1 %include { 2 /* 3 ** 2001-09-15 4 ** 5 ** The author disclaims copyright to this source code. In place of 6 ** a legal notice, here is a blessing: 7 ** 8 ** May you do good and not evil. 9 ** May you find forgiveness for yourself and forgive others. 10 ** May you share freely, never taking more than you give. 11 ** 12 ************************************************************************* 13 ** This file contains SQLite's SQL parser. 14 ** 15 ** The canonical source code to this file ("parse.y") is a Lemon grammar 16 ** file that specifies the input grammar and actions to take while parsing. 17 ** That input file is processed by Lemon to generate a C-language 18 ** implementation of a parser for the given grammer. You might be reading 19 ** this comment as part of the translated C-code. Edits should be made 20 ** to the original parse.y sources. 21 */ 22 } 23 24 // All token codes are small integers with #defines that begin with "TK_" 25 %token_prefix TK_ 26 27 // The type of the data attached to each token is Token. This is also the 28 // default type for non-terminals. 29 // 30 %token_type {Token} 31 %default_type {Token} 32 33 // An extra argument to the constructor for the parser, which is available 34 // to all actions. 35 %extra_context {Parse *pParse} 36 37 // This code runs whenever there is a syntax error 38 // 39 %syntax_error { 40 UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */ 41 if( TOKEN.z[0] ){ 42 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN); 43 }else{ 44 sqlite3ErrorMsg(pParse, "incomplete input"); 45 } 46 } 47 %stack_overflow { 48 sqlite3ErrorMsg(pParse, "parser stack overflow"); 49 } 50 51 // The name of the generated procedure that implements the parser 52 // is as follows: 53 %name sqlite3Parser 54 55 // The following text is included near the beginning of the C source 56 // code file that implements the parser. 57 // 58 %include { 59 #include "sqliteInt.h" 60 61 /* 62 ** Disable all error recovery processing in the parser push-down 63 ** automaton. 64 */ 65 #define YYNOERRORRECOVERY 1 66 67 /* 68 ** Make yytestcase() the same as testcase() 69 */ 70 #define yytestcase(X) testcase(X) 71 72 /* 73 ** Indicate that sqlite3ParserFree() will never be called with a null 74 ** pointer. 75 */ 76 #define YYPARSEFREENEVERNULL 1 77 78 /* 79 ** In the amalgamation, the parse.c file generated by lemon and the 80 ** tokenize.c file are concatenated. In that case, sqlite3RunParser() 81 ** has access to the the size of the yyParser object and so the parser 82 ** engine can be allocated from stack. In that case, only the 83 ** sqlite3ParserInit() and sqlite3ParserFinalize() routines are invoked 84 ** and the sqlite3ParserAlloc() and sqlite3ParserFree() routines can be 85 ** omitted. 86 */ 87 #ifdef SQLITE_AMALGAMATION 88 # define sqlite3Parser_ENGINEALWAYSONSTACK 1 89 #endif 90 91 /* 92 ** Alternative datatype for the argument to the malloc() routine passed 93 ** into sqlite3ParserAlloc(). The default is size_t. 94 */ 95 #define YYMALLOCARGTYPE u64 96 97 /* 98 ** An instance of the following structure describes the event of a 99 ** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT, 100 ** TK_DELETE, or TK_INSTEAD. If the event is of the form 101 ** 102 ** UPDATE ON (a,b,c) 103 ** 104 ** Then the "b" IdList records the list "a,b,c". 105 */ 106 struct TrigEvent { int a; IdList * b; }; 107 108 struct FrameBound { int eType; Expr *pExpr; }; 109 110 /* 111 ** Disable lookaside memory allocation for objects that might be 112 ** shared across database connections. 113 */ 114 static void disableLookaside(Parse *pParse){ 115 sqlite3 *db = pParse->db; 116 pParse->disableLookaside++; 117 DisableLookaside; 118 } 119 120 #if !defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) \ 121 && defined(SQLITE_UDL_CAPABLE_PARSER) 122 /* 123 ** Issue an error message if an ORDER BY or LIMIT clause occurs on an 124 ** UPDATE or DELETE statement. 125 */ 126 static void updateDeleteLimitError( 127 Parse *pParse, 128 ExprList *pOrderBy, 129 Expr *pLimit 130 ){ 131 if( pOrderBy ){ 132 sqlite3ErrorMsg(pParse, "syntax error near \"ORDER BY\""); 133 }else{ 134 sqlite3ErrorMsg(pParse, "syntax error near \"LIMIT\""); 135 } 136 sqlite3ExprListDelete(pParse->db, pOrderBy); 137 sqlite3ExprDelete(pParse->db, pLimit); 138 } 139 #endif /* SQLITE_ENABLE_UPDATE_DELETE_LIMIT */ 140 141 } // end %include 142 143 // Input is a single SQL command 144 input ::= cmdlist. 145 cmdlist ::= cmdlist ecmd. 146 cmdlist ::= ecmd. 147 ecmd ::= SEMI. 148 ecmd ::= cmdx SEMI. 149 %ifndef SQLITE_OMIT_EXPLAIN 150 ecmd ::= explain cmdx SEMI. {NEVER-REDUCE} 151 explain ::= EXPLAIN. { pParse->explain = 1; } 152 explain ::= EXPLAIN QUERY PLAN. { pParse->explain = 2; } 153 %endif SQLITE_OMIT_EXPLAIN 154 cmdx ::= cmd. { sqlite3FinishCoding(pParse); } 155 156 ///////////////////// Begin and end transactions. //////////////////////////// 157 // 158 159 cmd ::= BEGIN transtype(Y) trans_opt. {sqlite3BeginTransaction(pParse, Y);} 160 trans_opt ::= . 161 trans_opt ::= TRANSACTION. 162 trans_opt ::= TRANSACTION nm. 163 %type transtype {int} 164 transtype(A) ::= . {A = TK_DEFERRED;} 165 transtype(A) ::= DEFERRED(X). {A = @X; /*A-overwrites-X*/} 166 transtype(A) ::= IMMEDIATE(X). {A = @X; /*A-overwrites-X*/} 167 transtype(A) ::= EXCLUSIVE(X). {A = @X; /*A-overwrites-X*/} 168 cmd ::= COMMIT|END(X) trans_opt. {sqlite3EndTransaction(pParse,@X);} 169 cmd ::= ROLLBACK(X) trans_opt. {sqlite3EndTransaction(pParse,@X);} 170 171 savepoint_opt ::= SAVEPOINT. 172 savepoint_opt ::= . 173 cmd ::= SAVEPOINT nm(X). { 174 sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X); 175 } 176 cmd ::= RELEASE savepoint_opt nm(X). { 177 sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X); 178 } 179 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). { 180 sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X); 181 } 182 183 ///////////////////// The CREATE TABLE statement //////////////////////////// 184 // 185 cmd ::= create_table create_table_args. 186 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). { 187 sqlite3StartTable(pParse,&Y,&Z,T,0,0,E); 188 } 189 createkw(A) ::= CREATE(A). {disableLookaside(pParse);} 190 191 %type ifnotexists {int} 192 ifnotexists(A) ::= . {A = 0;} 193 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;} 194 %type temp {int} 195 %ifndef SQLITE_OMIT_TEMPDB 196 temp(A) ::= TEMP. {A = pParse->db->init.busy==0;} 197 %endif SQLITE_OMIT_TEMPDB 198 temp(A) ::= . {A = 0;} 199 create_table_args ::= LP columnlist conslist_opt(X) RP(E) table_option_set(F). { 200 sqlite3EndTable(pParse,&X,&E,F,0); 201 } 202 create_table_args ::= AS select(S). { 203 sqlite3EndTable(pParse,0,0,0,S); 204 sqlite3SelectDelete(pParse->db, S); 205 } 206 %type table_option_set {u32} 207 %type table_option {u32} 208 table_option_set(A) ::= . {A = 0;} 209 table_option_set(A) ::= table_option(A). 210 table_option_set(A) ::= table_option_set(X) COMMA table_option(Y). {A = X|Y;} 211 table_option(A) ::= WITHOUT nm(X). { 212 if( X.n==5 && sqlite3_strnicmp(X.z,"rowid",5)==0 ){ 213 A = TF_WithoutRowid | TF_NoVisibleRowid; 214 }else{ 215 A = 0; 216 sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z); 217 } 218 } 219 table_option(A) ::= nm(X). { 220 if( X.n==6 && sqlite3_strnicmp(X.z,"strict",6)==0 ){ 221 A = TF_Strict; 222 }else{ 223 A = 0; 224 sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z); 225 } 226 } 227 columnlist ::= columnlist COMMA columnname carglist. 228 columnlist ::= columnname carglist. 229 columnname(A) ::= nm(A) typetoken(Y). {sqlite3AddColumn(pParse,A,Y);} 230 231 // Declare some tokens early in order to influence their values, to 232 // improve performance and reduce the executable size. The goal here is 233 // to get the "jump" operations in ISNULL through ESCAPE to have numeric 234 // values that are early enough so that all jump operations are clustered 235 // at the beginning. 236 // 237 %token ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST. 238 %token CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL. 239 %token OR AND NOT IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. 240 %token GT LE LT GE ESCAPE. 241 242 // The following directive causes tokens ABORT, AFTER, ASC, etc. to 243 // fallback to ID if they will not parse as their original value. 244 // This obviates the need for the "id" nonterminal. 245 // 246 %fallback ID 247 ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW 248 CONFLICT DATABASE DEFERRED DESC DETACH DO 249 EACH END EXCLUSIVE EXPLAIN FAIL FOR 250 IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN 251 QUERY KEY OF OFFSET PRAGMA RAISE RECURSIVE RELEASE REPLACE RESTRICT ROW ROWS 252 ROLLBACK SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL WITH WITHOUT 253 NULLS FIRST LAST 254 %ifdef SQLITE_OMIT_COMPOUND_SELECT 255 EXCEPT INTERSECT UNION 256 %endif SQLITE_OMIT_COMPOUND_SELECT 257 %ifndef SQLITE_OMIT_WINDOWFUNC 258 CURRENT FOLLOWING PARTITION PRECEDING RANGE UNBOUNDED 259 EXCLUDE GROUPS OTHERS TIES 260 %endif SQLITE_OMIT_WINDOWFUNC 261 %ifndef SQLITE_OMIT_GENERATED_COLUMNS 262 GENERATED ALWAYS 263 %endif 264 MATERIALIZED 265 REINDEX RENAME CTIME_KW IF 266 . 267 %wildcard ANY. 268 269 // Define operator precedence early so that this is the first occurrence 270 // of the operator tokens in the grammer. Keeping the operators together 271 // causes them to be assigned integer values that are close together, 272 // which keeps parser tables smaller. 273 // 274 // The token values assigned to these symbols is determined by the order 275 // in which lemon first sees them. It must be the case that ISNULL/NOTNULL, 276 // NE/EQ, GT/LE, and GE/LT are separated by only a single value. See 277 // the sqlite3ExprIfFalse() routine for additional information on this 278 // constraint. 279 // 280 %left OR. 281 %left AND. 282 %right NOT. 283 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. 284 %left GT LE LT GE. 285 %right ESCAPE. 286 %left BITAND BITOR LSHIFT RSHIFT. 287 %left PLUS MINUS. 288 %left STAR SLASH REM. 289 %left CONCAT PTR. 290 %left COLLATE. 291 %right BITNOT. 292 %nonassoc ON. 293 294 // An IDENTIFIER can be a generic identifier, or one of several 295 // keywords. Any non-standard keyword can also be an identifier. 296 // 297 %token_class id ID|INDEXED. 298 299 300 // And "ids" is an identifer-or-string. 301 // 302 %token_class ids ID|STRING. 303 304 // The name of a column or table can be any of the following: 305 // 306 %type nm {Token} 307 nm(A) ::= id(A). 308 nm(A) ::= STRING(A). 309 nm(A) ::= JOIN_KW(A). 310 311 // A typetoken is really zero or more tokens that form a type name such 312 // as can be found after the column name in a CREATE TABLE statement. 313 // Multiple tokens are concatenated to form the value of the typetoken. 314 // 315 %type typetoken {Token} 316 typetoken(A) ::= . {A.n = 0; A.z = 0;} 317 typetoken(A) ::= typename(A). 318 typetoken(A) ::= typename(A) LP signed RP(Y). { 319 A.n = (int)(&Y.z[Y.n] - A.z); 320 } 321 typetoken(A) ::= typename(A) LP signed COMMA signed RP(Y). { 322 A.n = (int)(&Y.z[Y.n] - A.z); 323 } 324 %type typename {Token} 325 typename(A) ::= ids(A). 326 typename(A) ::= typename(A) ids(Y). {A.n=Y.n+(int)(Y.z-A.z);} 327 signed ::= plus_num. 328 signed ::= minus_num. 329 330 // The scanpt non-terminal takes a value which is a pointer to the 331 // input text just past the last token that has been shifted into 332 // the parser. By surrounding some phrase in the grammar with two 333 // scanpt non-terminals, we can capture the input text for that phrase. 334 // For example: 335 // 336 // something ::= .... scanpt(A) phrase scanpt(Z). 337 // 338 // The text that is parsed as "phrase" is a string starting at A 339 // and containing (int)(Z-A) characters. There might be some extra 340 // whitespace on either end of the text, but that can be removed in 341 // post-processing, if needed. 342 // 343 %type scanpt {const char*} 344 scanpt(A) ::= . { 345 assert( yyLookahead!=YYNOCODE ); 346 A = yyLookaheadToken.z; 347 } 348 scantok(A) ::= . { 349 assert( yyLookahead!=YYNOCODE ); 350 A = yyLookaheadToken; 351 } 352 353 // "carglist" is a list of additional constraints that come after the 354 // column name and column type in a CREATE TABLE statement. 355 // 356 carglist ::= carglist ccons. 357 carglist ::= . 358 ccons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} 359 ccons ::= DEFAULT scantok(A) term(X). 360 {sqlite3AddDefaultValue(pParse,X,A.z,&A.z[A.n]);} 361 ccons ::= DEFAULT LP(A) expr(X) RP(Z). 362 {sqlite3AddDefaultValue(pParse,X,A.z+1,Z.z);} 363 ccons ::= DEFAULT PLUS(A) scantok(Z) term(X). 364 {sqlite3AddDefaultValue(pParse,X,A.z,&Z.z[Z.n]);} 365 ccons ::= DEFAULT MINUS(A) scantok(Z) term(X). { 366 Expr *p = sqlite3PExpr(pParse, TK_UMINUS, X, 0); 367 sqlite3AddDefaultValue(pParse,p,A.z,&Z.z[Z.n]); 368 } 369 ccons ::= DEFAULT scantok id(X). { 370 Expr *p = tokenExpr(pParse, TK_STRING, X); 371 if( p ){ 372 sqlite3ExprIdToTrueFalse(p); 373 testcase( p->op==TK_TRUEFALSE && sqlite3ExprTruthValue(p) ); 374 } 375 sqlite3AddDefaultValue(pParse,p,X.z,X.z+X.n); 376 } 377 378 // In addition to the type name, we also care about the primary key and 379 // UNIQUE constraints. 380 // 381 ccons ::= NULL onconf. 382 ccons ::= NOT NULL onconf(R). {sqlite3AddNotNull(pParse, R);} 383 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I). 384 {sqlite3AddPrimaryKey(pParse,0,R,I,Z);} 385 ccons ::= UNIQUE onconf(R). {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0, 386 SQLITE_IDXTYPE_UNIQUE);} 387 ccons ::= CHECK LP(A) expr(X) RP(B). {sqlite3AddCheckConstraint(pParse,X,A.z,B.z);} 388 ccons ::= REFERENCES nm(T) eidlist_opt(TA) refargs(R). 389 {sqlite3CreateForeignKey(pParse,0,&T,TA,R);} 390 ccons ::= defer_subclause(D). {sqlite3DeferForeignKey(pParse,D);} 391 ccons ::= COLLATE ids(C). {sqlite3AddCollateType(pParse, &C);} 392 ccons ::= GENERATED ALWAYS AS generated. 393 ccons ::= AS generated. 394 generated ::= LP expr(E) RP. {sqlite3AddGenerated(pParse,E,0);} 395 generated ::= LP expr(E) RP ID(TYPE). {sqlite3AddGenerated(pParse,E,&TYPE);} 396 397 // The optional AUTOINCREMENT keyword 398 %type autoinc {int} 399 autoinc(X) ::= . {X = 0;} 400 autoinc(X) ::= AUTOINCR. {X = 1;} 401 402 // The next group of rules parses the arguments to a REFERENCES clause 403 // that determine if the referential integrity checking is deferred or 404 // or immediate and which determine what action to take if a ref-integ 405 // check fails. 406 // 407 %type refargs {int} 408 refargs(A) ::= . { A = OE_None*0x0101; /* EV: R-19803-45884 */} 409 refargs(A) ::= refargs(A) refarg(Y). { A = (A & ~Y.mask) | Y.value; } 410 %type refarg {struct {int value; int mask;}} 411 refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; } 412 refarg(A) ::= ON INSERT refact. { A.value = 0; A.mask = 0x000000; } 413 refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; } 414 refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; } 415 %type refact {int} 416 refact(A) ::= SET NULL. { A = OE_SetNull; /* EV: R-33326-45252 */} 417 refact(A) ::= SET DEFAULT. { A = OE_SetDflt; /* EV: R-33326-45252 */} 418 refact(A) ::= CASCADE. { A = OE_Cascade; /* EV: R-33326-45252 */} 419 refact(A) ::= RESTRICT. { A = OE_Restrict; /* EV: R-33326-45252 */} 420 refact(A) ::= NO ACTION. { A = OE_None; /* EV: R-33326-45252 */} 421 %type defer_subclause {int} 422 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt. {A = 0;} 423 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;} 424 %type init_deferred_pred_opt {int} 425 init_deferred_pred_opt(A) ::= . {A = 0;} 426 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;} 427 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;} 428 429 conslist_opt(A) ::= . {A.n = 0; A.z = 0;} 430 conslist_opt(A) ::= COMMA(A) conslist. 431 conslist ::= conslist tconscomma tcons. 432 conslist ::= tcons. 433 tconscomma ::= COMMA. {pParse->constraintName.n = 0;} 434 tconscomma ::= . 435 tcons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} 436 tcons ::= PRIMARY KEY LP sortlist(X) autoinc(I) RP onconf(R). 437 {sqlite3AddPrimaryKey(pParse,X,R,I,0);} 438 tcons ::= UNIQUE LP sortlist(X) RP onconf(R). 439 {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0, 440 SQLITE_IDXTYPE_UNIQUE);} 441 tcons ::= CHECK LP(A) expr(E) RP(B) onconf. 442 {sqlite3AddCheckConstraint(pParse,E,A.z,B.z);} 443 tcons ::= FOREIGN KEY LP eidlist(FA) RP 444 REFERENCES nm(T) eidlist_opt(TA) refargs(R) defer_subclause_opt(D). { 445 sqlite3CreateForeignKey(pParse, FA, &T, TA, R); 446 sqlite3DeferForeignKey(pParse, D); 447 } 448 %type defer_subclause_opt {int} 449 defer_subclause_opt(A) ::= . {A = 0;} 450 defer_subclause_opt(A) ::= defer_subclause(A). 451 452 // The following is a non-standard extension that allows us to declare the 453 // default behavior when there is a constraint conflict. 454 // 455 %type onconf {int} 456 %type orconf {int} 457 %type resolvetype {int} 458 onconf(A) ::= . {A = OE_Default;} 459 onconf(A) ::= ON CONFLICT resolvetype(X). {A = X;} 460 orconf(A) ::= . {A = OE_Default;} 461 orconf(A) ::= OR resolvetype(X). {A = X;} 462 resolvetype(A) ::= raisetype(A). 463 resolvetype(A) ::= IGNORE. {A = OE_Ignore;} 464 resolvetype(A) ::= REPLACE. {A = OE_Replace;} 465 466 ////////////////////////// The DROP TABLE ///////////////////////////////////// 467 // 468 cmd ::= DROP TABLE ifexists(E) fullname(X). { 469 sqlite3DropTable(pParse, X, 0, E); 470 } 471 %type ifexists {int} 472 ifexists(A) ::= IF EXISTS. {A = 1;} 473 ifexists(A) ::= . {A = 0;} 474 475 ///////////////////// The CREATE VIEW statement ///////////////////////////// 476 // 477 %ifndef SQLITE_OMIT_VIEW 478 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) eidlist_opt(C) 479 AS select(S). { 480 sqlite3CreateView(pParse, &X, &Y, &Z, C, S, T, E); 481 } 482 cmd ::= DROP VIEW ifexists(E) fullname(X). { 483 sqlite3DropTable(pParse, X, 1, E); 484 } 485 %endif SQLITE_OMIT_VIEW 486 487 //////////////////////// The SELECT statement ///////////////////////////////// 488 // 489 cmd ::= select(X). { 490 SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0, 0}; 491 sqlite3Select(pParse, X, &dest); 492 sqlite3SelectDelete(pParse->db, X); 493 } 494 495 %type select {Select*} 496 %destructor select {sqlite3SelectDelete(pParse->db, $$);} 497 %type selectnowith {Select*} 498 %destructor selectnowith {sqlite3SelectDelete(pParse->db, $$);} 499 %type oneselect {Select*} 500 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);} 501 502 %include { 503 /* 504 ** For a compound SELECT statement, make sure p->pPrior->pNext==p for 505 ** all elements in the list. And make sure list length does not exceed 506 ** SQLITE_LIMIT_COMPOUND_SELECT. 507 */ 508 static void parserDoubleLinkSelect(Parse *pParse, Select *p){ 509 assert( p!=0 ); 510 if( p->pPrior ){ 511 Select *pNext = 0, *pLoop = p; 512 int mxSelect, cnt = 1; 513 while(1){ 514 pLoop->pNext = pNext; 515 pLoop->selFlags |= SF_Compound; 516 pNext = pLoop; 517 pLoop = pLoop->pPrior; 518 if( pLoop==0 ) break; 519 cnt++; 520 if( pLoop->pOrderBy || pLoop->pLimit ){ 521 sqlite3ErrorMsg(pParse,"%s clause should come after %s not before", 522 pLoop->pOrderBy!=0 ? "ORDER BY" : "LIMIT", 523 sqlite3SelectOpName(pNext->op)); 524 break; 525 } 526 } 527 if( (p->selFlags & SF_MultiValue)==0 && 528 (mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT])>0 && 529 cnt>mxSelect 530 ){ 531 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 532 } 533 } 534 } 535 536 /* Attach a With object describing the WITH clause to a Select 537 ** object describing the query for which the WITH clause is a prefix. 538 */ 539 static Select *attachWithToSelect(Parse *pParse, Select *pSelect, With *pWith){ 540 if( pSelect ){ 541 pSelect->pWith = pWith; 542 parserDoubleLinkSelect(pParse, pSelect); 543 }else{ 544 sqlite3WithDelete(pParse->db, pWith); 545 } 546 return pSelect; 547 } 548 } 549 550 %ifndef SQLITE_OMIT_CTE 551 select(A) ::= WITH wqlist(W) selectnowith(X). {A = attachWithToSelect(pParse,X,W);} 552 select(A) ::= WITH RECURSIVE wqlist(W) selectnowith(X). 553 {A = attachWithToSelect(pParse,X,W);} 554 %endif /* SQLITE_OMIT_CTE */ 555 select(A) ::= selectnowith(X). { 556 Select *p = X; 557 if( p ){ 558 parserDoubleLinkSelect(pParse, p); 559 } 560 A = p; /*A-overwrites-X*/ 561 } 562 563 selectnowith(A) ::= oneselect(A). 564 %ifndef SQLITE_OMIT_COMPOUND_SELECT 565 selectnowith(A) ::= selectnowith(A) multiselect_op(Y) oneselect(Z). { 566 Select *pRhs = Z; 567 Select *pLhs = A; 568 if( pRhs && pRhs->pPrior ){ 569 SrcList *pFrom; 570 Token x; 571 x.n = 0; 572 parserDoubleLinkSelect(pParse, pRhs); 573 pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0); 574 pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0); 575 } 576 if( pRhs ){ 577 pRhs->op = (u8)Y; 578 pRhs->pPrior = pLhs; 579 if( ALWAYS(pLhs) ) pLhs->selFlags &= ~SF_MultiValue; 580 pRhs->selFlags &= ~SF_MultiValue; 581 if( Y!=TK_ALL ) pParse->hasCompound = 1; 582 }else{ 583 sqlite3SelectDelete(pParse->db, pLhs); 584 } 585 A = pRhs; 586 } 587 %type multiselect_op {int} 588 multiselect_op(A) ::= UNION(OP). {A = @OP; /*A-overwrites-OP*/} 589 multiselect_op(A) ::= UNION ALL. {A = TK_ALL;} 590 multiselect_op(A) ::= EXCEPT|INTERSECT(OP). {A = @OP; /*A-overwrites-OP*/} 591 %endif SQLITE_OMIT_COMPOUND_SELECT 592 593 oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y) 594 groupby_opt(P) having_opt(Q) 595 orderby_opt(Z) limit_opt(L). { 596 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L); 597 } 598 %ifndef SQLITE_OMIT_WINDOWFUNC 599 oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y) 600 groupby_opt(P) having_opt(Q) window_clause(R) 601 orderby_opt(Z) limit_opt(L). { 602 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L); 603 if( A ){ 604 A->pWinDefn = R; 605 }else{ 606 sqlite3WindowListDelete(pParse->db, R); 607 } 608 } 609 %endif 610 611 612 oneselect(A) ::= values(A). 613 614 %type values {Select*} 615 %destructor values {sqlite3SelectDelete(pParse->db, $$);} 616 values(A) ::= VALUES LP nexprlist(X) RP. { 617 A = sqlite3SelectNew(pParse,X,0,0,0,0,0,SF_Values,0); 618 } 619 values(A) ::= values(A) COMMA LP nexprlist(Y) RP. { 620 Select *pRight, *pLeft = A; 621 pRight = sqlite3SelectNew(pParse,Y,0,0,0,0,0,SF_Values|SF_MultiValue,0); 622 if( ALWAYS(pLeft) ) pLeft->selFlags &= ~SF_MultiValue; 623 if( pRight ){ 624 pRight->op = TK_ALL; 625 pRight->pPrior = pLeft; 626 A = pRight; 627 }else{ 628 A = pLeft; 629 } 630 } 631 632 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is 633 // present and false (0) if it is not. 634 // 635 %type distinct {int} 636 distinct(A) ::= DISTINCT. {A = SF_Distinct;} 637 distinct(A) ::= ALL. {A = SF_All;} 638 distinct(A) ::= . {A = 0;} 639 640 // selcollist is a list of expressions that are to become the return 641 // values of the SELECT statement. The "*" in statements like 642 // "SELECT * FROM ..." is encoded as a special expression with an 643 // opcode of TK_ASTERISK. 644 // 645 %type selcollist {ExprList*} 646 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);} 647 %type sclp {ExprList*} 648 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);} 649 sclp(A) ::= selcollist(A) COMMA. 650 sclp(A) ::= . {A = 0;} 651 selcollist(A) ::= sclp(A) scanpt(B) expr(X) scanpt(Z) as(Y). { 652 A = sqlite3ExprListAppend(pParse, A, X); 653 if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1); 654 sqlite3ExprListSetSpan(pParse,A,B,Z); 655 } 656 selcollist(A) ::= sclp(A) scanpt STAR. { 657 Expr *p = sqlite3Expr(pParse->db, TK_ASTERISK, 0); 658 A = sqlite3ExprListAppend(pParse, A, p); 659 } 660 selcollist(A) ::= sclp(A) scanpt nm(X) DOT STAR. { 661 Expr *pRight = sqlite3PExpr(pParse, TK_ASTERISK, 0, 0); 662 Expr *pLeft = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1); 663 Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 664 A = sqlite3ExprListAppend(pParse,A, pDot); 665 } 666 667 // An option "AS <id>" phrase that can follow one of the expressions that 668 // define the result set, or one of the tables in the FROM clause. 669 // 670 %type as {Token} 671 as(X) ::= AS nm(Y). {X = Y;} 672 as(X) ::= ids(X). 673 as(X) ::= . {X.n = 0; X.z = 0;} 674 675 676 %type seltablist {SrcList*} 677 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);} 678 %type stl_prefix {SrcList*} 679 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);} 680 %type from {SrcList*} 681 %destructor from {sqlite3SrcListDelete(pParse->db, $$);} 682 683 // A complete FROM clause. 684 // 685 from(A) ::= . {A = 0;} 686 from(A) ::= FROM seltablist(X). { 687 A = X; 688 sqlite3SrcListShiftJoinType(A); 689 } 690 691 // "seltablist" is a "Select Table List" - the content of the FROM clause 692 // in a SELECT statement. "stl_prefix" is a prefix of this list. 693 // 694 stl_prefix(A) ::= seltablist(A) joinop(Y). { 695 if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].fg.jointype = (u8)Y; 696 } 697 stl_prefix(A) ::= . {A = 0;} 698 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) as(Z) indexed_opt(I) 699 on_opt(N) using_opt(U). { 700 A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U); 701 sqlite3SrcListIndexedBy(pParse, A, &I); 702 } 703 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) LP exprlist(E) RP as(Z) 704 on_opt(N) using_opt(U). { 705 A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U); 706 sqlite3SrcListFuncArgs(pParse, A, E); 707 } 708 %ifndef SQLITE_OMIT_SUBQUERY 709 seltablist(A) ::= stl_prefix(A) LP select(S) RP 710 as(Z) on_opt(N) using_opt(U). { 711 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,S,N,U); 712 } 713 seltablist(A) ::= stl_prefix(A) LP seltablist(F) RP 714 as(Z) on_opt(N) using_opt(U). { 715 if( A==0 && Z.n==0 && N==0 && U==0 ){ 716 A = F; 717 }else if( F->nSrc==1 ){ 718 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,0,N,U); 719 if( A ){ 720 SrcItem *pNew = &A->a[A->nSrc-1]; 721 SrcItem *pOld = F->a; 722 pNew->zName = pOld->zName; 723 pNew->zDatabase = pOld->zDatabase; 724 pNew->pSelect = pOld->pSelect; 725 if( pOld->fg.isTabFunc ){ 726 pNew->u1.pFuncArg = pOld->u1.pFuncArg; 727 pOld->u1.pFuncArg = 0; 728 pOld->fg.isTabFunc = 0; 729 pNew->fg.isTabFunc = 1; 730 } 731 pOld->zName = pOld->zDatabase = 0; 732 pOld->pSelect = 0; 733 } 734 sqlite3SrcListDelete(pParse->db, F); 735 }else{ 736 Select *pSubquery; 737 sqlite3SrcListShiftJoinType(F); 738 pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,SF_NestedFrom,0); 739 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,pSubquery,N,U); 740 } 741 } 742 %endif SQLITE_OMIT_SUBQUERY 743 744 %type dbnm {Token} 745 dbnm(A) ::= . {A.z=0; A.n=0;} 746 dbnm(A) ::= DOT nm(X). {A = X;} 747 748 %type fullname {SrcList*} 749 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);} 750 fullname(A) ::= nm(X). { 751 A = sqlite3SrcListAppend(pParse,0,&X,0); 752 if( IN_RENAME_OBJECT && A ) sqlite3RenameTokenMap(pParse, A->a[0].zName, &X); 753 } 754 fullname(A) ::= nm(X) DOT nm(Y). { 755 A = sqlite3SrcListAppend(pParse,0,&X,&Y); 756 if( IN_RENAME_OBJECT && A ) sqlite3RenameTokenMap(pParse, A->a[0].zName, &Y); 757 } 758 759 %type xfullname {SrcList*} 760 %destructor xfullname {sqlite3SrcListDelete(pParse->db, $$);} 761 xfullname(A) ::= nm(X). 762 {A = sqlite3SrcListAppend(pParse,0,&X,0); /*A-overwrites-X*/} 763 xfullname(A) ::= nm(X) DOT nm(Y). 764 {A = sqlite3SrcListAppend(pParse,0,&X,&Y); /*A-overwrites-X*/} 765 xfullname(A) ::= nm(X) DOT nm(Y) AS nm(Z). { 766 A = sqlite3SrcListAppend(pParse,0,&X,&Y); /*A-overwrites-X*/ 767 if( A ) A->a[0].zAlias = sqlite3NameFromToken(pParse->db, &Z); 768 } 769 xfullname(A) ::= nm(X) AS nm(Z). { 770 A = sqlite3SrcListAppend(pParse,0,&X,0); /*A-overwrites-X*/ 771 if( A ) A->a[0].zAlias = sqlite3NameFromToken(pParse->db, &Z); 772 } 773 774 %type joinop {int} 775 joinop(X) ::= COMMA|JOIN. { X = JT_INNER; } 776 joinop(X) ::= JOIN_KW(A) JOIN. 777 {X = sqlite3JoinType(pParse,&A,0,0); /*X-overwrites-A*/} 778 joinop(X) ::= JOIN_KW(A) nm(B) JOIN. 779 {X = sqlite3JoinType(pParse,&A,&B,0); /*X-overwrites-A*/} 780 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN. 781 {X = sqlite3JoinType(pParse,&A,&B,&C);/*X-overwrites-A*/} 782 783 // There is a parsing abiguity in an upsert statement that uses a 784 // SELECT on the RHS of a the INSERT: 785 // 786 // INSERT INTO tab SELECT * FROM aaa JOIN bbb ON CONFLICT ... 787 // here ----^^ 788 // 789 // When the ON token is encountered, the parser does not know if it is 790 // the beginning of an ON CONFLICT clause, or the beginning of an ON 791 // clause associated with the JOIN. The conflict is resolved in favor 792 // of the JOIN. If an ON CONFLICT clause is intended, insert a dummy 793 // WHERE clause in between, like this: 794 // 795 // INSERT INTO tab SELECT * FROM aaa JOIN bbb WHERE true ON CONFLICT ... 796 // 797 // The [AND] and [OR] precedence marks in the rules for on_opt cause the 798 // ON in this context to always be interpreted as belonging to the JOIN. 799 // 800 %type on_opt {Expr*} 801 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);} 802 on_opt(N) ::= ON expr(E). {N = E;} 803 on_opt(N) ::= . [OR] {N = 0;} 804 805 // Note that this block abuses the Token type just a little. If there is 806 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If 807 // there is an INDEXED BY clause, then the token is populated as per normal, 808 // with z pointing to the token data and n containing the number of bytes 809 // in the token. 810 // 811 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is 812 // normally illegal. The sqlite3SrcListIndexedBy() function 813 // recognizes and interprets this as a special case. 814 // 815 %type indexed_opt {Token} 816 indexed_opt(A) ::= . {A.z=0; A.n=0;} 817 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;} 818 indexed_opt(A) ::= NOT INDEXED. {A.z=0; A.n=1;} 819 820 %type using_opt {IdList*} 821 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);} 822 using_opt(U) ::= USING LP idlist(L) RP. {U = L;} 823 using_opt(U) ::= . {U = 0;} 824 825 826 %type orderby_opt {ExprList*} 827 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);} 828 829 // the sortlist non-terminal stores a list of expression where each 830 // expression is optionally followed by ASC or DESC to indicate the 831 // sort order. 832 // 833 %type sortlist {ExprList*} 834 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);} 835 836 orderby_opt(A) ::= . {A = 0;} 837 orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;} 838 sortlist(A) ::= sortlist(A) COMMA expr(Y) sortorder(Z) nulls(X). { 839 A = sqlite3ExprListAppend(pParse,A,Y); 840 sqlite3ExprListSetSortOrder(A,Z,X); 841 } 842 sortlist(A) ::= expr(Y) sortorder(Z) nulls(X). { 843 A = sqlite3ExprListAppend(pParse,0,Y); /*A-overwrites-Y*/ 844 sqlite3ExprListSetSortOrder(A,Z,X); 845 } 846 847 %type sortorder {int} 848 849 sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;} 850 sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;} 851 sortorder(A) ::= . {A = SQLITE_SO_UNDEFINED;} 852 853 %type nulls {int} 854 nulls(A) ::= NULLS FIRST. {A = SQLITE_SO_ASC;} 855 nulls(A) ::= NULLS LAST. {A = SQLITE_SO_DESC;} 856 nulls(A) ::= . {A = SQLITE_SO_UNDEFINED;} 857 858 %type groupby_opt {ExprList*} 859 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);} 860 groupby_opt(A) ::= . {A = 0;} 861 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;} 862 863 %type having_opt {Expr*} 864 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);} 865 having_opt(A) ::= . {A = 0;} 866 having_opt(A) ::= HAVING expr(X). {A = X;} 867 868 %type limit_opt {Expr*} 869 870 // The destructor for limit_opt will never fire in the current grammar. 871 // The limit_opt non-terminal only occurs at the end of a single production 872 // rule for SELECT statements. As soon as the rule that create the 873 // limit_opt non-terminal reduces, the SELECT statement rule will also 874 // reduce. So there is never a limit_opt non-terminal on the stack 875 // except as a transient. So there is never anything to destroy. 876 // 877 //%destructor limit_opt {sqlite3ExprDelete(pParse->db, $$);} 878 limit_opt(A) ::= . {A = 0;} 879 limit_opt(A) ::= LIMIT expr(X). 880 {A = sqlite3PExpr(pParse,TK_LIMIT,X,0);} 881 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y). 882 {A = sqlite3PExpr(pParse,TK_LIMIT,X,Y);} 883 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y). 884 {A = sqlite3PExpr(pParse,TK_LIMIT,Y,X);} 885 886 /////////////////////////// The DELETE statement ///////////////////////////// 887 // 888 %if SQLITE_ENABLE_UPDATE_DELETE_LIMIT || SQLITE_UDL_CAPABLE_PARSER 889 cmd ::= with DELETE FROM xfullname(X) indexed_opt(I) where_opt_ret(W) 890 orderby_opt(O) limit_opt(L). { 891 sqlite3SrcListIndexedBy(pParse, X, &I); 892 #ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 893 if( O || L ){ 894 updateDeleteLimitError(pParse,O,L); 895 O = 0; 896 L = 0; 897 } 898 #endif 899 sqlite3DeleteFrom(pParse,X,W,O,L); 900 } 901 %else 902 cmd ::= with DELETE FROM xfullname(X) indexed_opt(I) where_opt_ret(W). { 903 sqlite3SrcListIndexedBy(pParse, X, &I); 904 sqlite3DeleteFrom(pParse,X,W,0,0); 905 } 906 %endif 907 908 %type where_opt {Expr*} 909 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);} 910 %type where_opt_ret {Expr*} 911 %destructor where_opt_ret {sqlite3ExprDelete(pParse->db, $$);} 912 913 where_opt(A) ::= . {A = 0;} 914 where_opt(A) ::= WHERE expr(X). {A = X;} 915 where_opt_ret(A) ::= . {A = 0;} 916 where_opt_ret(A) ::= WHERE expr(X). {A = X;} 917 where_opt_ret(A) ::= RETURNING selcollist(X). 918 {sqlite3AddReturning(pParse,X); A = 0;} 919 where_opt_ret(A) ::= WHERE expr(X) RETURNING selcollist(Y). 920 {sqlite3AddReturning(pParse,Y); A = X;} 921 922 ////////////////////////// The UPDATE command //////////////////////////////// 923 // 924 %if SQLITE_ENABLE_UPDATE_DELETE_LIMIT || SQLITE_UDL_CAPABLE_PARSER 925 cmd ::= with UPDATE orconf(R) xfullname(X) indexed_opt(I) SET setlist(Y) from(F) 926 where_opt_ret(W) orderby_opt(O) limit_opt(L). { 927 sqlite3SrcListIndexedBy(pParse, X, &I); 928 X = sqlite3SrcListAppendList(pParse, X, F); 929 sqlite3ExprListCheckLength(pParse,Y,"set list"); 930 #ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 931 if( O || L ){ 932 updateDeleteLimitError(pParse,O,L); 933 O = 0; 934 L = 0; 935 } 936 #endif 937 sqlite3Update(pParse,X,Y,W,R,O,L,0); 938 } 939 %else 940 cmd ::= with UPDATE orconf(R) xfullname(X) indexed_opt(I) SET setlist(Y) from(F) 941 where_opt_ret(W). { 942 sqlite3SrcListIndexedBy(pParse, X, &I); 943 sqlite3ExprListCheckLength(pParse,Y,"set list"); 944 X = sqlite3SrcListAppendList(pParse, X, F); 945 sqlite3Update(pParse,X,Y,W,R,0,0,0); 946 } 947 %endif 948 949 950 951 %type setlist {ExprList*} 952 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);} 953 954 setlist(A) ::= setlist(A) COMMA nm(X) EQ expr(Y). { 955 A = sqlite3ExprListAppend(pParse, A, Y); 956 sqlite3ExprListSetName(pParse, A, &X, 1); 957 } 958 setlist(A) ::= setlist(A) COMMA LP idlist(X) RP EQ expr(Y). { 959 A = sqlite3ExprListAppendVector(pParse, A, X, Y); 960 } 961 setlist(A) ::= nm(X) EQ expr(Y). { 962 A = sqlite3ExprListAppend(pParse, 0, Y); 963 sqlite3ExprListSetName(pParse, A, &X, 1); 964 } 965 setlist(A) ::= LP idlist(X) RP EQ expr(Y). { 966 A = sqlite3ExprListAppendVector(pParse, 0, X, Y); 967 } 968 969 ////////////////////////// The INSERT command ///////////////////////////////// 970 // 971 cmd ::= with insert_cmd(R) INTO xfullname(X) idlist_opt(F) select(S) 972 upsert(U). { 973 sqlite3Insert(pParse, X, S, F, R, U); 974 } 975 cmd ::= with insert_cmd(R) INTO xfullname(X) idlist_opt(F) DEFAULT VALUES returning. 976 { 977 sqlite3Insert(pParse, X, 0, F, R, 0); 978 } 979 980 %type upsert {Upsert*} 981 982 // Because upsert only occurs at the tip end of the INSERT rule for cmd, 983 // there is never a case where the value of the upsert pointer will not 984 // be destroyed by the cmd action. So comment-out the destructor to 985 // avoid unreachable code. 986 //%destructor upsert {sqlite3UpsertDelete(pParse->db,$$);} 987 upsert(A) ::= . { A = 0; } 988 upsert(A) ::= RETURNING selcollist(X). { A = 0; sqlite3AddReturning(pParse,X); } 989 upsert(A) ::= ON CONFLICT LP sortlist(T) RP where_opt(TW) 990 DO UPDATE SET setlist(Z) where_opt(W) upsert(N). 991 { A = sqlite3UpsertNew(pParse->db,T,TW,Z,W,N);} 992 upsert(A) ::= ON CONFLICT LP sortlist(T) RP where_opt(TW) DO NOTHING upsert(N). 993 { A = sqlite3UpsertNew(pParse->db,T,TW,0,0,N); } 994 upsert(A) ::= ON CONFLICT DO NOTHING returning. 995 { A = sqlite3UpsertNew(pParse->db,0,0,0,0,0); } 996 upsert(A) ::= ON CONFLICT DO UPDATE SET setlist(Z) where_opt(W) returning. 997 { A = sqlite3UpsertNew(pParse->db,0,0,Z,W,0);} 998 999 returning ::= RETURNING selcollist(X). {sqlite3AddReturning(pParse,X);} 1000 returning ::= . 1001 1002 %type insert_cmd {int} 1003 insert_cmd(A) ::= INSERT orconf(R). {A = R;} 1004 insert_cmd(A) ::= REPLACE. {A = OE_Replace;} 1005 1006 %type idlist_opt {IdList*} 1007 %destructor idlist_opt {sqlite3IdListDelete(pParse->db, $$);} 1008 %type idlist {IdList*} 1009 %destructor idlist {sqlite3IdListDelete(pParse->db, $$);} 1010 1011 idlist_opt(A) ::= . {A = 0;} 1012 idlist_opt(A) ::= LP idlist(X) RP. {A = X;} 1013 idlist(A) ::= idlist(A) COMMA nm(Y). 1014 {A = sqlite3IdListAppend(pParse,A,&Y);} 1015 idlist(A) ::= nm(Y). 1016 {A = sqlite3IdListAppend(pParse,0,&Y); /*A-overwrites-Y*/} 1017 1018 /////////////////////////// Expression Processing ///////////////////////////// 1019 // 1020 1021 %type expr {Expr*} 1022 %destructor expr {sqlite3ExprDelete(pParse->db, $$);} 1023 %type term {Expr*} 1024 %destructor term {sqlite3ExprDelete(pParse->db, $$);} 1025 1026 %include { 1027 1028 /* Construct a new Expr object from a single identifier. Use the 1029 ** new Expr to populate pOut. Set the span of pOut to be the identifier 1030 ** that created the expression. 1031 */ 1032 static Expr *tokenExpr(Parse *pParse, int op, Token t){ 1033 Expr *p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)+t.n+1); 1034 if( p ){ 1035 /* memset(p, 0, sizeof(Expr)); */ 1036 p->op = (u8)op; 1037 p->affExpr = 0; 1038 p->flags = EP_Leaf; 1039 ExprClearVVAProperties(p); 1040 p->iAgg = -1; 1041 p->pLeft = p->pRight = 0; 1042 p->pAggInfo = 0; 1043 memset(&p->x, 0, sizeof(p->x)); 1044 memset(&p->y, 0, sizeof(p->y)); 1045 p->op2 = 0; 1046 p->iTable = 0; 1047 p->iColumn = 0; 1048 p->u.zToken = (char*)&p[1]; 1049 memcpy(p->u.zToken, t.z, t.n); 1050 p->u.zToken[t.n] = 0; 1051 if( sqlite3Isquote(p->u.zToken[0]) ){ 1052 sqlite3DequoteExpr(p); 1053 } 1054 #if SQLITE_MAX_EXPR_DEPTH>0 1055 p->nHeight = 1; 1056 #endif 1057 if( IN_RENAME_OBJECT ){ 1058 return (Expr*)sqlite3RenameTokenMap(pParse, (void*)p, &t); 1059 } 1060 } 1061 return p; 1062 } 1063 1064 } 1065 1066 expr(A) ::= term(A). 1067 expr(A) ::= LP expr(X) RP. {A = X;} 1068 expr(A) ::= id(X). {A=tokenExpr(pParse,TK_ID,X); /*A-overwrites-X*/} 1069 expr(A) ::= JOIN_KW(X). {A=tokenExpr(pParse,TK_ID,X); /*A-overwrites-X*/} 1070 expr(A) ::= nm(X) DOT nm(Y). { 1071 Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1); 1072 Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1); 1073 if( IN_RENAME_OBJECT ){ 1074 sqlite3RenameTokenMap(pParse, (void*)temp2, &Y); 1075 sqlite3RenameTokenMap(pParse, (void*)temp1, &X); 1076 } 1077 A = sqlite3PExpr(pParse, TK_DOT, temp1, temp2); 1078 } 1079 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). { 1080 Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1); 1081 Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1); 1082 Expr *temp3 = sqlite3ExprAlloc(pParse->db, TK_ID, &Z, 1); 1083 Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3); 1084 if( IN_RENAME_OBJECT ){ 1085 sqlite3RenameTokenMap(pParse, (void*)temp3, &Z); 1086 sqlite3RenameTokenMap(pParse, (void*)temp2, &Y); 1087 } 1088 A = sqlite3PExpr(pParse, TK_DOT, temp1, temp4); 1089 } 1090 term(A) ::= NULL|FLOAT|BLOB(X). {A=tokenExpr(pParse,@X,X); /*A-overwrites-X*/} 1091 term(A) ::= STRING(X). {A=tokenExpr(pParse,@X,X); /*A-overwrites-X*/} 1092 term(A) ::= INTEGER(X). { 1093 A = sqlite3ExprAlloc(pParse->db, TK_INTEGER, &X, 1); 1094 } 1095 expr(A) ::= VARIABLE(X). { 1096 if( !(X.z[0]=='#' && sqlite3Isdigit(X.z[1])) ){ 1097 u32 n = X.n; 1098 A = tokenExpr(pParse, TK_VARIABLE, X); 1099 sqlite3ExprAssignVarNumber(pParse, A, n); 1100 }else{ 1101 /* When doing a nested parse, one can include terms in an expression 1102 ** that look like this: #1 #2 ... These terms refer to registers 1103 ** in the virtual machine. #N is the N-th register. */ 1104 Token t = X; /*A-overwrites-X*/ 1105 assert( t.n>=2 ); 1106 if( pParse->nested==0 ){ 1107 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &t); 1108 A = 0; 1109 }else{ 1110 A = sqlite3PExpr(pParse, TK_REGISTER, 0, 0); 1111 if( A ) sqlite3GetInt32(&t.z[1], &A->iTable); 1112 } 1113 } 1114 } 1115 expr(A) ::= expr(A) COLLATE ids(C). { 1116 A = sqlite3ExprAddCollateToken(pParse, A, &C, 1); 1117 } 1118 %ifndef SQLITE_OMIT_CAST 1119 expr(A) ::= CAST LP expr(E) AS typetoken(T) RP. { 1120 A = sqlite3ExprAlloc(pParse->db, TK_CAST, &T, 1); 1121 sqlite3ExprAttachSubtrees(pParse->db, A, E, 0); 1122 } 1123 %endif SQLITE_OMIT_CAST 1124 1125 1126 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP. { 1127 A = sqlite3ExprFunction(pParse, Y, &X, D); 1128 } 1129 expr(A) ::= id(X) LP STAR RP. { 1130 A = sqlite3ExprFunction(pParse, 0, &X, 0); 1131 } 1132 1133 %ifndef SQLITE_OMIT_WINDOWFUNC 1134 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP filter_over(Z). { 1135 A = sqlite3ExprFunction(pParse, Y, &X, D); 1136 sqlite3WindowAttach(pParse, A, Z); 1137 } 1138 expr(A) ::= id(X) LP STAR RP filter_over(Z). { 1139 A = sqlite3ExprFunction(pParse, 0, &X, 0); 1140 sqlite3WindowAttach(pParse, A, Z); 1141 } 1142 %endif 1143 1144 term(A) ::= CTIME_KW(OP). { 1145 A = sqlite3ExprFunction(pParse, 0, &OP, 0); 1146 } 1147 1148 expr(A) ::= LP nexprlist(X) COMMA expr(Y) RP. { 1149 ExprList *pList = sqlite3ExprListAppend(pParse, X, Y); 1150 A = sqlite3PExpr(pParse, TK_VECTOR, 0, 0); 1151 if( A ){ 1152 A->x.pList = pList; 1153 if( ALWAYS(pList->nExpr) ){ 1154 A->flags |= pList->a[0].pExpr->flags & EP_Propagate; 1155 } 1156 }else{ 1157 sqlite3ExprListDelete(pParse->db, pList); 1158 } 1159 } 1160 1161 expr(A) ::= expr(A) AND expr(Y). {A=sqlite3ExprAnd(pParse,A,Y);} 1162 expr(A) ::= expr(A) OR(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 1163 expr(A) ::= expr(A) LT|GT|GE|LE(OP) expr(Y). 1164 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1165 expr(A) ::= expr(A) EQ|NE(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 1166 expr(A) ::= expr(A) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y). 1167 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1168 expr(A) ::= expr(A) PLUS|MINUS(OP) expr(Y). 1169 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1170 expr(A) ::= expr(A) STAR|SLASH|REM(OP) expr(Y). 1171 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1172 expr(A) ::= expr(A) CONCAT(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 1173 %type likeop {Token} 1174 likeop(A) ::= LIKE_KW|MATCH(A). 1175 likeop(A) ::= NOT LIKE_KW|MATCH(X). {A=X; A.n|=0x80000000; /*A-overwrite-X*/} 1176 expr(A) ::= expr(A) likeop(OP) expr(Y). [LIKE_KW] { 1177 ExprList *pList; 1178 int bNot = OP.n & 0x80000000; 1179 OP.n &= 0x7fffffff; 1180 pList = sqlite3ExprListAppend(pParse,0, Y); 1181 pList = sqlite3ExprListAppend(pParse,pList, A); 1182 A = sqlite3ExprFunction(pParse, pList, &OP, 0); 1183 if( bNot ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1184 if( A ) A->flags |= EP_InfixFunc; 1185 } 1186 expr(A) ::= expr(A) likeop(OP) expr(Y) ESCAPE expr(E). [LIKE_KW] { 1187 ExprList *pList; 1188 int bNot = OP.n & 0x80000000; 1189 OP.n &= 0x7fffffff; 1190 pList = sqlite3ExprListAppend(pParse,0, Y); 1191 pList = sqlite3ExprListAppend(pParse,pList, A); 1192 pList = sqlite3ExprListAppend(pParse,pList, E); 1193 A = sqlite3ExprFunction(pParse, pList, &OP, 0); 1194 if( bNot ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1195 if( A ) A->flags |= EP_InfixFunc; 1196 } 1197 1198 expr(A) ::= expr(A) ISNULL|NOTNULL(E). {A = sqlite3PExpr(pParse,@E,A,0);} 1199 expr(A) ::= expr(A) NOT NULL. {A = sqlite3PExpr(pParse,TK_NOTNULL,A,0);} 1200 1201 %include { 1202 /* A routine to convert a binary TK_IS or TK_ISNOT expression into a 1203 ** unary TK_ISNULL or TK_NOTNULL expression. */ 1204 static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){ 1205 sqlite3 *db = pParse->db; 1206 if( pA && pY && pY->op==TK_NULL && !IN_RENAME_OBJECT ){ 1207 pA->op = (u8)op; 1208 sqlite3ExprDelete(db, pA->pRight); 1209 pA->pRight = 0; 1210 } 1211 } 1212 } 1213 1214 // expr1 IS expr2 1215 // expr1 IS NOT expr2 1216 // 1217 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL. If expr2 1218 // is any other expression, code as TK_IS or TK_ISNOT. 1219 // 1220 expr(A) ::= expr(A) IS expr(Y). { 1221 A = sqlite3PExpr(pParse,TK_IS,A,Y); 1222 binaryToUnaryIfNull(pParse, Y, A, TK_ISNULL); 1223 } 1224 expr(A) ::= expr(A) IS NOT expr(Y). { 1225 A = sqlite3PExpr(pParse,TK_ISNOT,A,Y); 1226 binaryToUnaryIfNull(pParse, Y, A, TK_NOTNULL); 1227 } 1228 1229 expr(A) ::= NOT(B) expr(X). 1230 {A = sqlite3PExpr(pParse, @B, X, 0);/*A-overwrites-B*/} 1231 expr(A) ::= BITNOT(B) expr(X). 1232 {A = sqlite3PExpr(pParse, @B, X, 0);/*A-overwrites-B*/} 1233 expr(A) ::= PLUS|MINUS(B) expr(X). [BITNOT] { 1234 A = sqlite3PExpr(pParse, @B==TK_PLUS ? TK_UPLUS : TK_UMINUS, X, 0); 1235 /*A-overwrites-B*/ 1236 } 1237 1238 expr(A) ::= expr(B) PTR(C) expr(D). { 1239 ExprList *pList = sqlite3ExprListAppend(pParse, 0, B); 1240 pList = sqlite3ExprListAppend(pParse, pList, D); 1241 A = sqlite3ExprFunction(pParse, pList, &C, 0); 1242 } 1243 1244 %type between_op {int} 1245 between_op(A) ::= BETWEEN. {A = 0;} 1246 between_op(A) ::= NOT BETWEEN. {A = 1;} 1247 expr(A) ::= expr(A) between_op(N) expr(X) AND expr(Y). [BETWEEN] { 1248 ExprList *pList = sqlite3ExprListAppend(pParse,0, X); 1249 pList = sqlite3ExprListAppend(pParse,pList, Y); 1250 A = sqlite3PExpr(pParse, TK_BETWEEN, A, 0); 1251 if( A ){ 1252 A->x.pList = pList; 1253 }else{ 1254 sqlite3ExprListDelete(pParse->db, pList); 1255 } 1256 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1257 } 1258 %ifndef SQLITE_OMIT_SUBQUERY 1259 %type in_op {int} 1260 in_op(A) ::= IN. {A = 0;} 1261 in_op(A) ::= NOT IN. {A = 1;} 1262 expr(A) ::= expr(A) in_op(N) LP exprlist(Y) RP. [IN] { 1263 if( Y==0 ){ 1264 /* Expressions of the form 1265 ** 1266 ** expr1 IN () 1267 ** expr1 NOT IN () 1268 ** 1269 ** simplify to constants 0 (false) and 1 (true), respectively, 1270 ** regardless of the value of expr1. 1271 */ 1272 sqlite3ExprUnmapAndDelete(pParse, A); 1273 A = sqlite3Expr(pParse->db, TK_INTEGER, N ? "1" : "0"); 1274 }else{ 1275 Expr *pRHS = Y->a[0].pExpr; 1276 if( Y->nExpr==1 && sqlite3ExprIsConstant(pRHS) && A->op!=TK_VECTOR ){ 1277 Y->a[0].pExpr = 0; 1278 sqlite3ExprListDelete(pParse->db, Y); 1279 pRHS = sqlite3PExpr(pParse, TK_UPLUS, pRHS, 0); 1280 A = sqlite3PExpr(pParse, TK_EQ, A, pRHS); 1281 }else{ 1282 A = sqlite3PExpr(pParse, TK_IN, A, 0); 1283 if( A==0 ){ 1284 sqlite3ExprListDelete(pParse->db, Y); 1285 }else if( A->pLeft->op==TK_VECTOR ){ 1286 int nExpr = A->pLeft->x.pList->nExpr; 1287 Select *pSelectRHS = sqlite3ExprListToValues(pParse, nExpr, Y); 1288 if( pSelectRHS ){ 1289 parserDoubleLinkSelect(pParse, pSelectRHS); 1290 sqlite3PExprAddSelect(pParse, A, pSelectRHS); 1291 } 1292 }else{ 1293 A->x.pList = Y; 1294 sqlite3ExprSetHeightAndFlags(pParse, A); 1295 } 1296 } 1297 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1298 } 1299 } 1300 expr(A) ::= LP select(X) RP. { 1301 A = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 1302 sqlite3PExprAddSelect(pParse, A, X); 1303 } 1304 expr(A) ::= expr(A) in_op(N) LP select(Y) RP. [IN] { 1305 A = sqlite3PExpr(pParse, TK_IN, A, 0); 1306 sqlite3PExprAddSelect(pParse, A, Y); 1307 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1308 } 1309 expr(A) ::= expr(A) in_op(N) nm(Y) dbnm(Z) paren_exprlist(E). [IN] { 1310 SrcList *pSrc = sqlite3SrcListAppend(pParse, 0,&Y,&Z); 1311 Select *pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0); 1312 if( E ) sqlite3SrcListFuncArgs(pParse, pSelect ? pSrc : 0, E); 1313 A = sqlite3PExpr(pParse, TK_IN, A, 0); 1314 sqlite3PExprAddSelect(pParse, A, pSelect); 1315 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1316 } 1317 expr(A) ::= EXISTS LP select(Y) RP. { 1318 Expr *p; 1319 p = A = sqlite3PExpr(pParse, TK_EXISTS, 0, 0); 1320 sqlite3PExprAddSelect(pParse, p, Y); 1321 } 1322 %endif SQLITE_OMIT_SUBQUERY 1323 1324 /* CASE expressions */ 1325 expr(A) ::= CASE case_operand(X) case_exprlist(Y) case_else(Z) END. { 1326 A = sqlite3PExpr(pParse, TK_CASE, X, 0); 1327 if( A ){ 1328 A->x.pList = Z ? sqlite3ExprListAppend(pParse,Y,Z) : Y; 1329 sqlite3ExprSetHeightAndFlags(pParse, A); 1330 }else{ 1331 sqlite3ExprListDelete(pParse->db, Y); 1332 sqlite3ExprDelete(pParse->db, Z); 1333 } 1334 } 1335 %type case_exprlist {ExprList*} 1336 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1337 case_exprlist(A) ::= case_exprlist(A) WHEN expr(Y) THEN expr(Z). { 1338 A = sqlite3ExprListAppend(pParse,A, Y); 1339 A = sqlite3ExprListAppend(pParse,A, Z); 1340 } 1341 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). { 1342 A = sqlite3ExprListAppend(pParse,0, Y); 1343 A = sqlite3ExprListAppend(pParse,A, Z); 1344 } 1345 %type case_else {Expr*} 1346 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);} 1347 case_else(A) ::= ELSE expr(X). {A = X;} 1348 case_else(A) ::= . {A = 0;} 1349 %type case_operand {Expr*} 1350 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);} 1351 case_operand(A) ::= expr(X). {A = X; /*A-overwrites-X*/} 1352 case_operand(A) ::= . {A = 0;} 1353 1354 %type exprlist {ExprList*} 1355 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1356 %type nexprlist {ExprList*} 1357 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);} 1358 1359 exprlist(A) ::= nexprlist(A). 1360 exprlist(A) ::= . {A = 0;} 1361 nexprlist(A) ::= nexprlist(A) COMMA expr(Y). 1362 {A = sqlite3ExprListAppend(pParse,A,Y);} 1363 nexprlist(A) ::= expr(Y). 1364 {A = sqlite3ExprListAppend(pParse,0,Y); /*A-overwrites-Y*/} 1365 1366 %ifndef SQLITE_OMIT_SUBQUERY 1367 /* A paren_exprlist is an optional expression list contained inside 1368 ** of parenthesis */ 1369 %type paren_exprlist {ExprList*} 1370 %destructor paren_exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1371 paren_exprlist(A) ::= . {A = 0;} 1372 paren_exprlist(A) ::= LP exprlist(X) RP. {A = X;} 1373 %endif SQLITE_OMIT_SUBQUERY 1374 1375 1376 ///////////////////////////// The CREATE INDEX command /////////////////////// 1377 // 1378 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D) 1379 ON nm(Y) LP sortlist(Z) RP where_opt(W). { 1380 sqlite3CreateIndex(pParse, &X, &D, 1381 sqlite3SrcListAppend(pParse,0,&Y,0), Z, U, 1382 &S, W, SQLITE_SO_ASC, NE, SQLITE_IDXTYPE_APPDEF); 1383 if( IN_RENAME_OBJECT && pParse->pNewIndex ){ 1384 sqlite3RenameTokenMap(pParse, pParse->pNewIndex->zName, &Y); 1385 } 1386 } 1387 1388 %type uniqueflag {int} 1389 uniqueflag(A) ::= UNIQUE. {A = OE_Abort;} 1390 uniqueflag(A) ::= . {A = OE_None;} 1391 1392 1393 // The eidlist non-terminal (Expression Id List) generates an ExprList 1394 // from a list of identifiers. The identifier names are in ExprList.a[].zName. 1395 // This list is stored in an ExprList rather than an IdList so that it 1396 // can be easily sent to sqlite3ColumnsExprList(). 1397 // 1398 // eidlist is grouped with CREATE INDEX because it used to be the non-terminal 1399 // used for the arguments to an index. That is just an historical accident. 1400 // 1401 // IMPORTANT COMPATIBILITY NOTE: Some prior versions of SQLite accepted 1402 // COLLATE clauses and ASC or DESC keywords on ID lists in inappropriate 1403 // places - places that might have been stored in the sqlite_schema table. 1404 // Those extra features were ignored. But because they might be in some 1405 // (busted) old databases, we need to continue parsing them when loading 1406 // historical schemas. 1407 // 1408 %type eidlist {ExprList*} 1409 %destructor eidlist {sqlite3ExprListDelete(pParse->db, $$);} 1410 %type eidlist_opt {ExprList*} 1411 %destructor eidlist_opt {sqlite3ExprListDelete(pParse->db, $$);} 1412 1413 %include { 1414 /* Add a single new term to an ExprList that is used to store a 1415 ** list of identifiers. Report an error if the ID list contains 1416 ** a COLLATE clause or an ASC or DESC keyword, except ignore the 1417 ** error while parsing a legacy schema. 1418 */ 1419 static ExprList *parserAddExprIdListTerm( 1420 Parse *pParse, 1421 ExprList *pPrior, 1422 Token *pIdToken, 1423 int hasCollate, 1424 int sortOrder 1425 ){ 1426 ExprList *p = sqlite3ExprListAppend(pParse, pPrior, 0); 1427 if( (hasCollate || sortOrder!=SQLITE_SO_UNDEFINED) 1428 && pParse->db->init.busy==0 1429 ){ 1430 sqlite3ErrorMsg(pParse, "syntax error after column name \"%.*s\"", 1431 pIdToken->n, pIdToken->z); 1432 } 1433 sqlite3ExprListSetName(pParse, p, pIdToken, 1); 1434 return p; 1435 } 1436 } // end %include 1437 1438 eidlist_opt(A) ::= . {A = 0;} 1439 eidlist_opt(A) ::= LP eidlist(X) RP. {A = X;} 1440 eidlist(A) ::= eidlist(A) COMMA nm(Y) collate(C) sortorder(Z). { 1441 A = parserAddExprIdListTerm(pParse, A, &Y, C, Z); 1442 } 1443 eidlist(A) ::= nm(Y) collate(C) sortorder(Z). { 1444 A = parserAddExprIdListTerm(pParse, 0, &Y, C, Z); /*A-overwrites-Y*/ 1445 } 1446 1447 %type collate {int} 1448 collate(C) ::= . {C = 0;} 1449 collate(C) ::= COLLATE ids. {C = 1;} 1450 1451 1452 ///////////////////////////// The DROP INDEX command ///////////////////////// 1453 // 1454 cmd ::= DROP INDEX ifexists(E) fullname(X). {sqlite3DropIndex(pParse, X, E);} 1455 1456 ///////////////////////////// The VACUUM command ///////////////////////////// 1457 // 1458 %if !SQLITE_OMIT_VACUUM && !SQLITE_OMIT_ATTACH 1459 %type vinto {Expr*} 1460 %destructor vinto {sqlite3ExprDelete(pParse->db, $$);} 1461 cmd ::= VACUUM vinto(Y). {sqlite3Vacuum(pParse,0,Y);} 1462 cmd ::= VACUUM nm(X) vinto(Y). {sqlite3Vacuum(pParse,&X,Y);} 1463 vinto(A) ::= INTO expr(X). {A = X;} 1464 vinto(A) ::= . {A = 0;} 1465 %endif 1466 1467 ///////////////////////////// The PRAGMA command ///////////////////////////// 1468 // 1469 %ifndef SQLITE_OMIT_PRAGMA 1470 cmd ::= PRAGMA nm(X) dbnm(Z). {sqlite3Pragma(pParse,&X,&Z,0,0);} 1471 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1472 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1473 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y). 1474 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1475 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP. 1476 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1477 1478 nmnum(A) ::= plus_num(A). 1479 nmnum(A) ::= nm(A). 1480 nmnum(A) ::= ON(A). 1481 nmnum(A) ::= DELETE(A). 1482 nmnum(A) ::= DEFAULT(A). 1483 %endif SQLITE_OMIT_PRAGMA 1484 %token_class number INTEGER|FLOAT. 1485 plus_num(A) ::= PLUS number(X). {A = X;} 1486 plus_num(A) ::= number(A). 1487 minus_num(A) ::= MINUS number(X). {A = X;} 1488 //////////////////////////// The CREATE TRIGGER command ///////////////////// 1489 1490 %ifndef SQLITE_OMIT_TRIGGER 1491 1492 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). { 1493 Token all; 1494 all.z = A.z; 1495 all.n = (int)(Z.z - A.z) + Z.n; 1496 sqlite3FinishTrigger(pParse, S, &all); 1497 } 1498 1499 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z) 1500 trigger_time(C) trigger_event(D) 1501 ON fullname(E) foreach_clause when_clause(G). { 1502 sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR); 1503 A = (Z.n==0?B:Z); /*A-overwrites-T*/ 1504 } 1505 1506 %type trigger_time {int} 1507 trigger_time(A) ::= BEFORE|AFTER(X). { A = @X; /*A-overwrites-X*/ } 1508 trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;} 1509 trigger_time(A) ::= . { A = TK_BEFORE; } 1510 1511 %type trigger_event {struct TrigEvent} 1512 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);} 1513 trigger_event(A) ::= DELETE|INSERT(X). {A.a = @X; /*A-overwrites-X*/ A.b = 0;} 1514 trigger_event(A) ::= UPDATE(X). {A.a = @X; /*A-overwrites-X*/ A.b = 0;} 1515 trigger_event(A) ::= UPDATE OF idlist(X).{A.a = TK_UPDATE; A.b = X;} 1516 1517 foreach_clause ::= . 1518 foreach_clause ::= FOR EACH ROW. 1519 1520 %type when_clause {Expr*} 1521 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);} 1522 when_clause(A) ::= . { A = 0; } 1523 when_clause(A) ::= WHEN expr(X). { A = X; } 1524 1525 %type trigger_cmd_list {TriggerStep*} 1526 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);} 1527 trigger_cmd_list(A) ::= trigger_cmd_list(A) trigger_cmd(X) SEMI. { 1528 assert( A!=0 ); 1529 A->pLast->pNext = X; 1530 A->pLast = X; 1531 } 1532 trigger_cmd_list(A) ::= trigger_cmd(A) SEMI. { 1533 assert( A!=0 ); 1534 A->pLast = A; 1535 } 1536 1537 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements 1538 // within a trigger. The table to INSERT, UPDATE, or DELETE is always in 1539 // the same database as the table that the trigger fires on. 1540 // 1541 %type trnm {Token} 1542 trnm(A) ::= nm(A). 1543 trnm(A) ::= nm DOT nm(X). { 1544 A = X; 1545 sqlite3ErrorMsg(pParse, 1546 "qualified table names are not allowed on INSERT, UPDATE, and DELETE " 1547 "statements within triggers"); 1548 } 1549 1550 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE 1551 // statements within triggers. We make a specific error message for this 1552 // since it is an exception to the default grammar rules. 1553 // 1554 tridxby ::= . 1555 tridxby ::= INDEXED BY nm. { 1556 sqlite3ErrorMsg(pParse, 1557 "the INDEXED BY clause is not allowed on UPDATE or DELETE statements " 1558 "within triggers"); 1559 } 1560 tridxby ::= NOT INDEXED. { 1561 sqlite3ErrorMsg(pParse, 1562 "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements " 1563 "within triggers"); 1564 } 1565 1566 1567 1568 %type trigger_cmd {TriggerStep*} 1569 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);} 1570 // UPDATE 1571 trigger_cmd(A) ::= 1572 UPDATE(B) orconf(R) trnm(X) tridxby SET setlist(Y) from(F) where_opt(Z) scanpt(E). 1573 {A = sqlite3TriggerUpdateStep(pParse, &X, F, Y, Z, R, B.z, E);} 1574 1575 // INSERT 1576 trigger_cmd(A) ::= scanpt(B) insert_cmd(R) INTO 1577 trnm(X) idlist_opt(F) select(S) upsert(U) scanpt(Z). { 1578 A = sqlite3TriggerInsertStep(pParse,&X,F,S,R,U,B,Z);/*A-overwrites-R*/ 1579 } 1580 // DELETE 1581 trigger_cmd(A) ::= DELETE(B) FROM trnm(X) tridxby where_opt(Y) scanpt(E). 1582 {A = sqlite3TriggerDeleteStep(pParse, &X, Y, B.z, E);} 1583 1584 // SELECT 1585 trigger_cmd(A) ::= scanpt(B) select(X) scanpt(E). 1586 {A = sqlite3TriggerSelectStep(pParse->db, X, B, E); /*A-overwrites-X*/} 1587 1588 // The special RAISE expression that may occur in trigger programs 1589 expr(A) ::= RAISE LP IGNORE RP. { 1590 A = sqlite3PExpr(pParse, TK_RAISE, 0, 0); 1591 if( A ){ 1592 A->affExpr = OE_Ignore; 1593 } 1594 } 1595 expr(A) ::= RAISE LP raisetype(T) COMMA nm(Z) RP. { 1596 A = sqlite3ExprAlloc(pParse->db, TK_RAISE, &Z, 1); 1597 if( A ) { 1598 A->affExpr = (char)T; 1599 } 1600 } 1601 %endif !SQLITE_OMIT_TRIGGER 1602 1603 %type raisetype {int} 1604 raisetype(A) ::= ROLLBACK. {A = OE_Rollback;} 1605 raisetype(A) ::= ABORT. {A = OE_Abort;} 1606 raisetype(A) ::= FAIL. {A = OE_Fail;} 1607 1608 1609 //////////////////////// DROP TRIGGER statement ////////////////////////////// 1610 %ifndef SQLITE_OMIT_TRIGGER 1611 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). { 1612 sqlite3DropTrigger(pParse,X,NOERR); 1613 } 1614 %endif !SQLITE_OMIT_TRIGGER 1615 1616 //////////////////////// ATTACH DATABASE file AS name ///////////////////////// 1617 %ifndef SQLITE_OMIT_ATTACH 1618 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). { 1619 sqlite3Attach(pParse, F, D, K); 1620 } 1621 cmd ::= DETACH database_kw_opt expr(D). { 1622 sqlite3Detach(pParse, D); 1623 } 1624 1625 %type key_opt {Expr*} 1626 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);} 1627 key_opt(A) ::= . { A = 0; } 1628 key_opt(A) ::= KEY expr(X). { A = X; } 1629 1630 database_kw_opt ::= DATABASE. 1631 database_kw_opt ::= . 1632 %endif SQLITE_OMIT_ATTACH 1633 1634 ////////////////////////// REINDEX collation ////////////////////////////////// 1635 %ifndef SQLITE_OMIT_REINDEX 1636 cmd ::= REINDEX. {sqlite3Reindex(pParse, 0, 0);} 1637 cmd ::= REINDEX nm(X) dbnm(Y). {sqlite3Reindex(pParse, &X, &Y);} 1638 %endif SQLITE_OMIT_REINDEX 1639 1640 /////////////////////////////////// ANALYZE /////////////////////////////////// 1641 %ifndef SQLITE_OMIT_ANALYZE 1642 cmd ::= ANALYZE. {sqlite3Analyze(pParse, 0, 0);} 1643 cmd ::= ANALYZE nm(X) dbnm(Y). {sqlite3Analyze(pParse, &X, &Y);} 1644 %endif 1645 1646 //////////////////////// ALTER TABLE table ... //////////////////////////////// 1647 %ifndef SQLITE_OMIT_ALTERTABLE 1648 %ifndef SQLITE_OMIT_VIRTUALTABLE 1649 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). { 1650 sqlite3AlterRenameTable(pParse,X,&Z); 1651 } 1652 cmd ::= ALTER TABLE add_column_fullname 1653 ADD kwcolumn_opt columnname(Y) carglist. { 1654 Y.n = (int)(pParse->sLastToken.z-Y.z) + pParse->sLastToken.n; 1655 sqlite3AlterFinishAddColumn(pParse, &Y); 1656 } 1657 cmd ::= ALTER TABLE fullname(X) DROP kwcolumn_opt nm(Y). { 1658 sqlite3AlterDropColumn(pParse, X, &Y); 1659 } 1660 1661 add_column_fullname ::= fullname(X). { 1662 disableLookaside(pParse); 1663 sqlite3AlterBeginAddColumn(pParse, X); 1664 } 1665 cmd ::= ALTER TABLE fullname(X) RENAME kwcolumn_opt nm(Y) TO nm(Z). { 1666 sqlite3AlterRenameColumn(pParse, X, &Y, &Z); 1667 } 1668 1669 kwcolumn_opt ::= . 1670 kwcolumn_opt ::= COLUMNKW. 1671 1672 %endif SQLITE_OMIT_VIRTUALTABLE 1673 %endif SQLITE_OMIT_ALTERTABLE 1674 1675 //////////////////////// CREATE VIRTUAL TABLE ... ///////////////////////////// 1676 %ifndef SQLITE_OMIT_VIRTUALTABLE 1677 cmd ::= create_vtab. {sqlite3VtabFinishParse(pParse,0);} 1678 cmd ::= create_vtab LP vtabarglist RP(X). {sqlite3VtabFinishParse(pParse,&X);} 1679 create_vtab ::= createkw VIRTUAL TABLE ifnotexists(E) 1680 nm(X) dbnm(Y) USING nm(Z). { 1681 sqlite3VtabBeginParse(pParse, &X, &Y, &Z, E); 1682 } 1683 vtabarglist ::= vtabarg. 1684 vtabarglist ::= vtabarglist COMMA vtabarg. 1685 vtabarg ::= . {sqlite3VtabArgInit(pParse);} 1686 vtabarg ::= vtabarg vtabargtoken. 1687 vtabargtoken ::= ANY(X). {sqlite3VtabArgExtend(pParse,&X);} 1688 vtabargtoken ::= lp anylist RP(X). {sqlite3VtabArgExtend(pParse,&X);} 1689 lp ::= LP(X). {sqlite3VtabArgExtend(pParse,&X);} 1690 anylist ::= . 1691 anylist ::= anylist LP anylist RP. 1692 anylist ::= anylist ANY. 1693 %endif SQLITE_OMIT_VIRTUALTABLE 1694 1695 1696 //////////////////////// COMMON TABLE EXPRESSIONS //////////////////////////// 1697 %type wqlist {With*} 1698 %destructor wqlist {sqlite3WithDelete(pParse->db, $$);} 1699 %type wqitem {Cte*} 1700 // %destructor wqitem {sqlite3CteDelete(pParse->db, $$);} // not reachable 1701 1702 with ::= . 1703 %ifndef SQLITE_OMIT_CTE 1704 with ::= WITH wqlist(W). { sqlite3WithPush(pParse, W, 1); } 1705 with ::= WITH RECURSIVE wqlist(W). { sqlite3WithPush(pParse, W, 1); } 1706 1707 %type wqas {u8} 1708 wqas(A) ::= AS. {A = M10d_Any;} 1709 wqas(A) ::= AS MATERIALIZED. {A = M10d_Yes;} 1710 wqas(A) ::= AS NOT MATERIALIZED. {A = M10d_No;} 1711 wqitem(A) ::= nm(X) eidlist_opt(Y) wqas(M) LP select(Z) RP. { 1712 A = sqlite3CteNew(pParse, &X, Y, Z, M); /*A-overwrites-X*/ 1713 } 1714 wqlist(A) ::= wqitem(X). { 1715 A = sqlite3WithAdd(pParse, 0, X); /*A-overwrites-X*/ 1716 } 1717 wqlist(A) ::= wqlist(A) COMMA wqitem(X). { 1718 A = sqlite3WithAdd(pParse, A, X); 1719 } 1720 %endif SQLITE_OMIT_CTE 1721 1722 //////////////////////// WINDOW FUNCTION EXPRESSIONS ///////////////////////// 1723 // These must be at the end of this file. Specifically, the rules that 1724 // introduce tokens WINDOW, OVER and FILTER must appear last. This causes 1725 // the integer values assigned to these tokens to be larger than all other 1726 // tokens that may be output by the tokenizer except TK_SPACE and TK_ILLEGAL. 1727 // 1728 %ifndef SQLITE_OMIT_WINDOWFUNC 1729 %type windowdefn_list {Window*} 1730 %destructor windowdefn_list {sqlite3WindowListDelete(pParse->db, $$);} 1731 windowdefn_list(A) ::= windowdefn(Z). { A = Z; } 1732 windowdefn_list(A) ::= windowdefn_list(Y) COMMA windowdefn(Z). { 1733 assert( Z!=0 ); 1734 sqlite3WindowChain(pParse, Z, Y); 1735 Z->pNextWin = Y; 1736 A = Z; 1737 } 1738 1739 %type windowdefn {Window*} 1740 %destructor windowdefn {sqlite3WindowDelete(pParse->db, $$);} 1741 windowdefn(A) ::= nm(X) AS LP window(Y) RP. { 1742 if( ALWAYS(Y) ){ 1743 Y->zName = sqlite3DbStrNDup(pParse->db, X.z, X.n); 1744 } 1745 A = Y; 1746 } 1747 1748 %type window {Window*} 1749 %destructor window {sqlite3WindowDelete(pParse->db, $$);} 1750 1751 %type frame_opt {Window*} 1752 %destructor frame_opt {sqlite3WindowDelete(pParse->db, $$);} 1753 1754 %type part_opt {ExprList*} 1755 %destructor part_opt {sqlite3ExprListDelete(pParse->db, $$);} 1756 1757 %type filter_clause {Expr*} 1758 %destructor filter_clause {sqlite3ExprDelete(pParse->db, $$);} 1759 1760 %type over_clause {Window*} 1761 %destructor over_clause {sqlite3WindowDelete(pParse->db, $$);} 1762 1763 %type filter_over {Window*} 1764 %destructor filter_over {sqlite3WindowDelete(pParse->db, $$);} 1765 1766 %type range_or_rows {int} 1767 1768 %type frame_bound {struct FrameBound} 1769 %destructor frame_bound {sqlite3ExprDelete(pParse->db, $$.pExpr);} 1770 %type frame_bound_s {struct FrameBound} 1771 %destructor frame_bound_s {sqlite3ExprDelete(pParse->db, $$.pExpr);} 1772 %type frame_bound_e {struct FrameBound} 1773 %destructor frame_bound_e {sqlite3ExprDelete(pParse->db, $$.pExpr);} 1774 1775 window(A) ::= PARTITION BY nexprlist(X) orderby_opt(Y) frame_opt(Z). { 1776 A = sqlite3WindowAssemble(pParse, Z, X, Y, 0); 1777 } 1778 window(A) ::= nm(W) PARTITION BY nexprlist(X) orderby_opt(Y) frame_opt(Z). { 1779 A = sqlite3WindowAssemble(pParse, Z, X, Y, &W); 1780 } 1781 window(A) ::= ORDER BY sortlist(Y) frame_opt(Z). { 1782 A = sqlite3WindowAssemble(pParse, Z, 0, Y, 0); 1783 } 1784 window(A) ::= nm(W) ORDER BY sortlist(Y) frame_opt(Z). { 1785 A = sqlite3WindowAssemble(pParse, Z, 0, Y, &W); 1786 } 1787 window(A) ::= frame_opt(Z). { 1788 A = Z; 1789 } 1790 window(A) ::= nm(W) frame_opt(Z). { 1791 A = sqlite3WindowAssemble(pParse, Z, 0, 0, &W); 1792 } 1793 1794 frame_opt(A) ::= . { 1795 A = sqlite3WindowAlloc(pParse, 0, TK_UNBOUNDED, 0, TK_CURRENT, 0, 0); 1796 } 1797 frame_opt(A) ::= range_or_rows(X) frame_bound_s(Y) frame_exclude_opt(Z). { 1798 A = sqlite3WindowAlloc(pParse, X, Y.eType, Y.pExpr, TK_CURRENT, 0, Z); 1799 } 1800 frame_opt(A) ::= range_or_rows(X) BETWEEN frame_bound_s(Y) AND 1801 frame_bound_e(Z) frame_exclude_opt(W). { 1802 A = sqlite3WindowAlloc(pParse, X, Y.eType, Y.pExpr, Z.eType, Z.pExpr, W); 1803 } 1804 1805 range_or_rows(A) ::= RANGE|ROWS|GROUPS(X). {A = @X; /*A-overwrites-X*/} 1806 1807 frame_bound_s(A) ::= frame_bound(X). {A = X;} 1808 frame_bound_s(A) ::= UNBOUNDED(X) PRECEDING. {A.eType = @X; A.pExpr = 0;} 1809 frame_bound_e(A) ::= frame_bound(X). {A = X;} 1810 frame_bound_e(A) ::= UNBOUNDED(X) FOLLOWING. {A.eType = @X; A.pExpr = 0;} 1811 1812 frame_bound(A) ::= expr(X) PRECEDING|FOLLOWING(Y). 1813 {A.eType = @Y; A.pExpr = X;} 1814 frame_bound(A) ::= CURRENT(X) ROW. {A.eType = @X; A.pExpr = 0;} 1815 1816 %type frame_exclude_opt {u8} 1817 frame_exclude_opt(A) ::= . {A = 0;} 1818 frame_exclude_opt(A) ::= EXCLUDE frame_exclude(X). {A = X;} 1819 1820 %type frame_exclude {u8} 1821 frame_exclude(A) ::= NO(X) OTHERS. {A = @X; /*A-overwrites-X*/} 1822 frame_exclude(A) ::= CURRENT(X) ROW. {A = @X; /*A-overwrites-X*/} 1823 frame_exclude(A) ::= GROUP|TIES(X). {A = @X; /*A-overwrites-X*/} 1824 1825 1826 %type window_clause {Window*} 1827 %destructor window_clause {sqlite3WindowListDelete(pParse->db, $$);} 1828 window_clause(A) ::= WINDOW windowdefn_list(B). { A = B; } 1829 1830 filter_over(A) ::= filter_clause(F) over_clause(O). { 1831 if( O ){ 1832 O->pFilter = F; 1833 }else{ 1834 sqlite3ExprDelete(pParse->db, F); 1835 } 1836 A = O; 1837 } 1838 filter_over(A) ::= over_clause(O). { 1839 A = O; 1840 } 1841 filter_over(A) ::= filter_clause(F). { 1842 A = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); 1843 if( A ){ 1844 A->eFrmType = TK_FILTER; 1845 A->pFilter = F; 1846 }else{ 1847 sqlite3ExprDelete(pParse->db, F); 1848 } 1849 } 1850 1851 over_clause(A) ::= OVER LP window(Z) RP. { 1852 A = Z; 1853 assert( A!=0 ); 1854 } 1855 over_clause(A) ::= OVER nm(Z). { 1856 A = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); 1857 if( A ){ 1858 A->zName = sqlite3DbStrNDup(pParse->db, Z.z, Z.n); 1859 } 1860 } 1861 1862 filter_clause(A) ::= FILTER LP WHERE expr(X) RP. { A = X; } 1863 %endif /* SQLITE_OMIT_WINDOWFUNC */ 1864 1865 /* 1866 ** The code generator needs some extra TK_ token values for tokens that 1867 ** are synthesized and do not actually appear in the grammar: 1868 */ 1869 %token 1870 COLUMN /* Reference to a table column */ 1871 AGG_FUNCTION /* An aggregate function */ 1872 AGG_COLUMN /* An aggregated column */ 1873 TRUEFALSE /* True or false keyword */ 1874 ISNOT /* Combination of IS and NOT */ 1875 FUNCTION /* A function invocation */ 1876 UMINUS /* Unary minus */ 1877 UPLUS /* Unary plus */ 1878 TRUTH /* IS TRUE or IS FALSE or IS NOT TRUE or IS NOT FALSE */ 1879 REGISTER /* Reference to a VDBE register */ 1880 VECTOR /* Vector */ 1881 SELECT_COLUMN /* Choose a single column from a multi-column SELECT */ 1882 IF_NULL_ROW /* the if-null-row operator */ 1883 ASTERISK /* The "*" in count(*) and similar */ 1884 SPAN /* The span operator */ 1885 ERROR /* An expression containing an error */ 1886 . 1887 /* There must be no more than 255 tokens defined above. If this grammar 1888 ** is extended with new rules and tokens, they must either be so few in 1889 ** number that TK_SPAN is no more than 255, or else the new tokens must 1890 ** appear after this line. 1891 */ 1892 %include { 1893 #if TK_SPAN>255 1894 # error too many tokens in the grammar 1895 #endif 1896 } 1897 1898 /* 1899 ** The TK_SPACE and TK_ILLEGAL tokens must be the last two tokens. The 1900 ** parser depends on this. Those tokens are not used in any grammar rule. 1901 ** They are only used by the tokenizer. Declare them last so that they 1902 ** are guaranteed to be the last two tokens 1903 */ 1904 %token SPACE ILLEGAL. 1905