 288 sqlite3AddDefaultValue(pParse,&v); 289 } 290 ccons ::= DEFAULT id(X). { 291 ExprSpan v; 292 spanExpr(&v, pParse, TK_STRING, X); 293 sqlite3AddDefaultValue(pParse,&v); 294 } 295 296 // In addition to the type name, we also care about the primary key and 297 // UNIQUE constraints. 298 // 299 ccons ::= NULL onconf. 300 ccons ::= NOT NULL onconf(R). {sqlite3AddNotNull(pParse, R);} 301 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I). 302 {sqlite3AddPrimaryKey(pParse,0,R,I,Z);} 303 ccons ::= UNIQUE onconf(R). {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0);} 304 ccons ::= CHECK LP expr(X) RP. {sqlite3AddCheckConstraint(pParse,X.pExpr);} 305 ccons ::= REFERENCES nm(T) eidlist_opt(TA) refargs(R). 306 {sqlite3CreateForeignKey(pParse,0,&T,TA,R);} 307 ccons ::= defer_subclause(D). {sqlite3DeferForeignKey(pParse,D);} 308 ccons ::= COLLATE ids(C). {sqlite3AddCollateType(pParse, &C);} 309 310 // The optional AUTOINCREMENT keyword 311 %type autoinc {int} 312 autoinc(X) ::= . {X = 0;} 313 autoinc(X) ::= AUTOINCR. {X = 1;} 314 315 // The next group of rules parses the arguments to a REFERENCES clause 316 // that determine if the referential integrity checking is deferred or 317 // or immediate and which determine what action to take if a ref-integ 318 // check fails. 319 // 320 %type refargs {int} 321 refargs(A) ::= . { A = OE_None*0x0101; /* EV: R-19803-45884 */} 322 refargs(A) ::= refargs(A) refarg(Y). { A = (A & ~Y.mask) | Y.value; } 323 %type refarg {struct {int value; int mask;}} 324 refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; } 325 refarg(A) ::= ON INSERT refact. { A.value = 0; A.mask = 0x000000; } 326 refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; } 327 refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; } 328 %type refact {int} 329 refact(A) ::= SET NULL. { A = OE_SetNull; /* EV: R-33326-45252 */} 330 refact(A) ::= SET DEFAULT. { A = OE_SetDflt; /* EV: R-33326-45252 */} 331 refact(A) ::= CASCADE. { A = OE_Cascade; /* EV: R-33326-45252 */} 332 refact(A) ::= RESTRICT. { A = OE_Restrict; /* EV: R-33326-45252 */} 333 refact(A) ::= NO ACTION. { A = OE_None; /* EV: R-33326-45252 */} 334 %type defer_subclause {int} 335 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt. {A = 0;} 336 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;} 337 %type init_deferred_pred_opt {int} 338 init_deferred_pred_opt(A) ::= . {A = 0;} 339 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;} 340 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;} 341 342 conslist_opt(A) ::= . {A.n = 0; A.z = 0;} 343 conslist_opt(A) ::= COMMA(A) conslist. 344 conslist ::= conslist tconscomma tcons. 345 conslist ::= tcons. 346 tconscomma ::= COMMA. {pParse->constraintName.n = 0;} 347 tconscomma ::= . 348 tcons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} 349 tcons ::= PRIMARY KEY LP sortlist(X) autoinc(I) RP onconf(R). 350 {sqlite3AddPrimaryKey(pParse,X,R,I,0);} 351 tcons ::= UNIQUE LP sortlist(X) RP onconf(R). 352 {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0);} 353 tcons ::= CHECK LP expr(E) RP onconf. 354 {sqlite3AddCheckConstraint(pParse,E.pExpr);} 355 tcons ::= FOREIGN KEY LP eidlist(FA) RP 356 REFERENCES nm(T) eidlist_opt(TA) refargs(R) defer_subclause_opt(D). { 357 sqlite3CreateForeignKey(pParse, FA, &T, TA, R); 358 sqlite3DeferForeignKey(pParse, D); 359 } 360 %type defer_subclause_opt {int} 361 defer_subclause_opt(A) ::= . {A = 0;} 362 defer_subclause_opt(A) ::= defer_subclause(A). 363 364 // The following is a non-standard extension that allows us to declare the 365 // default behavior when there is a constraint conflict. 366 // 367 %type onconf {int} 368 %type orconf {int} 369 %type resolvetype {int} 370 onconf(A) ::= . {A = OE_Default;} 371 onconf(A) ::= ON CONFLICT resolvetype(X). {A = X;} 372 orconf(A) ::= . {A = OE_Default;} 373 orconf(A) ::= OR resolvetype(X). {A = X;} 374 resolvetype(A) ::= raisetype(A). 375 resolvetype(A) ::= IGNORE. {A = OE_Ignore;} 376 resolvetype(A) ::= REPLACE. {A = OE_Replace;} 377 378 ////////////////////////// The DROP TABLE ///////////////////////////////////// 379 // 380 cmd ::= DROP TABLE ifexists(E) fullname(X). { 381 sqlite3DropTable(pParse, X, 0, E); 382 } 383 %type ifexists {int} 384 ifexists(A) ::= IF EXISTS. {A = 1;} 385 ifexists(A) ::= . {A = 0;} 386 387 ///////////////////// The CREATE VIEW statement ///////////////////////////// 388 // 389 %ifndef SQLITE_OMIT_VIEW 390 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) eidlist_opt(C) 391 AS select(S). { 392 sqlite3CreateView(pParse, &X, &Y, &Z, C, S, T, E); 393 } 394 cmd ::= DROP VIEW ifexists(E) fullname(X). { 395 sqlite3DropTable(pParse, X, 1, E); 396 } 397 %endif SQLITE_OMIT_VIEW 398 399 //////////////////////// The SELECT statement ///////////////////////////////// 400 // 401 cmd ::= select(X). { 402 SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0}; 403 sqlite3Select(pParse, X, &dest); 404 sqlite3SelectDelete(pParse->db, X); 405 } 406 407 %type select {Select*} 408 %destructor select {sqlite3SelectDelete(pParse->db, $$);} 409 %type selectnowith {Select*} 410 %destructor selectnowith {sqlite3SelectDelete(pParse->db, $$);} 411 %type oneselect {Select*} 412 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);} 413 414 %include { 415 /* 416 ** For a compound SELECT statement, make sure p->pPrior->pNext==p for 417 ** all elements in the list. And make sure list length does not exceed 418 ** SQLITE_LIMIT_COMPOUND_SELECT. 419 */ 420 static void parserDoubleLinkSelect(Parse *pParse, Select *p){ 421 if( p->pPrior ){ 422 Select *pNext = 0, *pLoop; 423 int mxSelect, cnt = 0; 424 for(pLoop=p; pLoop; pNext=pLoop, pLoop=pLoop->pPrior, cnt++){ 425 pLoop->pNext = pNext; 426 pLoop->selFlags |= SF_Compound; 427 } 428 if( (p->selFlags & SF_MultiValue)==0 && 429 (mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT])>0 && 430 cnt>mxSelect 431 ){ 432 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 433 } 434 } 435 } 436 } 437 438 select(A) ::= with(W) selectnowith(X). { 439 Select *p = X; 440 if( p ){ 441 p->pWith = W; 442 parserDoubleLinkSelect(pParse, p); 443 }else{ 444 sqlite3WithDelete(pParse->db, W); 445 } 446 A = p; /*A-overwrites-W*/ 447 } 448 449 selectnowith(A) ::= oneselect(A). 450 %ifndef SQLITE_OMIT_COMPOUND_SELECT 451 selectnowith(A) ::= selectnowith(A) multiselect_op(Y) oneselect(Z). { 452 Select *pRhs = Z; 453 Select *pLhs = A; 454 if( pRhs && pRhs->pPrior ){ 455 SrcList *pFrom; 456 Token x; 457 x.n = 0; 458 parserDoubleLinkSelect(pParse, pRhs); 459 pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0); 460 pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0,0); 461 } 462 if( pRhs ){ 463 pRhs->op = (u8)Y; 464 pRhs->pPrior = pLhs; 465 if( ALWAYS(pLhs) ) pLhs->selFlags &= ~SF_MultiValue; 466 pRhs->selFlags &= ~SF_MultiValue; 467 if( Y!=TK_ALL ) pParse->hasCompound = 1; 468 }else{ 469 sqlite3SelectDelete(pParse->db, pLhs); 470 } 471 A = pRhs; 472 } 473 %type multiselect_op {int} 474 multiselect_op(A) ::= UNION(OP). {A = @OP; /*A-overwrites-OP*/} 475 multiselect_op(A) ::= UNION ALL. {A = TK_ALL;} 476 multiselect_op(A) ::= EXCEPT|INTERSECT(OP). {A = @OP; /*A-overwrites-OP*/} 477 %endif SQLITE_OMIT_COMPOUND_SELECT 478 oneselect(A) ::= SELECT(S) distinct(D) selcollist(W) from(X) where_opt(Y) 479 groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). { 480 #if SELECTTRACE_ENABLED 481 Token s = S; /*A-overwrites-S*/ 482 #endif 483 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L.pLimit,L.pOffset); 484 #if SELECTTRACE_ENABLED 485 /* Populate the Select.zSelName[] string that is used to help with 486 ** query planner debugging, to differentiate between multiple Select 487 ** objects in a complex query. 488 ** 489 ** If the SELECT keyword is immediately followed by a C-style comment 490 ** then extract the first few alphanumeric characters from within that 491 ** comment to be the zSelName value. Otherwise, the label is #N where 492 ** is an integer that is incremented with each SELECT statement seen. 493 */ 494 if( A!=0 ){ 495 const char *z = s.z+6; 496 int i; 497 sqlite3_snprintf(sizeof(A->zSelName), A->zSelName, "#%d", 498 ++pParse->nSelect); 499 while( z[0]==' ' ) z++; 500 if( z[0]=='/' && z[1]=='*' ){ 501 z += 2; 502 while( z[0]==' ' ) z++; 503 for(i=0; sqlite3Isalnum(z[i]); i++){} 504 sqlite3_snprintf(sizeof(A->zSelName), A->zSelName, "%.*s", i, z); 505 } 506 } 507 #endif /* SELECTRACE_ENABLED */ 508 } 509 oneselect(A) ::= values(A). 510 511 %type values {Select*} 512 %destructor values {sqlite3SelectDelete(pParse->db, $$);} 513 values(A) ::= VALUES LP nexprlist(X) RP. { 514 A = sqlite3SelectNew(pParse,X,0,0,0,0,0,SF_Values,0,0); 515 } 516 values(A) ::= values(A) COMMA LP exprlist(Y) RP. { 517 Select *pRight, *pLeft = A; 518 pRight = sqlite3SelectNew(pParse,Y,0,0,0,0,0,SF_Values|SF_MultiValue,0,0); 519 if( ALWAYS(pLeft) ) pLeft->selFlags &= ~SF_MultiValue; 520 if( pRight ){ 521 pRight->op = TK_ALL; 522 pRight->pPrior = pLeft; 523 A = pRight; 524 }else{ 525 A = pLeft; 526 } 527 } 528 529 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is 530 // present and false (0) if it is not. 531 // 532 %type distinct {int} 533 distinct(A) ::= DISTINCT. {A = SF_Distinct;} 534 distinct(A) ::= ALL. {A = SF_All;} 535 distinct(A) ::= . {A = 0;} 536 537 // selcollist is a list of expressions that are to become the return 538 // values of the SELECT statement. The "*" in statements like 539 // "SELECT * FROM ..." is encoded as a special expression with an 540 // opcode of TK_ASTERISK. 541 // 542 %type selcollist {ExprList*} 543 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);} 544 %type sclp {ExprList*} 545 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);} 546 sclp(A) ::= selcollist(A) COMMA. 547 sclp(A) ::= . {A = 0;} 548 selcollist(A) ::= sclp(A) expr(X) as(Y). { 549 A = sqlite3ExprListAppend(pParse, A, X.pExpr); 550 if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1); 551 sqlite3ExprListSetSpan(pParse,A,&X); 552 } 553 selcollist(A) ::= sclp(A) STAR. { 554 Expr *p = sqlite3Expr(pParse->db, TK_ASTERISK, 0); 555 A = sqlite3ExprListAppend(pParse, A, p); 556 } 557 selcollist(A) ::= sclp(A) nm(X) DOT STAR(Y). { 558 Expr *pRight = sqlite3PExpr(pParse, TK_ASTERISK, 0, 0, &Y); 559 Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); 560 Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 561 A = sqlite3ExprListAppend(pParse,A, pDot); 562 } 563 564 // An option "AS <id>" phrase that can follow one of the expressions that 565 // define the result set, or one of the tables in the FROM clause. 566 // 567 %type as {Token} 568 as(X) ::= AS nm(Y). {X = Y;} 569 as(X) ::= ids(X). 570 as(X) ::= . {X.n = 0; X.z = 0;} 571 572 573 %type seltablist {SrcList*} 574 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);} 575 %type stl_prefix {SrcList*} 576 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);} 577 %type from {SrcList*} 578 %destructor from {sqlite3SrcListDelete(pParse->db, $$);} 579 580 // A complete FROM clause. 581 // 582 from(A) ::= . {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));} 583 from(A) ::= FROM seltablist(X). { 584 A = X; 585 sqlite3SrcListShiftJoinType(A); 586 } 587 588 // "seltablist" is a "Select Table List" - the content of the FROM clause 589 // in a SELECT statement. "stl_prefix" is a prefix of this list. 590 // 591 stl_prefix(A) ::= seltablist(A) joinop(Y). { 592 if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].fg.jointype = (u8)Y; 593 } 594 stl_prefix(A) ::= . {A = 0;} 595 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) as(Z) indexed_opt(I) 596 on_opt(N) using_opt(U). { 597 A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U); 598 sqlite3SrcListIndexedBy(pParse, A, &I); 599 } 600 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) LP exprlist(E) RP as(Z) 601 on_opt(N) using_opt(U). { 602 A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U); 603 sqlite3SrcListFuncArgs(pParse, A, E); 604 } 605 %ifndef SQLITE_OMIT_SUBQUERY 606 seltablist(A) ::= stl_prefix(A) LP select(S) RP 607 as(Z) on_opt(N) using_opt(U). { 608 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,S,N,U); 609 } 610 seltablist(A) ::= stl_prefix(A) LP seltablist(F) RP 611 as(Z) on_opt(N) using_opt(U). { 612 if( A==0 && Z.n==0 && N==0 && U==0 ){ 613 A = F; 614 }else if( F->nSrc==1 ){ 615 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,0,N,U); 616 if( A ){ 617 struct SrcList_item *pNew = &A->a[A->nSrc-1]; 618 struct SrcList_item *pOld = F->a; 619 pNew->zName = pOld->zName; 620 pNew->zDatabase = pOld->zDatabase; 621 pNew->pSelect = pOld->pSelect; 622 pOld->zName = pOld->zDatabase = 0; 623 pOld->pSelect = 0; 624 } 625 sqlite3SrcListDelete(pParse->db, F); 626 }else{ 627 Select *pSubquery; 628 sqlite3SrcListShiftJoinType(F); 629 pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,SF_NestedFrom,0,0); 630 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,pSubquery,N,U); 631 } 632 } 633 %endif SQLITE_OMIT_SUBQUERY 634 635 %type dbnm {Token} 636 dbnm(A) ::= . {A.z=0; A.n=0;} 637 dbnm(A) ::= DOT nm(X). {A = X;} 638 639 %type fullname {SrcList*} 640 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);} 641 fullname(A) ::= nm(X) dbnm(Y). 642 {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y); /*A-overwrites-X*/} 643 644 %type joinop {int} 645 joinop(X) ::= COMMA|JOIN. { X = JT_INNER; } 646 joinop(X) ::= JOIN_KW(A) JOIN. 647 {X = sqlite3JoinType(pParse,&A,0,0); /*X-overwrites-A*/} 648 joinop(X) ::= JOIN_KW(A) nm(B) JOIN. 649 {X = sqlite3JoinType(pParse,&A,&B,0); /*X-overwrites-A*/} 650 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN. 651 {X = sqlite3JoinType(pParse,&A,&B,&C);/*X-overwrites-A*/} 652 653 %type on_opt {Expr*} 654 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);} 655 on_opt(N) ::= ON expr(E). {N = E.pExpr;} 656 on_opt(N) ::= . {N = 0;} 657 658 // Note that this block abuses the Token type just a little. If there is 659 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If 660 // there is an INDEXED BY clause, then the token is populated as per normal, 661 // with z pointing to the token data and n containing the number of bytes 662 // in the token. 663 // 664 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is 665 // normally illegal. The sqlite3SrcListIndexedBy() function 666 // recognizes and interprets this as a special case. 667 // 668 %type indexed_opt {Token} 669 indexed_opt(A) ::= . {A.z=0; A.n=0;} 670 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;} 671 indexed_opt(A) ::= NOT INDEXED. {A.z=0; A.n=1;} 672 673 %type using_opt {IdList*} 674 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);} 675 using_opt(U) ::= USING LP idlist(L) RP. {U = L;} 676 using_opt(U) ::= . {U = 0;} 677 678 679 %type orderby_opt {ExprList*} 680 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);} 681 682 // the sortlist non-terminal stores a list of expression where each 683 // expression is optionally followed by ASC or DESC to indicate the 684 // sort order. 685 // 686 %type sortlist {ExprList*} 687 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);} 688 689 orderby_opt(A) ::= . {A = 0;} 690 orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;} 691 sortlist(A) ::= sortlist(A) COMMA expr(Y) sortorder(Z). { 692 A = sqlite3ExprListAppend(pParse,A,Y.pExpr); 693 sqlite3ExprListSetSortOrder(A,Z); 694 } 695 sortlist(A) ::= expr(Y) sortorder(Z). { 696 A = sqlite3ExprListAppend(pParse,0,Y.pExpr); /*A-overwrites-Y*/ 697 sqlite3ExprListSetSortOrder(A,Z); 698 } 699 700 %type sortorder {int} 701 702 sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;} 703 sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;} 704 sortorder(A) ::= . {A = SQLITE_SO_UNDEFINED;} 705 706 %type groupby_opt {ExprList*} 707 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);} 708 groupby_opt(A) ::= . {A = 0;} 709 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;} 710 711 %type having_opt {Expr*} 712 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);} 713 having_opt(A) ::= . {A = 0;} 714 having_opt(A) ::= HAVING expr(X). {A = X.pExpr;} 715 716 %type limit_opt {struct LimitVal} 717 718 // The destructor for limit_opt will never fire in the current grammar. 719 // The limit_opt non-terminal only occurs at the end of a single production 720 // rule for SELECT statements. As soon as the rule that create the 721 // limit_opt non-terminal reduces, the SELECT statement rule will also 722 // reduce. So there is never a limit_opt non-terminal on the stack 723 // except as a transient. So there is never anything to destroy. 724 // 725 //%destructor limit_opt { 726 // sqlite3ExprDelete(pParse->db, $$.pLimit); 727 // sqlite3ExprDelete(pParse->db, $$.pOffset); 728 //} 729 limit_opt(A) ::= . {A.pLimit = 0; A.pOffset = 0;} 730 limit_opt(A) ::= LIMIT expr(X). {A.pLimit = X.pExpr; A.pOffset = 0;} 731 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y). 732 {A.pLimit = X.pExpr; A.pOffset = Y.pExpr;} 733 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y). 734 {A.pOffset = X.pExpr; A.pLimit = Y.pExpr;} 735 736 /////////////////////////// The DELETE statement ///////////////////////////// 737 // 738 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 739 cmd ::= with(C) DELETE FROM fullname(X) indexed_opt(I) where_opt(W) 740 orderby_opt(O) limit_opt(L). { 741 sqlite3WithPush(pParse, C, 1); 742 sqlite3SrcListIndexedBy(pParse, X, &I); 743 W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "DELETE"); 744 sqlite3DeleteFrom(pParse,X,W); 745 } 746 %endif 747 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 748 cmd ::= with(C) DELETE FROM fullname(X) indexed_opt(I) where_opt(W). { 749 sqlite3WithPush(pParse, C, 1); 750 sqlite3SrcListIndexedBy(pParse, X, &I); 751 sqlite3DeleteFrom(pParse,X,W); 752 } 753 %endif 754 755 %type where_opt {Expr*} 756 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);} 757 758 where_opt(A) ::= . {A = 0;} 759 where_opt(A) ::= WHERE expr(X). {A = X.pExpr;} 760 761 ////////////////////////// The UPDATE command //////////////////////////////// 762 // 763 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 764 cmd ::= with(C) UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) 765 where_opt(W) orderby_opt(O) limit_opt(L). { 766 sqlite3WithPush(pParse, C, 1); 767 sqlite3SrcListIndexedBy(pParse, X, &I); 768 sqlite3ExprListCheckLength(pParse,Y,"set list"); 769 W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "UPDATE"); 770 sqlite3Update(pParse,X,Y,W,R); 771 } 772 %endif 773 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 774 cmd ::= with(C) UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) 775 where_opt(W). { 776 sqlite3WithPush(pParse, C, 1); 777 sqlite3SrcListIndexedBy(pParse, X, &I); 778 sqlite3ExprListCheckLength(pParse,Y,"set list"); 779 sqlite3Update(pParse,X,Y,W,R); 780 } 781 %endif 782 783 %type setlist {ExprList*} 784 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);} 785 786 setlist(A) ::= setlist(A) COMMA nm(X) EQ expr(Y). { 787 A = sqlite3ExprListAppend(pParse, A, Y.pExpr); 788 sqlite3ExprListSetName(pParse, A, &X, 1); 789 } 790 setlist(A) ::= nm(X) EQ expr(Y). { 791 A = sqlite3ExprListAppend(pParse, 0, Y.pExpr); 792 sqlite3ExprListSetName(pParse, A, &X, 1); 793 } 794 795 ////////////////////////// The INSERT command ///////////////////////////////// 796 // 797 cmd ::= with(W) insert_cmd(R) INTO fullname(X) idlist_opt(F) select(S). { 798 sqlite3WithPush(pParse, W, 1); 799 sqlite3Insert(pParse, X, S, F, R); 800 } 801 cmd ::= with(W) insert_cmd(R) INTO fullname(X) idlist_opt(F) DEFAULT VALUES. 802 { 803 sqlite3WithPush(pParse, W, 1); 804 sqlite3Insert(pParse, X, 0, F, R); 805 } 806 807 %type insert_cmd {int} 808 insert_cmd(A) ::= INSERT orconf(R). {A = R;} 809 insert_cmd(A) ::= REPLACE. {A = OE_Replace;} 810 811 %type idlist_opt {IdList*} 812 %destructor idlist_opt {sqlite3IdListDelete(pParse->db, $$);} 813 %type idlist {IdList*} 814 %destructor idlist {sqlite3IdListDelete(pParse->db, $$);} 815 816 idlist_opt(A) ::= . {A = 0;} 817 idlist_opt(A) ::= LP idlist(X) RP. {A = X;} 818 idlist(A) ::= idlist(A) COMMA nm(Y). 819 {A = sqlite3IdListAppend(pParse->db,A,&Y);} 820 idlist(A) ::= nm(Y). 821 {A = sqlite3IdListAppend(pParse->db,0,&Y); /*A-overwrites-Y*/} 822 823 /////////////////////////// Expression Processing ///////////////////////////// 824 // 825 826 %type expr {ExprSpan} 827 %destructor expr {sqlite3ExprDelete(pParse->db, $$.pExpr);} 828 %type term {ExprSpan} 829 %destructor term {sqlite3ExprDelete(pParse->db, $$.pExpr);} 830 831 %include { 832 /* This is a utility routine used to set the ExprSpan.zStart and 833 ** ExprSpan.zEnd values of pOut so that the span covers the complete 834 ** range of text beginning with pStart and going to the end of pEnd. 835 */ 836 static void spanSet(ExprSpan *pOut, Token *pStart, Token *pEnd){ 837 pOut->zStart = pStart->z; 838 pOut->zEnd = &pEnd->z[pEnd->n]; 839 } 840 841 /* Construct a new Expr object from a single identifier. Use the 842 ** new Expr to populate pOut. Set the span of pOut to be the identifier 843 ** that created the expression. 844 */ 845 static void spanExpr(ExprSpan *pOut, Parse *pParse, int op, Token t){ 846 pOut->pExpr = sqlite3PExpr(pParse, op, 0, 0, &t); 847 pOut->zStart = t.z; 848 pOut->zEnd = &t.z[t.n]; 849 } 850 } 851 852 expr(A) ::= term(A). 853 expr(A) ::= LP(B) expr(X) RP(E). 854 {spanSet(&A,&B,&E); /*A-overwrites-B*/ A.pExpr = X.pExpr;} 855 term(A) ::= NULL(X). {spanExpr(&A,pParse,@X,X);/*A-overwrites-X*/} 856 expr(A) ::= id(X). {spanExpr(&A,pParse,TK_ID,X); /*A-overwrites-X*/} 857 expr(A) ::= JOIN_KW(X). {spanExpr(&A,pParse,TK_ID,X); /*A-overwrites-X*/} 858 expr(A) ::= nm(X) DOT nm(Y). { 859 Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); 860 Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y); 861 spanSet(&A,&X,&Y); /*A-overwrites-X*/ 862 A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0); 863 } 864 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). { 865 Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); 866 Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y); 867 Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Z); 868 Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0); 869 spanSet(&A,&X,&Z); /*A-overwrites-X*/ 870 A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0); 871 } 872 term(A) ::= INTEGER|FLOAT|BLOB(X). {spanExpr(&A,pParse,@X,X);/*A-overwrites-X*/} 873 term(A) ::= STRING(X). {spanExpr(&A,pParse,@X,X);/*A-overwrites-X*/} 874 expr(A) ::= VARIABLE(X). { 875 if( !(X.z[0]=='#' && sqlite3Isdigit(X.z[1])) ){ 876 spanExpr(&A, pParse, TK_VARIABLE, X); 877 sqlite3ExprAssignVarNumber(pParse, A.pExpr); 878 }else{ 879 /* When doing a nested parse, one can include terms in an expression 880 ** that look like this: #1 #2 ... These terms refer to registers 881 ** in the virtual machine. #N is the N-th register. */ 882 Token t = X; /*A-overwrites-X*/ 883 assert( t.n>=2 ); 884 spanSet(&A, &t, &t); 885 if( pParse->nested==0 ){ 886 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &t); 887 A.pExpr = 0; 888 }else{ 889 A.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, &t); 890 if( A.pExpr ) sqlite3GetInt32(&t.z[1], &A.pExpr->iTable); 891 } 892 } 893 } 894 expr(A) ::= expr(A) COLLATE ids(C). { 895 A.pExpr = sqlite3ExprAddCollateToken(pParse, A.pExpr, &C, 1); 896 A.zEnd = &C.z[C.n]; 897 } 898 %ifndef SQLITE_OMIT_CAST 899 expr(A) ::= CAST(X) LP expr(E) AS typetoken(T) RP(Y). { 900 spanSet(&A,&X,&Y); /*A-overwrites-X*/ 901 A.pExpr = sqlite3PExpr(pParse, TK_CAST, E.pExpr, 0, &T); 902 } 903 %endif SQLITE_OMIT_CAST 904 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP(E). { 905 if( Y && Y->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 906 sqlite3ErrorMsg(pParse, "too many arguments on function %T", &X); 907 } 908 A.pExpr = sqlite3ExprFunction(pParse, Y, &X); 909 spanSet(&A,&X,&E); 910 if( D==SF_Distinct && A.pExpr ){ 911 A.pExpr->flags |= EP_Distinct; 912 } 913 } 914 expr(A) ::= id(X) LP STAR RP(E). { 915 A.pExpr = sqlite3ExprFunction(pParse, 0, &X); 916 spanSet(&A,&X,&E); 917 } 918 term(A) ::= CTIME_KW(OP). { 919 A.pExpr = sqlite3ExprFunction(pParse, 0, &OP); 920 spanSet(&A, &OP, &OP); 921 } 922 923 %include { 924 /* This routine constructs a binary expression node out of two ExprSpan 925 ** objects and uses the result to populate a new ExprSpan object. 926 */ 927 static void spanBinaryExpr( 928 Parse *pParse, /* The parsing context. Errors accumulate here */ 929 int op, /* The binary operation */ 930 ExprSpan *pLeft, /* The left operand, and output */ 931 ExprSpan *pRight /* The right operand */ 932 ){ 933 pLeft->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr, 0); 934 pLeft->zEnd = pRight->zEnd; 935 } 936 937 /* If doNot is true, then add a TK_NOT Expr-node wrapper around the 938 ** outside of *ppExpr. 939 */ 940 static void exprNot(Parse *pParse, int doNot, ExprSpan *pSpan){ 941 if( doNot ){ 942 pSpan->pExpr = sqlite3PExpr(pParse, TK_NOT, pSpan->pExpr, 0, 0); 943 } 944 } 945 } 946 947 expr(A) ::= expr(A) AND(OP) expr(Y). {spanBinaryExpr(pParse,@OP,&A,&Y);} 948 expr(A) ::= expr(A) OR(OP) expr(Y). {spanBinaryExpr(pParse,@OP,&A,&Y);} 949 expr(A) ::= expr(A) LT|GT|GE|LE(OP) expr(Y). 950 {spanBinaryExpr(pParse,@OP,&A,&Y);} 951 expr(A) ::= expr(A) EQ|NE(OP) expr(Y). {spanBinaryExpr(pParse,@OP,&A,&Y);} 952 expr(A) ::= expr(A) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y). 953 {spanBinaryExpr(pParse,@OP,&A,&Y);} 954 expr(A) ::= expr(A) PLUS|MINUS(OP) expr(Y). 955 {spanBinaryExpr(pParse,@OP,&A,&Y);} 956 expr(A) ::= expr(A) STAR|SLASH|REM(OP) expr(Y). 957 {spanBinaryExpr(pParse,@OP,&A,&Y);} 958 expr(A) ::= expr(A) CONCAT(OP) expr(Y). {spanBinaryExpr(pParse,@OP,&A,&Y);} 959 %type likeop {struct LikeOp} 960 likeop(A) ::= LIKE_KW|MATCH(X). {A.eOperator = X; A.bNot = 0;/*A-overwrites-X*/} 961 likeop(A) ::= NOT LIKE_KW|MATCH(X). {A.eOperator = X; A.bNot = 1;} 962 expr(A) ::= expr(A) likeop(OP) expr(Y). [LIKE_KW] { 963 ExprList *pList; 964 pList = sqlite3ExprListAppend(pParse,0, Y.pExpr); 965 pList = sqlite3ExprListAppend(pParse,pList, A.pExpr); 966 A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator); 967 exprNot(pParse, OP.bNot, &A); 968 A.zEnd = Y.zEnd; 969 if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc; 970 } 971 expr(A) ::= expr(A) likeop(OP) expr(Y) ESCAPE expr(E). [LIKE_KW] { 972 ExprList *pList; 973 pList = sqlite3ExprListAppend(pParse,0, Y.pExpr); 974 pList = sqlite3ExprListAppend(pParse,pList, A.pExpr); 975 pList = sqlite3ExprListAppend(pParse,pList, E.pExpr); 976 A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator); 977 exprNot(pParse, OP.bNot, &A); 978 A.zEnd = E.zEnd; 979 if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc; 980 } 981 982 %include { 983 /* Construct an expression node for a unary postfix operator 984 */ 985 static void spanUnaryPostfix( 986 Parse *pParse, /* Parsing context to record errors */ 987 int op, /* The operator */ 988 ExprSpan *pOperand, /* The operand, and output */ 989 Token *pPostOp /* The operand token for setting the span */ 990 ){ 991 pOperand->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0); 992 pOperand->zEnd = &pPostOp->z[pPostOp->n]; 993 } 994 } 995 996 expr(A) ::= expr(A) ISNULL|NOTNULL(E). {spanUnaryPostfix(pParse,@E,&A,&E);} 997 expr(A) ::= expr(A) NOT NULL(E). {spanUnaryPostfix(pParse,TK_NOTNULL,&A,&E);} 998 999 %include { 1000 /* A routine to convert a binary TK_IS or TK_ISNOT expression into a 1001 ** unary TK_ISNULL or TK_NOTNULL expression. */ 1002 static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){ 1003 sqlite3 *db = pParse->db; 1004 if( pA && pY && pY->op==TK_NULL ){ 1005 pA->op = (u8)op; 1006 sqlite3ExprDelete(db, pA->pRight); 1007 pA->pRight = 0; 1008 } 1009 } 1010 } 1011 1012 // expr1 IS expr2 1013 // expr1 IS NOT expr2 1014 // 1015 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL. If expr2 1016 // is any other expression, code as TK_IS or TK_ISNOT. 1017 // 1018 expr(A) ::= expr(A) IS expr(Y). { 1019 spanBinaryExpr(pParse,TK_IS,&A,&Y); 1020 binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_ISNULL); 1021 } 1022 expr(A) ::= expr(A) IS NOT expr(Y). { 1023 spanBinaryExpr(pParse,TK_ISNOT,&A,&Y); 1024 binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_NOTNULL); 1025 } 1026 1027 %include { 1028 /* Construct an expression node for a unary prefix operator 1029 */ 1030 static void spanUnaryPrefix( 1031 ExprSpan *pOut, /* Write the new expression node here */ 1032 Parse *pParse, /* Parsing context to record errors */ 1033 int op, /* The operator */ 1034 ExprSpan *pOperand, /* The operand */ 1035 Token *pPreOp /* The operand token for setting the span */ 1036 ){ 1037 pOut->zStart = pPreOp->z; 1038 pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0); 1039 pOut->zEnd = pOperand->zEnd; 1040 } 1041 } 1042 1043 1044 1045 expr(A) ::= NOT(B) expr(X). 1046 {spanUnaryPrefix(&A,pParse,@B,&X,&B);/*A-overwrites-B*/} 1047 expr(A) ::= BITNOT(B) expr(X). 1048 {spanUnaryPrefix(&A,pParse,@B,&X,&B);/*A-overwrites-B*/} 1049 expr(A) ::= MINUS(B) expr(X). [BITNOT] 1050 {spanUnaryPrefix(&A,pParse,TK_UMINUS,&X,&B);/*A-overwrites-B*/} 1051 expr(A) ::= PLUS(B) expr(X). [BITNOT] 1052 {spanUnaryPrefix(&A,pParse,TK_UPLUS,&X,&B);/*A-overwrites-B*/} 1053 1054 %type between_op {int} 1055 between_op(A) ::= BETWEEN. {A = 0;} 1056 between_op(A) ::= NOT BETWEEN. {A = 1;} 1057 expr(A) ::= expr(A) between_op(N) expr(X) AND expr(Y). [BETWEEN] { 1058 ExprList *pList = sqlite3ExprListAppend(pParse,0, X.pExpr); 1059 pList = sqlite3ExprListAppend(pParse,pList, Y.pExpr); 1060 A.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, A.pExpr, 0, 0); 1061 if( A.pExpr ){ 1062 A.pExpr->x.pList = pList; 1063 }else{ 1064 sqlite3ExprListDelete(pParse->db, pList); 1065 } 1066 exprNot(pParse, N, &A); 1067 A.zEnd = Y.zEnd; 1068 } 1069 %ifndef SQLITE_OMIT_SUBQUERY 1070 %type in_op {int} 1071 in_op(A) ::= IN. {A = 0;} 1072 in_op(A) ::= NOT IN. {A = 1;} 1073 expr(A) ::= expr(A) in_op(N) LP exprlist(Y) RP(E). [IN] { 1074 if( Y==0 ){ 1075 /* Expressions of the form 1076 ** 1077 ** expr1 IN () 1078 ** expr1 NOT IN () 1079 ** 1080 ** simplify to constants 0 (false) and 1 (true), respectively, 1081 ** regardless of the value of expr1. 1082 */ 1083 sqlite3ExprDelete(pParse->db, A.pExpr); 1084 A.pExpr = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &sqlite3IntTokens[N]); 1085 }else if( Y->nExpr==1 ){ 1086 /* Expressions of the form: 1087 ** 1088 ** expr1 IN (?1) 1089 ** expr1 NOT IN (?2) 1090 ** 1091 ** with exactly one value on the RHS can be simplified to something 1092 ** like this: 1093 ** 1094 ** expr1 == ?1 1095 ** expr1 <> ?2 1096 ** 1097 ** But, the RHS of the == or <> is marked with the EP_Generic flag 1098 ** so that it may not contribute to the computation of comparison 1099 ** affinity or the collating sequence to use for comparison. Otherwise, 1100 ** the semantics would be subtly different from IN or NOT IN. 1101 */ 1102 Expr *pRHS = Y->a[0].pExpr; 1103 Y->a[0].pExpr = 0; 1104 sqlite3ExprListDelete(pParse->db, Y); 1105 /* pRHS cannot be NULL because a malloc error would have been detected 1106 ** before now and control would have never reached this point */ 1107 if( ALWAYS(pRHS) ){ 1108 pRHS->flags &= ~EP_Collate; 1109 pRHS->flags |= EP_Generic; 1110 } 1111 A.pExpr = sqlite3PExpr(pParse, N ? TK_NE : TK_EQ, A.pExpr, pRHS, 0); 1112 }else{ 1113 A.pExpr = sqlite3PExpr(pParse, TK_IN, A.pExpr, 0, 0); 1114 if( A.pExpr ){ 1115 A.pExpr->x.pList = Y; 1116 sqlite3ExprSetHeightAndFlags(pParse, A.pExpr); 1117 }else{ 1118 sqlite3ExprListDelete(pParse->db, Y); 1119 } 1120 exprNot(pParse, N, &A); 1121 } 1122 A.zEnd = &E.z[E.n]; 1123 } 1124 expr(A) ::= LP(B) select(X) RP(E). { 1125 spanSet(&A,&B,&E); /*A-overwrites-B*/ 1126 A.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0); 1127 sqlite3PExprAddSelect(pParse, A.pExpr, X); 1128 } 1129 expr(A) ::= expr(A) in_op(N) LP select(Y) RP(E). [IN] { 1130 A.pExpr = sqlite3PExpr(pParse, TK_IN, A.pExpr, 0, 0); 1131 sqlite3PExprAddSelect(pParse, A.pExpr, Y); 1132 exprNot(pParse, N, &A); 1133 A.zEnd = &E.z[E.n]; 1134 } 1135 expr(A) ::= expr(A) in_op(N) nm(Y) dbnm(Z). [IN] { 1136 SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z); 1137 Select *pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0); 1138 A.pExpr = sqlite3PExpr(pParse, TK_IN, A.pExpr, 0, 0); 1139 sqlite3PExprAddSelect(pParse, A.pExpr, pSelect); 1140 exprNot(pParse, N, &A); 1141 A.zEnd = Z.z ? &Z.z[Z.n] : &Y.z[Y.n]; 1142 } 1143 expr(A) ::= EXISTS(B) LP select(Y) RP(E). { 1144 Expr *p; 1145 spanSet(&A,&B,&E); /*A-overwrites-B*/ 1146 p = A.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0); 1147 sqlite3PExprAddSelect(pParse, p, Y); 1148 } 1149 %endif SQLITE_OMIT_SUBQUERY 1150 1151 /* CASE expressions */ 1152 expr(A) ::= CASE(C) case_operand(X) case_exprlist(Y) case_else(Z) END(E). { 1153 spanSet(&A,&C,&E); /*A-overwrites-C*/ 1154 A.pExpr = sqlite3PExpr(pParse, TK_CASE, X, 0, 0); 1155 if( A.pExpr ){ 1156 A.pExpr->x.pList = Z ? sqlite3ExprListAppend(pParse,Y,Z) : Y; 1157 sqlite3ExprSetHeightAndFlags(pParse, A.pExpr); 1158 }else{ 1159 sqlite3ExprListDelete(pParse->db, Y); 1160 sqlite3ExprDelete(pParse->db, Z); 1161 } 1162 } 1163 %type case_exprlist {ExprList*} 1164 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1165 case_exprlist(A) ::= case_exprlist(A) WHEN expr(Y) THEN expr(Z). { 1166 A = sqlite3ExprListAppend(pParse,A, Y.pExpr); 1167 A = sqlite3ExprListAppend(pParse,A, Z.pExpr); 1168 } 1169 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). { 1170 A = sqlite3ExprListAppend(pParse,0, Y.pExpr); 1171 A = sqlite3ExprListAppend(pParse,A, Z.pExpr); 1172 } 1173 %type case_else {Expr*} 1174 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);} 1175 case_else(A) ::= ELSE expr(X). {A = X.pExpr;} 1176 case_else(A) ::= . {A = 0;} 1177 %type case_operand {Expr*} 1178 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);} 1179 case_operand(A) ::= expr(X). {A = X.pExpr; /*A-overwrites-X*/} 1180 case_operand(A) ::= . {A = 0;} 1181 1182 %type exprlist {ExprList*} 1183 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1184 %type nexprlist {ExprList*} 1185 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);} 1186 1187 exprlist(A) ::= nexprlist(A). 1188 exprlist(A) ::= . {A = 0;} 1189 nexprlist(A) ::= nexprlist(A) COMMA expr(Y). 1190 {A = sqlite3ExprListAppend(pParse,A,Y.pExpr);} 1191 nexprlist(A) ::= expr(Y). 1192 {A = sqlite3ExprListAppend(pParse,0,Y.pExpr); /*A-overwrites-Y*/} 1193 1194 1195 ///////////////////////////// The CREATE INDEX command /////////////////////// 1196 // 1197 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D) 1198 ON nm(Y) LP sortlist(Z) RP where_opt(W). { 1199 sqlite3CreateIndex(pParse, &X, &D, 1200 sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U, 1201 &S, W, SQLITE_SO_ASC, NE); 1202 } 1203 1204 %type uniqueflag {int} 1205 uniqueflag(A) ::= UNIQUE. {A = OE_Abort;} 1206 uniqueflag(A) ::= . {A = OE_None;} 1207 1208 1209 // The eidlist non-terminal (Expression Id List) generates an ExprList 1210 // from a list of identifiers. The identifier names are in ExprList.a[].zName. 1211 // This list is stored in an ExprList rather than an IdList so that it 1212 // can be easily sent to sqlite3ColumnsExprList(). 1213 // 1214 // eidlist is grouped with CREATE INDEX because it used to be the non-terminal 1215 // used for the arguments to an index. That is just an historical accident. 1216 // 1217 // IMPORTANT COMPATIBILITY NOTE: Some prior versions of SQLite accepted 1218 // COLLATE clauses and ASC or DESC keywords on ID lists in inappropriate 1219 // places - places that might have been stored in the sqlite_master schema. 1220 // Those extra features were ignored. But because they might be in some 1221 // (busted) old databases, we need to continue parsing them when loading 1222 // historical schemas. 1223 // 1224 %type eidlist {ExprList*} 1225 %destructor eidlist {sqlite3ExprListDelete(pParse->db, $$);} 1226 %type eidlist_opt {ExprList*} 1227 %destructor eidlist_opt {sqlite3ExprListDelete(pParse->db, $$);} 1228 1229 %include { 1230 /* Add a single new term to an ExprList that is used to store a 1231 ** list of identifiers. Report an error if the ID list contains 1232 ** a COLLATE clause or an ASC or DESC keyword, except ignore the 1233 ** error while parsing a legacy schema. 1234 */ 1235 static ExprList *parserAddExprIdListTerm( 1236 Parse *pParse, 1237 ExprList *pPrior, 1238 Token *pIdToken, 1239 int hasCollate, 1240 int sortOrder 1241 ){ 1242 ExprList *p = sqlite3ExprListAppend(pParse, pPrior, 0); 1243 if( (hasCollate || sortOrder!=SQLITE_SO_UNDEFINED) 1244 && pParse->db->init.busy==0 1245 ){ 1246 sqlite3ErrorMsg(pParse, "syntax error after column name \"%.*s\"", 1247 pIdToken->n, pIdToken->z); 1248 } 1249 sqlite3ExprListSetName(pParse, p, pIdToken, 1); 1250 return p; 1251 } 1252 } // end %include 1253 1254 eidlist_opt(A) ::= . {A = 0;} 1255 eidlist_opt(A) ::= LP eidlist(X) RP. {A = X;} 1256 eidlist(A) ::= eidlist(A) COMMA nm(Y) collate(C) sortorder(Z). { 1257 A = parserAddExprIdListTerm(pParse, A, &Y, C, Z); 1258 } 1259 eidlist(A) ::= nm(Y) collate(C) sortorder(Z). { 1260 A = parserAddExprIdListTerm(pParse, 0, &Y, C, Z); /*A-overwrites-Y*/ 1261 } 1262 1263 %type collate {int} 1264 collate(C) ::= . {C = 0;} 1265 collate(C) ::= COLLATE ids. {C = 1;} 1266 1267 1268 ///////////////////////////// The DROP INDEX command ///////////////////////// 1269 // 1270 cmd ::= DROP INDEX ifexists(E) fullname(X). {sqlite3DropIndex(pParse, X, E);} 1271 1272 ///////////////////////////// The VACUUM command ///////////////////////////// 1273 // 1274 %ifndef SQLITE_OMIT_VACUUM 1275 %ifndef SQLITE_OMIT_ATTACH 1276 cmd ::= VACUUM. {sqlite3Vacuum(pParse);} 1277 cmd ::= VACUUM nm. {sqlite3Vacuum(pParse);} 1278 %endif SQLITE_OMIT_ATTACH 1279 %endif SQLITE_OMIT_VACUUM 1280 1281 ///////////////////////////// The PRAGMA command ///////////////////////////// 1282 // 1283 %ifndef SQLITE_OMIT_PRAGMA 1284 cmd ::= PRAGMA nm(X) dbnm(Z). {sqlite3Pragma(pParse,&X,&Z,0,0);} 1285 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1286 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1287 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y). 1288 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1289 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP. 1290 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1291 1292 nmnum(A) ::= plus_num(A). 1293 nmnum(A) ::= nm(A). 1294 nmnum(A) ::= ON(A). 1295 nmnum(A) ::= DELETE(A). 1296 nmnum(A) ::= DEFAULT(A). 1297 %endif SQLITE_OMIT_PRAGMA 1298 %token_class number INTEGER|FLOAT. 1299 plus_num(A) ::= PLUS number(X). {A = X;} 1300 plus_num(A) ::= number(A). 1301 minus_num(A) ::= MINUS number(X). {A = X;} 1302 //////////////////////////// The CREATE TRIGGER command ///////////////////// 1303 1304 %ifndef SQLITE_OMIT_TRIGGER 1305 1306 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). { 1307 Token all; 1308 all.z = A.z; 1309 all.n = (int)(Z.z - A.z) + Z.n; 1310 sqlite3FinishTrigger(pParse, S, &all); 1311 } 1312 1313 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z) 1314 trigger_time(C) trigger_event(D) 1315 ON fullname(E) foreach_clause when_clause(G). { 1316 sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR); 1317 A = (Z.n==0?B:Z); /*A-overwrites-T*/ 1318 } 1319 1320 %type trigger_time {int} 1321 trigger_time(A) ::= BEFORE. { A = TK_BEFORE; } 1322 trigger_time(A) ::= AFTER. { A = TK_AFTER; } 1323 trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;} 1324 trigger_time(A) ::= . { A = TK_BEFORE; } 1325 1326 %type trigger_event {struct TrigEvent} 1327 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);} 1328 trigger_event(A) ::= DELETE|INSERT(X). {A.a = @X; /*A-overwrites-X*/ A.b = 0;} 1329 trigger_event(A) ::= UPDATE(X). {A.a = @X; /*A-overwrites-X*/ A.b = 0;} 1330 trigger_event(A) ::= UPDATE OF idlist(X).{A.a = TK_UPDATE; A.b = X;} 1331 1332 foreach_clause ::= . 1333 foreach_clause ::= FOR EACH ROW. 1334 1335 %type when_clause {Expr*} 1336 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);} 1337 when_clause(A) ::= . { A = 0; } 1338 when_clause(A) ::= WHEN expr(X). { A = X.pExpr; } 1339 1340 %type trigger_cmd_list {TriggerStep*} 1341 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);} 1342 trigger_cmd_list(A) ::= trigger_cmd_list(A) trigger_cmd(X) SEMI. { 1343 assert( A!=0 ); 1344 A->pLast->pNext = X; 1345 A->pLast = X; 1346 } 1347 trigger_cmd_list(A) ::= trigger_cmd(A) SEMI. { 1348 assert( A!=0 ); 1349 A->pLast = A; 1350 } 1351 1352 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements 1353 // within a trigger. The table to INSERT, UPDATE, or DELETE is always in 1354 // the same database as the table that the trigger fires on. 1355 // 1356 %type trnm {Token} 1357 trnm(A) ::= nm(A). 1358 trnm(A) ::= nm DOT nm(X). { 1359 A = X; 1360 sqlite3ErrorMsg(pParse, 1361 "qualified table names are not allowed on INSERT, UPDATE, and DELETE " 1362 "statements within triggers"); 1363 } 1364 1365 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE 1366 // statements within triggers. We make a specific error message for this 1367 // since it is an exception to the default grammar rules. 1368 // 1369 tridxby ::= . 1370 tridxby ::= INDEXED BY nm. { 1371 sqlite3ErrorMsg(pParse, 1372 "the INDEXED BY clause is not allowed on UPDATE or DELETE statements " 1373 "within triggers"); 1374 } 1375 tridxby ::= NOT INDEXED. { 1376 sqlite3ErrorMsg(pParse, 1377 "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements " 1378 "within triggers"); 1379 } 1380 1381 1382 1383 %type trigger_cmd {TriggerStep*} 1384 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);} 1385 // UPDATE 1386 trigger_cmd(A) ::= 1387 UPDATE orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z). 1388 {A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R);} 1389 1390 // INSERT 1391 trigger_cmd(A) ::= insert_cmd(R) INTO trnm(X) idlist_opt(F) select(S). 1392 {A = sqlite3TriggerInsertStep(pParse->db, &X, F, S, R);/*A-overwrites-R*/} 1393 1394 // DELETE 1395 trigger_cmd(A) ::= DELETE FROM trnm(X) tridxby where_opt(Y). 1396 {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y);} 1397 1398 // SELECT 1399 trigger_cmd(A) ::= select(X). 1400 {A = sqlite3TriggerSelectStep(pParse->db, X); /*A-overwrites-X*/} 1401 1402 // The special RAISE expression that may occur in trigger programs 1403 expr(A) ::= RAISE(X) LP IGNORE RP(Y). { 1404 spanSet(&A,&X,&Y); /*A-overwrites-X*/ 1405 A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0); 1406 if( A.pExpr ){ 1407 A.pExpr->affinity = OE_Ignore; 1408 } 1409 } 1410 expr(A) ::= RAISE(X) LP raisetype(T) COMMA nm(Z) RP(Y). { 1411 spanSet(&A,&X,&Y); /*A-overwrites-X*/ 1412 A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &Z); 1413 if( A.pExpr ) { 1414 A.pExpr->affinity = (char)T; 1415 } 1416 } 1417 %endif !SQLITE_OMIT_TRIGGER 1418 1419 %type raisetype {int} 1420 raisetype(A) ::= ROLLBACK. {A = OE_Rollback;} 1421 raisetype(A) ::= ABORT. {A = OE_Abort;} 1422 raisetype(A) ::= FAIL. {A = OE_Fail;} 1423 1424 1425 //////////////////////// DROP TRIGGER statement ////////////////////////////// 1426 %ifndef SQLITE_OMIT_TRIGGER 1427 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). { 1428 sqlite3DropTrigger(pParse,X,NOERR); 1429 } 1430 %endif !SQLITE_OMIT_TRIGGER 1431 1432 //////////////////////// ATTACH DATABASE file AS name ///////////////////////// 1433 %ifndef SQLITE_OMIT_ATTACH 1434 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). { 1435 sqlite3Attach(pParse, F.pExpr, D.pExpr, K); 1436 } 1437 cmd ::= DETACH database_kw_opt expr(D). { 1438 sqlite3Detach(pParse, D.pExpr); 1439 } 1440 1441 %type key_opt {Expr*} 1442 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);} 1443 key_opt(A) ::= . { A = 0; } 1444 key_opt(A) ::= KEY expr(X). { A = X.pExpr; } 1445 1446 database_kw_opt ::= DATABASE. 1447 database_kw_opt ::= . 1448 %endif SQLITE_OMIT_ATTACH 1449 1450 ////////////////////////// REINDEX collation ////////////////////////////////// 1451 %ifndef SQLITE_OMIT_REINDEX 1452 cmd ::= REINDEX. {sqlite3Reindex(pParse, 0, 0);} 1453 cmd ::= REINDEX nm(X) dbnm(Y). {sqlite3Reindex(pParse, &X, &Y);} 1454 %endif SQLITE_OMIT_REINDEX 1455 1456 /////////////////////////////////// ANALYZE /////////////////////////////////// 1457 %ifndef SQLITE_OMIT_ANALYZE 1458 cmd ::= ANALYZE. {sqlite3Analyze(pParse, 0, 0);} 1459 cmd ::= ANALYZE nm(X) dbnm(Y). {sqlite3Analyze(pParse, &X, &Y);} 1460 %endif 1461 1462 //////////////////////// ALTER TABLE table ... //////////////////////////////// 1463 %ifndef SQLITE_OMIT_ALTERTABLE 1464 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). { 1465 sqlite3AlterRenameTable(pParse,X,&Z); 1466 } 1467 cmd ::= ALTER TABLE add_column_fullname 1468 ADD kwcolumn_opt columnname(Y) carglist. { 1469 Y.n = (int)(pParse->sLastToken.z-Y.z) + pParse->sLastToken.n; 1470 sqlite3AlterFinishAddColumn(pParse, &Y); 1471 } 1472 add_column_fullname ::= fullname(X). { 1473 disableLookaside(pParse); 1474 sqlite3AlterBeginAddColumn(pParse, X); 1475 } 1476 kwcolumn_opt ::= . 1477 kwcolumn_opt ::= COLUMNKW. 1478 %endif SQLITE_OMIT_ALTERTABLE 1479 1480 //////////////////////// CREATE VIRTUAL TABLE ... ///////////////////////////// 1481 %ifndef SQLITE_OMIT_VIRTUALTABLE 1482 cmd ::= create_vtab. {sqlite3VtabFinishParse(pParse,0);} 1483 cmd ::= create_vtab LP vtabarglist RP(X). {sqlite3VtabFinishParse(pParse,&X);} 1484 create_vtab ::= createkw VIRTUAL TABLE ifnotexists(E) 1485 nm(X) dbnm(Y) USING nm(Z). { 1486 sqlite3VtabBeginParse(pParse, &X, &Y, &Z, E); 1487 } 1488 vtabarglist ::= vtabarg. 1489 vtabarglist ::= vtabarglist COMMA vtabarg. 1490 vtabarg ::= . {sqlite3VtabArgInit(pParse);} 1491 vtabarg ::= vtabarg vtabargtoken. 1492 vtabargtoken ::= ANY(X). {sqlite3VtabArgExtend(pParse,&X);} 1493 vtabargtoken ::= lp anylist RP(X). {sqlite3VtabArgExtend(pParse,&X);} 1494 lp ::= LP(X). {sqlite3VtabArgExtend(pParse,&X);} 1495 anylist ::= . 1496 anylist ::= anylist LP anylist RP. 1497 anylist ::= anylist ANY. 1498 %endif SQLITE_OMIT_VIRTUALTABLE 1499 1500 1501 //////////////////////// COMMON TABLE EXPRESSIONS //////////////////////////// 1502 %type with {With*} 1503 %type wqlist {With*} 1504 %destructor with {sqlite3WithDelete(pParse->db, $$);} 1505 %destructor wqlist {sqlite3WithDelete(pParse->db, $$);} 1506 1507 with(A) ::= . {A = 0;} 1508 %ifndef SQLITE_OMIT_CTE 1509 with(A) ::= WITH wqlist(W). { A = W; } 1510 with(A) ::= WITH RECURSIVE wqlist(W). { A = W; } 1511 1512 wqlist(A) ::= nm(X) eidlist_opt(Y) AS LP select(Z) RP. { 1513 A = sqlite3WithAdd(pParse, 0, &X, Y, Z); /*A-overwrites-X*/ 1514 } 1515 wqlist(A) ::= wqlist(A) COMMA nm(X) eidlist_opt(Y) AS LP select(Z) RP. { 1516 A = sqlite3WithAdd(pParse, A, &X, Y, Z); 1517 } 1518 %endif SQLITE_OMIT_CTE 1519