xref: /sqlite-3.40.0/src/parse.y (revision 5130c31b)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains SQLite's grammar for SQL.  Process this file
13 ** using the lemon parser generator to generate C code that runs
14 ** the parser.  Lemon will also generate a header file containing
15 ** numeric codes for all of the tokens.
16 */
17 
18 // All token codes are small integers with #defines that begin with "TK_"
19 %token_prefix TK_
20 
21 // The type of the data attached to each token is Token.  This is also the
22 // default type for non-terminals.
23 //
24 %token_type {Token}
25 %default_type {Token}
26 
27 // The generated parser function takes a 4th argument as follows:
28 %extra_argument {Parse *pParse}
29 
30 // This code runs whenever there is a syntax error
31 //
32 %syntax_error {
33   UNUSED_PARAMETER(yymajor);  /* Silence some compiler warnings */
34   assert( TOKEN.z[0] );  /* The tokenizer always gives us a token */
35   sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);
36   pParse->parseError = 1;
37 }
38 %stack_overflow {
39   UNUSED_PARAMETER(yypMinor); /* Silence some compiler warnings */
40   sqlite3ErrorMsg(pParse, "parser stack overflow");
41   pParse->parseError = 1;
42 }
43 
44 // The name of the generated procedure that implements the parser
45 // is as follows:
46 %name sqlite3Parser
47 
48 // The following text is included near the beginning of the C source
49 // code file that implements the parser.
50 //
51 %include {
52 #include "sqliteInt.h"
53 
54 /*
55 ** Disable all error recovery processing in the parser push-down
56 ** automaton.
57 */
58 #define YYNOERRORRECOVERY 1
59 
60 /*
61 ** Make yytestcase() the same as testcase()
62 */
63 #define yytestcase(X) testcase(X)
64 
65 /*
66 ** An instance of this structure holds information about the
67 ** LIMIT clause of a SELECT statement.
68 */
69 struct LimitVal {
70   Expr *pLimit;    /* The LIMIT expression.  NULL if there is no limit */
71   Expr *pOffset;   /* The OFFSET expression.  NULL if there is none */
72 };
73 
74 /*
75 ** An instance of this structure is used to store the LIKE,
76 ** GLOB, NOT LIKE, and NOT GLOB operators.
77 */
78 struct LikeOp {
79   Token eOperator;  /* "like" or "glob" or "regexp" */
80   int not;         /* True if the NOT keyword is present */
81 };
82 
83 /*
84 ** An instance of the following structure describes the event of a
85 ** TRIGGER.  "a" is the event type, one of TK_UPDATE, TK_INSERT,
86 ** TK_DELETE, or TK_INSTEAD.  If the event is of the form
87 **
88 **      UPDATE ON (a,b,c)
89 **
90 ** Then the "b" IdList records the list "a,b,c".
91 */
92 struct TrigEvent { int a; IdList * b; };
93 
94 /*
95 ** An instance of this structure holds the ATTACH key and the key type.
96 */
97 struct AttachKey { int type;  Token key; };
98 
99 } // end %include
100 
101 // Input is a single SQL command
102 input ::= cmdlist.
103 cmdlist ::= cmdlist ecmd.
104 cmdlist ::= ecmd.
105 ecmd ::= SEMI.
106 ecmd ::= explain cmdx SEMI.
107 explain ::= .           { sqlite3BeginParse(pParse, 0); }
108 %ifndef SQLITE_OMIT_EXPLAIN
109 explain ::= EXPLAIN.              { sqlite3BeginParse(pParse, 1); }
110 explain ::= EXPLAIN QUERY PLAN.   { sqlite3BeginParse(pParse, 2); }
111 %endif  SQLITE_OMIT_EXPLAIN
112 cmdx ::= cmd.           { sqlite3FinishCoding(pParse); }
113 
114 ///////////////////// Begin and end transactions. ////////////////////////////
115 //
116 
117 cmd ::= BEGIN transtype(Y) trans_opt.  {sqlite3BeginTransaction(pParse, Y);}
118 trans_opt ::= .
119 trans_opt ::= TRANSACTION.
120 trans_opt ::= TRANSACTION nm.
121 %type transtype {int}
122 transtype(A) ::= .             {A = TK_DEFERRED;}
123 transtype(A) ::= DEFERRED(X).  {A = @X;}
124 transtype(A) ::= IMMEDIATE(X). {A = @X;}
125 transtype(A) ::= EXCLUSIVE(X). {A = @X;}
126 cmd ::= COMMIT trans_opt.      {sqlite3CommitTransaction(pParse);}
127 cmd ::= END trans_opt.         {sqlite3CommitTransaction(pParse);}
128 cmd ::= ROLLBACK trans_opt.    {sqlite3RollbackTransaction(pParse);}
129 
130 savepoint_opt ::= SAVEPOINT.
131 savepoint_opt ::= .
132 cmd ::= SAVEPOINT nm(X). {
133   sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X);
134 }
135 cmd ::= RELEASE savepoint_opt nm(X). {
136   sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X);
137 }
138 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). {
139   sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X);
140 }
141 
142 ///////////////////// The CREATE TABLE statement ////////////////////////////
143 //
144 cmd ::= create_table create_table_args.
145 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). {
146    sqlite3StartTable(pParse,&Y,&Z,T,0,0,E);
147 }
148 createkw(A) ::= CREATE(X).  {
149   pParse->db->lookaside.bEnabled = 0;
150   A = X;
151 }
152 %type ifnotexists {int}
153 ifnotexists(A) ::= .              {A = 0;}
154 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;}
155 %type temp {int}
156 %ifndef SQLITE_OMIT_TEMPDB
157 temp(A) ::= TEMP.  {A = 1;}
158 %endif  SQLITE_OMIT_TEMPDB
159 temp(A) ::= .      {A = 0;}
160 create_table_args ::= LP columnlist conslist_opt(X) RP(Y). {
161   sqlite3EndTable(pParse,&X,&Y,0);
162 }
163 create_table_args ::= AS select(S). {
164   sqlite3EndTable(pParse,0,0,S);
165   sqlite3SelectDelete(pParse->db, S);
166 }
167 columnlist ::= columnlist COMMA column.
168 columnlist ::= column.
169 
170 // A "column" is a complete description of a single column in a
171 // CREATE TABLE statement.  This includes the column name, its
172 // datatype, and other keywords such as PRIMARY KEY, UNIQUE, REFERENCES,
173 // NOT NULL and so forth.
174 //
175 column(A) ::= columnid(X) type carglist. {
176   A.z = X.z;
177   A.n = (int)(pParse->sLastToken.z-X.z) + pParse->sLastToken.n;
178 }
179 columnid(A) ::= nm(X). {
180   sqlite3AddColumn(pParse,&X);
181   A = X;
182 }
183 
184 
185 // An IDENTIFIER can be a generic identifier, or one of several
186 // keywords.  Any non-standard keyword can also be an identifier.
187 //
188 %type id {Token}
189 id(A) ::= ID(X).         {A = X;}
190 id(A) ::= INDEXED(X).    {A = X;}
191 
192 // The following directive causes tokens ABORT, AFTER, ASC, etc. to
193 // fallback to ID if they will not parse as their original value.
194 // This obviates the need for the "id" nonterminal.
195 //
196 %fallback ID
197   ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW
198   CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL FOR
199   IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN
200   QUERY KEY OF OFFSET PRAGMA RAISE RELEASE REPLACE RESTRICT ROW ROLLBACK
201   SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL
202 %ifdef SQLITE_OMIT_COMPOUND_SELECT
203   EXCEPT INTERSECT UNION
204 %endif SQLITE_OMIT_COMPOUND_SELECT
205   REINDEX RENAME CTIME_KW IF
206   .
207 %wildcard ANY.
208 
209 // Define operator precedence early so that this is the first occurance
210 // of the operator tokens in the grammer.  Keeping the operators together
211 // causes them to be assigned integer values that are close together,
212 // which keeps parser tables smaller.
213 //
214 // The token values assigned to these symbols is determined by the order
215 // in which lemon first sees them.  It must be the case that ISNULL/NOTNULL,
216 // NE/EQ, GT/LE, and GE/LT are separated by only a single value.  See
217 // the sqlite3ExprIfFalse() routine for additional information on this
218 // constraint.
219 //
220 %left OR.
221 %left AND.
222 %right NOT.
223 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ.
224 %left GT LE LT GE.
225 %right ESCAPE.
226 %left BITAND BITOR LSHIFT RSHIFT.
227 %left PLUS MINUS.
228 %left STAR SLASH REM.
229 %left CONCAT.
230 %left COLLATE.
231 %right BITNOT.
232 
233 // And "ids" is an identifer-or-string.
234 //
235 %type ids {Token}
236 ids(A) ::= ID|STRING(X).   {A = X;}
237 
238 // The name of a column or table can be any of the following:
239 //
240 %type nm {Token}
241 nm(A) ::= id(X).         {A = X;}
242 nm(A) ::= STRING(X).     {A = X;}
243 nm(A) ::= JOIN_KW(X).    {A = X;}
244 
245 // A typetoken is really one or more tokens that form a type name such
246 // as can be found after the column name in a CREATE TABLE statement.
247 // Multiple tokens are concatenated to form the value of the typetoken.
248 //
249 %type typetoken {Token}
250 type ::= .
251 type ::= typetoken(X).                   {sqlite3AddColumnType(pParse,&X);}
252 typetoken(A) ::= typename(X).   {A = X;}
253 typetoken(A) ::= typename(X) LP signed RP(Y). {
254   A.z = X.z;
255   A.n = (int)(&Y.z[Y.n] - X.z);
256 }
257 typetoken(A) ::= typename(X) LP signed COMMA signed RP(Y). {
258   A.z = X.z;
259   A.n = (int)(&Y.z[Y.n] - X.z);
260 }
261 %type typename {Token}
262 typename(A) ::= ids(X).             {A = X;}
263 typename(A) ::= typename(X) ids(Y). {A.z=X.z; A.n=Y.n+(int)(Y.z-X.z);}
264 signed ::= plus_num.
265 signed ::= minus_num.
266 
267 // "carglist" is a list of additional constraints that come after the
268 // column name and column type in a CREATE TABLE statement.
269 //
270 carglist ::= carglist carg.
271 carglist ::= .
272 carg ::= CONSTRAINT nm ccons.
273 carg ::= ccons.
274 ccons ::= DEFAULT term(X).            {sqlite3AddDefaultValue(pParse,&X);}
275 ccons ::= DEFAULT LP expr(X) RP.      {sqlite3AddDefaultValue(pParse,&X);}
276 ccons ::= DEFAULT PLUS term(X).       {sqlite3AddDefaultValue(pParse,&X);}
277 ccons ::= DEFAULT MINUS(A) term(X).      {
278   ExprSpan v;
279   v.pExpr = sqlite3PExpr(pParse, TK_UMINUS, X.pExpr, 0, 0);
280   v.zStart = A.z;
281   v.zEnd = X.zEnd;
282   sqlite3AddDefaultValue(pParse,&v);
283 }
284 ccons ::= DEFAULT id(X).              {
285   ExprSpan v;
286   spanExpr(&v, pParse, TK_STRING, &X);
287   sqlite3AddDefaultValue(pParse,&v);
288 }
289 
290 // In addition to the type name, we also care about the primary key and
291 // UNIQUE constraints.
292 //
293 ccons ::= NULL onconf.
294 ccons ::= NOT NULL onconf(R).    {sqlite3AddNotNull(pParse, R);}
295 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I).
296                                  {sqlite3AddPrimaryKey(pParse,0,R,I,Z);}
297 ccons ::= UNIQUE onconf(R).      {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0);}
298 ccons ::= CHECK LP expr(X) RP.   {sqlite3AddCheckConstraint(pParse,X.pExpr);}
299 ccons ::= REFERENCES nm(T) idxlist_opt(TA) refargs(R).
300                                  {sqlite3CreateForeignKey(pParse,0,&T,TA,R);}
301 ccons ::= defer_subclause(D).    {sqlite3DeferForeignKey(pParse,D);}
302 ccons ::= COLLATE ids(C).        {sqlite3AddCollateType(pParse, &C);}
303 
304 // The optional AUTOINCREMENT keyword
305 %type autoinc {int}
306 autoinc(X) ::= .          {X = 0;}
307 autoinc(X) ::= AUTOINCR.  {X = 1;}
308 
309 // The next group of rules parses the arguments to a REFERENCES clause
310 // that determine if the referential integrity checking is deferred or
311 // or immediate and which determine what action to take if a ref-integ
312 // check fails.
313 //
314 %type refargs {int}
315 refargs(A) ::= .                  { A = OE_None*0x0101; /* EV: R-19803-45884 */}
316 refargs(A) ::= refargs(X) refarg(Y). { A = (X & ~Y.mask) | Y.value; }
317 %type refarg {struct {int value; int mask;}}
318 refarg(A) ::= MATCH nm.              { A.value = 0;     A.mask = 0x000000; }
319 refarg(A) ::= ON INSERT refact.      { A.value = 0;     A.mask = 0x000000; }
320 refarg(A) ::= ON DELETE refact(X).   { A.value = X;     A.mask = 0x0000ff; }
321 refarg(A) ::= ON UPDATE refact(X).   { A.value = X<<8;  A.mask = 0x00ff00; }
322 %type refact {int}
323 refact(A) ::= SET NULL.              { A = OE_SetNull;  /* EV: R-33326-45252 */}
324 refact(A) ::= SET DEFAULT.           { A = OE_SetDflt;  /* EV: R-33326-45252 */}
325 refact(A) ::= CASCADE.               { A = OE_Cascade;  /* EV: R-33326-45252 */}
326 refact(A) ::= RESTRICT.              { A = OE_Restrict; /* EV: R-33326-45252 */}
327 refact(A) ::= NO ACTION.             { A = OE_None;     /* EV: R-33326-45252 */}
328 %type defer_subclause {int}
329 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt.     {A = 0;}
330 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X).      {A = X;}
331 %type init_deferred_pred_opt {int}
332 init_deferred_pred_opt(A) ::= .                       {A = 0;}
333 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED.     {A = 1;}
334 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE.    {A = 0;}
335 
336 // For the time being, the only constraint we care about is the primary
337 // key and UNIQUE.  Both create indices.
338 //
339 conslist_opt(A) ::= .                   {A.n = 0; A.z = 0;}
340 conslist_opt(A) ::= COMMA(X) conslist.  {A = X;}
341 conslist ::= conslist COMMA tcons.
342 conslist ::= conslist tcons.
343 conslist ::= tcons.
344 tcons ::= CONSTRAINT nm.
345 tcons ::= PRIMARY KEY LP idxlist(X) autoinc(I) RP onconf(R).
346                                  {sqlite3AddPrimaryKey(pParse,X,R,I,0);}
347 tcons ::= UNIQUE LP idxlist(X) RP onconf(R).
348                                  {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0);}
349 tcons ::= CHECK LP expr(E) RP onconf.
350                                  {sqlite3AddCheckConstraint(pParse,E.pExpr);}
351 tcons ::= FOREIGN KEY LP idxlist(FA) RP
352           REFERENCES nm(T) idxlist_opt(TA) refargs(R) defer_subclause_opt(D). {
353     sqlite3CreateForeignKey(pParse, FA, &T, TA, R);
354     sqlite3DeferForeignKey(pParse, D);
355 }
356 %type defer_subclause_opt {int}
357 defer_subclause_opt(A) ::= .                    {A = 0;}
358 defer_subclause_opt(A) ::= defer_subclause(X).  {A = X;}
359 
360 // The following is a non-standard extension that allows us to declare the
361 // default behavior when there is a constraint conflict.
362 //
363 %type onconf {int}
364 %type orconf {u8}
365 %type resolvetype {int}
366 onconf(A) ::= .                              {A = OE_Default;}
367 onconf(A) ::= ON CONFLICT resolvetype(X).    {A = X;}
368 orconf(A) ::= .                              {A = OE_Default;}
369 orconf(A) ::= OR resolvetype(X).             {A = (u8)X;}
370 resolvetype(A) ::= raisetype(X).             {A = X;}
371 resolvetype(A) ::= IGNORE.                   {A = OE_Ignore;}
372 resolvetype(A) ::= REPLACE.                  {A = OE_Replace;}
373 
374 ////////////////////////// The DROP TABLE /////////////////////////////////////
375 //
376 cmd ::= DROP TABLE ifexists(E) fullname(X). {
377   sqlite3DropTable(pParse, X, 0, E);
378 }
379 %type ifexists {int}
380 ifexists(A) ::= IF EXISTS.   {A = 1;}
381 ifexists(A) ::= .            {A = 0;}
382 
383 ///////////////////// The CREATE VIEW statement /////////////////////////////
384 //
385 %ifndef SQLITE_OMIT_VIEW
386 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) AS select(S). {
387   sqlite3CreateView(pParse, &X, &Y, &Z, S, T, E);
388 }
389 cmd ::= DROP VIEW ifexists(E) fullname(X). {
390   sqlite3DropTable(pParse, X, 1, E);
391 }
392 %endif  SQLITE_OMIT_VIEW
393 
394 //////////////////////// The SELECT statement /////////////////////////////////
395 //
396 cmd ::= select(X).  {
397   SelectDest dest = {SRT_Output, 0, 0, 0, 0};
398   sqlite3Select(pParse, X, &dest);
399   sqlite3SelectDelete(pParse->db, X);
400 }
401 
402 %type select {Select*}
403 %destructor select {sqlite3SelectDelete(pParse->db, $$);}
404 %type oneselect {Select*}
405 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);}
406 
407 select(A) ::= oneselect(X).                      {A = X;}
408 %ifndef SQLITE_OMIT_COMPOUND_SELECT
409 select(A) ::= select(X) multiselect_op(Y) oneselect(Z).  {
410   if( Z ){
411     Z->op = (u8)Y;
412     Z->pPrior = X;
413   }else{
414     sqlite3SelectDelete(pParse->db, X);
415   }
416   A = Z;
417 }
418 %type multiselect_op {int}
419 multiselect_op(A) ::= UNION(OP).             {A = @OP;}
420 multiselect_op(A) ::= UNION ALL.             {A = TK_ALL;}
421 multiselect_op(A) ::= EXCEPT|INTERSECT(OP).  {A = @OP;}
422 %endif SQLITE_OMIT_COMPOUND_SELECT
423 oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y)
424                  groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). {
425   A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L.pLimit,L.pOffset);
426 }
427 
428 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is
429 // present and false (0) if it is not.
430 //
431 %type distinct {int}
432 distinct(A) ::= DISTINCT.   {A = 1;}
433 distinct(A) ::= ALL.        {A = 0;}
434 distinct(A) ::= .           {A = 0;}
435 
436 // selcollist is a list of expressions that are to become the return
437 // values of the SELECT statement.  The "*" in statements like
438 // "SELECT * FROM ..." is encoded as a special expression with an
439 // opcode of TK_ALL.
440 //
441 %type selcollist {ExprList*}
442 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);}
443 %type sclp {ExprList*}
444 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);}
445 sclp(A) ::= selcollist(X) COMMA.             {A = X;}
446 sclp(A) ::= .                                {A = 0;}
447 selcollist(A) ::= sclp(P) expr(X) as(Y).     {
448    A = sqlite3ExprListAppend(pParse, P, X.pExpr);
449    if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1);
450    sqlite3ExprListSetSpan(pParse,A,&X);
451 }
452 selcollist(A) ::= sclp(P) STAR. {
453   Expr *p = sqlite3Expr(pParse->db, TK_ALL, 0);
454   A = sqlite3ExprListAppend(pParse, P, p);
455 }
456 selcollist(A) ::= sclp(P) nm(X) DOT STAR(Y). {
457   Expr *pRight = sqlite3PExpr(pParse, TK_ALL, 0, 0, &Y);
458   Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &X);
459   Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
460   A = sqlite3ExprListAppend(pParse,P, pDot);
461 }
462 
463 // An option "AS <id>" phrase that can follow one of the expressions that
464 // define the result set, or one of the tables in the FROM clause.
465 //
466 %type as {Token}
467 as(X) ::= AS nm(Y).    {X = Y;}
468 as(X) ::= ids(Y).      {X = Y;}
469 as(X) ::= .            {X.n = 0;}
470 
471 
472 %type seltablist {SrcList*}
473 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);}
474 %type stl_prefix {SrcList*}
475 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);}
476 %type from {SrcList*}
477 %destructor from {sqlite3SrcListDelete(pParse->db, $$);}
478 
479 // A complete FROM clause.
480 //
481 from(A) ::= .                {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));}
482 from(A) ::= FROM seltablist(X). {
483   A = X;
484   sqlite3SrcListShiftJoinType(A);
485 }
486 
487 // "seltablist" is a "Select Table List" - the content of the FROM clause
488 // in a SELECT statement.  "stl_prefix" is a prefix of this list.
489 //
490 stl_prefix(A) ::= seltablist(X) joinop(Y).    {
491    A = X;
492    if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].jointype = (u8)Y;
493 }
494 stl_prefix(A) ::= .                           {A = 0;}
495 seltablist(A) ::= stl_prefix(X) nm(Y) dbnm(D) as(Z) indexed_opt(I) on_opt(N) using_opt(U). {
496   A = sqlite3SrcListAppendFromTerm(pParse,X,&Y,&D,&Z,0,N,U);
497   sqlite3SrcListIndexedBy(pParse, A, &I);
498 }
499 %ifndef SQLITE_OMIT_SUBQUERY
500   seltablist(A) ::= stl_prefix(X) LP select(S) RP
501                     as(Z) on_opt(N) using_opt(U). {
502     A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,S,N,U);
503   }
504   seltablist(A) ::= stl_prefix(X) LP seltablist(F) RP
505                     as(Z) on_opt(N) using_opt(U). {
506     if( X==0 && Z.n==0 && N==0 && U==0 ){
507       A = F;
508     }else{
509       Select *pSubquery;
510       sqlite3SrcListShiftJoinType(F);
511       pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,0,0,0);
512       A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,pSubquery,N,U);
513     }
514   }
515 
516   // A seltablist_paren nonterminal represents anything in a FROM that
517   // is contained inside parentheses.  This can be either a subquery or
518   // a grouping of table and subqueries.
519   //
520 //  %type seltablist_paren {Select*}
521 //  %destructor seltablist_paren {sqlite3SelectDelete(pParse->db, $$);}
522 //  seltablist_paren(A) ::= select(S).      {A = S;}
523 //  seltablist_paren(A) ::= seltablist(F).  {
524 //     sqlite3SrcListShiftJoinType(F);
525 //     A = sqlite3SelectNew(pParse,0,F,0,0,0,0,0,0,0);
526 //  }
527 %endif  SQLITE_OMIT_SUBQUERY
528 
529 %type dbnm {Token}
530 dbnm(A) ::= .          {A.z=0; A.n=0;}
531 dbnm(A) ::= DOT nm(X). {A = X;}
532 
533 %type fullname {SrcList*}
534 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);}
535 fullname(A) ::= nm(X) dbnm(Y).  {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y);}
536 
537 %type joinop {int}
538 %type joinop2 {int}
539 joinop(X) ::= COMMA|JOIN.              { X = JT_INNER; }
540 joinop(X) ::= JOIN_KW(A) JOIN.         { X = sqlite3JoinType(pParse,&A,0,0); }
541 joinop(X) ::= JOIN_KW(A) nm(B) JOIN.   { X = sqlite3JoinType(pParse,&A,&B,0); }
542 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN.
543                                        { X = sqlite3JoinType(pParse,&A,&B,&C); }
544 
545 %type on_opt {Expr*}
546 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);}
547 on_opt(N) ::= ON expr(E).   {N = E.pExpr;}
548 on_opt(N) ::= .             {N = 0;}
549 
550 // Note that this block abuses the Token type just a little. If there is
551 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If
552 // there is an INDEXED BY clause, then the token is populated as per normal,
553 // with z pointing to the token data and n containing the number of bytes
554 // in the token.
555 //
556 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is
557 // normally illegal. The sqlite3SrcListIndexedBy() function
558 // recognizes and interprets this as a special case.
559 //
560 %type indexed_opt {Token}
561 indexed_opt(A) ::= .                 {A.z=0; A.n=0;}
562 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;}
563 indexed_opt(A) ::= NOT INDEXED.      {A.z=0; A.n=1;}
564 
565 %type using_opt {IdList*}
566 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);}
567 using_opt(U) ::= USING LP inscollist(L) RP.  {U = L;}
568 using_opt(U) ::= .                        {U = 0;}
569 
570 
571 %type orderby_opt {ExprList*}
572 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);}
573 %type sortlist {ExprList*}
574 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);}
575 %type sortitem {Expr*}
576 %destructor sortitem {sqlite3ExprDelete(pParse->db, $$);}
577 
578 orderby_opt(A) ::= .                          {A = 0;}
579 orderby_opt(A) ::= ORDER BY sortlist(X).      {A = X;}
580 sortlist(A) ::= sortlist(X) COMMA sortitem(Y) sortorder(Z). {
581   A = sqlite3ExprListAppend(pParse,X,Y);
582   if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z;
583 }
584 sortlist(A) ::= sortitem(Y) sortorder(Z). {
585   A = sqlite3ExprListAppend(pParse,0,Y);
586   if( A && ALWAYS(A->a) ) A->a[0].sortOrder = (u8)Z;
587 }
588 sortitem(A) ::= expr(X).   {A = X.pExpr;}
589 
590 %type sortorder {int}
591 
592 sortorder(A) ::= ASC.           {A = SQLITE_SO_ASC;}
593 sortorder(A) ::= DESC.          {A = SQLITE_SO_DESC;}
594 sortorder(A) ::= .              {A = SQLITE_SO_ASC;}
595 
596 %type groupby_opt {ExprList*}
597 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);}
598 groupby_opt(A) ::= .                      {A = 0;}
599 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;}
600 
601 %type having_opt {Expr*}
602 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);}
603 having_opt(A) ::= .                {A = 0;}
604 having_opt(A) ::= HAVING expr(X).  {A = X.pExpr;}
605 
606 %type limit_opt {struct LimitVal}
607 
608 // The destructor for limit_opt will never fire in the current grammar.
609 // The limit_opt non-terminal only occurs at the end of a single production
610 // rule for SELECT statements.  As soon as the rule that create the
611 // limit_opt non-terminal reduces, the SELECT statement rule will also
612 // reduce.  So there is never a limit_opt non-terminal on the stack
613 // except as a transient.  So there is never anything to destroy.
614 //
615 //%destructor limit_opt {
616 //  sqlite3ExprDelete(pParse->db, $$.pLimit);
617 //  sqlite3ExprDelete(pParse->db, $$.pOffset);
618 //}
619 limit_opt(A) ::= .                    {A.pLimit = 0; A.pOffset = 0;}
620 limit_opt(A) ::= LIMIT expr(X).       {A.pLimit = X.pExpr; A.pOffset = 0;}
621 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y).
622                                       {A.pLimit = X.pExpr; A.pOffset = Y.pExpr;}
623 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y).
624                                       {A.pOffset = X.pExpr; A.pLimit = Y.pExpr;}
625 
626 /////////////////////////// The DELETE statement /////////////////////////////
627 //
628 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
629 cmd ::= DELETE FROM fullname(X) indexed_opt(I) where_opt(W)
630         orderby_opt(O) limit_opt(L). {
631   sqlite3SrcListIndexedBy(pParse, X, &I);
632   W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "DELETE");
633   sqlite3DeleteFrom(pParse,X,W);
634 }
635 %endif
636 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
637 cmd ::= DELETE FROM fullname(X) indexed_opt(I) where_opt(W). {
638   sqlite3SrcListIndexedBy(pParse, X, &I);
639   sqlite3DeleteFrom(pParse,X,W);
640 }
641 %endif
642 
643 %type where_opt {Expr*}
644 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);}
645 
646 where_opt(A) ::= .                    {A = 0;}
647 where_opt(A) ::= WHERE expr(X).       {A = X.pExpr;}
648 
649 ////////////////////////// The UPDATE command ////////////////////////////////
650 //
651 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
652 cmd ::= UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) where_opt(W) orderby_opt(O) limit_opt(L).  {
653   sqlite3SrcListIndexedBy(pParse, X, &I);
654   sqlite3ExprListCheckLength(pParse,Y,"set list");
655   W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "UPDATE");
656   sqlite3Update(pParse,X,Y,W,R);
657 }
658 %endif
659 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
660 cmd ::= UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) where_opt(W).  {
661   sqlite3SrcListIndexedBy(pParse, X, &I);
662   sqlite3ExprListCheckLength(pParse,Y,"set list");
663   sqlite3Update(pParse,X,Y,W,R);
664 }
665 %endif
666 
667 %type setlist {ExprList*}
668 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);}
669 
670 setlist(A) ::= setlist(Z) COMMA nm(X) EQ expr(Y). {
671   A = sqlite3ExprListAppend(pParse, Z, Y.pExpr);
672   sqlite3ExprListSetName(pParse, A, &X, 1);
673 }
674 setlist(A) ::= nm(X) EQ expr(Y). {
675   A = sqlite3ExprListAppend(pParse, 0, Y.pExpr);
676   sqlite3ExprListSetName(pParse, A, &X, 1);
677 }
678 
679 ////////////////////////// The INSERT command /////////////////////////////////
680 //
681 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F)
682         VALUES LP itemlist(Y) RP.
683             {sqlite3Insert(pParse, X, Y, 0, F, R);}
684 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) select(S).
685             {sqlite3Insert(pParse, X, 0, S, F, R);}
686 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) DEFAULT VALUES.
687             {sqlite3Insert(pParse, X, 0, 0, F, R);}
688 
689 %type insert_cmd {u8}
690 insert_cmd(A) ::= INSERT orconf(R).   {A = R;}
691 insert_cmd(A) ::= REPLACE.            {A = OE_Replace;}
692 
693 
694 %type itemlist {ExprList*}
695 %destructor itemlist {sqlite3ExprListDelete(pParse->db, $$);}
696 
697 itemlist(A) ::= itemlist(X) COMMA expr(Y).
698     {A = sqlite3ExprListAppend(pParse,X,Y.pExpr);}
699 itemlist(A) ::= expr(X).
700     {A = sqlite3ExprListAppend(pParse,0,X.pExpr);}
701 
702 %type inscollist_opt {IdList*}
703 %destructor inscollist_opt {sqlite3IdListDelete(pParse->db, $$);}
704 %type inscollist {IdList*}
705 %destructor inscollist {sqlite3IdListDelete(pParse->db, $$);}
706 
707 inscollist_opt(A) ::= .                       {A = 0;}
708 inscollist_opt(A) ::= LP inscollist(X) RP.    {A = X;}
709 inscollist(A) ::= inscollist(X) COMMA nm(Y).
710     {A = sqlite3IdListAppend(pParse->db,X,&Y);}
711 inscollist(A) ::= nm(Y).
712     {A = sqlite3IdListAppend(pParse->db,0,&Y);}
713 
714 /////////////////////////// Expression Processing /////////////////////////////
715 //
716 
717 %type expr {ExprSpan}
718 %destructor expr {sqlite3ExprDelete(pParse->db, $$.pExpr);}
719 %type term {ExprSpan}
720 %destructor term {sqlite3ExprDelete(pParse->db, $$.pExpr);}
721 
722 %include {
723   /* This is a utility routine used to set the ExprSpan.zStart and
724   ** ExprSpan.zEnd values of pOut so that the span covers the complete
725   ** range of text beginning with pStart and going to the end of pEnd.
726   */
727   static void spanSet(ExprSpan *pOut, Token *pStart, Token *pEnd){
728     pOut->zStart = pStart->z;
729     pOut->zEnd = &pEnd->z[pEnd->n];
730   }
731 
732   /* Construct a new Expr object from a single identifier.  Use the
733   ** new Expr to populate pOut.  Set the span of pOut to be the identifier
734   ** that created the expression.
735   */
736   static void spanExpr(ExprSpan *pOut, Parse *pParse, int op, Token *pValue){
737     pOut->pExpr = sqlite3PExpr(pParse, op, 0, 0, pValue);
738     pOut->zStart = pValue->z;
739     pOut->zEnd = &pValue->z[pValue->n];
740   }
741 }
742 
743 expr(A) ::= term(X).             {A = X;}
744 expr(A) ::= LP(B) expr(X) RP(E). {A.pExpr = X.pExpr; spanSet(&A,&B,&E);}
745 term(A) ::= NULL(X).             {spanExpr(&A, pParse, @X, &X);}
746 expr(A) ::= id(X).               {spanExpr(&A, pParse, TK_ID, &X);}
747 expr(A) ::= JOIN_KW(X).          {spanExpr(&A, pParse, TK_ID, &X);}
748 expr(A) ::= nm(X) DOT nm(Y). {
749   Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X);
750   Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y);
751   A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0);
752   spanSet(&A,&X,&Y);
753 }
754 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). {
755   Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X);
756   Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y);
757   Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Z);
758   Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0);
759   A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0);
760   spanSet(&A,&X,&Z);
761 }
762 term(A) ::= INTEGER|FLOAT|BLOB(X).  {spanExpr(&A, pParse, @X, &X);}
763 term(A) ::= STRING(X).              {spanExpr(&A, pParse, @X, &X);}
764 expr(A) ::= REGISTER(X).     {
765   /* When doing a nested parse, one can include terms in an expression
766   ** that look like this:   #1 #2 ...  These terms refer to registers
767   ** in the virtual machine.  #N is the N-th register. */
768   if( pParse->nested==0 ){
769     sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &X);
770     A.pExpr = 0;
771   }else{
772     A.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, &X);
773     if( A.pExpr ) sqlite3GetInt32(&X.z[1], &A.pExpr->iTable);
774   }
775   spanSet(&A, &X, &X);
776 }
777 expr(A) ::= VARIABLE(X).     {
778   spanExpr(&A, pParse, TK_VARIABLE, &X);
779   sqlite3ExprAssignVarNumber(pParse, A.pExpr);
780   spanSet(&A, &X, &X);
781 }
782 expr(A) ::= expr(E) COLLATE ids(C). {
783   A.pExpr = sqlite3ExprSetColl(pParse, E.pExpr, &C);
784   A.zStart = E.zStart;
785   A.zEnd = &C.z[C.n];
786 }
787 %ifndef SQLITE_OMIT_CAST
788 expr(A) ::= CAST(X) LP expr(E) AS typetoken(T) RP(Y). {
789   A.pExpr = sqlite3PExpr(pParse, TK_CAST, E.pExpr, 0, &T);
790   spanSet(&A,&X,&Y);
791 }
792 %endif  SQLITE_OMIT_CAST
793 expr(A) ::= ID(X) LP distinct(D) exprlist(Y) RP(E). {
794   if( Y && Y->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
795     sqlite3ErrorMsg(pParse, "too many arguments on function %T", &X);
796   }
797   A.pExpr = sqlite3ExprFunction(pParse, Y, &X);
798   spanSet(&A,&X,&E);
799   if( D && A.pExpr ){
800     A.pExpr->flags |= EP_Distinct;
801   }
802 }
803 expr(A) ::= ID(X) LP STAR RP(E). {
804   A.pExpr = sqlite3ExprFunction(pParse, 0, &X);
805   spanSet(&A,&X,&E);
806 }
807 term(A) ::= CTIME_KW(OP). {
808   /* The CURRENT_TIME, CURRENT_DATE, and CURRENT_TIMESTAMP values are
809   ** treated as functions that return constants */
810   A.pExpr = sqlite3ExprFunction(pParse, 0,&OP);
811   if( A.pExpr ){
812     A.pExpr->op = TK_CONST_FUNC;
813   }
814   spanSet(&A, &OP, &OP);
815 }
816 
817 %include {
818   /* This routine constructs a binary expression node out of two ExprSpan
819   ** objects and uses the result to populate a new ExprSpan object.
820   */
821   static void spanBinaryExpr(
822     ExprSpan *pOut,     /* Write the result here */
823     Parse *pParse,      /* The parsing context.  Errors accumulate here */
824     int op,             /* The binary operation */
825     ExprSpan *pLeft,    /* The left operand */
826     ExprSpan *pRight    /* The right operand */
827   ){
828     pOut->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr, 0);
829     pOut->zStart = pLeft->zStart;
830     pOut->zEnd = pRight->zEnd;
831   }
832 }
833 
834 expr(A) ::= expr(X) AND(OP) expr(Y).    {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
835 expr(A) ::= expr(X) OR(OP) expr(Y).     {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
836 expr(A) ::= expr(X) LT|GT|GE|LE(OP) expr(Y).
837                                         {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
838 expr(A) ::= expr(X) EQ|NE(OP) expr(Y).  {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
839 expr(A) ::= expr(X) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y).
840                                         {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
841 expr(A) ::= expr(X) PLUS|MINUS(OP) expr(Y).
842                                         {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
843 expr(A) ::= expr(X) STAR|SLASH|REM(OP) expr(Y).
844                                         {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
845 expr(A) ::= expr(X) CONCAT(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
846 %type likeop {struct LikeOp}
847 likeop(A) ::= LIKE_KW(X).     {A.eOperator = X; A.not = 0;}
848 likeop(A) ::= NOT LIKE_KW(X). {A.eOperator = X; A.not = 1;}
849 likeop(A) ::= MATCH(X).       {A.eOperator = X; A.not = 0;}
850 likeop(A) ::= NOT MATCH(X).   {A.eOperator = X; A.not = 1;}
851 %type escape {ExprSpan}
852 %destructor escape {sqlite3ExprDelete(pParse->db, $$.pExpr);}
853 escape(X) ::= ESCAPE expr(A). [ESCAPE] {X = A;}
854 escape(X) ::= .               [ESCAPE] {memset(&X,0,sizeof(X));}
855 expr(A) ::= expr(X) likeop(OP) expr(Y) escape(E).  [LIKE_KW]  {
856   ExprList *pList;
857   pList = sqlite3ExprListAppend(pParse,0, Y.pExpr);
858   pList = sqlite3ExprListAppend(pParse,pList, X.pExpr);
859   if( E.pExpr ){
860     pList = sqlite3ExprListAppend(pParse,pList, E.pExpr);
861   }
862   A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator);
863   if( OP.not ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
864   A.zStart = X.zStart;
865   A.zEnd = Y.zEnd;
866   if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc;
867 }
868 
869 %include {
870   /* Construct an expression node for a unary postfix operator
871   */
872   static void spanUnaryPostfix(
873     ExprSpan *pOut,        /* Write the new expression node here */
874     Parse *pParse,         /* Parsing context to record errors */
875     int op,                /* The operator */
876     ExprSpan *pOperand,    /* The operand */
877     Token *pPostOp         /* The operand token for setting the span */
878   ){
879     pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0);
880     pOut->zStart = pOperand->zStart;
881     pOut->zEnd = &pPostOp->z[pPostOp->n];
882   }
883 }
884 
885 expr(A) ::= expr(X) ISNULL|NOTNULL(E).   {spanUnaryPostfix(&A,pParse,@E,&X,&E);}
886 expr(A) ::= expr(X) NOT NULL(E). {spanUnaryPostfix(&A,pParse,TK_NOTNULL,&X,&E);}
887 
888 %include {
889   /* A routine to convert a binary TK_IS or TK_ISNOT expression into a
890   ** unary TK_ISNULL or TK_NOTNULL expression. */
891   static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){
892     sqlite3 *db = pParse->db;
893     if( db->mallocFailed==0 && pY->op==TK_NULL ){
894       pA->op = (u8)op;
895       sqlite3ExprDelete(db, pA->pRight);
896       pA->pRight = 0;
897     }
898   }
899 }
900 
901 //    expr1 IS expr2
902 //    expr1 IS NOT expr2
903 //
904 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL.  If expr2
905 // is any other expression, code as TK_IS or TK_ISNOT.
906 //
907 expr(A) ::= expr(X) IS expr(Y).     {
908   spanBinaryExpr(&A,pParse,TK_IS,&X,&Y);
909   binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_ISNULL);
910 }
911 expr(A) ::= expr(X) IS NOT expr(Y). {
912   spanBinaryExpr(&A,pParse,TK_ISNOT,&X,&Y);
913   binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_NOTNULL);
914 }
915 
916 %include {
917   /* Construct an expression node for a unary prefix operator
918   */
919   static void spanUnaryPrefix(
920     ExprSpan *pOut,        /* Write the new expression node here */
921     Parse *pParse,         /* Parsing context to record errors */
922     int op,                /* The operator */
923     ExprSpan *pOperand,    /* The operand */
924     Token *pPreOp         /* The operand token for setting the span */
925   ){
926     pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0);
927     pOut->zStart = pPreOp->z;
928     pOut->zEnd = pOperand->zEnd;
929   }
930 }
931 
932 
933 
934 expr(A) ::= NOT(B) expr(X).    {spanUnaryPrefix(&A,pParse,@B,&X,&B);}
935 expr(A) ::= BITNOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);}
936 expr(A) ::= MINUS(B) expr(X). [BITNOT]
937                                {spanUnaryPrefix(&A,pParse,TK_UMINUS,&X,&B);}
938 expr(A) ::= PLUS(B) expr(X). [BITNOT]
939                                {spanUnaryPrefix(&A,pParse,TK_UPLUS,&X,&B);}
940 
941 %type between_op {int}
942 between_op(A) ::= BETWEEN.     {A = 0;}
943 between_op(A) ::= NOT BETWEEN. {A = 1;}
944 expr(A) ::= expr(W) between_op(N) expr(X) AND expr(Y). [BETWEEN] {
945   ExprList *pList = sqlite3ExprListAppend(pParse,0, X.pExpr);
946   pList = sqlite3ExprListAppend(pParse,pList, Y.pExpr);
947   A.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, W.pExpr, 0, 0);
948   if( A.pExpr ){
949     A.pExpr->x.pList = pList;
950   }else{
951     sqlite3ExprListDelete(pParse->db, pList);
952   }
953   if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
954   A.zStart = W.zStart;
955   A.zEnd = Y.zEnd;
956 }
957 %ifndef SQLITE_OMIT_SUBQUERY
958   %type in_op {int}
959   in_op(A) ::= IN.      {A = 0;}
960   in_op(A) ::= NOT IN.  {A = 1;}
961   expr(A) ::= expr(X) in_op(N) LP exprlist(Y) RP(E). [IN] {
962     A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0);
963     if( A.pExpr ){
964       A.pExpr->x.pList = Y;
965       sqlite3ExprSetHeight(pParse, A.pExpr);
966     }else{
967       sqlite3ExprListDelete(pParse->db, Y);
968     }
969     if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
970     A.zStart = X.zStart;
971     A.zEnd = &E.z[E.n];
972   }
973   expr(A) ::= LP(B) select(X) RP(E). {
974     A.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0);
975     if( A.pExpr ){
976       A.pExpr->x.pSelect = X;
977       ExprSetProperty(A.pExpr, EP_xIsSelect);
978       sqlite3ExprSetHeight(pParse, A.pExpr);
979     }else{
980       sqlite3SelectDelete(pParse->db, X);
981     }
982     A.zStart = B.z;
983     A.zEnd = &E.z[E.n];
984   }
985   expr(A) ::= expr(X) in_op(N) LP select(Y) RP(E).  [IN] {
986     A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0);
987     if( A.pExpr ){
988       A.pExpr->x.pSelect = Y;
989       ExprSetProperty(A.pExpr, EP_xIsSelect);
990       sqlite3ExprSetHeight(pParse, A.pExpr);
991     }else{
992       sqlite3SelectDelete(pParse->db, Y);
993     }
994     if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
995     A.zStart = X.zStart;
996     A.zEnd = &E.z[E.n];
997   }
998   expr(A) ::= expr(X) in_op(N) nm(Y) dbnm(Z). [IN] {
999     SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z);
1000     A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0);
1001     if( A.pExpr ){
1002       A.pExpr->x.pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0);
1003       ExprSetProperty(A.pExpr, EP_xIsSelect);
1004       sqlite3ExprSetHeight(pParse, A.pExpr);
1005     }else{
1006       sqlite3SrcListDelete(pParse->db, pSrc);
1007     }
1008     if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
1009     A.zStart = X.zStart;
1010     A.zEnd = Z.z ? &Z.z[Z.n] : &Y.z[Y.n];
1011   }
1012   expr(A) ::= EXISTS(B) LP select(Y) RP(E). {
1013     Expr *p = A.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0);
1014     if( p ){
1015       p->x.pSelect = Y;
1016       ExprSetProperty(p, EP_xIsSelect);
1017       sqlite3ExprSetHeight(pParse, p);
1018     }else{
1019       sqlite3SelectDelete(pParse->db, Y);
1020     }
1021     A.zStart = B.z;
1022     A.zEnd = &E.z[E.n];
1023   }
1024 %endif SQLITE_OMIT_SUBQUERY
1025 
1026 /* CASE expressions */
1027 expr(A) ::= CASE(C) case_operand(X) case_exprlist(Y) case_else(Z) END(E). {
1028   A.pExpr = sqlite3PExpr(pParse, TK_CASE, X, Z, 0);
1029   if( A.pExpr ){
1030     A.pExpr->x.pList = Y;
1031     sqlite3ExprSetHeight(pParse, A.pExpr);
1032   }else{
1033     sqlite3ExprListDelete(pParse->db, Y);
1034   }
1035   A.zStart = C.z;
1036   A.zEnd = &E.z[E.n];
1037 }
1038 %type case_exprlist {ExprList*}
1039 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);}
1040 case_exprlist(A) ::= case_exprlist(X) WHEN expr(Y) THEN expr(Z). {
1041   A = sqlite3ExprListAppend(pParse,X, Y.pExpr);
1042   A = sqlite3ExprListAppend(pParse,A, Z.pExpr);
1043 }
1044 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). {
1045   A = sqlite3ExprListAppend(pParse,0, Y.pExpr);
1046   A = sqlite3ExprListAppend(pParse,A, Z.pExpr);
1047 }
1048 %type case_else {Expr*}
1049 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);}
1050 case_else(A) ::=  ELSE expr(X).         {A = X.pExpr;}
1051 case_else(A) ::=  .                     {A = 0;}
1052 %type case_operand {Expr*}
1053 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);}
1054 case_operand(A) ::= expr(X).            {A = X.pExpr;}
1055 case_operand(A) ::= .                   {A = 0;}
1056 
1057 %type exprlist {ExprList*}
1058 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);}
1059 %type nexprlist {ExprList*}
1060 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);}
1061 
1062 exprlist(A) ::= nexprlist(X).                {A = X;}
1063 exprlist(A) ::= .                            {A = 0;}
1064 nexprlist(A) ::= nexprlist(X) COMMA expr(Y).
1065     {A = sqlite3ExprListAppend(pParse,X,Y.pExpr);}
1066 nexprlist(A) ::= expr(Y).
1067     {A = sqlite3ExprListAppend(pParse,0,Y.pExpr);}
1068 
1069 
1070 ///////////////////////////// The CREATE INDEX command ///////////////////////
1071 //
1072 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D)
1073         ON nm(Y) LP idxlist(Z) RP(E). {
1074   sqlite3CreateIndex(pParse, &X, &D,
1075                      sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U,
1076                       &S, &E, SQLITE_SO_ASC, NE);
1077 }
1078 
1079 %type uniqueflag {int}
1080 uniqueflag(A) ::= UNIQUE.  {A = OE_Abort;}
1081 uniqueflag(A) ::= .        {A = OE_None;}
1082 
1083 %type idxlist {ExprList*}
1084 %destructor idxlist {sqlite3ExprListDelete(pParse->db, $$);}
1085 %type idxlist_opt {ExprList*}
1086 %destructor idxlist_opt {sqlite3ExprListDelete(pParse->db, $$);}
1087 
1088 idxlist_opt(A) ::= .                         {A = 0;}
1089 idxlist_opt(A) ::= LP idxlist(X) RP.         {A = X;}
1090 idxlist(A) ::= idxlist(X) COMMA nm(Y) collate(C) sortorder(Z).  {
1091   Expr *p = 0;
1092   if( C.n>0 ){
1093     p = sqlite3Expr(pParse->db, TK_COLUMN, 0);
1094     sqlite3ExprSetColl(pParse, p, &C);
1095   }
1096   A = sqlite3ExprListAppend(pParse,X, p);
1097   sqlite3ExprListSetName(pParse,A,&Y,1);
1098   sqlite3ExprListCheckLength(pParse, A, "index");
1099   if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z;
1100 }
1101 idxlist(A) ::= nm(Y) collate(C) sortorder(Z). {
1102   Expr *p = 0;
1103   if( C.n>0 ){
1104     p = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0);
1105     sqlite3ExprSetColl(pParse, p, &C);
1106   }
1107   A = sqlite3ExprListAppend(pParse,0, p);
1108   sqlite3ExprListSetName(pParse, A, &Y, 1);
1109   sqlite3ExprListCheckLength(pParse, A, "index");
1110   if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z;
1111 }
1112 
1113 %type collate {Token}
1114 collate(C) ::= .                 {C.z = 0; C.n = 0;}
1115 collate(C) ::= COLLATE ids(X).   {C = X;}
1116 
1117 
1118 ///////////////////////////// The DROP INDEX command /////////////////////////
1119 //
1120 cmd ::= DROP INDEX ifexists(E) fullname(X).   {sqlite3DropIndex(pParse, X, E);}
1121 
1122 ///////////////////////////// The VACUUM command /////////////////////////////
1123 //
1124 %ifndef SQLITE_OMIT_VACUUM
1125 %ifndef SQLITE_OMIT_ATTACH
1126 cmd ::= VACUUM.                {sqlite3Vacuum(pParse);}
1127 cmd ::= VACUUM nm.             {sqlite3Vacuum(pParse);}
1128 %endif  SQLITE_OMIT_ATTACH
1129 %endif  SQLITE_OMIT_VACUUM
1130 
1131 ///////////////////////////// The PRAGMA command /////////////////////////////
1132 //
1133 %ifndef SQLITE_OMIT_PRAGMA
1134 cmd ::= PRAGMA nm(X) dbnm(Z).                {sqlite3Pragma(pParse,&X,&Z,0,0);}
1135 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y).    {sqlite3Pragma(pParse,&X,&Z,&Y,0);}
1136 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);}
1137 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y).
1138                                              {sqlite3Pragma(pParse,&X,&Z,&Y,1);}
1139 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP.
1140                                              {sqlite3Pragma(pParse,&X,&Z,&Y,1);}
1141 
1142 nmnum(A) ::= plus_num(X).             {A = X;}
1143 nmnum(A) ::= nm(X).                   {A = X;}
1144 nmnum(A) ::= ON(X).                   {A = X;}
1145 nmnum(A) ::= DELETE(X).               {A = X;}
1146 nmnum(A) ::= DEFAULT(X).              {A = X;}
1147 %endif SQLITE_OMIT_PRAGMA
1148 plus_num(A) ::= plus_opt number(X).   {A = X;}
1149 minus_num(A) ::= MINUS number(X).     {A = X;}
1150 number(A) ::= INTEGER|FLOAT(X).       {A = X;}
1151 plus_opt ::= PLUS.
1152 plus_opt ::= .
1153 
1154 //////////////////////////// The CREATE TRIGGER command /////////////////////
1155 
1156 %ifndef SQLITE_OMIT_TRIGGER
1157 
1158 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). {
1159   Token all;
1160   all.z = A.z;
1161   all.n = (int)(Z.z - A.z) + Z.n;
1162   sqlite3FinishTrigger(pParse, S, &all);
1163 }
1164 
1165 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z)
1166                     trigger_time(C) trigger_event(D)
1167                     ON fullname(E) foreach_clause when_clause(G). {
1168   sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR);
1169   A = (Z.n==0?B:Z);
1170 }
1171 
1172 %type trigger_time {int}
1173 trigger_time(A) ::= BEFORE.      { A = TK_BEFORE; }
1174 trigger_time(A) ::= AFTER.       { A = TK_AFTER;  }
1175 trigger_time(A) ::= INSTEAD OF.  { A = TK_INSTEAD;}
1176 trigger_time(A) ::= .            { A = TK_BEFORE; }
1177 
1178 %type trigger_event {struct TrigEvent}
1179 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);}
1180 trigger_event(A) ::= DELETE|INSERT(OP).       {A.a = @OP; A.b = 0;}
1181 trigger_event(A) ::= UPDATE(OP).              {A.a = @OP; A.b = 0;}
1182 trigger_event(A) ::= UPDATE OF inscollist(X). {A.a = TK_UPDATE; A.b = X;}
1183 
1184 foreach_clause ::= .
1185 foreach_clause ::= FOR EACH ROW.
1186 
1187 %type when_clause {Expr*}
1188 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);}
1189 when_clause(A) ::= .             { A = 0; }
1190 when_clause(A) ::= WHEN expr(X). { A = X.pExpr; }
1191 
1192 %type trigger_cmd_list {TriggerStep*}
1193 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);}
1194 trigger_cmd_list(A) ::= trigger_cmd_list(Y) trigger_cmd(X) SEMI. {
1195   assert( Y!=0 );
1196   Y->pLast->pNext = X;
1197   Y->pLast = X;
1198   A = Y;
1199 }
1200 trigger_cmd_list(A) ::= trigger_cmd(X) SEMI. {
1201   assert( X!=0 );
1202   X->pLast = X;
1203   A = X;
1204 }
1205 
1206 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements
1207 // within a trigger.  The table to INSERT, UPDATE, or DELETE is always in
1208 // the same database as the table that the trigger fires on.
1209 //
1210 %type trnm {Token}
1211 trnm(A) ::= nm(X).   {A = X;}
1212 trnm(A) ::= nm DOT nm(X). {
1213   A = X;
1214   sqlite3ErrorMsg(pParse,
1215         "qualified table names are not allowed on INSERT, UPDATE, and DELETE "
1216         "statements within triggers");
1217 }
1218 
1219 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE
1220 // statements within triggers.  We make a specific error message for this
1221 // since it is an exception to the default grammar rules.
1222 //
1223 tridxby ::= .
1224 tridxby ::= INDEXED BY nm. {
1225   sqlite3ErrorMsg(pParse,
1226         "the INDEXED BY clause is not allowed on UPDATE or DELETE statements "
1227         "within triggers");
1228 }
1229 tridxby ::= NOT INDEXED. {
1230   sqlite3ErrorMsg(pParse,
1231         "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements "
1232         "within triggers");
1233 }
1234 
1235 
1236 
1237 %type trigger_cmd {TriggerStep*}
1238 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);}
1239 // UPDATE
1240 trigger_cmd(A) ::=
1241    UPDATE orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z).
1242    { A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R); }
1243 
1244 // INSERT
1245 trigger_cmd(A) ::=
1246    insert_cmd(R) INTO trnm(X) inscollist_opt(F) VALUES LP itemlist(Y) RP.
1247    {A = sqlite3TriggerInsertStep(pParse->db, &X, F, Y, 0, R);}
1248 
1249 trigger_cmd(A) ::= insert_cmd(R) INTO trnm(X) inscollist_opt(F) select(S).
1250                {A = sqlite3TriggerInsertStep(pParse->db, &X, F, 0, S, R);}
1251 
1252 // DELETE
1253 trigger_cmd(A) ::= DELETE FROM trnm(X) tridxby where_opt(Y).
1254                {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y);}
1255 
1256 // SELECT
1257 trigger_cmd(A) ::= select(X).  {A = sqlite3TriggerSelectStep(pParse->db, X); }
1258 
1259 // The special RAISE expression that may occur in trigger programs
1260 expr(A) ::= RAISE(X) LP IGNORE RP(Y).  {
1261   A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0);
1262   if( A.pExpr ){
1263     A.pExpr->affinity = OE_Ignore;
1264   }
1265   A.zStart = X.z;
1266   A.zEnd = &Y.z[Y.n];
1267 }
1268 expr(A) ::= RAISE(X) LP raisetype(T) COMMA nm(Z) RP(Y).  {
1269   A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &Z);
1270   if( A.pExpr ) {
1271     A.pExpr->affinity = (char)T;
1272   }
1273   A.zStart = X.z;
1274   A.zEnd = &Y.z[Y.n];
1275 }
1276 %endif  !SQLITE_OMIT_TRIGGER
1277 
1278 %type raisetype {int}
1279 raisetype(A) ::= ROLLBACK.  {A = OE_Rollback;}
1280 raisetype(A) ::= ABORT.     {A = OE_Abort;}
1281 raisetype(A) ::= FAIL.      {A = OE_Fail;}
1282 
1283 
1284 ////////////////////////  DROP TRIGGER statement //////////////////////////////
1285 %ifndef SQLITE_OMIT_TRIGGER
1286 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). {
1287   sqlite3DropTrigger(pParse,X,NOERR);
1288 }
1289 %endif  !SQLITE_OMIT_TRIGGER
1290 
1291 //////////////////////// ATTACH DATABASE file AS name /////////////////////////
1292 %ifndef SQLITE_OMIT_ATTACH
1293 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). {
1294   sqlite3Attach(pParse, F.pExpr, D.pExpr, K);
1295 }
1296 cmd ::= DETACH database_kw_opt expr(D). {
1297   sqlite3Detach(pParse, D.pExpr);
1298 }
1299 
1300 %type key_opt {Expr*}
1301 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);}
1302 key_opt(A) ::= .                     { A = 0; }
1303 key_opt(A) ::= KEY expr(X).          { A = X.pExpr; }
1304 
1305 database_kw_opt ::= DATABASE.
1306 database_kw_opt ::= .
1307 %endif SQLITE_OMIT_ATTACH
1308 
1309 ////////////////////////// REINDEX collation //////////////////////////////////
1310 %ifndef SQLITE_OMIT_REINDEX
1311 cmd ::= REINDEX.                {sqlite3Reindex(pParse, 0, 0);}
1312 cmd ::= REINDEX nm(X) dbnm(Y).  {sqlite3Reindex(pParse, &X, &Y);}
1313 %endif  SQLITE_OMIT_REINDEX
1314 
1315 /////////////////////////////////// ANALYZE ///////////////////////////////////
1316 %ifndef SQLITE_OMIT_ANALYZE
1317 cmd ::= ANALYZE.                {sqlite3Analyze(pParse, 0, 0);}
1318 cmd ::= ANALYZE nm(X) dbnm(Y).  {sqlite3Analyze(pParse, &X, &Y);}
1319 %endif
1320 
1321 //////////////////////// ALTER TABLE table ... ////////////////////////////////
1322 %ifndef SQLITE_OMIT_ALTERTABLE
1323 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). {
1324   sqlite3AlterRenameTable(pParse,X,&Z);
1325 }
1326 cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column(Y). {
1327   sqlite3AlterFinishAddColumn(pParse, &Y);
1328 }
1329 add_column_fullname ::= fullname(X). {
1330   pParse->db->lookaside.bEnabled = 0;
1331   sqlite3AlterBeginAddColumn(pParse, X);
1332 }
1333 kwcolumn_opt ::= .
1334 kwcolumn_opt ::= COLUMNKW.
1335 %endif  SQLITE_OMIT_ALTERTABLE
1336 
1337 //////////////////////// CREATE VIRTUAL TABLE ... /////////////////////////////
1338 %ifndef SQLITE_OMIT_VIRTUALTABLE
1339 cmd ::= create_vtab.                       {sqlite3VtabFinishParse(pParse,0);}
1340 cmd ::= create_vtab LP vtabarglist RP(X).  {sqlite3VtabFinishParse(pParse,&X);}
1341 create_vtab ::= createkw VIRTUAL TABLE nm(X) dbnm(Y) USING nm(Z). {
1342     sqlite3VtabBeginParse(pParse, &X, &Y, &Z);
1343 }
1344 vtabarglist ::= vtabarg.
1345 vtabarglist ::= vtabarglist COMMA vtabarg.
1346 vtabarg ::= .                       {sqlite3VtabArgInit(pParse);}
1347 vtabarg ::= vtabarg vtabargtoken.
1348 vtabargtoken ::= ANY(X).            {sqlite3VtabArgExtend(pParse,&X);}
1349 vtabargtoken ::= lp anylist RP(X).  {sqlite3VtabArgExtend(pParse,&X);}
1350 lp ::= LP(X).                       {sqlite3VtabArgExtend(pParse,&X);}
1351 anylist ::= .
1352 anylist ::= anylist LP anylist RP.
1353 anylist ::= anylist ANY.
1354 %endif  SQLITE_OMIT_VIRTUALTABLE
1355