1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains SQLite's grammar for SQL. Process this file 13 ** using the lemon parser generator to generate C code that runs 14 ** the parser. Lemon will also generate a header file containing 15 ** numeric codes for all of the tokens. 16 */ 17 18 // All token codes are small integers with #defines that begin with "TK_" 19 %token_prefix TK_ 20 21 // The type of the data attached to each token is Token. This is also the 22 // default type for non-terminals. 23 // 24 %token_type {Token} 25 %default_type {Token} 26 27 // The generated parser function takes a 4th argument as follows: 28 %extra_argument {Parse *pParse} 29 30 // This code runs whenever there is a syntax error 31 // 32 %syntax_error { 33 UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */ 34 assert( TOKEN.z[0] ); /* The tokenizer always gives us a token */ 35 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN); 36 pParse->parseError = 1; 37 } 38 %stack_overflow { 39 UNUSED_PARAMETER(yypMinor); /* Silence some compiler warnings */ 40 sqlite3ErrorMsg(pParse, "parser stack overflow"); 41 pParse->parseError = 1; 42 } 43 44 // The name of the generated procedure that implements the parser 45 // is as follows: 46 %name sqlite3Parser 47 48 // The following text is included near the beginning of the C source 49 // code file that implements the parser. 50 // 51 %include { 52 #include "sqliteInt.h" 53 54 /* 55 ** Disable all error recovery processing in the parser push-down 56 ** automaton. 57 */ 58 #define YYNOERRORRECOVERY 1 59 60 /* 61 ** Make yytestcase() the same as testcase() 62 */ 63 #define yytestcase(X) testcase(X) 64 65 /* 66 ** An instance of this structure holds information about the 67 ** LIMIT clause of a SELECT statement. 68 */ 69 struct LimitVal { 70 Expr *pLimit; /* The LIMIT expression. NULL if there is no limit */ 71 Expr *pOffset; /* The OFFSET expression. NULL if there is none */ 72 }; 73 74 /* 75 ** An instance of this structure is used to store the LIKE, 76 ** GLOB, NOT LIKE, and NOT GLOB operators. 77 */ 78 struct LikeOp { 79 Token eOperator; /* "like" or "glob" or "regexp" */ 80 int not; /* True if the NOT keyword is present */ 81 }; 82 83 /* 84 ** An instance of the following structure describes the event of a 85 ** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT, 86 ** TK_DELETE, or TK_INSTEAD. If the event is of the form 87 ** 88 ** UPDATE ON (a,b,c) 89 ** 90 ** Then the "b" IdList records the list "a,b,c". 91 */ 92 struct TrigEvent { int a; IdList * b; }; 93 94 /* 95 ** An instance of this structure holds the ATTACH key and the key type. 96 */ 97 struct AttachKey { int type; Token key; }; 98 99 } // end %include 100 101 // Input is a single SQL command 102 input ::= cmdlist. 103 cmdlist ::= cmdlist ecmd. 104 cmdlist ::= ecmd. 105 ecmd ::= SEMI. 106 ecmd ::= explain cmdx SEMI. 107 explain ::= . { sqlite3BeginParse(pParse, 0); } 108 %ifndef SQLITE_OMIT_EXPLAIN 109 explain ::= EXPLAIN. { sqlite3BeginParse(pParse, 1); } 110 explain ::= EXPLAIN QUERY PLAN. { sqlite3BeginParse(pParse, 2); } 111 %endif SQLITE_OMIT_EXPLAIN 112 cmdx ::= cmd. { sqlite3FinishCoding(pParse); } 113 114 ///////////////////// Begin and end transactions. //////////////////////////// 115 // 116 117 cmd ::= BEGIN transtype(Y) trans_opt. {sqlite3BeginTransaction(pParse, Y);} 118 trans_opt ::= . 119 trans_opt ::= TRANSACTION. 120 trans_opt ::= TRANSACTION nm. 121 %type transtype {int} 122 transtype(A) ::= . {A = TK_DEFERRED;} 123 transtype(A) ::= DEFERRED(X). {A = @X;} 124 transtype(A) ::= IMMEDIATE(X). {A = @X;} 125 transtype(A) ::= EXCLUSIVE(X). {A = @X;} 126 cmd ::= COMMIT trans_opt. {sqlite3CommitTransaction(pParse);} 127 cmd ::= END trans_opt. {sqlite3CommitTransaction(pParse);} 128 cmd ::= ROLLBACK trans_opt. {sqlite3RollbackTransaction(pParse);} 129 130 savepoint_opt ::= SAVEPOINT. 131 savepoint_opt ::= . 132 cmd ::= SAVEPOINT nm(X). { 133 sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X); 134 } 135 cmd ::= RELEASE savepoint_opt nm(X). { 136 sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X); 137 } 138 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). { 139 sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X); 140 } 141 142 ///////////////////// The CREATE TABLE statement //////////////////////////// 143 // 144 cmd ::= create_table create_table_args. 145 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). { 146 sqlite3StartTable(pParse,&Y,&Z,T,0,0,E); 147 } 148 createkw(A) ::= CREATE(X). { 149 pParse->db->lookaside.bEnabled = 0; 150 A = X; 151 } 152 %type ifnotexists {int} 153 ifnotexists(A) ::= . {A = 0;} 154 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;} 155 %type temp {int} 156 %ifndef SQLITE_OMIT_TEMPDB 157 temp(A) ::= TEMP. {A = 1;} 158 %endif SQLITE_OMIT_TEMPDB 159 temp(A) ::= . {A = 0;} 160 create_table_args ::= LP columnlist conslist_opt(X) RP(Y). { 161 sqlite3EndTable(pParse,&X,&Y,0); 162 } 163 create_table_args ::= AS select(S). { 164 sqlite3EndTable(pParse,0,0,S); 165 sqlite3SelectDelete(pParse->db, S); 166 } 167 columnlist ::= columnlist COMMA column. 168 columnlist ::= column. 169 170 // A "column" is a complete description of a single column in a 171 // CREATE TABLE statement. This includes the column name, its 172 // datatype, and other keywords such as PRIMARY KEY, UNIQUE, REFERENCES, 173 // NOT NULL and so forth. 174 // 175 column(A) ::= columnid(X) type carglist. { 176 A.z = X.z; 177 A.n = (int)(pParse->sLastToken.z-X.z) + pParse->sLastToken.n; 178 } 179 columnid(A) ::= nm(X). { 180 sqlite3AddColumn(pParse,&X); 181 A = X; 182 } 183 184 185 // An IDENTIFIER can be a generic identifier, or one of several 186 // keywords. Any non-standard keyword can also be an identifier. 187 // 188 %type id {Token} 189 id(A) ::= ID(X). {A = X;} 190 id(A) ::= INDEXED(X). {A = X;} 191 192 // The following directive causes tokens ABORT, AFTER, ASC, etc. to 193 // fallback to ID if they will not parse as their original value. 194 // This obviates the need for the "id" nonterminal. 195 // 196 %fallback ID 197 ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW 198 CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL FOR 199 IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN 200 QUERY KEY OF OFFSET PRAGMA RAISE RELEASE REPLACE RESTRICT ROW ROLLBACK 201 SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL 202 %ifdef SQLITE_OMIT_COMPOUND_SELECT 203 EXCEPT INTERSECT UNION 204 %endif SQLITE_OMIT_COMPOUND_SELECT 205 REINDEX RENAME CTIME_KW IF 206 . 207 %wildcard ANY. 208 209 // Define operator precedence early so that this is the first occurance 210 // of the operator tokens in the grammer. Keeping the operators together 211 // causes them to be assigned integer values that are close together, 212 // which keeps parser tables smaller. 213 // 214 // The token values assigned to these symbols is determined by the order 215 // in which lemon first sees them. It must be the case that ISNULL/NOTNULL, 216 // NE/EQ, GT/LE, and GE/LT are separated by only a single value. See 217 // the sqlite3ExprIfFalse() routine for additional information on this 218 // constraint. 219 // 220 %left OR. 221 %left AND. 222 %right NOT. 223 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. 224 %left GT LE LT GE. 225 %right ESCAPE. 226 %left BITAND BITOR LSHIFT RSHIFT. 227 %left PLUS MINUS. 228 %left STAR SLASH REM. 229 %left CONCAT. 230 %left COLLATE. 231 %right BITNOT. 232 233 // And "ids" is an identifer-or-string. 234 // 235 %type ids {Token} 236 ids(A) ::= ID|STRING(X). {A = X;} 237 238 // The name of a column or table can be any of the following: 239 // 240 %type nm {Token} 241 nm(A) ::= id(X). {A = X;} 242 nm(A) ::= STRING(X). {A = X;} 243 nm(A) ::= JOIN_KW(X). {A = X;} 244 245 // A typetoken is really one or more tokens that form a type name such 246 // as can be found after the column name in a CREATE TABLE statement. 247 // Multiple tokens are concatenated to form the value of the typetoken. 248 // 249 %type typetoken {Token} 250 type ::= . 251 type ::= typetoken(X). {sqlite3AddColumnType(pParse,&X);} 252 typetoken(A) ::= typename(X). {A = X;} 253 typetoken(A) ::= typename(X) LP signed RP(Y). { 254 A.z = X.z; 255 A.n = (int)(&Y.z[Y.n] - X.z); 256 } 257 typetoken(A) ::= typename(X) LP signed COMMA signed RP(Y). { 258 A.z = X.z; 259 A.n = (int)(&Y.z[Y.n] - X.z); 260 } 261 %type typename {Token} 262 typename(A) ::= ids(X). {A = X;} 263 typename(A) ::= typename(X) ids(Y). {A.z=X.z; A.n=Y.n+(int)(Y.z-X.z);} 264 signed ::= plus_num. 265 signed ::= minus_num. 266 267 // "carglist" is a list of additional constraints that come after the 268 // column name and column type in a CREATE TABLE statement. 269 // 270 carglist ::= carglist carg. 271 carglist ::= . 272 carg ::= CONSTRAINT nm ccons. 273 carg ::= ccons. 274 ccons ::= DEFAULT term(X). {sqlite3AddDefaultValue(pParse,&X);} 275 ccons ::= DEFAULT LP expr(X) RP. {sqlite3AddDefaultValue(pParse,&X);} 276 ccons ::= DEFAULT PLUS term(X). {sqlite3AddDefaultValue(pParse,&X);} 277 ccons ::= DEFAULT MINUS(A) term(X). { 278 ExprSpan v; 279 v.pExpr = sqlite3PExpr(pParse, TK_UMINUS, X.pExpr, 0, 0); 280 v.zStart = A.z; 281 v.zEnd = X.zEnd; 282 sqlite3AddDefaultValue(pParse,&v); 283 } 284 ccons ::= DEFAULT id(X). { 285 ExprSpan v; 286 spanExpr(&v, pParse, TK_STRING, &X); 287 sqlite3AddDefaultValue(pParse,&v); 288 } 289 290 // In addition to the type name, we also care about the primary key and 291 // UNIQUE constraints. 292 // 293 ccons ::= NULL onconf. 294 ccons ::= NOT NULL onconf(R). {sqlite3AddNotNull(pParse, R);} 295 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I). 296 {sqlite3AddPrimaryKey(pParse,0,R,I,Z);} 297 ccons ::= UNIQUE onconf(R). {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0);} 298 ccons ::= CHECK LP expr(X) RP. {sqlite3AddCheckConstraint(pParse,X.pExpr);} 299 ccons ::= REFERENCES nm(T) idxlist_opt(TA) refargs(R). 300 {sqlite3CreateForeignKey(pParse,0,&T,TA,R);} 301 ccons ::= defer_subclause(D). {sqlite3DeferForeignKey(pParse,D);} 302 ccons ::= COLLATE ids(C). {sqlite3AddCollateType(pParse, &C);} 303 304 // The optional AUTOINCREMENT keyword 305 %type autoinc {int} 306 autoinc(X) ::= . {X = 0;} 307 autoinc(X) ::= AUTOINCR. {X = 1;} 308 309 // The next group of rules parses the arguments to a REFERENCES clause 310 // that determine if the referential integrity checking is deferred or 311 // or immediate and which determine what action to take if a ref-integ 312 // check fails. 313 // 314 %type refargs {int} 315 refargs(A) ::= . { A = OE_None*0x0101; /* EV: R-19803-45884 */} 316 refargs(A) ::= refargs(X) refarg(Y). { A = (X & ~Y.mask) | Y.value; } 317 %type refarg {struct {int value; int mask;}} 318 refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; } 319 refarg(A) ::= ON INSERT refact. { A.value = 0; A.mask = 0x000000; } 320 refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; } 321 refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; } 322 %type refact {int} 323 refact(A) ::= SET NULL. { A = OE_SetNull; /* EV: R-33326-45252 */} 324 refact(A) ::= SET DEFAULT. { A = OE_SetDflt; /* EV: R-33326-45252 */} 325 refact(A) ::= CASCADE. { A = OE_Cascade; /* EV: R-33326-45252 */} 326 refact(A) ::= RESTRICT. { A = OE_Restrict; /* EV: R-33326-45252 */} 327 refact(A) ::= NO ACTION. { A = OE_None; /* EV: R-33326-45252 */} 328 %type defer_subclause {int} 329 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt. {A = 0;} 330 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;} 331 %type init_deferred_pred_opt {int} 332 init_deferred_pred_opt(A) ::= . {A = 0;} 333 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;} 334 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;} 335 336 // For the time being, the only constraint we care about is the primary 337 // key and UNIQUE. Both create indices. 338 // 339 conslist_opt(A) ::= . {A.n = 0; A.z = 0;} 340 conslist_opt(A) ::= COMMA(X) conslist. {A = X;} 341 conslist ::= conslist COMMA tcons. 342 conslist ::= conslist tcons. 343 conslist ::= tcons. 344 tcons ::= CONSTRAINT nm. 345 tcons ::= PRIMARY KEY LP idxlist(X) autoinc(I) RP onconf(R). 346 {sqlite3AddPrimaryKey(pParse,X,R,I,0);} 347 tcons ::= UNIQUE LP idxlist(X) RP onconf(R). 348 {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0);} 349 tcons ::= CHECK LP expr(E) RP onconf. 350 {sqlite3AddCheckConstraint(pParse,E.pExpr);} 351 tcons ::= FOREIGN KEY LP idxlist(FA) RP 352 REFERENCES nm(T) idxlist_opt(TA) refargs(R) defer_subclause_opt(D). { 353 sqlite3CreateForeignKey(pParse, FA, &T, TA, R); 354 sqlite3DeferForeignKey(pParse, D); 355 } 356 %type defer_subclause_opt {int} 357 defer_subclause_opt(A) ::= . {A = 0;} 358 defer_subclause_opt(A) ::= defer_subclause(X). {A = X;} 359 360 // The following is a non-standard extension that allows us to declare the 361 // default behavior when there is a constraint conflict. 362 // 363 %type onconf {int} 364 %type orconf {u8} 365 %type resolvetype {int} 366 onconf(A) ::= . {A = OE_Default;} 367 onconf(A) ::= ON CONFLICT resolvetype(X). {A = X;} 368 orconf(A) ::= . {A = OE_Default;} 369 orconf(A) ::= OR resolvetype(X). {A = (u8)X;} 370 resolvetype(A) ::= raisetype(X). {A = X;} 371 resolvetype(A) ::= IGNORE. {A = OE_Ignore;} 372 resolvetype(A) ::= REPLACE. {A = OE_Replace;} 373 374 ////////////////////////// The DROP TABLE ///////////////////////////////////// 375 // 376 cmd ::= DROP TABLE ifexists(E) fullname(X). { 377 sqlite3DropTable(pParse, X, 0, E); 378 } 379 %type ifexists {int} 380 ifexists(A) ::= IF EXISTS. {A = 1;} 381 ifexists(A) ::= . {A = 0;} 382 383 ///////////////////// The CREATE VIEW statement ///////////////////////////// 384 // 385 %ifndef SQLITE_OMIT_VIEW 386 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) AS select(S). { 387 sqlite3CreateView(pParse, &X, &Y, &Z, S, T, E); 388 } 389 cmd ::= DROP VIEW ifexists(E) fullname(X). { 390 sqlite3DropTable(pParse, X, 1, E); 391 } 392 %endif SQLITE_OMIT_VIEW 393 394 //////////////////////// The SELECT statement ///////////////////////////////// 395 // 396 cmd ::= select(X). { 397 SelectDest dest = {SRT_Output, 0, 0, 0, 0}; 398 sqlite3Select(pParse, X, &dest); 399 sqlite3SelectDelete(pParse->db, X); 400 } 401 402 %type select {Select*} 403 %destructor select {sqlite3SelectDelete(pParse->db, $$);} 404 %type oneselect {Select*} 405 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);} 406 407 select(A) ::= oneselect(X). {A = X;} 408 %ifndef SQLITE_OMIT_COMPOUND_SELECT 409 select(A) ::= select(X) multiselect_op(Y) oneselect(Z). { 410 if( Z ){ 411 Z->op = (u8)Y; 412 Z->pPrior = X; 413 }else{ 414 sqlite3SelectDelete(pParse->db, X); 415 } 416 A = Z; 417 } 418 %type multiselect_op {int} 419 multiselect_op(A) ::= UNION(OP). {A = @OP;} 420 multiselect_op(A) ::= UNION ALL. {A = TK_ALL;} 421 multiselect_op(A) ::= EXCEPT|INTERSECT(OP). {A = @OP;} 422 %endif SQLITE_OMIT_COMPOUND_SELECT 423 oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y) 424 groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). { 425 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L.pLimit,L.pOffset); 426 } 427 428 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is 429 // present and false (0) if it is not. 430 // 431 %type distinct {int} 432 distinct(A) ::= DISTINCT. {A = 1;} 433 distinct(A) ::= ALL. {A = 0;} 434 distinct(A) ::= . {A = 0;} 435 436 // selcollist is a list of expressions that are to become the return 437 // values of the SELECT statement. The "*" in statements like 438 // "SELECT * FROM ..." is encoded as a special expression with an 439 // opcode of TK_ALL. 440 // 441 %type selcollist {ExprList*} 442 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);} 443 %type sclp {ExprList*} 444 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);} 445 sclp(A) ::= selcollist(X) COMMA. {A = X;} 446 sclp(A) ::= . {A = 0;} 447 selcollist(A) ::= sclp(P) expr(X) as(Y). { 448 A = sqlite3ExprListAppend(pParse, P, X.pExpr); 449 if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1); 450 sqlite3ExprListSetSpan(pParse,A,&X); 451 } 452 selcollist(A) ::= sclp(P) STAR. { 453 Expr *p = sqlite3Expr(pParse->db, TK_ALL, 0); 454 A = sqlite3ExprListAppend(pParse, P, p); 455 } 456 selcollist(A) ::= sclp(P) nm(X) DOT STAR(Y). { 457 Expr *pRight = sqlite3PExpr(pParse, TK_ALL, 0, 0, &Y); 458 Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); 459 Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 460 A = sqlite3ExprListAppend(pParse,P, pDot); 461 } 462 463 // An option "AS <id>" phrase that can follow one of the expressions that 464 // define the result set, or one of the tables in the FROM clause. 465 // 466 %type as {Token} 467 as(X) ::= AS nm(Y). {X = Y;} 468 as(X) ::= ids(Y). {X = Y;} 469 as(X) ::= . {X.n = 0;} 470 471 472 %type seltablist {SrcList*} 473 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);} 474 %type stl_prefix {SrcList*} 475 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);} 476 %type from {SrcList*} 477 %destructor from {sqlite3SrcListDelete(pParse->db, $$);} 478 479 // A complete FROM clause. 480 // 481 from(A) ::= . {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));} 482 from(A) ::= FROM seltablist(X). { 483 A = X; 484 sqlite3SrcListShiftJoinType(A); 485 } 486 487 // "seltablist" is a "Select Table List" - the content of the FROM clause 488 // in a SELECT statement. "stl_prefix" is a prefix of this list. 489 // 490 stl_prefix(A) ::= seltablist(X) joinop(Y). { 491 A = X; 492 if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].jointype = (u8)Y; 493 } 494 stl_prefix(A) ::= . {A = 0;} 495 seltablist(A) ::= stl_prefix(X) nm(Y) dbnm(D) as(Z) indexed_opt(I) on_opt(N) using_opt(U). { 496 A = sqlite3SrcListAppendFromTerm(pParse,X,&Y,&D,&Z,0,N,U); 497 sqlite3SrcListIndexedBy(pParse, A, &I); 498 } 499 %ifndef SQLITE_OMIT_SUBQUERY 500 seltablist(A) ::= stl_prefix(X) LP select(S) RP 501 as(Z) on_opt(N) using_opt(U). { 502 A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,S,N,U); 503 } 504 seltablist(A) ::= stl_prefix(X) LP seltablist(F) RP 505 as(Z) on_opt(N) using_opt(U). { 506 if( X==0 && Z.n==0 && N==0 && U==0 ){ 507 A = F; 508 }else{ 509 Select *pSubquery; 510 sqlite3SrcListShiftJoinType(F); 511 pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,0,0,0); 512 A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,pSubquery,N,U); 513 } 514 } 515 516 // A seltablist_paren nonterminal represents anything in a FROM that 517 // is contained inside parentheses. This can be either a subquery or 518 // a grouping of table and subqueries. 519 // 520 // %type seltablist_paren {Select*} 521 // %destructor seltablist_paren {sqlite3SelectDelete(pParse->db, $$);} 522 // seltablist_paren(A) ::= select(S). {A = S;} 523 // seltablist_paren(A) ::= seltablist(F). { 524 // sqlite3SrcListShiftJoinType(F); 525 // A = sqlite3SelectNew(pParse,0,F,0,0,0,0,0,0,0); 526 // } 527 %endif SQLITE_OMIT_SUBQUERY 528 529 %type dbnm {Token} 530 dbnm(A) ::= . {A.z=0; A.n=0;} 531 dbnm(A) ::= DOT nm(X). {A = X;} 532 533 %type fullname {SrcList*} 534 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);} 535 fullname(A) ::= nm(X) dbnm(Y). {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y);} 536 537 %type joinop {int} 538 %type joinop2 {int} 539 joinop(X) ::= COMMA|JOIN. { X = JT_INNER; } 540 joinop(X) ::= JOIN_KW(A) JOIN. { X = sqlite3JoinType(pParse,&A,0,0); } 541 joinop(X) ::= JOIN_KW(A) nm(B) JOIN. { X = sqlite3JoinType(pParse,&A,&B,0); } 542 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN. 543 { X = sqlite3JoinType(pParse,&A,&B,&C); } 544 545 %type on_opt {Expr*} 546 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);} 547 on_opt(N) ::= ON expr(E). {N = E.pExpr;} 548 on_opt(N) ::= . {N = 0;} 549 550 // Note that this block abuses the Token type just a little. If there is 551 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If 552 // there is an INDEXED BY clause, then the token is populated as per normal, 553 // with z pointing to the token data and n containing the number of bytes 554 // in the token. 555 // 556 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is 557 // normally illegal. The sqlite3SrcListIndexedBy() function 558 // recognizes and interprets this as a special case. 559 // 560 %type indexed_opt {Token} 561 indexed_opt(A) ::= . {A.z=0; A.n=0;} 562 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;} 563 indexed_opt(A) ::= NOT INDEXED. {A.z=0; A.n=1;} 564 565 %type using_opt {IdList*} 566 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);} 567 using_opt(U) ::= USING LP inscollist(L) RP. {U = L;} 568 using_opt(U) ::= . {U = 0;} 569 570 571 %type orderby_opt {ExprList*} 572 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);} 573 %type sortlist {ExprList*} 574 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);} 575 %type sortitem {Expr*} 576 %destructor sortitem {sqlite3ExprDelete(pParse->db, $$);} 577 578 orderby_opt(A) ::= . {A = 0;} 579 orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;} 580 sortlist(A) ::= sortlist(X) COMMA sortitem(Y) sortorder(Z). { 581 A = sqlite3ExprListAppend(pParse,X,Y); 582 if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; 583 } 584 sortlist(A) ::= sortitem(Y) sortorder(Z). { 585 A = sqlite3ExprListAppend(pParse,0,Y); 586 if( A && ALWAYS(A->a) ) A->a[0].sortOrder = (u8)Z; 587 } 588 sortitem(A) ::= expr(X). {A = X.pExpr;} 589 590 %type sortorder {int} 591 592 sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;} 593 sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;} 594 sortorder(A) ::= . {A = SQLITE_SO_ASC;} 595 596 %type groupby_opt {ExprList*} 597 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);} 598 groupby_opt(A) ::= . {A = 0;} 599 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;} 600 601 %type having_opt {Expr*} 602 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);} 603 having_opt(A) ::= . {A = 0;} 604 having_opt(A) ::= HAVING expr(X). {A = X.pExpr;} 605 606 %type limit_opt {struct LimitVal} 607 608 // The destructor for limit_opt will never fire in the current grammar. 609 // The limit_opt non-terminal only occurs at the end of a single production 610 // rule for SELECT statements. As soon as the rule that create the 611 // limit_opt non-terminal reduces, the SELECT statement rule will also 612 // reduce. So there is never a limit_opt non-terminal on the stack 613 // except as a transient. So there is never anything to destroy. 614 // 615 //%destructor limit_opt { 616 // sqlite3ExprDelete(pParse->db, $$.pLimit); 617 // sqlite3ExprDelete(pParse->db, $$.pOffset); 618 //} 619 limit_opt(A) ::= . {A.pLimit = 0; A.pOffset = 0;} 620 limit_opt(A) ::= LIMIT expr(X). {A.pLimit = X.pExpr; A.pOffset = 0;} 621 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y). 622 {A.pLimit = X.pExpr; A.pOffset = Y.pExpr;} 623 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y). 624 {A.pOffset = X.pExpr; A.pLimit = Y.pExpr;} 625 626 /////////////////////////// The DELETE statement ///////////////////////////// 627 // 628 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 629 cmd ::= DELETE FROM fullname(X) indexed_opt(I) where_opt(W) 630 orderby_opt(O) limit_opt(L). { 631 sqlite3SrcListIndexedBy(pParse, X, &I); 632 W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "DELETE"); 633 sqlite3DeleteFrom(pParse,X,W); 634 } 635 %endif 636 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 637 cmd ::= DELETE FROM fullname(X) indexed_opt(I) where_opt(W). { 638 sqlite3SrcListIndexedBy(pParse, X, &I); 639 sqlite3DeleteFrom(pParse,X,W); 640 } 641 %endif 642 643 %type where_opt {Expr*} 644 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);} 645 646 where_opt(A) ::= . {A = 0;} 647 where_opt(A) ::= WHERE expr(X). {A = X.pExpr;} 648 649 ////////////////////////// The UPDATE command //////////////////////////////// 650 // 651 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 652 cmd ::= UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) where_opt(W) orderby_opt(O) limit_opt(L). { 653 sqlite3SrcListIndexedBy(pParse, X, &I); 654 sqlite3ExprListCheckLength(pParse,Y,"set list"); 655 W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "UPDATE"); 656 sqlite3Update(pParse,X,Y,W,R); 657 } 658 %endif 659 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 660 cmd ::= UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) where_opt(W). { 661 sqlite3SrcListIndexedBy(pParse, X, &I); 662 sqlite3ExprListCheckLength(pParse,Y,"set list"); 663 sqlite3Update(pParse,X,Y,W,R); 664 } 665 %endif 666 667 %type setlist {ExprList*} 668 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);} 669 670 setlist(A) ::= setlist(Z) COMMA nm(X) EQ expr(Y). { 671 A = sqlite3ExprListAppend(pParse, Z, Y.pExpr); 672 sqlite3ExprListSetName(pParse, A, &X, 1); 673 } 674 setlist(A) ::= nm(X) EQ expr(Y). { 675 A = sqlite3ExprListAppend(pParse, 0, Y.pExpr); 676 sqlite3ExprListSetName(pParse, A, &X, 1); 677 } 678 679 ////////////////////////// The INSERT command ///////////////////////////////// 680 // 681 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) 682 VALUES LP itemlist(Y) RP. 683 {sqlite3Insert(pParse, X, Y, 0, F, R);} 684 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) select(S). 685 {sqlite3Insert(pParse, X, 0, S, F, R);} 686 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) DEFAULT VALUES. 687 {sqlite3Insert(pParse, X, 0, 0, F, R);} 688 689 %type insert_cmd {u8} 690 insert_cmd(A) ::= INSERT orconf(R). {A = R;} 691 insert_cmd(A) ::= REPLACE. {A = OE_Replace;} 692 693 694 %type itemlist {ExprList*} 695 %destructor itemlist {sqlite3ExprListDelete(pParse->db, $$);} 696 697 itemlist(A) ::= itemlist(X) COMMA expr(Y). 698 {A = sqlite3ExprListAppend(pParse,X,Y.pExpr);} 699 itemlist(A) ::= expr(X). 700 {A = sqlite3ExprListAppend(pParse,0,X.pExpr);} 701 702 %type inscollist_opt {IdList*} 703 %destructor inscollist_opt {sqlite3IdListDelete(pParse->db, $$);} 704 %type inscollist {IdList*} 705 %destructor inscollist {sqlite3IdListDelete(pParse->db, $$);} 706 707 inscollist_opt(A) ::= . {A = 0;} 708 inscollist_opt(A) ::= LP inscollist(X) RP. {A = X;} 709 inscollist(A) ::= inscollist(X) COMMA nm(Y). 710 {A = sqlite3IdListAppend(pParse->db,X,&Y);} 711 inscollist(A) ::= nm(Y). 712 {A = sqlite3IdListAppend(pParse->db,0,&Y);} 713 714 /////////////////////////// Expression Processing ///////////////////////////// 715 // 716 717 %type expr {ExprSpan} 718 %destructor expr {sqlite3ExprDelete(pParse->db, $$.pExpr);} 719 %type term {ExprSpan} 720 %destructor term {sqlite3ExprDelete(pParse->db, $$.pExpr);} 721 722 %include { 723 /* This is a utility routine used to set the ExprSpan.zStart and 724 ** ExprSpan.zEnd values of pOut so that the span covers the complete 725 ** range of text beginning with pStart and going to the end of pEnd. 726 */ 727 static void spanSet(ExprSpan *pOut, Token *pStart, Token *pEnd){ 728 pOut->zStart = pStart->z; 729 pOut->zEnd = &pEnd->z[pEnd->n]; 730 } 731 732 /* Construct a new Expr object from a single identifier. Use the 733 ** new Expr to populate pOut. Set the span of pOut to be the identifier 734 ** that created the expression. 735 */ 736 static void spanExpr(ExprSpan *pOut, Parse *pParse, int op, Token *pValue){ 737 pOut->pExpr = sqlite3PExpr(pParse, op, 0, 0, pValue); 738 pOut->zStart = pValue->z; 739 pOut->zEnd = &pValue->z[pValue->n]; 740 } 741 } 742 743 expr(A) ::= term(X). {A = X;} 744 expr(A) ::= LP(B) expr(X) RP(E). {A.pExpr = X.pExpr; spanSet(&A,&B,&E);} 745 term(A) ::= NULL(X). {spanExpr(&A, pParse, @X, &X);} 746 expr(A) ::= id(X). {spanExpr(&A, pParse, TK_ID, &X);} 747 expr(A) ::= JOIN_KW(X). {spanExpr(&A, pParse, TK_ID, &X);} 748 expr(A) ::= nm(X) DOT nm(Y). { 749 Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); 750 Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y); 751 A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0); 752 spanSet(&A,&X,&Y); 753 } 754 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). { 755 Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); 756 Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y); 757 Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Z); 758 Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0); 759 A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0); 760 spanSet(&A,&X,&Z); 761 } 762 term(A) ::= INTEGER|FLOAT|BLOB(X). {spanExpr(&A, pParse, @X, &X);} 763 term(A) ::= STRING(X). {spanExpr(&A, pParse, @X, &X);} 764 expr(A) ::= REGISTER(X). { 765 /* When doing a nested parse, one can include terms in an expression 766 ** that look like this: #1 #2 ... These terms refer to registers 767 ** in the virtual machine. #N is the N-th register. */ 768 if( pParse->nested==0 ){ 769 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &X); 770 A.pExpr = 0; 771 }else{ 772 A.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, &X); 773 if( A.pExpr ) sqlite3GetInt32(&X.z[1], &A.pExpr->iTable); 774 } 775 spanSet(&A, &X, &X); 776 } 777 expr(A) ::= VARIABLE(X). { 778 spanExpr(&A, pParse, TK_VARIABLE, &X); 779 sqlite3ExprAssignVarNumber(pParse, A.pExpr); 780 spanSet(&A, &X, &X); 781 } 782 expr(A) ::= expr(E) COLLATE ids(C). { 783 A.pExpr = sqlite3ExprSetColl(pParse, E.pExpr, &C); 784 A.zStart = E.zStart; 785 A.zEnd = &C.z[C.n]; 786 } 787 %ifndef SQLITE_OMIT_CAST 788 expr(A) ::= CAST(X) LP expr(E) AS typetoken(T) RP(Y). { 789 A.pExpr = sqlite3PExpr(pParse, TK_CAST, E.pExpr, 0, &T); 790 spanSet(&A,&X,&Y); 791 } 792 %endif SQLITE_OMIT_CAST 793 expr(A) ::= ID(X) LP distinct(D) exprlist(Y) RP(E). { 794 if( Y && Y->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 795 sqlite3ErrorMsg(pParse, "too many arguments on function %T", &X); 796 } 797 A.pExpr = sqlite3ExprFunction(pParse, Y, &X); 798 spanSet(&A,&X,&E); 799 if( D && A.pExpr ){ 800 A.pExpr->flags |= EP_Distinct; 801 } 802 } 803 expr(A) ::= ID(X) LP STAR RP(E). { 804 A.pExpr = sqlite3ExprFunction(pParse, 0, &X); 805 spanSet(&A,&X,&E); 806 } 807 term(A) ::= CTIME_KW(OP). { 808 /* The CURRENT_TIME, CURRENT_DATE, and CURRENT_TIMESTAMP values are 809 ** treated as functions that return constants */ 810 A.pExpr = sqlite3ExprFunction(pParse, 0,&OP); 811 if( A.pExpr ){ 812 A.pExpr->op = TK_CONST_FUNC; 813 } 814 spanSet(&A, &OP, &OP); 815 } 816 817 %include { 818 /* This routine constructs a binary expression node out of two ExprSpan 819 ** objects and uses the result to populate a new ExprSpan object. 820 */ 821 static void spanBinaryExpr( 822 ExprSpan *pOut, /* Write the result here */ 823 Parse *pParse, /* The parsing context. Errors accumulate here */ 824 int op, /* The binary operation */ 825 ExprSpan *pLeft, /* The left operand */ 826 ExprSpan *pRight /* The right operand */ 827 ){ 828 pOut->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr, 0); 829 pOut->zStart = pLeft->zStart; 830 pOut->zEnd = pRight->zEnd; 831 } 832 } 833 834 expr(A) ::= expr(X) AND(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 835 expr(A) ::= expr(X) OR(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 836 expr(A) ::= expr(X) LT|GT|GE|LE(OP) expr(Y). 837 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 838 expr(A) ::= expr(X) EQ|NE(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 839 expr(A) ::= expr(X) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y). 840 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 841 expr(A) ::= expr(X) PLUS|MINUS(OP) expr(Y). 842 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 843 expr(A) ::= expr(X) STAR|SLASH|REM(OP) expr(Y). 844 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 845 expr(A) ::= expr(X) CONCAT(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 846 %type likeop {struct LikeOp} 847 likeop(A) ::= LIKE_KW(X). {A.eOperator = X; A.not = 0;} 848 likeop(A) ::= NOT LIKE_KW(X). {A.eOperator = X; A.not = 1;} 849 likeop(A) ::= MATCH(X). {A.eOperator = X; A.not = 0;} 850 likeop(A) ::= NOT MATCH(X). {A.eOperator = X; A.not = 1;} 851 %type escape {ExprSpan} 852 %destructor escape {sqlite3ExprDelete(pParse->db, $$.pExpr);} 853 escape(X) ::= ESCAPE expr(A). [ESCAPE] {X = A;} 854 escape(X) ::= . [ESCAPE] {memset(&X,0,sizeof(X));} 855 expr(A) ::= expr(X) likeop(OP) expr(Y) escape(E). [LIKE_KW] { 856 ExprList *pList; 857 pList = sqlite3ExprListAppend(pParse,0, Y.pExpr); 858 pList = sqlite3ExprListAppend(pParse,pList, X.pExpr); 859 if( E.pExpr ){ 860 pList = sqlite3ExprListAppend(pParse,pList, E.pExpr); 861 } 862 A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator); 863 if( OP.not ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 864 A.zStart = X.zStart; 865 A.zEnd = Y.zEnd; 866 if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc; 867 } 868 869 %include { 870 /* Construct an expression node for a unary postfix operator 871 */ 872 static void spanUnaryPostfix( 873 ExprSpan *pOut, /* Write the new expression node here */ 874 Parse *pParse, /* Parsing context to record errors */ 875 int op, /* The operator */ 876 ExprSpan *pOperand, /* The operand */ 877 Token *pPostOp /* The operand token for setting the span */ 878 ){ 879 pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0); 880 pOut->zStart = pOperand->zStart; 881 pOut->zEnd = &pPostOp->z[pPostOp->n]; 882 } 883 } 884 885 expr(A) ::= expr(X) ISNULL|NOTNULL(E). {spanUnaryPostfix(&A,pParse,@E,&X,&E);} 886 expr(A) ::= expr(X) NOT NULL(E). {spanUnaryPostfix(&A,pParse,TK_NOTNULL,&X,&E);} 887 888 %include { 889 /* A routine to convert a binary TK_IS or TK_ISNOT expression into a 890 ** unary TK_ISNULL or TK_NOTNULL expression. */ 891 static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){ 892 sqlite3 *db = pParse->db; 893 if( db->mallocFailed==0 && pY->op==TK_NULL ){ 894 pA->op = (u8)op; 895 sqlite3ExprDelete(db, pA->pRight); 896 pA->pRight = 0; 897 } 898 } 899 } 900 901 // expr1 IS expr2 902 // expr1 IS NOT expr2 903 // 904 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL. If expr2 905 // is any other expression, code as TK_IS or TK_ISNOT. 906 // 907 expr(A) ::= expr(X) IS expr(Y). { 908 spanBinaryExpr(&A,pParse,TK_IS,&X,&Y); 909 binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_ISNULL); 910 } 911 expr(A) ::= expr(X) IS NOT expr(Y). { 912 spanBinaryExpr(&A,pParse,TK_ISNOT,&X,&Y); 913 binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_NOTNULL); 914 } 915 916 %include { 917 /* Construct an expression node for a unary prefix operator 918 */ 919 static void spanUnaryPrefix( 920 ExprSpan *pOut, /* Write the new expression node here */ 921 Parse *pParse, /* Parsing context to record errors */ 922 int op, /* The operator */ 923 ExprSpan *pOperand, /* The operand */ 924 Token *pPreOp /* The operand token for setting the span */ 925 ){ 926 pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0); 927 pOut->zStart = pPreOp->z; 928 pOut->zEnd = pOperand->zEnd; 929 } 930 } 931 932 933 934 expr(A) ::= NOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);} 935 expr(A) ::= BITNOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);} 936 expr(A) ::= MINUS(B) expr(X). [BITNOT] 937 {spanUnaryPrefix(&A,pParse,TK_UMINUS,&X,&B);} 938 expr(A) ::= PLUS(B) expr(X). [BITNOT] 939 {spanUnaryPrefix(&A,pParse,TK_UPLUS,&X,&B);} 940 941 %type between_op {int} 942 between_op(A) ::= BETWEEN. {A = 0;} 943 between_op(A) ::= NOT BETWEEN. {A = 1;} 944 expr(A) ::= expr(W) between_op(N) expr(X) AND expr(Y). [BETWEEN] { 945 ExprList *pList = sqlite3ExprListAppend(pParse,0, X.pExpr); 946 pList = sqlite3ExprListAppend(pParse,pList, Y.pExpr); 947 A.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, W.pExpr, 0, 0); 948 if( A.pExpr ){ 949 A.pExpr->x.pList = pList; 950 }else{ 951 sqlite3ExprListDelete(pParse->db, pList); 952 } 953 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 954 A.zStart = W.zStart; 955 A.zEnd = Y.zEnd; 956 } 957 %ifndef SQLITE_OMIT_SUBQUERY 958 %type in_op {int} 959 in_op(A) ::= IN. {A = 0;} 960 in_op(A) ::= NOT IN. {A = 1;} 961 expr(A) ::= expr(X) in_op(N) LP exprlist(Y) RP(E). [IN] { 962 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); 963 if( A.pExpr ){ 964 A.pExpr->x.pList = Y; 965 sqlite3ExprSetHeight(pParse, A.pExpr); 966 }else{ 967 sqlite3ExprListDelete(pParse->db, Y); 968 } 969 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 970 A.zStart = X.zStart; 971 A.zEnd = &E.z[E.n]; 972 } 973 expr(A) ::= LP(B) select(X) RP(E). { 974 A.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0); 975 if( A.pExpr ){ 976 A.pExpr->x.pSelect = X; 977 ExprSetProperty(A.pExpr, EP_xIsSelect); 978 sqlite3ExprSetHeight(pParse, A.pExpr); 979 }else{ 980 sqlite3SelectDelete(pParse->db, X); 981 } 982 A.zStart = B.z; 983 A.zEnd = &E.z[E.n]; 984 } 985 expr(A) ::= expr(X) in_op(N) LP select(Y) RP(E). [IN] { 986 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); 987 if( A.pExpr ){ 988 A.pExpr->x.pSelect = Y; 989 ExprSetProperty(A.pExpr, EP_xIsSelect); 990 sqlite3ExprSetHeight(pParse, A.pExpr); 991 }else{ 992 sqlite3SelectDelete(pParse->db, Y); 993 } 994 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 995 A.zStart = X.zStart; 996 A.zEnd = &E.z[E.n]; 997 } 998 expr(A) ::= expr(X) in_op(N) nm(Y) dbnm(Z). [IN] { 999 SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z); 1000 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); 1001 if( A.pExpr ){ 1002 A.pExpr->x.pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0); 1003 ExprSetProperty(A.pExpr, EP_xIsSelect); 1004 sqlite3ExprSetHeight(pParse, A.pExpr); 1005 }else{ 1006 sqlite3SrcListDelete(pParse->db, pSrc); 1007 } 1008 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 1009 A.zStart = X.zStart; 1010 A.zEnd = Z.z ? &Z.z[Z.n] : &Y.z[Y.n]; 1011 } 1012 expr(A) ::= EXISTS(B) LP select(Y) RP(E). { 1013 Expr *p = A.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0); 1014 if( p ){ 1015 p->x.pSelect = Y; 1016 ExprSetProperty(p, EP_xIsSelect); 1017 sqlite3ExprSetHeight(pParse, p); 1018 }else{ 1019 sqlite3SelectDelete(pParse->db, Y); 1020 } 1021 A.zStart = B.z; 1022 A.zEnd = &E.z[E.n]; 1023 } 1024 %endif SQLITE_OMIT_SUBQUERY 1025 1026 /* CASE expressions */ 1027 expr(A) ::= CASE(C) case_operand(X) case_exprlist(Y) case_else(Z) END(E). { 1028 A.pExpr = sqlite3PExpr(pParse, TK_CASE, X, Z, 0); 1029 if( A.pExpr ){ 1030 A.pExpr->x.pList = Y; 1031 sqlite3ExprSetHeight(pParse, A.pExpr); 1032 }else{ 1033 sqlite3ExprListDelete(pParse->db, Y); 1034 } 1035 A.zStart = C.z; 1036 A.zEnd = &E.z[E.n]; 1037 } 1038 %type case_exprlist {ExprList*} 1039 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1040 case_exprlist(A) ::= case_exprlist(X) WHEN expr(Y) THEN expr(Z). { 1041 A = sqlite3ExprListAppend(pParse,X, Y.pExpr); 1042 A = sqlite3ExprListAppend(pParse,A, Z.pExpr); 1043 } 1044 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). { 1045 A = sqlite3ExprListAppend(pParse,0, Y.pExpr); 1046 A = sqlite3ExprListAppend(pParse,A, Z.pExpr); 1047 } 1048 %type case_else {Expr*} 1049 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);} 1050 case_else(A) ::= ELSE expr(X). {A = X.pExpr;} 1051 case_else(A) ::= . {A = 0;} 1052 %type case_operand {Expr*} 1053 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);} 1054 case_operand(A) ::= expr(X). {A = X.pExpr;} 1055 case_operand(A) ::= . {A = 0;} 1056 1057 %type exprlist {ExprList*} 1058 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1059 %type nexprlist {ExprList*} 1060 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);} 1061 1062 exprlist(A) ::= nexprlist(X). {A = X;} 1063 exprlist(A) ::= . {A = 0;} 1064 nexprlist(A) ::= nexprlist(X) COMMA expr(Y). 1065 {A = sqlite3ExprListAppend(pParse,X,Y.pExpr);} 1066 nexprlist(A) ::= expr(Y). 1067 {A = sqlite3ExprListAppend(pParse,0,Y.pExpr);} 1068 1069 1070 ///////////////////////////// The CREATE INDEX command /////////////////////// 1071 // 1072 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D) 1073 ON nm(Y) LP idxlist(Z) RP(E). { 1074 sqlite3CreateIndex(pParse, &X, &D, 1075 sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U, 1076 &S, &E, SQLITE_SO_ASC, NE); 1077 } 1078 1079 %type uniqueflag {int} 1080 uniqueflag(A) ::= UNIQUE. {A = OE_Abort;} 1081 uniqueflag(A) ::= . {A = OE_None;} 1082 1083 %type idxlist {ExprList*} 1084 %destructor idxlist {sqlite3ExprListDelete(pParse->db, $$);} 1085 %type idxlist_opt {ExprList*} 1086 %destructor idxlist_opt {sqlite3ExprListDelete(pParse->db, $$);} 1087 1088 idxlist_opt(A) ::= . {A = 0;} 1089 idxlist_opt(A) ::= LP idxlist(X) RP. {A = X;} 1090 idxlist(A) ::= idxlist(X) COMMA nm(Y) collate(C) sortorder(Z). { 1091 Expr *p = 0; 1092 if( C.n>0 ){ 1093 p = sqlite3Expr(pParse->db, TK_COLUMN, 0); 1094 sqlite3ExprSetColl(pParse, p, &C); 1095 } 1096 A = sqlite3ExprListAppend(pParse,X, p); 1097 sqlite3ExprListSetName(pParse,A,&Y,1); 1098 sqlite3ExprListCheckLength(pParse, A, "index"); 1099 if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; 1100 } 1101 idxlist(A) ::= nm(Y) collate(C) sortorder(Z). { 1102 Expr *p = 0; 1103 if( C.n>0 ){ 1104 p = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0); 1105 sqlite3ExprSetColl(pParse, p, &C); 1106 } 1107 A = sqlite3ExprListAppend(pParse,0, p); 1108 sqlite3ExprListSetName(pParse, A, &Y, 1); 1109 sqlite3ExprListCheckLength(pParse, A, "index"); 1110 if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; 1111 } 1112 1113 %type collate {Token} 1114 collate(C) ::= . {C.z = 0; C.n = 0;} 1115 collate(C) ::= COLLATE ids(X). {C = X;} 1116 1117 1118 ///////////////////////////// The DROP INDEX command ///////////////////////// 1119 // 1120 cmd ::= DROP INDEX ifexists(E) fullname(X). {sqlite3DropIndex(pParse, X, E);} 1121 1122 ///////////////////////////// The VACUUM command ///////////////////////////// 1123 // 1124 %ifndef SQLITE_OMIT_VACUUM 1125 %ifndef SQLITE_OMIT_ATTACH 1126 cmd ::= VACUUM. {sqlite3Vacuum(pParse);} 1127 cmd ::= VACUUM nm. {sqlite3Vacuum(pParse);} 1128 %endif SQLITE_OMIT_ATTACH 1129 %endif SQLITE_OMIT_VACUUM 1130 1131 ///////////////////////////// The PRAGMA command ///////////////////////////// 1132 // 1133 %ifndef SQLITE_OMIT_PRAGMA 1134 cmd ::= PRAGMA nm(X) dbnm(Z). {sqlite3Pragma(pParse,&X,&Z,0,0);} 1135 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1136 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1137 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y). 1138 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1139 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP. 1140 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1141 1142 nmnum(A) ::= plus_num(X). {A = X;} 1143 nmnum(A) ::= nm(X). {A = X;} 1144 nmnum(A) ::= ON(X). {A = X;} 1145 nmnum(A) ::= DELETE(X). {A = X;} 1146 nmnum(A) ::= DEFAULT(X). {A = X;} 1147 %endif SQLITE_OMIT_PRAGMA 1148 plus_num(A) ::= plus_opt number(X). {A = X;} 1149 minus_num(A) ::= MINUS number(X). {A = X;} 1150 number(A) ::= INTEGER|FLOAT(X). {A = X;} 1151 plus_opt ::= PLUS. 1152 plus_opt ::= . 1153 1154 //////////////////////////// The CREATE TRIGGER command ///////////////////// 1155 1156 %ifndef SQLITE_OMIT_TRIGGER 1157 1158 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). { 1159 Token all; 1160 all.z = A.z; 1161 all.n = (int)(Z.z - A.z) + Z.n; 1162 sqlite3FinishTrigger(pParse, S, &all); 1163 } 1164 1165 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z) 1166 trigger_time(C) trigger_event(D) 1167 ON fullname(E) foreach_clause when_clause(G). { 1168 sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR); 1169 A = (Z.n==0?B:Z); 1170 } 1171 1172 %type trigger_time {int} 1173 trigger_time(A) ::= BEFORE. { A = TK_BEFORE; } 1174 trigger_time(A) ::= AFTER. { A = TK_AFTER; } 1175 trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;} 1176 trigger_time(A) ::= . { A = TK_BEFORE; } 1177 1178 %type trigger_event {struct TrigEvent} 1179 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);} 1180 trigger_event(A) ::= DELETE|INSERT(OP). {A.a = @OP; A.b = 0;} 1181 trigger_event(A) ::= UPDATE(OP). {A.a = @OP; A.b = 0;} 1182 trigger_event(A) ::= UPDATE OF inscollist(X). {A.a = TK_UPDATE; A.b = X;} 1183 1184 foreach_clause ::= . 1185 foreach_clause ::= FOR EACH ROW. 1186 1187 %type when_clause {Expr*} 1188 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);} 1189 when_clause(A) ::= . { A = 0; } 1190 when_clause(A) ::= WHEN expr(X). { A = X.pExpr; } 1191 1192 %type trigger_cmd_list {TriggerStep*} 1193 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);} 1194 trigger_cmd_list(A) ::= trigger_cmd_list(Y) trigger_cmd(X) SEMI. { 1195 assert( Y!=0 ); 1196 Y->pLast->pNext = X; 1197 Y->pLast = X; 1198 A = Y; 1199 } 1200 trigger_cmd_list(A) ::= trigger_cmd(X) SEMI. { 1201 assert( X!=0 ); 1202 X->pLast = X; 1203 A = X; 1204 } 1205 1206 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements 1207 // within a trigger. The table to INSERT, UPDATE, or DELETE is always in 1208 // the same database as the table that the trigger fires on. 1209 // 1210 %type trnm {Token} 1211 trnm(A) ::= nm(X). {A = X;} 1212 trnm(A) ::= nm DOT nm(X). { 1213 A = X; 1214 sqlite3ErrorMsg(pParse, 1215 "qualified table names are not allowed on INSERT, UPDATE, and DELETE " 1216 "statements within triggers"); 1217 } 1218 1219 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE 1220 // statements within triggers. We make a specific error message for this 1221 // since it is an exception to the default grammar rules. 1222 // 1223 tridxby ::= . 1224 tridxby ::= INDEXED BY nm. { 1225 sqlite3ErrorMsg(pParse, 1226 "the INDEXED BY clause is not allowed on UPDATE or DELETE statements " 1227 "within triggers"); 1228 } 1229 tridxby ::= NOT INDEXED. { 1230 sqlite3ErrorMsg(pParse, 1231 "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements " 1232 "within triggers"); 1233 } 1234 1235 1236 1237 %type trigger_cmd {TriggerStep*} 1238 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);} 1239 // UPDATE 1240 trigger_cmd(A) ::= 1241 UPDATE orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z). 1242 { A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R); } 1243 1244 // INSERT 1245 trigger_cmd(A) ::= 1246 insert_cmd(R) INTO trnm(X) inscollist_opt(F) VALUES LP itemlist(Y) RP. 1247 {A = sqlite3TriggerInsertStep(pParse->db, &X, F, Y, 0, R);} 1248 1249 trigger_cmd(A) ::= insert_cmd(R) INTO trnm(X) inscollist_opt(F) select(S). 1250 {A = sqlite3TriggerInsertStep(pParse->db, &X, F, 0, S, R);} 1251 1252 // DELETE 1253 trigger_cmd(A) ::= DELETE FROM trnm(X) tridxby where_opt(Y). 1254 {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y);} 1255 1256 // SELECT 1257 trigger_cmd(A) ::= select(X). {A = sqlite3TriggerSelectStep(pParse->db, X); } 1258 1259 // The special RAISE expression that may occur in trigger programs 1260 expr(A) ::= RAISE(X) LP IGNORE RP(Y). { 1261 A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0); 1262 if( A.pExpr ){ 1263 A.pExpr->affinity = OE_Ignore; 1264 } 1265 A.zStart = X.z; 1266 A.zEnd = &Y.z[Y.n]; 1267 } 1268 expr(A) ::= RAISE(X) LP raisetype(T) COMMA nm(Z) RP(Y). { 1269 A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &Z); 1270 if( A.pExpr ) { 1271 A.pExpr->affinity = (char)T; 1272 } 1273 A.zStart = X.z; 1274 A.zEnd = &Y.z[Y.n]; 1275 } 1276 %endif !SQLITE_OMIT_TRIGGER 1277 1278 %type raisetype {int} 1279 raisetype(A) ::= ROLLBACK. {A = OE_Rollback;} 1280 raisetype(A) ::= ABORT. {A = OE_Abort;} 1281 raisetype(A) ::= FAIL. {A = OE_Fail;} 1282 1283 1284 //////////////////////// DROP TRIGGER statement ////////////////////////////// 1285 %ifndef SQLITE_OMIT_TRIGGER 1286 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). { 1287 sqlite3DropTrigger(pParse,X,NOERR); 1288 } 1289 %endif !SQLITE_OMIT_TRIGGER 1290 1291 //////////////////////// ATTACH DATABASE file AS name ///////////////////////// 1292 %ifndef SQLITE_OMIT_ATTACH 1293 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). { 1294 sqlite3Attach(pParse, F.pExpr, D.pExpr, K); 1295 } 1296 cmd ::= DETACH database_kw_opt expr(D). { 1297 sqlite3Detach(pParse, D.pExpr); 1298 } 1299 1300 %type key_opt {Expr*} 1301 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);} 1302 key_opt(A) ::= . { A = 0; } 1303 key_opt(A) ::= KEY expr(X). { A = X.pExpr; } 1304 1305 database_kw_opt ::= DATABASE. 1306 database_kw_opt ::= . 1307 %endif SQLITE_OMIT_ATTACH 1308 1309 ////////////////////////// REINDEX collation ////////////////////////////////// 1310 %ifndef SQLITE_OMIT_REINDEX 1311 cmd ::= REINDEX. {sqlite3Reindex(pParse, 0, 0);} 1312 cmd ::= REINDEX nm(X) dbnm(Y). {sqlite3Reindex(pParse, &X, &Y);} 1313 %endif SQLITE_OMIT_REINDEX 1314 1315 /////////////////////////////////// ANALYZE /////////////////////////////////// 1316 %ifndef SQLITE_OMIT_ANALYZE 1317 cmd ::= ANALYZE. {sqlite3Analyze(pParse, 0, 0);} 1318 cmd ::= ANALYZE nm(X) dbnm(Y). {sqlite3Analyze(pParse, &X, &Y);} 1319 %endif 1320 1321 //////////////////////// ALTER TABLE table ... //////////////////////////////// 1322 %ifndef SQLITE_OMIT_ALTERTABLE 1323 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). { 1324 sqlite3AlterRenameTable(pParse,X,&Z); 1325 } 1326 cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column(Y). { 1327 sqlite3AlterFinishAddColumn(pParse, &Y); 1328 } 1329 add_column_fullname ::= fullname(X). { 1330 pParse->db->lookaside.bEnabled = 0; 1331 sqlite3AlterBeginAddColumn(pParse, X); 1332 } 1333 kwcolumn_opt ::= . 1334 kwcolumn_opt ::= COLUMNKW. 1335 %endif SQLITE_OMIT_ALTERTABLE 1336 1337 //////////////////////// CREATE VIRTUAL TABLE ... ///////////////////////////// 1338 %ifndef SQLITE_OMIT_VIRTUALTABLE 1339 cmd ::= create_vtab. {sqlite3VtabFinishParse(pParse,0);} 1340 cmd ::= create_vtab LP vtabarglist RP(X). {sqlite3VtabFinishParse(pParse,&X);} 1341 create_vtab ::= createkw VIRTUAL TABLE nm(X) dbnm(Y) USING nm(Z). { 1342 sqlite3VtabBeginParse(pParse, &X, &Y, &Z); 1343 } 1344 vtabarglist ::= vtabarg. 1345 vtabarglist ::= vtabarglist COMMA vtabarg. 1346 vtabarg ::= . {sqlite3VtabArgInit(pParse);} 1347 vtabarg ::= vtabarg vtabargtoken. 1348 vtabargtoken ::= ANY(X). {sqlite3VtabArgExtend(pParse,&X);} 1349 vtabargtoken ::= lp anylist RP(X). {sqlite3VtabArgExtend(pParse,&X);} 1350 lp ::= LP(X). {sqlite3VtabArgExtend(pParse,&X);} 1351 anylist ::= . 1352 anylist ::= anylist LP anylist RP. 1353 anylist ::= anylist ANY. 1354 %endif SQLITE_OMIT_VIRTUALTABLE 1355