xref: /sqlite-3.40.0/src/parse.y (revision 50f79f56)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains SQLite's grammar for SQL.  Process this file
13 ** using the lemon parser generator to generate C code that runs
14 ** the parser.  Lemon will also generate a header file containing
15 ** numeric codes for all of the tokens.
16 */
17 
18 // All token codes are small integers with #defines that begin with "TK_"
19 %token_prefix TK_
20 
21 // The type of the data attached to each token is Token.  This is also the
22 // default type for non-terminals.
23 //
24 %token_type {Token}
25 %default_type {Token}
26 
27 // The generated parser function takes a 4th argument as follows:
28 %extra_argument {Parse *pParse}
29 
30 // This code runs whenever there is a syntax error
31 //
32 %syntax_error {
33   UNUSED_PARAMETER(yymajor);  /* Silence some compiler warnings */
34   assert( TOKEN.z[0] );  /* The tokenizer always gives us a token */
35   sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);
36 }
37 %stack_overflow {
38   UNUSED_PARAMETER(yypMinor); /* Silence some compiler warnings */
39   sqlite3ErrorMsg(pParse, "parser stack overflow");
40 }
41 
42 // The name of the generated procedure that implements the parser
43 // is as follows:
44 %name sqlite3Parser
45 
46 // The following text is included near the beginning of the C source
47 // code file that implements the parser.
48 //
49 %include {
50 #include "sqliteInt.h"
51 
52 /*
53 ** Disable all error recovery processing in the parser push-down
54 ** automaton.
55 */
56 #define YYNOERRORRECOVERY 1
57 
58 /*
59 ** Make yytestcase() the same as testcase()
60 */
61 #define yytestcase(X) testcase(X)
62 
63 /*
64 ** An instance of this structure holds information about the
65 ** LIMIT clause of a SELECT statement.
66 */
67 struct LimitVal {
68   Expr *pLimit;    /* The LIMIT expression.  NULL if there is no limit */
69   Expr *pOffset;   /* The OFFSET expression.  NULL if there is none */
70 };
71 
72 /*
73 ** An instance of this structure is used to store the LIKE,
74 ** GLOB, NOT LIKE, and NOT GLOB operators.
75 */
76 struct LikeOp {
77   Token eOperator;  /* "like" or "glob" or "regexp" */
78   int bNot;         /* True if the NOT keyword is present */
79 };
80 
81 /*
82 ** An instance of the following structure describes the event of a
83 ** TRIGGER.  "a" is the event type, one of TK_UPDATE, TK_INSERT,
84 ** TK_DELETE, or TK_INSTEAD.  If the event is of the form
85 **
86 **      UPDATE ON (a,b,c)
87 **
88 ** Then the "b" IdList records the list "a,b,c".
89 */
90 struct TrigEvent { int a; IdList * b; };
91 
92 /*
93 ** An instance of this structure holds the ATTACH key and the key type.
94 */
95 struct AttachKey { int type;  Token key; };
96 
97 /*
98 ** One or more VALUES claues
99 */
100 struct ValueList {
101   ExprList *pList;
102   Select *pSelect;
103 };
104 
105 } // end %include
106 
107 // Input is a single SQL command
108 input ::= cmdlist.
109 cmdlist ::= cmdlist ecmd.
110 cmdlist ::= ecmd.
111 ecmd ::= SEMI.
112 ecmd ::= explain cmdx SEMI.
113 explain ::= .           { sqlite3BeginParse(pParse, 0); }
114 %ifndef SQLITE_OMIT_EXPLAIN
115 explain ::= EXPLAIN.              { sqlite3BeginParse(pParse, 1); }
116 explain ::= EXPLAIN QUERY PLAN.   { sqlite3BeginParse(pParse, 2); }
117 %endif  SQLITE_OMIT_EXPLAIN
118 cmdx ::= cmd.           { sqlite3FinishCoding(pParse); }
119 
120 ///////////////////// Begin and end transactions. ////////////////////////////
121 //
122 
123 cmd ::= BEGIN transtype(Y) trans_opt.  {sqlite3BeginTransaction(pParse, Y);}
124 trans_opt ::= .
125 trans_opt ::= TRANSACTION.
126 trans_opt ::= TRANSACTION nm.
127 %type transtype {int}
128 transtype(A) ::= .             {A = TK_DEFERRED;}
129 transtype(A) ::= DEFERRED(X).  {A = @X;}
130 transtype(A) ::= IMMEDIATE(X). {A = @X;}
131 transtype(A) ::= EXCLUSIVE(X). {A = @X;}
132 cmd ::= COMMIT trans_opt.      {sqlite3CommitTransaction(pParse);}
133 cmd ::= END trans_opt.         {sqlite3CommitTransaction(pParse);}
134 cmd ::= ROLLBACK trans_opt.    {sqlite3RollbackTransaction(pParse);}
135 
136 savepoint_opt ::= SAVEPOINT.
137 savepoint_opt ::= .
138 cmd ::= SAVEPOINT nm(X). {
139   sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X);
140 }
141 cmd ::= RELEASE savepoint_opt nm(X). {
142   sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X);
143 }
144 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). {
145   sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X);
146 }
147 
148 ///////////////////// The CREATE TABLE statement ////////////////////////////
149 //
150 cmd ::= create_table create_table_args.
151 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). {
152    sqlite3StartTable(pParse,&Y,&Z,T,0,0,E);
153 }
154 createkw(A) ::= CREATE(X).  {
155   pParse->db->lookaside.bEnabled = 0;
156   A = X;
157 }
158 %type ifnotexists {int}
159 ifnotexists(A) ::= .              {A = 0;}
160 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;}
161 %type temp {int}
162 %ifndef SQLITE_OMIT_TEMPDB
163 temp(A) ::= TEMP.  {A = 1;}
164 %endif  SQLITE_OMIT_TEMPDB
165 temp(A) ::= .      {A = 0;}
166 create_table_args ::= LP columnlist conslist_opt(X) RP(Y). {
167   sqlite3EndTable(pParse,&X,&Y,0);
168 }
169 create_table_args ::= AS select(S). {
170   sqlite3EndTable(pParse,0,0,S);
171   sqlite3SelectDelete(pParse->db, S);
172 }
173 columnlist ::= columnlist COMMA column.
174 columnlist ::= column.
175 
176 // A "column" is a complete description of a single column in a
177 // CREATE TABLE statement.  This includes the column name, its
178 // datatype, and other keywords such as PRIMARY KEY, UNIQUE, REFERENCES,
179 // NOT NULL and so forth.
180 //
181 column(A) ::= columnid(X) type carglist. {
182   A.z = X.z;
183   A.n = (int)(pParse->sLastToken.z-X.z) + pParse->sLastToken.n;
184 }
185 columnid(A) ::= nm(X). {
186   sqlite3AddColumn(pParse,&X);
187   A = X;
188 }
189 
190 
191 // An IDENTIFIER can be a generic identifier, or one of several
192 // keywords.  Any non-standard keyword can also be an identifier.
193 //
194 %type id {Token}
195 id(A) ::= ID(X).         {A = X;}
196 id(A) ::= INDEXED(X).    {A = X;}
197 
198 // The following directive causes tokens ABORT, AFTER, ASC, etc. to
199 // fallback to ID if they will not parse as their original value.
200 // This obviates the need for the "id" nonterminal.
201 //
202 %fallback ID
203   ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW
204   CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL FOR
205   IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN
206   QUERY KEY OF OFFSET PRAGMA RAISE RELEASE REPLACE RESTRICT ROW ROLLBACK
207   SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL
208 %ifdef SQLITE_OMIT_COMPOUND_SELECT
209   EXCEPT INTERSECT UNION
210 %endif SQLITE_OMIT_COMPOUND_SELECT
211   REINDEX RENAME CTIME_KW IF
212   .
213 %wildcard ANY.
214 
215 // Define operator precedence early so that this is the first occurance
216 // of the operator tokens in the grammer.  Keeping the operators together
217 // causes them to be assigned integer values that are close together,
218 // which keeps parser tables smaller.
219 //
220 // The token values assigned to these symbols is determined by the order
221 // in which lemon first sees them.  It must be the case that ISNULL/NOTNULL,
222 // NE/EQ, GT/LE, and GE/LT are separated by only a single value.  See
223 // the sqlite3ExprIfFalse() routine for additional information on this
224 // constraint.
225 //
226 %left OR.
227 %left AND.
228 %right NOT.
229 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ.
230 %left GT LE LT GE.
231 %right ESCAPE.
232 %left BITAND BITOR LSHIFT RSHIFT.
233 %left PLUS MINUS.
234 %left STAR SLASH REM.
235 %left CONCAT.
236 %left COLLATE.
237 %right BITNOT.
238 
239 // And "ids" is an identifer-or-string.
240 //
241 %type ids {Token}
242 ids(A) ::= ID|STRING(X).   {A = X;}
243 
244 // The name of a column or table can be any of the following:
245 //
246 %type nm {Token}
247 nm(A) ::= id(X).         {A = X;}
248 nm(A) ::= STRING(X).     {A = X;}
249 nm(A) ::= JOIN_KW(X).    {A = X;}
250 
251 // A typetoken is really one or more tokens that form a type name such
252 // as can be found after the column name in a CREATE TABLE statement.
253 // Multiple tokens are concatenated to form the value of the typetoken.
254 //
255 %type typetoken {Token}
256 type ::= .
257 type ::= typetoken(X).                   {sqlite3AddColumnType(pParse,&X);}
258 typetoken(A) ::= typename(X).   {A = X;}
259 typetoken(A) ::= typename(X) LP signed RP(Y). {
260   A.z = X.z;
261   A.n = (int)(&Y.z[Y.n] - X.z);
262 }
263 typetoken(A) ::= typename(X) LP signed COMMA signed RP(Y). {
264   A.z = X.z;
265   A.n = (int)(&Y.z[Y.n] - X.z);
266 }
267 %type typename {Token}
268 typename(A) ::= ids(X).             {A = X;}
269 typename(A) ::= typename(X) ids(Y). {A.z=X.z; A.n=Y.n+(int)(Y.z-X.z);}
270 signed ::= plus_num.
271 signed ::= minus_num.
272 
273 // "carglist" is a list of additional constraints that come after the
274 // column name and column type in a CREATE TABLE statement.
275 //
276 carglist ::= carglist cname ccons.
277 carglist ::= .
278 cname ::= CONSTRAINT nm(X).           {pParse->constraintName = X;}
279 cname ::= .                           {pParse->constraintName.n = 0;}
280 ccons ::= DEFAULT term(X).            {sqlite3AddDefaultValue(pParse,&X);}
281 ccons ::= DEFAULT LP expr(X) RP.      {sqlite3AddDefaultValue(pParse,&X);}
282 ccons ::= DEFAULT PLUS term(X).       {sqlite3AddDefaultValue(pParse,&X);}
283 ccons ::= DEFAULT MINUS(A) term(X).      {
284   ExprSpan v;
285   v.pExpr = sqlite3PExpr(pParse, TK_UMINUS, X.pExpr, 0, 0);
286   v.zStart = A.z;
287   v.zEnd = X.zEnd;
288   sqlite3AddDefaultValue(pParse,&v);
289 }
290 ccons ::= DEFAULT id(X).              {
291   ExprSpan v;
292   spanExpr(&v, pParse, TK_STRING, &X);
293   sqlite3AddDefaultValue(pParse,&v);
294 }
295 
296 // In addition to the type name, we also care about the primary key and
297 // UNIQUE constraints.
298 //
299 ccons ::= NULL onconf.
300 ccons ::= NOT NULL onconf(R).    {sqlite3AddNotNull(pParse, R);}
301 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I).
302                                  {sqlite3AddPrimaryKey(pParse,0,R,I,Z);}
303 ccons ::= UNIQUE onconf(R).      {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0);}
304 ccons ::= CHECK LP expr(X) RP.   {sqlite3AddCheckConstraint(pParse,X.pExpr);}
305 ccons ::= REFERENCES nm(T) idxlist_opt(TA) refargs(R).
306                                  {sqlite3CreateForeignKey(pParse,0,&T,TA,R);}
307 ccons ::= defer_subclause(D).    {sqlite3DeferForeignKey(pParse,D);}
308 ccons ::= COLLATE ids(C).        {sqlite3AddCollateType(pParse, &C);}
309 
310 // The optional AUTOINCREMENT keyword
311 %type autoinc {int}
312 autoinc(X) ::= .          {X = 0;}
313 autoinc(X) ::= AUTOINCR.  {X = 1;}
314 
315 // The next group of rules parses the arguments to a REFERENCES clause
316 // that determine if the referential integrity checking is deferred or
317 // or immediate and which determine what action to take if a ref-integ
318 // check fails.
319 //
320 %type refargs {int}
321 refargs(A) ::= .                  { A = OE_None*0x0101; /* EV: R-19803-45884 */}
322 refargs(A) ::= refargs(X) refarg(Y). { A = (X & ~Y.mask) | Y.value; }
323 %type refarg {struct {int value; int mask;}}
324 refarg(A) ::= MATCH nm.              { A.value = 0;     A.mask = 0x000000; }
325 refarg(A) ::= ON INSERT refact.      { A.value = 0;     A.mask = 0x000000; }
326 refarg(A) ::= ON DELETE refact(X).   { A.value = X;     A.mask = 0x0000ff; }
327 refarg(A) ::= ON UPDATE refact(X).   { A.value = X<<8;  A.mask = 0x00ff00; }
328 %type refact {int}
329 refact(A) ::= SET NULL.              { A = OE_SetNull;  /* EV: R-33326-45252 */}
330 refact(A) ::= SET DEFAULT.           { A = OE_SetDflt;  /* EV: R-33326-45252 */}
331 refact(A) ::= CASCADE.               { A = OE_Cascade;  /* EV: R-33326-45252 */}
332 refact(A) ::= RESTRICT.              { A = OE_Restrict; /* EV: R-33326-45252 */}
333 refact(A) ::= NO ACTION.             { A = OE_None;     /* EV: R-33326-45252 */}
334 %type defer_subclause {int}
335 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt.     {A = 0;}
336 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X).      {A = X;}
337 %type init_deferred_pred_opt {int}
338 init_deferred_pred_opt(A) ::= .                       {A = 0;}
339 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED.     {A = 1;}
340 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE.    {A = 0;}
341 
342 conslist_opt(A) ::= .                   {A.n = 0; A.z = 0;}
343 conslist_opt(A) ::= COMMA(X) conslist.  {A = X;}
344 conslist ::= conslist COMMA cname tcons.
345 conslist ::= cname tcons.
346 tcons ::= PRIMARY KEY LP idxlist(X) autoinc(I) RP onconf(R).
347                                  {sqlite3AddPrimaryKey(pParse,X,R,I,0);}
348 tcons ::= UNIQUE LP idxlist(X) RP onconf(R).
349                                  {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0);}
350 tcons ::= CHECK LP expr(E) RP onconf.
351                                  {sqlite3AddCheckConstraint(pParse,E.pExpr);}
352 tcons ::= FOREIGN KEY LP idxlist(FA) RP
353           REFERENCES nm(T) idxlist_opt(TA) refargs(R) defer_subclause_opt(D). {
354     sqlite3CreateForeignKey(pParse, FA, &T, TA, R);
355     sqlite3DeferForeignKey(pParse, D);
356 }
357 %type defer_subclause_opt {int}
358 defer_subclause_opt(A) ::= .                    {A = 0;}
359 defer_subclause_opt(A) ::= defer_subclause(X).  {A = X;}
360 
361 // The following is a non-standard extension that allows us to declare the
362 // default behavior when there is a constraint conflict.
363 //
364 %type onconf {int}
365 %type orconf {u8}
366 %type resolvetype {int}
367 onconf(A) ::= .                              {A = OE_Default;}
368 onconf(A) ::= ON CONFLICT resolvetype(X).    {A = X;}
369 orconf(A) ::= .                              {A = OE_Default;}
370 orconf(A) ::= OR resolvetype(X).             {A = (u8)X;}
371 resolvetype(A) ::= raisetype(X).             {A = X;}
372 resolvetype(A) ::= IGNORE.                   {A = OE_Ignore;}
373 resolvetype(A) ::= REPLACE.                  {A = OE_Replace;}
374 
375 ////////////////////////// The DROP TABLE /////////////////////////////////////
376 //
377 cmd ::= DROP TABLE ifexists(E) fullname(X). {
378   sqlite3DropTable(pParse, X, 0, E);
379 }
380 %type ifexists {int}
381 ifexists(A) ::= IF EXISTS.   {A = 1;}
382 ifexists(A) ::= .            {A = 0;}
383 
384 ///////////////////// The CREATE VIEW statement /////////////////////////////
385 //
386 %ifndef SQLITE_OMIT_VIEW
387 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) AS select(S). {
388   sqlite3CreateView(pParse, &X, &Y, &Z, S, T, E);
389 }
390 cmd ::= DROP VIEW ifexists(E) fullname(X). {
391   sqlite3DropTable(pParse, X, 1, E);
392 }
393 %endif  SQLITE_OMIT_VIEW
394 
395 //////////////////////// The SELECT statement /////////////////////////////////
396 //
397 cmd ::= select(X).  {
398   SelectDest dest = {SRT_Output, 0, 0, 0, 0};
399   sqlite3Select(pParse, X, &dest);
400   sqlite3ExplainBegin(pParse->pVdbe);
401   sqlite3ExplainSelect(pParse->pVdbe, X);
402   sqlite3ExplainFinish(pParse->pVdbe);
403   sqlite3SelectDelete(pParse->db, X);
404 }
405 
406 %type select {Select*}
407 %destructor select {sqlite3SelectDelete(pParse->db, $$);}
408 %type oneselect {Select*}
409 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);}
410 
411 select(A) ::= oneselect(X).                      {A = X;}
412 %ifndef SQLITE_OMIT_COMPOUND_SELECT
413 select(A) ::= select(X) multiselect_op(Y) oneselect(Z).  {
414   if( Z ){
415     Z->op = (u8)Y;
416     Z->pPrior = X;
417   }else{
418     sqlite3SelectDelete(pParse->db, X);
419   }
420   A = Z;
421 }
422 %type multiselect_op {int}
423 multiselect_op(A) ::= UNION(OP).             {A = @OP;}
424 multiselect_op(A) ::= UNION ALL.             {A = TK_ALL;}
425 multiselect_op(A) ::= EXCEPT|INTERSECT(OP).  {A = @OP;}
426 %endif SQLITE_OMIT_COMPOUND_SELECT
427 oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y)
428                  groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). {
429   A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L.pLimit,L.pOffset);
430 }
431 
432 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is
433 // present and false (0) if it is not.
434 //
435 %type distinct {int}
436 distinct(A) ::= DISTINCT.   {A = 1;}
437 distinct(A) ::= ALL.        {A = 0;}
438 distinct(A) ::= .           {A = 0;}
439 
440 // selcollist is a list of expressions that are to become the return
441 // values of the SELECT statement.  The "*" in statements like
442 // "SELECT * FROM ..." is encoded as a special expression with an
443 // opcode of TK_ALL.
444 //
445 %type selcollist {ExprList*}
446 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);}
447 %type sclp {ExprList*}
448 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);}
449 sclp(A) ::= selcollist(X) COMMA.             {A = X;}
450 sclp(A) ::= .                                {A = 0;}
451 selcollist(A) ::= sclp(P) expr(X) as(Y).     {
452    A = sqlite3ExprListAppend(pParse, P, X.pExpr);
453    if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1);
454    sqlite3ExprListSetSpan(pParse,A,&X);
455 }
456 selcollist(A) ::= sclp(P) STAR. {
457   Expr *p = sqlite3Expr(pParse->db, TK_ALL, 0);
458   A = sqlite3ExprListAppend(pParse, P, p);
459 }
460 selcollist(A) ::= sclp(P) nm(X) DOT STAR(Y). {
461   Expr *pRight = sqlite3PExpr(pParse, TK_ALL, 0, 0, &Y);
462   Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &X);
463   Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
464   A = sqlite3ExprListAppend(pParse,P, pDot);
465 }
466 
467 // An option "AS <id>" phrase that can follow one of the expressions that
468 // define the result set, or one of the tables in the FROM clause.
469 //
470 %type as {Token}
471 as(X) ::= AS nm(Y).    {X = Y;}
472 as(X) ::= ids(Y).      {X = Y;}
473 as(X) ::= .            {X.n = 0;}
474 
475 
476 %type seltablist {SrcList*}
477 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);}
478 %type stl_prefix {SrcList*}
479 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);}
480 %type from {SrcList*}
481 %destructor from {sqlite3SrcListDelete(pParse->db, $$);}
482 
483 // A complete FROM clause.
484 //
485 from(A) ::= .                {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));}
486 from(A) ::= FROM seltablist(X). {
487   A = X;
488   sqlite3SrcListShiftJoinType(A);
489 }
490 
491 // "seltablist" is a "Select Table List" - the content of the FROM clause
492 // in a SELECT statement.  "stl_prefix" is a prefix of this list.
493 //
494 stl_prefix(A) ::= seltablist(X) joinop(Y).    {
495    A = X;
496    if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].jointype = (u8)Y;
497 }
498 stl_prefix(A) ::= .                           {A = 0;}
499 seltablist(A) ::= stl_prefix(X) nm(Y) dbnm(D) as(Z) indexed_opt(I) on_opt(N) using_opt(U). {
500   A = sqlite3SrcListAppendFromTerm(pParse,X,&Y,&D,&Z,0,N,U);
501   sqlite3SrcListIndexedBy(pParse, A, &I);
502 }
503 %ifndef SQLITE_OMIT_SUBQUERY
504   seltablist(A) ::= stl_prefix(X) LP select(S) RP
505                     as(Z) on_opt(N) using_opt(U). {
506     A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,S,N,U);
507   }
508   seltablist(A) ::= stl_prefix(X) LP seltablist(F) RP
509                     as(Z) on_opt(N) using_opt(U). {
510     if( X==0 && Z.n==0 && N==0 && U==0 ){
511       A = F;
512     }else{
513       Select *pSubquery;
514       sqlite3SrcListShiftJoinType(F);
515       pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,0,0,0);
516       A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,pSubquery,N,U);
517     }
518   }
519 
520   // A seltablist_paren nonterminal represents anything in a FROM that
521   // is contained inside parentheses.  This can be either a subquery or
522   // a grouping of table and subqueries.
523   //
524 //  %type seltablist_paren {Select*}
525 //  %destructor seltablist_paren {sqlite3SelectDelete(pParse->db, $$);}
526 //  seltablist_paren(A) ::= select(S).      {A = S;}
527 //  seltablist_paren(A) ::= seltablist(F).  {
528 //     sqlite3SrcListShiftJoinType(F);
529 //     A = sqlite3SelectNew(pParse,0,F,0,0,0,0,0,0,0);
530 //  }
531 %endif  SQLITE_OMIT_SUBQUERY
532 
533 %type dbnm {Token}
534 dbnm(A) ::= .          {A.z=0; A.n=0;}
535 dbnm(A) ::= DOT nm(X). {A = X;}
536 
537 %type fullname {SrcList*}
538 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);}
539 fullname(A) ::= nm(X) dbnm(Y).  {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y);}
540 
541 %type joinop {int}
542 %type joinop2 {int}
543 joinop(X) ::= COMMA|JOIN.              { X = JT_INNER; }
544 joinop(X) ::= JOIN_KW(A) JOIN.         { X = sqlite3JoinType(pParse,&A,0,0); }
545 joinop(X) ::= JOIN_KW(A) nm(B) JOIN.   { X = sqlite3JoinType(pParse,&A,&B,0); }
546 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN.
547                                        { X = sqlite3JoinType(pParse,&A,&B,&C); }
548 
549 %type on_opt {Expr*}
550 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);}
551 on_opt(N) ::= ON expr(E).   {N = E.pExpr;}
552 on_opt(N) ::= .             {N = 0;}
553 
554 // Note that this block abuses the Token type just a little. If there is
555 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If
556 // there is an INDEXED BY clause, then the token is populated as per normal,
557 // with z pointing to the token data and n containing the number of bytes
558 // in the token.
559 //
560 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is
561 // normally illegal. The sqlite3SrcListIndexedBy() function
562 // recognizes and interprets this as a special case.
563 //
564 %type indexed_opt {Token}
565 indexed_opt(A) ::= .                 {A.z=0; A.n=0;}
566 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;}
567 indexed_opt(A) ::= NOT INDEXED.      {A.z=0; A.n=1;}
568 
569 %type using_opt {IdList*}
570 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);}
571 using_opt(U) ::= USING LP inscollist(L) RP.  {U = L;}
572 using_opt(U) ::= .                        {U = 0;}
573 
574 
575 %type orderby_opt {ExprList*}
576 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);}
577 %type sortlist {ExprList*}
578 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);}
579 
580 orderby_opt(A) ::= .                          {A = 0;}
581 orderby_opt(A) ::= ORDER BY sortlist(X).      {A = X;}
582 sortlist(A) ::= sortlist(X) COMMA expr(Y) sortorder(Z). {
583   A = sqlite3ExprListAppend(pParse,X,Y.pExpr);
584   if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z;
585 }
586 sortlist(A) ::= expr(Y) sortorder(Z). {
587   A = sqlite3ExprListAppend(pParse,0,Y.pExpr);
588   if( A && ALWAYS(A->a) ) A->a[0].sortOrder = (u8)Z;
589 }
590 
591 %type sortorder {int}
592 
593 sortorder(A) ::= ASC.           {A = SQLITE_SO_ASC;}
594 sortorder(A) ::= DESC.          {A = SQLITE_SO_DESC;}
595 sortorder(A) ::= .              {A = SQLITE_SO_ASC;}
596 
597 %type groupby_opt {ExprList*}
598 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);}
599 groupby_opt(A) ::= .                      {A = 0;}
600 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;}
601 
602 %type having_opt {Expr*}
603 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);}
604 having_opt(A) ::= .                {A = 0;}
605 having_opt(A) ::= HAVING expr(X).  {A = X.pExpr;}
606 
607 %type limit_opt {struct LimitVal}
608 
609 // The destructor for limit_opt will never fire in the current grammar.
610 // The limit_opt non-terminal only occurs at the end of a single production
611 // rule for SELECT statements.  As soon as the rule that create the
612 // limit_opt non-terminal reduces, the SELECT statement rule will also
613 // reduce.  So there is never a limit_opt non-terminal on the stack
614 // except as a transient.  So there is never anything to destroy.
615 //
616 //%destructor limit_opt {
617 //  sqlite3ExprDelete(pParse->db, $$.pLimit);
618 //  sqlite3ExprDelete(pParse->db, $$.pOffset);
619 //}
620 limit_opt(A) ::= .                    {A.pLimit = 0; A.pOffset = 0;}
621 limit_opt(A) ::= LIMIT expr(X).       {A.pLimit = X.pExpr; A.pOffset = 0;}
622 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y).
623                                       {A.pLimit = X.pExpr; A.pOffset = Y.pExpr;}
624 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y).
625                                       {A.pOffset = X.pExpr; A.pLimit = Y.pExpr;}
626 
627 /////////////////////////// The DELETE statement /////////////////////////////
628 //
629 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
630 cmd ::= DELETE FROM fullname(X) indexed_opt(I) where_opt(W)
631         orderby_opt(O) limit_opt(L). {
632   sqlite3SrcListIndexedBy(pParse, X, &I);
633   W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "DELETE");
634   sqlite3DeleteFrom(pParse,X,W);
635 }
636 %endif
637 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
638 cmd ::= DELETE FROM fullname(X) indexed_opt(I) where_opt(W). {
639   sqlite3SrcListIndexedBy(pParse, X, &I);
640   sqlite3DeleteFrom(pParse,X,W);
641 }
642 %endif
643 
644 %type where_opt {Expr*}
645 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);}
646 
647 where_opt(A) ::= .                    {A = 0;}
648 where_opt(A) ::= WHERE expr(X).       {A = X.pExpr;}
649 
650 ////////////////////////// The UPDATE command ////////////////////////////////
651 //
652 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
653 cmd ::= UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) where_opt(W) orderby_opt(O) limit_opt(L).  {
654   sqlite3SrcListIndexedBy(pParse, X, &I);
655   sqlite3ExprListCheckLength(pParse,Y,"set list");
656   W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "UPDATE");
657   sqlite3Update(pParse,X,Y,W,R);
658 }
659 %endif
660 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
661 cmd ::= UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) where_opt(W).  {
662   sqlite3SrcListIndexedBy(pParse, X, &I);
663   sqlite3ExprListCheckLength(pParse,Y,"set list");
664   sqlite3Update(pParse,X,Y,W,R);
665 }
666 %endif
667 
668 %type setlist {ExprList*}
669 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);}
670 
671 setlist(A) ::= setlist(Z) COMMA nm(X) EQ expr(Y). {
672   A = sqlite3ExprListAppend(pParse, Z, Y.pExpr);
673   sqlite3ExprListSetName(pParse, A, &X, 1);
674 }
675 setlist(A) ::= nm(X) EQ expr(Y). {
676   A = sqlite3ExprListAppend(pParse, 0, Y.pExpr);
677   sqlite3ExprListSetName(pParse, A, &X, 1);
678 }
679 
680 ////////////////////////// The INSERT command /////////////////////////////////
681 //
682 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) valuelist(Y).
683             {sqlite3Insert(pParse, X, Y.pList, Y.pSelect, F, R);}
684 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) select(S).
685             {sqlite3Insert(pParse, X, 0, S, F, R);}
686 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) DEFAULT VALUES.
687             {sqlite3Insert(pParse, X, 0, 0, F, R);}
688 
689 %type insert_cmd {u8}
690 insert_cmd(A) ::= INSERT orconf(R).   {A = R;}
691 insert_cmd(A) ::= REPLACE.            {A = OE_Replace;}
692 
693 // A ValueList is either a single VALUES clause or a comma-separated list
694 // of VALUES clauses.  If it is a single VALUES clause then the
695 // ValueList.pList field points to the expression list of that clause.
696 // If it is a list of VALUES clauses, then those clauses are transformed
697 // into a set of SELECT statements without FROM clauses and connected by
698 // UNION ALL and the ValueList.pSelect points to the right-most SELECT in
699 // that compound.
700 %type valuelist {struct ValueList}
701 %destructor valuelist {
702   sqlite3ExprListDelete(pParse->db, $$.pList);
703   sqlite3SelectDelete(pParse->db, $$.pSelect);
704 }
705 valuelist(A) ::= VALUES LP nexprlist(X) RP. {
706   A.pList = X;
707   A.pSelect = 0;
708 }
709 
710 // Since a list of VALUEs is inplemented as a compound SELECT, we have
711 // to disable the value list option if compound SELECTs are disabled.
712 %ifndef SQLITE_OMIT_COMPOUND_SELECT
713 valuelist(A) ::= valuelist(X) COMMA LP exprlist(Y) RP. {
714   Select *pRight = sqlite3SelectNew(pParse, Y, 0, 0, 0, 0, 0, 0, 0, 0);
715   if( X.pList ){
716     X.pSelect = sqlite3SelectNew(pParse, X.pList, 0, 0, 0, 0, 0, 0, 0, 0);
717     X.pList = 0;
718   }
719   A.pList = 0;
720   if( X.pSelect==0 || pRight==0 ){
721     sqlite3SelectDelete(pParse->db, pRight);
722     sqlite3SelectDelete(pParse->db, X.pSelect);
723     A.pSelect = 0;
724   }else{
725     pRight->op = TK_ALL;
726     pRight->pPrior = X.pSelect;
727     pRight->selFlags |= SF_Values;
728     pRight->pPrior->selFlags |= SF_Values;
729     A.pSelect = pRight;
730   }
731 }
732 %endif SQLITE_OMIT_COMPOUND_SELECT
733 
734 %type inscollist_opt {IdList*}
735 %destructor inscollist_opt {sqlite3IdListDelete(pParse->db, $$);}
736 %type inscollist {IdList*}
737 %destructor inscollist {sqlite3IdListDelete(pParse->db, $$);}
738 
739 inscollist_opt(A) ::= .                       {A = 0;}
740 inscollist_opt(A) ::= LP inscollist(X) RP.    {A = X;}
741 inscollist(A) ::= inscollist(X) COMMA nm(Y).
742     {A = sqlite3IdListAppend(pParse->db,X,&Y);}
743 inscollist(A) ::= nm(Y).
744     {A = sqlite3IdListAppend(pParse->db,0,&Y);}
745 
746 /////////////////////////// Expression Processing /////////////////////////////
747 //
748 
749 %type expr {ExprSpan}
750 %destructor expr {sqlite3ExprDelete(pParse->db, $$.pExpr);}
751 %type term {ExprSpan}
752 %destructor term {sqlite3ExprDelete(pParse->db, $$.pExpr);}
753 
754 %include {
755   /* This is a utility routine used to set the ExprSpan.zStart and
756   ** ExprSpan.zEnd values of pOut so that the span covers the complete
757   ** range of text beginning with pStart and going to the end of pEnd.
758   */
759   static void spanSet(ExprSpan *pOut, Token *pStart, Token *pEnd){
760     pOut->zStart = pStart->z;
761     pOut->zEnd = &pEnd->z[pEnd->n];
762   }
763 
764   /* Construct a new Expr object from a single identifier.  Use the
765   ** new Expr to populate pOut.  Set the span of pOut to be the identifier
766   ** that created the expression.
767   */
768   static void spanExpr(ExprSpan *pOut, Parse *pParse, int op, Token *pValue){
769     pOut->pExpr = sqlite3PExpr(pParse, op, 0, 0, pValue);
770     pOut->zStart = pValue->z;
771     pOut->zEnd = &pValue->z[pValue->n];
772   }
773 }
774 
775 expr(A) ::= term(X).             {A = X;}
776 expr(A) ::= LP(B) expr(X) RP(E). {A.pExpr = X.pExpr; spanSet(&A,&B,&E);}
777 term(A) ::= NULL(X).             {spanExpr(&A, pParse, @X, &X);}
778 expr(A) ::= id(X).               {spanExpr(&A, pParse, TK_ID, &X);}
779 expr(A) ::= JOIN_KW(X).          {spanExpr(&A, pParse, TK_ID, &X);}
780 expr(A) ::= nm(X) DOT nm(Y). {
781   Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X);
782   Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y);
783   A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0);
784   spanSet(&A,&X,&Y);
785 }
786 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). {
787   Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X);
788   Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y);
789   Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Z);
790   Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0);
791   A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0);
792   spanSet(&A,&X,&Z);
793 }
794 term(A) ::= INTEGER|FLOAT|BLOB(X).  {spanExpr(&A, pParse, @X, &X);}
795 term(A) ::= STRING(X).              {spanExpr(&A, pParse, @X, &X);}
796 expr(A) ::= REGISTER(X).     {
797   /* When doing a nested parse, one can include terms in an expression
798   ** that look like this:   #1 #2 ...  These terms refer to registers
799   ** in the virtual machine.  #N is the N-th register. */
800   if( pParse->nested==0 ){
801     sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &X);
802     A.pExpr = 0;
803   }else{
804     A.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, &X);
805     if( A.pExpr ) sqlite3GetInt32(&X.z[1], &A.pExpr->iTable);
806   }
807   spanSet(&A, &X, &X);
808 }
809 expr(A) ::= VARIABLE(X).     {
810   spanExpr(&A, pParse, TK_VARIABLE, &X);
811   sqlite3ExprAssignVarNumber(pParse, A.pExpr);
812   spanSet(&A, &X, &X);
813 }
814 expr(A) ::= expr(E) COLLATE ids(C). {
815   A.pExpr = sqlite3ExprSetCollByToken(pParse, E.pExpr, &C);
816   A.zStart = E.zStart;
817   A.zEnd = &C.z[C.n];
818 }
819 %ifndef SQLITE_OMIT_CAST
820 expr(A) ::= CAST(X) LP expr(E) AS typetoken(T) RP(Y). {
821   A.pExpr = sqlite3PExpr(pParse, TK_CAST, E.pExpr, 0, &T);
822   spanSet(&A,&X,&Y);
823 }
824 %endif  SQLITE_OMIT_CAST
825 expr(A) ::= ID(X) LP distinct(D) exprlist(Y) RP(E). {
826   if( Y && Y->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
827     sqlite3ErrorMsg(pParse, "too many arguments on function %T", &X);
828   }
829   A.pExpr = sqlite3ExprFunction(pParse, Y, &X);
830   spanSet(&A,&X,&E);
831   if( D && A.pExpr ){
832     A.pExpr->flags |= EP_Distinct;
833   }
834 }
835 expr(A) ::= ID(X) LP STAR RP(E). {
836   A.pExpr = sqlite3ExprFunction(pParse, 0, &X);
837   spanSet(&A,&X,&E);
838 }
839 term(A) ::= CTIME_KW(OP). {
840   /* The CURRENT_TIME, CURRENT_DATE, and CURRENT_TIMESTAMP values are
841   ** treated as functions that return constants */
842   A.pExpr = sqlite3ExprFunction(pParse, 0,&OP);
843   if( A.pExpr ){
844     A.pExpr->op = TK_CONST_FUNC;
845   }
846   spanSet(&A, &OP, &OP);
847 }
848 
849 %include {
850   /* This routine constructs a binary expression node out of two ExprSpan
851   ** objects and uses the result to populate a new ExprSpan object.
852   */
853   static void spanBinaryExpr(
854     ExprSpan *pOut,     /* Write the result here */
855     Parse *pParse,      /* The parsing context.  Errors accumulate here */
856     int op,             /* The binary operation */
857     ExprSpan *pLeft,    /* The left operand */
858     ExprSpan *pRight    /* The right operand */
859   ){
860     pOut->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr, 0);
861     pOut->zStart = pLeft->zStart;
862     pOut->zEnd = pRight->zEnd;
863   }
864 }
865 
866 expr(A) ::= expr(X) AND(OP) expr(Y).    {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
867 expr(A) ::= expr(X) OR(OP) expr(Y).     {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
868 expr(A) ::= expr(X) LT|GT|GE|LE(OP) expr(Y).
869                                         {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
870 expr(A) ::= expr(X) EQ|NE(OP) expr(Y).  {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
871 expr(A) ::= expr(X) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y).
872                                         {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
873 expr(A) ::= expr(X) PLUS|MINUS(OP) expr(Y).
874                                         {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
875 expr(A) ::= expr(X) STAR|SLASH|REM(OP) expr(Y).
876                                         {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
877 expr(A) ::= expr(X) CONCAT(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
878 %type likeop {struct LikeOp}
879 likeop(A) ::= LIKE_KW(X).     {A.eOperator = X; A.bNot = 0;}
880 likeop(A) ::= NOT LIKE_KW(X). {A.eOperator = X; A.bNot = 1;}
881 likeop(A) ::= MATCH(X).       {A.eOperator = X; A.bNot = 0;}
882 likeop(A) ::= NOT MATCH(X).   {A.eOperator = X; A.bNot = 1;}
883 expr(A) ::= expr(X) likeop(OP) expr(Y).  [LIKE_KW]  {
884   ExprList *pList;
885   pList = sqlite3ExprListAppend(pParse,0, Y.pExpr);
886   pList = sqlite3ExprListAppend(pParse,pList, X.pExpr);
887   A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator);
888   if( OP.bNot ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
889   A.zStart = X.zStart;
890   A.zEnd = Y.zEnd;
891   if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc;
892 }
893 expr(A) ::= expr(X) likeop(OP) expr(Y) ESCAPE expr(E).  [LIKE_KW]  {
894   ExprList *pList;
895   pList = sqlite3ExprListAppend(pParse,0, Y.pExpr);
896   pList = sqlite3ExprListAppend(pParse,pList, X.pExpr);
897   pList = sqlite3ExprListAppend(pParse,pList, E.pExpr);
898   A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator);
899   if( OP.bNot ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
900   A.zStart = X.zStart;
901   A.zEnd = E.zEnd;
902   if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc;
903 }
904 
905 %include {
906   /* Construct an expression node for a unary postfix operator
907   */
908   static void spanUnaryPostfix(
909     ExprSpan *pOut,        /* Write the new expression node here */
910     Parse *pParse,         /* Parsing context to record errors */
911     int op,                /* The operator */
912     ExprSpan *pOperand,    /* The operand */
913     Token *pPostOp         /* The operand token for setting the span */
914   ){
915     pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0);
916     pOut->zStart = pOperand->zStart;
917     pOut->zEnd = &pPostOp->z[pPostOp->n];
918   }
919 }
920 
921 expr(A) ::= expr(X) ISNULL|NOTNULL(E).   {spanUnaryPostfix(&A,pParse,@E,&X,&E);}
922 expr(A) ::= expr(X) NOT NULL(E). {spanUnaryPostfix(&A,pParse,TK_NOTNULL,&X,&E);}
923 
924 %include {
925   /* A routine to convert a binary TK_IS or TK_ISNOT expression into a
926   ** unary TK_ISNULL or TK_NOTNULL expression. */
927   static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){
928     sqlite3 *db = pParse->db;
929     if( db->mallocFailed==0 && pY->op==TK_NULL ){
930       pA->op = (u8)op;
931       sqlite3ExprDelete(db, pA->pRight);
932       pA->pRight = 0;
933     }
934   }
935 }
936 
937 //    expr1 IS expr2
938 //    expr1 IS NOT expr2
939 //
940 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL.  If expr2
941 // is any other expression, code as TK_IS or TK_ISNOT.
942 //
943 expr(A) ::= expr(X) IS expr(Y).     {
944   spanBinaryExpr(&A,pParse,TK_IS,&X,&Y);
945   binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_ISNULL);
946 }
947 expr(A) ::= expr(X) IS NOT expr(Y). {
948   spanBinaryExpr(&A,pParse,TK_ISNOT,&X,&Y);
949   binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_NOTNULL);
950 }
951 
952 %include {
953   /* Construct an expression node for a unary prefix operator
954   */
955   static void spanUnaryPrefix(
956     ExprSpan *pOut,        /* Write the new expression node here */
957     Parse *pParse,         /* Parsing context to record errors */
958     int op,                /* The operator */
959     ExprSpan *pOperand,    /* The operand */
960     Token *pPreOp         /* The operand token for setting the span */
961   ){
962     pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0);
963     pOut->zStart = pPreOp->z;
964     pOut->zEnd = pOperand->zEnd;
965   }
966 }
967 
968 
969 
970 expr(A) ::= NOT(B) expr(X).    {spanUnaryPrefix(&A,pParse,@B,&X,&B);}
971 expr(A) ::= BITNOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);}
972 expr(A) ::= MINUS(B) expr(X). [BITNOT]
973                                {spanUnaryPrefix(&A,pParse,TK_UMINUS,&X,&B);}
974 expr(A) ::= PLUS(B) expr(X). [BITNOT]
975                                {spanUnaryPrefix(&A,pParse,TK_UPLUS,&X,&B);}
976 
977 %type between_op {int}
978 between_op(A) ::= BETWEEN.     {A = 0;}
979 between_op(A) ::= NOT BETWEEN. {A = 1;}
980 expr(A) ::= expr(W) between_op(N) expr(X) AND expr(Y). [BETWEEN] {
981   ExprList *pList = sqlite3ExprListAppend(pParse,0, X.pExpr);
982   pList = sqlite3ExprListAppend(pParse,pList, Y.pExpr);
983   A.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, W.pExpr, 0, 0);
984   if( A.pExpr ){
985     A.pExpr->x.pList = pList;
986   }else{
987     sqlite3ExprListDelete(pParse->db, pList);
988   }
989   if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
990   A.zStart = W.zStart;
991   A.zEnd = Y.zEnd;
992 }
993 %ifndef SQLITE_OMIT_SUBQUERY
994   %type in_op {int}
995   in_op(A) ::= IN.      {A = 0;}
996   in_op(A) ::= NOT IN.  {A = 1;}
997   expr(A) ::= expr(X) in_op(N) LP exprlist(Y) RP(E). [IN] {
998     if( Y==0 ){
999       /* Expressions of the form
1000       **
1001       **      expr1 IN ()
1002       **      expr1 NOT IN ()
1003       **
1004       ** simplify to constants 0 (false) and 1 (true), respectively,
1005       ** regardless of the value of expr1.
1006       */
1007       A.pExpr = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &sqlite3IntTokens[N]);
1008       sqlite3ExprDelete(pParse->db, X.pExpr);
1009     }else{
1010       A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0);
1011       if( A.pExpr ){
1012         A.pExpr->x.pList = Y;
1013         sqlite3ExprSetHeight(pParse, A.pExpr);
1014       }else{
1015         sqlite3ExprListDelete(pParse->db, Y);
1016       }
1017       if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
1018     }
1019     A.zStart = X.zStart;
1020     A.zEnd = &E.z[E.n];
1021   }
1022   expr(A) ::= LP(B) select(X) RP(E). {
1023     A.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0);
1024     if( A.pExpr ){
1025       A.pExpr->x.pSelect = X;
1026       ExprSetProperty(A.pExpr, EP_xIsSelect);
1027       sqlite3ExprSetHeight(pParse, A.pExpr);
1028     }else{
1029       sqlite3SelectDelete(pParse->db, X);
1030     }
1031     A.zStart = B.z;
1032     A.zEnd = &E.z[E.n];
1033   }
1034   expr(A) ::= expr(X) in_op(N) LP select(Y) RP(E).  [IN] {
1035     A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0);
1036     if( A.pExpr ){
1037       A.pExpr->x.pSelect = Y;
1038       ExprSetProperty(A.pExpr, EP_xIsSelect);
1039       sqlite3ExprSetHeight(pParse, A.pExpr);
1040     }else{
1041       sqlite3SelectDelete(pParse->db, Y);
1042     }
1043     if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
1044     A.zStart = X.zStart;
1045     A.zEnd = &E.z[E.n];
1046   }
1047   expr(A) ::= expr(X) in_op(N) nm(Y) dbnm(Z). [IN] {
1048     SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z);
1049     A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0);
1050     if( A.pExpr ){
1051       A.pExpr->x.pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0);
1052       ExprSetProperty(A.pExpr, EP_xIsSelect);
1053       sqlite3ExprSetHeight(pParse, A.pExpr);
1054     }else{
1055       sqlite3SrcListDelete(pParse->db, pSrc);
1056     }
1057     if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
1058     A.zStart = X.zStart;
1059     A.zEnd = Z.z ? &Z.z[Z.n] : &Y.z[Y.n];
1060   }
1061   expr(A) ::= EXISTS(B) LP select(Y) RP(E). {
1062     Expr *p = A.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0);
1063     if( p ){
1064       p->x.pSelect = Y;
1065       ExprSetProperty(p, EP_xIsSelect);
1066       sqlite3ExprSetHeight(pParse, p);
1067     }else{
1068       sqlite3SelectDelete(pParse->db, Y);
1069     }
1070     A.zStart = B.z;
1071     A.zEnd = &E.z[E.n];
1072   }
1073 %endif SQLITE_OMIT_SUBQUERY
1074 
1075 /* CASE expressions */
1076 expr(A) ::= CASE(C) case_operand(X) case_exprlist(Y) case_else(Z) END(E). {
1077   A.pExpr = sqlite3PExpr(pParse, TK_CASE, X, Z, 0);
1078   if( A.pExpr ){
1079     A.pExpr->x.pList = Y;
1080     sqlite3ExprSetHeight(pParse, A.pExpr);
1081   }else{
1082     sqlite3ExprListDelete(pParse->db, Y);
1083   }
1084   A.zStart = C.z;
1085   A.zEnd = &E.z[E.n];
1086 }
1087 %type case_exprlist {ExprList*}
1088 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);}
1089 case_exprlist(A) ::= case_exprlist(X) WHEN expr(Y) THEN expr(Z). {
1090   A = sqlite3ExprListAppend(pParse,X, Y.pExpr);
1091   A = sqlite3ExprListAppend(pParse,A, Z.pExpr);
1092 }
1093 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). {
1094   A = sqlite3ExprListAppend(pParse,0, Y.pExpr);
1095   A = sqlite3ExprListAppend(pParse,A, Z.pExpr);
1096 }
1097 %type case_else {Expr*}
1098 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);}
1099 case_else(A) ::=  ELSE expr(X).         {A = X.pExpr;}
1100 case_else(A) ::=  .                     {A = 0;}
1101 %type case_operand {Expr*}
1102 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);}
1103 case_operand(A) ::= expr(X).            {A = X.pExpr;}
1104 case_operand(A) ::= .                   {A = 0;}
1105 
1106 %type exprlist {ExprList*}
1107 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);}
1108 %type nexprlist {ExprList*}
1109 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);}
1110 
1111 exprlist(A) ::= nexprlist(X).                {A = X;}
1112 exprlist(A) ::= .                            {A = 0;}
1113 nexprlist(A) ::= nexprlist(X) COMMA expr(Y).
1114     {A = sqlite3ExprListAppend(pParse,X,Y.pExpr);}
1115 nexprlist(A) ::= expr(Y).
1116     {A = sqlite3ExprListAppend(pParse,0,Y.pExpr);}
1117 
1118 
1119 ///////////////////////////// The CREATE INDEX command ///////////////////////
1120 //
1121 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D)
1122         ON nm(Y) LP idxlist(Z) RP(E). {
1123   sqlite3CreateIndex(pParse, &X, &D,
1124                      sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U,
1125                       &S, &E, SQLITE_SO_ASC, NE);
1126 }
1127 
1128 %type uniqueflag {int}
1129 uniqueflag(A) ::= UNIQUE.  {A = OE_Abort;}
1130 uniqueflag(A) ::= .        {A = OE_None;}
1131 
1132 %type idxlist {ExprList*}
1133 %destructor idxlist {sqlite3ExprListDelete(pParse->db, $$);}
1134 %type idxlist_opt {ExprList*}
1135 %destructor idxlist_opt {sqlite3ExprListDelete(pParse->db, $$);}
1136 
1137 idxlist_opt(A) ::= .                         {A = 0;}
1138 idxlist_opt(A) ::= LP idxlist(X) RP.         {A = X;}
1139 idxlist(A) ::= idxlist(X) COMMA nm(Y) collate(C) sortorder(Z).  {
1140   Expr *p = 0;
1141   if( C.n>0 ){
1142     p = sqlite3Expr(pParse->db, TK_COLUMN, 0);
1143     sqlite3ExprSetCollByToken(pParse, p, &C);
1144   }
1145   A = sqlite3ExprListAppend(pParse,X, p);
1146   sqlite3ExprListSetName(pParse,A,&Y,1);
1147   sqlite3ExprListCheckLength(pParse, A, "index");
1148   if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z;
1149 }
1150 idxlist(A) ::= nm(Y) collate(C) sortorder(Z). {
1151   Expr *p = 0;
1152   if( C.n>0 ){
1153     p = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0);
1154     sqlite3ExprSetCollByToken(pParse, p, &C);
1155   }
1156   A = sqlite3ExprListAppend(pParse,0, p);
1157   sqlite3ExprListSetName(pParse, A, &Y, 1);
1158   sqlite3ExprListCheckLength(pParse, A, "index");
1159   if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z;
1160 }
1161 
1162 %type collate {Token}
1163 collate(C) ::= .                 {C.z = 0; C.n = 0;}
1164 collate(C) ::= COLLATE ids(X).   {C = X;}
1165 
1166 
1167 ///////////////////////////// The DROP INDEX command /////////////////////////
1168 //
1169 cmd ::= DROP INDEX ifexists(E) fullname(X).   {sqlite3DropIndex(pParse, X, E);}
1170 
1171 ///////////////////////////// The VACUUM command /////////////////////////////
1172 //
1173 %ifndef SQLITE_OMIT_VACUUM
1174 %ifndef SQLITE_OMIT_ATTACH
1175 cmd ::= VACUUM.                {sqlite3Vacuum(pParse);}
1176 cmd ::= VACUUM nm.             {sqlite3Vacuum(pParse);}
1177 %endif  SQLITE_OMIT_ATTACH
1178 %endif  SQLITE_OMIT_VACUUM
1179 
1180 ///////////////////////////// The PRAGMA command /////////////////////////////
1181 //
1182 %ifndef SQLITE_OMIT_PRAGMA
1183 cmd ::= PRAGMA nm(X) dbnm(Z).                {sqlite3Pragma(pParse,&X,&Z,0,0);}
1184 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y).    {sqlite3Pragma(pParse,&X,&Z,&Y,0);}
1185 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);}
1186 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y).
1187                                              {sqlite3Pragma(pParse,&X,&Z,&Y,1);}
1188 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP.
1189                                              {sqlite3Pragma(pParse,&X,&Z,&Y,1);}
1190 
1191 nmnum(A) ::= plus_num(X).             {A = X;}
1192 nmnum(A) ::= nm(X).                   {A = X;}
1193 nmnum(A) ::= ON(X).                   {A = X;}
1194 nmnum(A) ::= DELETE(X).               {A = X;}
1195 nmnum(A) ::= DEFAULT(X).              {A = X;}
1196 %endif SQLITE_OMIT_PRAGMA
1197 plus_num(A) ::= PLUS number(X).       {A = X;}
1198 plus_num(A) ::= number(X).            {A = X;}
1199 minus_num(A) ::= MINUS number(X).     {A = X;}
1200 number(A) ::= INTEGER|FLOAT(X).       {A = X;}
1201 
1202 //////////////////////////// The CREATE TRIGGER command /////////////////////
1203 
1204 %ifndef SQLITE_OMIT_TRIGGER
1205 
1206 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). {
1207   Token all;
1208   all.z = A.z;
1209   all.n = (int)(Z.z - A.z) + Z.n;
1210   sqlite3FinishTrigger(pParse, S, &all);
1211 }
1212 
1213 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z)
1214                     trigger_time(C) trigger_event(D)
1215                     ON fullname(E) foreach_clause when_clause(G). {
1216   sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR);
1217   A = (Z.n==0?B:Z);
1218 }
1219 
1220 %type trigger_time {int}
1221 trigger_time(A) ::= BEFORE.      { A = TK_BEFORE; }
1222 trigger_time(A) ::= AFTER.       { A = TK_AFTER;  }
1223 trigger_time(A) ::= INSTEAD OF.  { A = TK_INSTEAD;}
1224 trigger_time(A) ::= .            { A = TK_BEFORE; }
1225 
1226 %type trigger_event {struct TrigEvent}
1227 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);}
1228 trigger_event(A) ::= DELETE|INSERT(OP).       {A.a = @OP; A.b = 0;}
1229 trigger_event(A) ::= UPDATE(OP).              {A.a = @OP; A.b = 0;}
1230 trigger_event(A) ::= UPDATE OF inscollist(X). {A.a = TK_UPDATE; A.b = X;}
1231 
1232 foreach_clause ::= .
1233 foreach_clause ::= FOR EACH ROW.
1234 
1235 %type when_clause {Expr*}
1236 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);}
1237 when_clause(A) ::= .             { A = 0; }
1238 when_clause(A) ::= WHEN expr(X). { A = X.pExpr; }
1239 
1240 %type trigger_cmd_list {TriggerStep*}
1241 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);}
1242 trigger_cmd_list(A) ::= trigger_cmd_list(Y) trigger_cmd(X) SEMI. {
1243   assert( Y!=0 );
1244   Y->pLast->pNext = X;
1245   Y->pLast = X;
1246   A = Y;
1247 }
1248 trigger_cmd_list(A) ::= trigger_cmd(X) SEMI. {
1249   assert( X!=0 );
1250   X->pLast = X;
1251   A = X;
1252 }
1253 
1254 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements
1255 // within a trigger.  The table to INSERT, UPDATE, or DELETE is always in
1256 // the same database as the table that the trigger fires on.
1257 //
1258 %type trnm {Token}
1259 trnm(A) ::= nm(X).   {A = X;}
1260 trnm(A) ::= nm DOT nm(X). {
1261   A = X;
1262   sqlite3ErrorMsg(pParse,
1263         "qualified table names are not allowed on INSERT, UPDATE, and DELETE "
1264         "statements within triggers");
1265 }
1266 
1267 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE
1268 // statements within triggers.  We make a specific error message for this
1269 // since it is an exception to the default grammar rules.
1270 //
1271 tridxby ::= .
1272 tridxby ::= INDEXED BY nm. {
1273   sqlite3ErrorMsg(pParse,
1274         "the INDEXED BY clause is not allowed on UPDATE or DELETE statements "
1275         "within triggers");
1276 }
1277 tridxby ::= NOT INDEXED. {
1278   sqlite3ErrorMsg(pParse,
1279         "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements "
1280         "within triggers");
1281 }
1282 
1283 
1284 
1285 %type trigger_cmd {TriggerStep*}
1286 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);}
1287 // UPDATE
1288 trigger_cmd(A) ::=
1289    UPDATE orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z).
1290    { A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R); }
1291 
1292 // INSERT
1293 trigger_cmd(A) ::=
1294    insert_cmd(R) INTO trnm(X) inscollist_opt(F) valuelist(Y).
1295    {A = sqlite3TriggerInsertStep(pParse->db, &X, F, Y.pList, Y.pSelect, R);}
1296 
1297 trigger_cmd(A) ::= insert_cmd(R) INTO trnm(X) inscollist_opt(F) select(S).
1298                {A = sqlite3TriggerInsertStep(pParse->db, &X, F, 0, S, R);}
1299 
1300 // DELETE
1301 trigger_cmd(A) ::= DELETE FROM trnm(X) tridxby where_opt(Y).
1302                {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y);}
1303 
1304 // SELECT
1305 trigger_cmd(A) ::= select(X).  {A = sqlite3TriggerSelectStep(pParse->db, X); }
1306 
1307 // The special RAISE expression that may occur in trigger programs
1308 expr(A) ::= RAISE(X) LP IGNORE RP(Y).  {
1309   A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0);
1310   if( A.pExpr ){
1311     A.pExpr->affinity = OE_Ignore;
1312   }
1313   A.zStart = X.z;
1314   A.zEnd = &Y.z[Y.n];
1315 }
1316 expr(A) ::= RAISE(X) LP raisetype(T) COMMA nm(Z) RP(Y).  {
1317   A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &Z);
1318   if( A.pExpr ) {
1319     A.pExpr->affinity = (char)T;
1320   }
1321   A.zStart = X.z;
1322   A.zEnd = &Y.z[Y.n];
1323 }
1324 %endif  !SQLITE_OMIT_TRIGGER
1325 
1326 %type raisetype {int}
1327 raisetype(A) ::= ROLLBACK.  {A = OE_Rollback;}
1328 raisetype(A) ::= ABORT.     {A = OE_Abort;}
1329 raisetype(A) ::= FAIL.      {A = OE_Fail;}
1330 
1331 
1332 ////////////////////////  DROP TRIGGER statement //////////////////////////////
1333 %ifndef SQLITE_OMIT_TRIGGER
1334 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). {
1335   sqlite3DropTrigger(pParse,X,NOERR);
1336 }
1337 %endif  !SQLITE_OMIT_TRIGGER
1338 
1339 //////////////////////// ATTACH DATABASE file AS name /////////////////////////
1340 %ifndef SQLITE_OMIT_ATTACH
1341 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). {
1342   sqlite3Attach(pParse, F.pExpr, D.pExpr, K);
1343 }
1344 cmd ::= DETACH database_kw_opt expr(D). {
1345   sqlite3Detach(pParse, D.pExpr);
1346 }
1347 
1348 %type key_opt {Expr*}
1349 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);}
1350 key_opt(A) ::= .                     { A = 0; }
1351 key_opt(A) ::= KEY expr(X).          { A = X.pExpr; }
1352 
1353 database_kw_opt ::= DATABASE.
1354 database_kw_opt ::= .
1355 %endif SQLITE_OMIT_ATTACH
1356 
1357 ////////////////////////// REINDEX collation //////////////////////////////////
1358 %ifndef SQLITE_OMIT_REINDEX
1359 cmd ::= REINDEX.                {sqlite3Reindex(pParse, 0, 0);}
1360 cmd ::= REINDEX nm(X) dbnm(Y).  {sqlite3Reindex(pParse, &X, &Y);}
1361 %endif  SQLITE_OMIT_REINDEX
1362 
1363 /////////////////////////////////// ANALYZE ///////////////////////////////////
1364 %ifndef SQLITE_OMIT_ANALYZE
1365 cmd ::= ANALYZE.                {sqlite3Analyze(pParse, 0, 0);}
1366 cmd ::= ANALYZE nm(X) dbnm(Y).  {sqlite3Analyze(pParse, &X, &Y);}
1367 %endif
1368 
1369 //////////////////////// ALTER TABLE table ... ////////////////////////////////
1370 %ifndef SQLITE_OMIT_ALTERTABLE
1371 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). {
1372   sqlite3AlterRenameTable(pParse,X,&Z);
1373 }
1374 cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column(Y). {
1375   sqlite3AlterFinishAddColumn(pParse, &Y);
1376 }
1377 add_column_fullname ::= fullname(X). {
1378   pParse->db->lookaside.bEnabled = 0;
1379   sqlite3AlterBeginAddColumn(pParse, X);
1380 }
1381 kwcolumn_opt ::= .
1382 kwcolumn_opt ::= COLUMNKW.
1383 %endif  SQLITE_OMIT_ALTERTABLE
1384 
1385 //////////////////////// CREATE VIRTUAL TABLE ... /////////////////////////////
1386 %ifndef SQLITE_OMIT_VIRTUALTABLE
1387 cmd ::= create_vtab.                       {sqlite3VtabFinishParse(pParse,0);}
1388 cmd ::= create_vtab LP vtabarglist RP(X).  {sqlite3VtabFinishParse(pParse,&X);}
1389 create_vtab ::= createkw VIRTUAL TABLE ifnotexists(E)
1390                 nm(X) dbnm(Y) USING nm(Z). {
1391     sqlite3VtabBeginParse(pParse, &X, &Y, &Z, E);
1392 }
1393 vtabarglist ::= vtabarg.
1394 vtabarglist ::= vtabarglist COMMA vtabarg.
1395 vtabarg ::= .                       {sqlite3VtabArgInit(pParse);}
1396 vtabarg ::= vtabarg vtabargtoken.
1397 vtabargtoken ::= ANY(X).            {sqlite3VtabArgExtend(pParse,&X);}
1398 vtabargtoken ::= lp anylist RP(X).  {sqlite3VtabArgExtend(pParse,&X);}
1399 lp ::= LP(X).                       {sqlite3VtabArgExtend(pParse,&X);}
1400 anylist ::= .
1401 anylist ::= anylist LP anylist RP.
1402 anylist ::= anylist ANY.
1403 %endif  SQLITE_OMIT_VIRTUALTABLE
1404