xref: /sqlite-3.40.0/src/parse.y (revision 4dfe98a8)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains SQLite's grammar for SQL.  Process this file
13 ** using the lemon parser generator to generate C code that runs
14 ** the parser.  Lemon will also generate a header file containing
15 ** numeric codes for all of the tokens.
16 */
17 
18 // All token codes are small integers with #defines that begin with "TK_"
19 %token_prefix TK_
20 
21 // The type of the data attached to each token is Token.  This is also the
22 // default type for non-terminals.
23 //
24 %token_type {Token}
25 %default_type {Token}
26 
27 // The generated parser function takes a 4th argument as follows:
28 %extra_argument {Parse *pParse}
29 
30 // This code runs whenever there is a syntax error
31 //
32 %syntax_error {
33   UNUSED_PARAMETER(yymajor);  /* Silence some compiler warnings */
34   assert( TOKEN.z[0] );  /* The tokenizer always gives us a token */
35   sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);
36 }
37 %stack_overflow {
38   UNUSED_PARAMETER(yypMinor); /* Silence some compiler warnings */
39   sqlite3ErrorMsg(pParse, "parser stack overflow");
40 }
41 
42 // The name of the generated procedure that implements the parser
43 // is as follows:
44 %name sqlite3Parser
45 
46 // The following text is included near the beginning of the C source
47 // code file that implements the parser.
48 //
49 %include {
50 #include "sqliteInt.h"
51 
52 /*
53 ** Disable all error recovery processing in the parser push-down
54 ** automaton.
55 */
56 #define YYNOERRORRECOVERY 1
57 
58 /*
59 ** Make yytestcase() the same as testcase()
60 */
61 #define yytestcase(X) testcase(X)
62 
63 /*
64 ** An instance of this structure holds information about the
65 ** LIMIT clause of a SELECT statement.
66 */
67 struct LimitVal {
68   Expr *pLimit;    /* The LIMIT expression.  NULL if there is no limit */
69   Expr *pOffset;   /* The OFFSET expression.  NULL if there is none */
70 };
71 
72 /*
73 ** An instance of this structure is used to store the LIKE,
74 ** GLOB, NOT LIKE, and NOT GLOB operators.
75 */
76 struct LikeOp {
77   Token eOperator;  /* "like" or "glob" or "regexp" */
78   int bNot;         /* True if the NOT keyword is present */
79 };
80 
81 /*
82 ** An instance of the following structure describes the event of a
83 ** TRIGGER.  "a" is the event type, one of TK_UPDATE, TK_INSERT,
84 ** TK_DELETE, or TK_INSTEAD.  If the event is of the form
85 **
86 **      UPDATE ON (a,b,c)
87 **
88 ** Then the "b" IdList records the list "a,b,c".
89 */
90 struct TrigEvent { int a; IdList * b; };
91 
92 /*
93 ** An instance of this structure holds the ATTACH key and the key type.
94 */
95 struct AttachKey { int type;  Token key; };
96 
97 } // end %include
98 
99 // Input is a single SQL command
100 input ::= cmdlist.
101 cmdlist ::= cmdlist ecmd.
102 cmdlist ::= ecmd.
103 ecmd ::= SEMI.
104 ecmd ::= explain cmdx SEMI.
105 explain ::= .           { sqlite3BeginParse(pParse, 0); }
106 %ifndef SQLITE_OMIT_EXPLAIN
107 explain ::= EXPLAIN.              { sqlite3BeginParse(pParse, 1); }
108 explain ::= EXPLAIN QUERY PLAN.   { sqlite3BeginParse(pParse, 2); }
109 %endif  SQLITE_OMIT_EXPLAIN
110 cmdx ::= cmd.           { sqlite3FinishCoding(pParse); }
111 
112 ///////////////////// Begin and end transactions. ////////////////////////////
113 //
114 
115 cmd ::= BEGIN transtype(Y) trans_opt.  {sqlite3BeginTransaction(pParse, Y);}
116 trans_opt ::= .
117 trans_opt ::= TRANSACTION.
118 trans_opt ::= TRANSACTION nm.
119 %type transtype {int}
120 transtype(A) ::= .             {A = TK_DEFERRED;}
121 transtype(A) ::= DEFERRED(X).  {A = @X;}
122 transtype(A) ::= IMMEDIATE(X). {A = @X;}
123 transtype(A) ::= EXCLUSIVE(X). {A = @X;}
124 cmd ::= COMMIT trans_opt.      {sqlite3CommitTransaction(pParse);}
125 cmd ::= END trans_opt.         {sqlite3CommitTransaction(pParse);}
126 cmd ::= ROLLBACK trans_opt.    {sqlite3RollbackTransaction(pParse);}
127 
128 savepoint_opt ::= SAVEPOINT.
129 savepoint_opt ::= .
130 cmd ::= SAVEPOINT nm(X). {
131   sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X);
132 }
133 cmd ::= RELEASE savepoint_opt nm(X). {
134   sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X);
135 }
136 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). {
137   sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X);
138 }
139 
140 ///////////////////// The CREATE TABLE statement ////////////////////////////
141 //
142 cmd ::= create_table create_table_args.
143 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). {
144    sqlite3StartTable(pParse,&Y,&Z,T,0,0,E);
145 }
146 createkw(A) ::= CREATE(X).  {
147   pParse->db->lookaside.bEnabled = 0;
148   A = X;
149 }
150 %type ifnotexists {int}
151 ifnotexists(A) ::= .              {A = 0;}
152 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;}
153 %type temp {int}
154 %ifndef SQLITE_OMIT_TEMPDB
155 temp(A) ::= TEMP.  {A = 1;}
156 %endif  SQLITE_OMIT_TEMPDB
157 temp(A) ::= .      {A = 0;}
158 create_table_args ::= LP columnlist conslist_opt(X) RP(E) table_options(F). {
159   sqlite3EndTable(pParse,&X,&E,F,0);
160 }
161 create_table_args ::= AS select(S). {
162   sqlite3EndTable(pParse,0,0,0,S);
163   sqlite3SelectDelete(pParse->db, S);
164 }
165 %type table_options {u8}
166 table_options(A) ::= .    {A = 0;}
167 table_options(A) ::= WITHOUT nm(X). {
168   if( X.n==5 && sqlite3_strnicmp(X.z,"rowid",5)==0 ){
169     A = TF_WithoutRowid | TF_NoVisibleRowid;
170   }else{
171     A = 0;
172     sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z);
173   }
174 }
175 columnlist ::= columnlist COMMA column.
176 columnlist ::= column.
177 
178 // A "column" is a complete description of a single column in a
179 // CREATE TABLE statement.  This includes the column name, its
180 // datatype, and other keywords such as PRIMARY KEY, UNIQUE, REFERENCES,
181 // NOT NULL and so forth.
182 //
183 column(A) ::= columnid(X) type carglist. {
184   A.z = X.z;
185   A.n = (int)(pParse->sLastToken.z-X.z) + pParse->sLastToken.n;
186 }
187 columnid(A) ::= nm(X). {
188   sqlite3AddColumn(pParse,&X);
189   A = X;
190   pParse->constraintName.n = 0;
191 }
192 
193 
194 // An IDENTIFIER can be a generic identifier, or one of several
195 // keywords.  Any non-standard keyword can also be an identifier.
196 //
197 %token_class id  ID|INDEXED.
198 
199 // The following directive causes tokens ABORT, AFTER, ASC, etc. to
200 // fallback to ID if they will not parse as their original value.
201 // This obviates the need for the "id" nonterminal.
202 //
203 %fallback ID
204   ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW
205   CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL FOR
206   IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN
207   QUERY KEY OF OFFSET PRAGMA RAISE RECURSIVE RELEASE REPLACE RESTRICT ROW
208   ROLLBACK SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL WITH WITHOUT
209 %ifdef SQLITE_OMIT_COMPOUND_SELECT
210   EXCEPT INTERSECT UNION
211 %endif SQLITE_OMIT_COMPOUND_SELECT
212   REINDEX RENAME CTIME_KW IF
213   .
214 %wildcard ANY.
215 
216 // Define operator precedence early so that this is the first occurrence
217 // of the operator tokens in the grammer.  Keeping the operators together
218 // causes them to be assigned integer values that are close together,
219 // which keeps parser tables smaller.
220 //
221 // The token values assigned to these symbols is determined by the order
222 // in which lemon first sees them.  It must be the case that ISNULL/NOTNULL,
223 // NE/EQ, GT/LE, and GE/LT are separated by only a single value.  See
224 // the sqlite3ExprIfFalse() routine for additional information on this
225 // constraint.
226 //
227 %left OR.
228 %left AND.
229 %right NOT.
230 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ.
231 %left GT LE LT GE.
232 %right ESCAPE.
233 %left BITAND BITOR LSHIFT RSHIFT.
234 %left PLUS MINUS.
235 %left STAR SLASH REM.
236 %left CONCAT.
237 %left COLLATE.
238 %right BITNOT.
239 
240 // And "ids" is an identifer-or-string.
241 //
242 %token_class ids  ID|STRING.
243 
244 // The name of a column or table can be any of the following:
245 //
246 %type nm {Token}
247 nm(A) ::= id(X).         {A = X;}
248 nm(A) ::= STRING(X).     {A = X;}
249 nm(A) ::= JOIN_KW(X).    {A = X;}
250 
251 // A typetoken is really one or more tokens that form a type name such
252 // as can be found after the column name in a CREATE TABLE statement.
253 // Multiple tokens are concatenated to form the value of the typetoken.
254 //
255 %type typetoken {Token}
256 type ::= .
257 type ::= typetoken(X).                   {sqlite3AddColumnType(pParse,&X);}
258 typetoken(A) ::= typename(X).   {A = X;}
259 typetoken(A) ::= typename(X) LP signed RP(Y). {
260   A.z = X.z;
261   A.n = (int)(&Y.z[Y.n] - X.z);
262 }
263 typetoken(A) ::= typename(X) LP signed COMMA signed RP(Y). {
264   A.z = X.z;
265   A.n = (int)(&Y.z[Y.n] - X.z);
266 }
267 %type typename {Token}
268 typename(A) ::= ids(X).             {A = X;}
269 typename(A) ::= typename(X) ids(Y). {A.z=X.z; A.n=Y.n+(int)(Y.z-X.z);}
270 signed ::= plus_num.
271 signed ::= minus_num.
272 
273 // "carglist" is a list of additional constraints that come after the
274 // column name and column type in a CREATE TABLE statement.
275 //
276 carglist ::= carglist ccons.
277 carglist ::= .
278 ccons ::= CONSTRAINT nm(X).           {pParse->constraintName = X;}
279 ccons ::= DEFAULT term(X).            {sqlite3AddDefaultValue(pParse,&X);}
280 ccons ::= DEFAULT LP expr(X) RP.      {sqlite3AddDefaultValue(pParse,&X);}
281 ccons ::= DEFAULT PLUS term(X).       {sqlite3AddDefaultValue(pParse,&X);}
282 ccons ::= DEFAULT MINUS(A) term(X).      {
283   ExprSpan v;
284   v.pExpr = sqlite3PExpr(pParse, TK_UMINUS, X.pExpr, 0, 0);
285   v.zStart = A.z;
286   v.zEnd = X.zEnd;
287   sqlite3AddDefaultValue(pParse,&v);
288 }
289 ccons ::= DEFAULT id(X).              {
290   ExprSpan v;
291   spanExpr(&v, pParse, TK_STRING, &X);
292   sqlite3AddDefaultValue(pParse,&v);
293 }
294 
295 // In addition to the type name, we also care about the primary key and
296 // UNIQUE constraints.
297 //
298 ccons ::= NULL onconf.
299 ccons ::= NOT NULL onconf(R).    {sqlite3AddNotNull(pParse, R);}
300 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I).
301                                  {sqlite3AddPrimaryKey(pParse,0,R,I,Z);}
302 ccons ::= UNIQUE onconf(R).      {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0);}
303 ccons ::= CHECK LP expr(X) RP.   {sqlite3AddCheckConstraint(pParse,X.pExpr);}
304 ccons ::= REFERENCES nm(T) eidlist_opt(TA) refargs(R).
305                                  {sqlite3CreateForeignKey(pParse,0,&T,TA,R);}
306 ccons ::= defer_subclause(D).    {sqlite3DeferForeignKey(pParse,D);}
307 ccons ::= COLLATE ids(C).        {sqlite3AddCollateType(pParse, &C);}
308 
309 // The optional AUTOINCREMENT keyword
310 %type autoinc {int}
311 autoinc(X) ::= .          {X = 0;}
312 autoinc(X) ::= AUTOINCR.  {X = 1;}
313 
314 // The next group of rules parses the arguments to a REFERENCES clause
315 // that determine if the referential integrity checking is deferred or
316 // or immediate and which determine what action to take if a ref-integ
317 // check fails.
318 //
319 %type refargs {int}
320 refargs(A) ::= .                  { A = OE_None*0x0101; /* EV: R-19803-45884 */}
321 refargs(A) ::= refargs(X) refarg(Y). { A = (X & ~Y.mask) | Y.value; }
322 %type refarg {struct {int value; int mask;}}
323 refarg(A) ::= MATCH nm.              { A.value = 0;     A.mask = 0x000000; }
324 refarg(A) ::= ON INSERT refact.      { A.value = 0;     A.mask = 0x000000; }
325 refarg(A) ::= ON DELETE refact(X).   { A.value = X;     A.mask = 0x0000ff; }
326 refarg(A) ::= ON UPDATE refact(X).   { A.value = X<<8;  A.mask = 0x00ff00; }
327 %type refact {int}
328 refact(A) ::= SET NULL.              { A = OE_SetNull;  /* EV: R-33326-45252 */}
329 refact(A) ::= SET DEFAULT.           { A = OE_SetDflt;  /* EV: R-33326-45252 */}
330 refact(A) ::= CASCADE.               { A = OE_Cascade;  /* EV: R-33326-45252 */}
331 refact(A) ::= RESTRICT.              { A = OE_Restrict; /* EV: R-33326-45252 */}
332 refact(A) ::= NO ACTION.             { A = OE_None;     /* EV: R-33326-45252 */}
333 %type defer_subclause {int}
334 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt.     {A = 0;}
335 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X).      {A = X;}
336 %type init_deferred_pred_opt {int}
337 init_deferred_pred_opt(A) ::= .                       {A = 0;}
338 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED.     {A = 1;}
339 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE.    {A = 0;}
340 
341 conslist_opt(A) ::= .                         {A.n = 0; A.z = 0;}
342 conslist_opt(A) ::= COMMA(X) conslist.        {A = X;}
343 conslist ::= conslist tconscomma tcons.
344 conslist ::= tcons.
345 tconscomma ::= COMMA.            {pParse->constraintName.n = 0;}
346 tconscomma ::= .
347 tcons ::= CONSTRAINT nm(X).      {pParse->constraintName = X;}
348 tcons ::= PRIMARY KEY LP sortlist(X) autoinc(I) RP onconf(R).
349                                  {sqlite3AddPrimaryKey(pParse,X,R,I,0);}
350 tcons ::= UNIQUE LP sortlist(X) RP onconf(R).
351                                  {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0);}
352 tcons ::= CHECK LP expr(E) RP onconf.
353                                  {sqlite3AddCheckConstraint(pParse,E.pExpr);}
354 tcons ::= FOREIGN KEY LP eidlist(FA) RP
355           REFERENCES nm(T) eidlist_opt(TA) refargs(R) defer_subclause_opt(D). {
356     sqlite3CreateForeignKey(pParse, FA, &T, TA, R);
357     sqlite3DeferForeignKey(pParse, D);
358 }
359 %type defer_subclause_opt {int}
360 defer_subclause_opt(A) ::= .                    {A = 0;}
361 defer_subclause_opt(A) ::= defer_subclause(X).  {A = X;}
362 
363 // The following is a non-standard extension that allows us to declare the
364 // default behavior when there is a constraint conflict.
365 //
366 %type onconf {int}
367 %type orconf {u8}
368 %type resolvetype {int}
369 onconf(A) ::= .                              {A = OE_Default;}
370 onconf(A) ::= ON CONFLICT resolvetype(X).    {A = X;}
371 orconf(A) ::= .                              {A = OE_Default;}
372 orconf(A) ::= OR resolvetype(X).             {A = (u8)X;}
373 resolvetype(A) ::= raisetype(X).             {A = X;}
374 resolvetype(A) ::= IGNORE.                   {A = OE_Ignore;}
375 resolvetype(A) ::= REPLACE.                  {A = OE_Replace;}
376 
377 ////////////////////////// The DROP TABLE /////////////////////////////////////
378 //
379 cmd ::= DROP TABLE ifexists(E) fullname(X). {
380   sqlite3DropTable(pParse, X, 0, E);
381 }
382 %type ifexists {int}
383 ifexists(A) ::= IF EXISTS.   {A = 1;}
384 ifexists(A) ::= .            {A = 0;}
385 
386 ///////////////////// The CREATE VIEW statement /////////////////////////////
387 //
388 %ifndef SQLITE_OMIT_VIEW
389 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) eidlist_opt(C)
390           AS select(S). {
391   sqlite3CreateView(pParse, &X, &Y, &Z, C, S, T, E);
392 }
393 cmd ::= DROP VIEW ifexists(E) fullname(X). {
394   sqlite3DropTable(pParse, X, 1, E);
395 }
396 %endif  SQLITE_OMIT_VIEW
397 
398 //////////////////////// The SELECT statement /////////////////////////////////
399 //
400 cmd ::= select(X).  {
401   SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0};
402   sqlite3Select(pParse, X, &dest);
403   sqlite3SelectDelete(pParse->db, X);
404 }
405 
406 %type select {Select*}
407 %destructor select {sqlite3SelectDelete(pParse->db, $$);}
408 %type selectnowith {Select*}
409 %destructor selectnowith {sqlite3SelectDelete(pParse->db, $$);}
410 %type oneselect {Select*}
411 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);}
412 
413 %include {
414   /*
415   ** For a compound SELECT statement, make sure p->pPrior->pNext==p for
416   ** all elements in the list.  And make sure list length does not exceed
417   ** SQLITE_LIMIT_COMPOUND_SELECT.
418   */
419   static void parserDoubleLinkSelect(Parse *pParse, Select *p){
420     if( p->pPrior ){
421       Select *pNext = 0, *pLoop;
422       int mxSelect, cnt = 0;
423       for(pLoop=p; pLoop; pNext=pLoop, pLoop=pLoop->pPrior, cnt++){
424         pLoop->pNext = pNext;
425         pLoop->selFlags |= SF_Compound;
426       }
427       if( (p->selFlags & SF_MultiValue)==0 &&
428         (mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT])>0 &&
429         cnt>mxSelect
430       ){
431         sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
432       }
433     }
434   }
435 }
436 
437 select(A) ::= with(W) selectnowith(X). {
438   Select *p = X;
439   if( p ){
440     p->pWith = W;
441     parserDoubleLinkSelect(pParse, p);
442   }else{
443     sqlite3WithDelete(pParse->db, W);
444   }
445   A = p;
446 }
447 
448 selectnowith(A) ::= oneselect(X).                      {A = X;}
449 %ifndef SQLITE_OMIT_COMPOUND_SELECT
450 selectnowith(A) ::= selectnowith(X) multiselect_op(Y) oneselect(Z).  {
451   Select *pRhs = Z;
452   Select *pLhs = X;
453   if( pRhs && pRhs->pPrior ){
454     SrcList *pFrom;
455     Token x;
456     x.n = 0;
457     parserDoubleLinkSelect(pParse, pRhs);
458     pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0);
459     pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0,0);
460   }
461   if( pRhs ){
462     pRhs->op = (u8)Y;
463     pRhs->pPrior = pLhs;
464     if( ALWAYS(pLhs) ) pLhs->selFlags &= ~SF_MultiValue;
465     pRhs->selFlags &= ~SF_MultiValue;
466     if( Y!=TK_ALL ) pParse->hasCompound = 1;
467   }else{
468     sqlite3SelectDelete(pParse->db, pLhs);
469   }
470   A = pRhs;
471 }
472 %type multiselect_op {int}
473 multiselect_op(A) ::= UNION(OP).             {A = @OP;}
474 multiselect_op(A) ::= UNION ALL.             {A = TK_ALL;}
475 multiselect_op(A) ::= EXCEPT|INTERSECT(OP).  {A = @OP;}
476 %endif SQLITE_OMIT_COMPOUND_SELECT
477 oneselect(A) ::= SELECT(S) distinct(D) selcollist(W) from(X) where_opt(Y)
478                  groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). {
479   A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L.pLimit,L.pOffset);
480 #if SELECTTRACE_ENABLED
481   /* Populate the Select.zSelName[] string that is used to help with
482   ** query planner debugging, to differentiate between multiple Select
483   ** objects in a complex query.
484   **
485   ** If the SELECT keyword is immediately followed by a C-style comment
486   ** then extract the first few alphanumeric characters from within that
487   ** comment to be the zSelName value.  Otherwise, the label is #N where
488   ** is an integer that is incremented with each SELECT statement seen.
489   */
490   if( A!=0 ){
491     const char *z = S.z+6;
492     int i;
493     sqlite3_snprintf(sizeof(A->zSelName), A->zSelName, "#%d",
494                      ++pParse->nSelect);
495     while( z[0]==' ' ) z++;
496     if( z[0]=='/' && z[1]=='*' ){
497       z += 2;
498       while( z[0]==' ' ) z++;
499       for(i=0; sqlite3Isalnum(z[i]); i++){}
500       sqlite3_snprintf(sizeof(A->zSelName), A->zSelName, "%.*s", i, z);
501     }
502   }
503 #endif /* SELECTRACE_ENABLED */
504 }
505 oneselect(A) ::= values(X).    {A = X;}
506 
507 %type values {Select*}
508 %destructor values {sqlite3SelectDelete(pParse->db, $$);}
509 values(A) ::= VALUES LP nexprlist(X) RP. {
510   A = sqlite3SelectNew(pParse,X,0,0,0,0,0,SF_Values,0,0);
511 }
512 values(A) ::= values(X) COMMA LP exprlist(Y) RP. {
513   Select *pRight, *pLeft = X;
514   pRight = sqlite3SelectNew(pParse,Y,0,0,0,0,0,SF_Values|SF_MultiValue,0,0);
515   if( ALWAYS(pLeft) ) pLeft->selFlags &= ~SF_MultiValue;
516   if( pRight ){
517     pRight->op = TK_ALL;
518     pLeft = X;
519     pRight->pPrior = pLeft;
520     A = pRight;
521   }else{
522     A = pLeft;
523   }
524 }
525 
526 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is
527 // present and false (0) if it is not.
528 //
529 %type distinct {u16}
530 distinct(A) ::= DISTINCT.   {A = SF_Distinct;}
531 distinct(A) ::= ALL.        {A = SF_All;}
532 distinct(A) ::= .           {A = 0;}
533 
534 // selcollist is a list of expressions that are to become the return
535 // values of the SELECT statement.  The "*" in statements like
536 // "SELECT * FROM ..." is encoded as a special expression with an
537 // opcode of TK_ALL.
538 //
539 %type selcollist {ExprList*}
540 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);}
541 %type sclp {ExprList*}
542 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);}
543 sclp(A) ::= selcollist(X) COMMA.             {A = X;}
544 sclp(A) ::= .                                {A = 0;}
545 selcollist(A) ::= sclp(P) expr(X) as(Y).     {
546    A = sqlite3ExprListAppend(pParse, P, X.pExpr);
547    if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1);
548    sqlite3ExprListSetSpan(pParse,A,&X);
549 }
550 selcollist(A) ::= sclp(P) STAR. {
551   Expr *p = sqlite3Expr(pParse->db, TK_ALL, 0);
552   A = sqlite3ExprListAppend(pParse, P, p);
553 }
554 selcollist(A) ::= sclp(P) nm(X) DOT STAR(Y). {
555   Expr *pRight = sqlite3PExpr(pParse, TK_ALL, 0, 0, &Y);
556   Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &X);
557   Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
558   A = sqlite3ExprListAppend(pParse,P, pDot);
559 }
560 
561 // An option "AS <id>" phrase that can follow one of the expressions that
562 // define the result set, or one of the tables in the FROM clause.
563 //
564 %type as {Token}
565 as(X) ::= AS nm(Y).    {X = Y;}
566 as(X) ::= ids(Y).      {X = Y;}
567 as(X) ::= .            {X.n = 0;}
568 
569 
570 %type seltablist {SrcList*}
571 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);}
572 %type stl_prefix {SrcList*}
573 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);}
574 %type from {SrcList*}
575 %destructor from {sqlite3SrcListDelete(pParse->db, $$);}
576 
577 // A complete FROM clause.
578 //
579 from(A) ::= .                {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));}
580 from(A) ::= FROM seltablist(X). {
581   A = X;
582   sqlite3SrcListShiftJoinType(A);
583 }
584 
585 // "seltablist" is a "Select Table List" - the content of the FROM clause
586 // in a SELECT statement.  "stl_prefix" is a prefix of this list.
587 //
588 stl_prefix(A) ::= seltablist(X) joinop(Y).    {
589    A = X;
590    if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].fg.jointype = (u8)Y;
591 }
592 stl_prefix(A) ::= .                           {A = 0;}
593 seltablist(A) ::= stl_prefix(X) nm(Y) dbnm(D) as(Z) indexed_opt(I)
594                   on_opt(N) using_opt(U). {
595   A = sqlite3SrcListAppendFromTerm(pParse,X,&Y,&D,&Z,0,N,U);
596   sqlite3SrcListIndexedBy(pParse, A, &I);
597 }
598 seltablist(A) ::= stl_prefix(X) nm(Y) dbnm(D) LP exprlist(E) RP as(Z)
599                   on_opt(N) using_opt(U). {
600   A = sqlite3SrcListAppendFromTerm(pParse,X,&Y,&D,&Z,0,N,U);
601   sqlite3SrcListFuncArgs(pParse, A, E);
602 }
603 %ifndef SQLITE_OMIT_SUBQUERY
604   seltablist(A) ::= stl_prefix(X) LP select(S) RP
605                     as(Z) on_opt(N) using_opt(U). {
606     A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,S,N,U);
607   }
608   seltablist(A) ::= stl_prefix(X) LP seltablist(F) RP
609                     as(Z) on_opt(N) using_opt(U). {
610     if( X==0 && Z.n==0 && N==0 && U==0 ){
611       A = F;
612     }else if( F->nSrc==1 ){
613       A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,0,N,U);
614       if( A ){
615         struct SrcList_item *pNew = &A->a[A->nSrc-1];
616         struct SrcList_item *pOld = F->a;
617         pNew->zName = pOld->zName;
618         pNew->zDatabase = pOld->zDatabase;
619         pNew->pSelect = pOld->pSelect;
620         pOld->zName = pOld->zDatabase = 0;
621         pOld->pSelect = 0;
622       }
623       sqlite3SrcListDelete(pParse->db, F);
624     }else{
625       Select *pSubquery;
626       sqlite3SrcListShiftJoinType(F);
627       pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,SF_NestedFrom,0,0);
628       A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,pSubquery,N,U);
629     }
630   }
631 %endif  SQLITE_OMIT_SUBQUERY
632 
633 %type dbnm {Token}
634 dbnm(A) ::= .          {A.z=0; A.n=0;}
635 dbnm(A) ::= DOT nm(X). {A = X;}
636 
637 %type fullname {SrcList*}
638 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);}
639 fullname(A) ::= nm(X) dbnm(Y).  {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y);}
640 
641 %type joinop {int}
642 %type joinop2 {int}
643 joinop(X) ::= COMMA|JOIN.              { X = JT_INNER; }
644 joinop(X) ::= JOIN_KW(A) JOIN.         { X = sqlite3JoinType(pParse,&A,0,0); }
645 joinop(X) ::= JOIN_KW(A) nm(B) JOIN.   { X = sqlite3JoinType(pParse,&A,&B,0); }
646 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN.
647                                        { X = sqlite3JoinType(pParse,&A,&B,&C); }
648 
649 %type on_opt {Expr*}
650 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);}
651 on_opt(N) ::= ON expr(E).   {N = E.pExpr;}
652 on_opt(N) ::= .             {N = 0;}
653 
654 // Note that this block abuses the Token type just a little. If there is
655 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If
656 // there is an INDEXED BY clause, then the token is populated as per normal,
657 // with z pointing to the token data and n containing the number of bytes
658 // in the token.
659 //
660 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is
661 // normally illegal. The sqlite3SrcListIndexedBy() function
662 // recognizes and interprets this as a special case.
663 //
664 %type indexed_opt {Token}
665 indexed_opt(A) ::= .                 {A.z=0; A.n=0;}
666 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;}
667 indexed_opt(A) ::= NOT INDEXED.      {A.z=0; A.n=1;}
668 
669 %type using_opt {IdList*}
670 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);}
671 using_opt(U) ::= USING LP idlist(L) RP.  {U = L;}
672 using_opt(U) ::= .                        {U = 0;}
673 
674 
675 %type orderby_opt {ExprList*}
676 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);}
677 
678 // the sortlist non-terminal stores a list of expression where each
679 // expression is optionally followed by ASC or DESC to indicate the
680 // sort order.
681 //
682 %type sortlist {ExprList*}
683 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);}
684 
685 orderby_opt(A) ::= .                          {A = 0;}
686 orderby_opt(A) ::= ORDER BY sortlist(X).      {A = X;}
687 sortlist(A) ::= sortlist(X) COMMA expr(Y) sortorder(Z). {
688   A = sqlite3ExprListAppend(pParse,X,Y.pExpr);
689   sqlite3ExprListSetSortOrder(A,Z);
690 }
691 sortlist(A) ::= expr(Y) sortorder(Z). {
692   A = sqlite3ExprListAppend(pParse,0,Y.pExpr);
693   sqlite3ExprListSetSortOrder(A,Z);
694 }
695 
696 %type sortorder {int}
697 
698 sortorder(A) ::= ASC.           {A = SQLITE_SO_ASC;}
699 sortorder(A) ::= DESC.          {A = SQLITE_SO_DESC;}
700 sortorder(A) ::= .              {A = SQLITE_SO_UNDEFINED;}
701 
702 %type groupby_opt {ExprList*}
703 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);}
704 groupby_opt(A) ::= .                      {A = 0;}
705 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;}
706 
707 %type having_opt {Expr*}
708 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);}
709 having_opt(A) ::= .                {A = 0;}
710 having_opt(A) ::= HAVING expr(X).  {A = X.pExpr;}
711 
712 %type limit_opt {struct LimitVal}
713 
714 // The destructor for limit_opt will never fire in the current grammar.
715 // The limit_opt non-terminal only occurs at the end of a single production
716 // rule for SELECT statements.  As soon as the rule that create the
717 // limit_opt non-terminal reduces, the SELECT statement rule will also
718 // reduce.  So there is never a limit_opt non-terminal on the stack
719 // except as a transient.  So there is never anything to destroy.
720 //
721 //%destructor limit_opt {
722 //  sqlite3ExprDelete(pParse->db, $$.pLimit);
723 //  sqlite3ExprDelete(pParse->db, $$.pOffset);
724 //}
725 limit_opt(A) ::= .                    {A.pLimit = 0; A.pOffset = 0;}
726 limit_opt(A) ::= LIMIT expr(X).       {A.pLimit = X.pExpr; A.pOffset = 0;}
727 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y).
728                                       {A.pLimit = X.pExpr; A.pOffset = Y.pExpr;}
729 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y).
730                                       {A.pOffset = X.pExpr; A.pLimit = Y.pExpr;}
731 
732 /////////////////////////// The DELETE statement /////////////////////////////
733 //
734 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
735 cmd ::= with(C) DELETE FROM fullname(X) indexed_opt(I) where_opt(W)
736         orderby_opt(O) limit_opt(L). {
737   sqlite3WithPush(pParse, C, 1);
738   sqlite3SrcListIndexedBy(pParse, X, &I);
739   W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "DELETE");
740   sqlite3DeleteFrom(pParse,X,W);
741 }
742 %endif
743 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
744 cmd ::= with(C) DELETE FROM fullname(X) indexed_opt(I) where_opt(W). {
745   sqlite3WithPush(pParse, C, 1);
746   sqlite3SrcListIndexedBy(pParse, X, &I);
747   sqlite3DeleteFrom(pParse,X,W);
748 }
749 %endif
750 
751 %type where_opt {Expr*}
752 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);}
753 
754 where_opt(A) ::= .                    {A = 0;}
755 where_opt(A) ::= WHERE expr(X).       {A = X.pExpr;}
756 
757 ////////////////////////// The UPDATE command ////////////////////////////////
758 //
759 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
760 cmd ::= with(C) UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y)
761         where_opt(W) orderby_opt(O) limit_opt(L).  {
762   sqlite3WithPush(pParse, C, 1);
763   sqlite3SrcListIndexedBy(pParse, X, &I);
764   sqlite3ExprListCheckLength(pParse,Y,"set list");
765   W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "UPDATE");
766   sqlite3Update(pParse,X,Y,W,R);
767 }
768 %endif
769 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
770 cmd ::= with(C) UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y)
771         where_opt(W).  {
772   sqlite3WithPush(pParse, C, 1);
773   sqlite3SrcListIndexedBy(pParse, X, &I);
774   sqlite3ExprListCheckLength(pParse,Y,"set list");
775   sqlite3Update(pParse,X,Y,W,R);
776 }
777 %endif
778 
779 %type setlist {ExprList*}
780 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);}
781 
782 setlist(A) ::= setlist(Z) COMMA nm(X) EQ expr(Y). {
783   A = sqlite3ExprListAppend(pParse, Z, Y.pExpr);
784   sqlite3ExprListSetName(pParse, A, &X, 1);
785 }
786 setlist(A) ::= nm(X) EQ expr(Y). {
787   A = sqlite3ExprListAppend(pParse, 0, Y.pExpr);
788   sqlite3ExprListSetName(pParse, A, &X, 1);
789 }
790 
791 ////////////////////////// The INSERT command /////////////////////////////////
792 //
793 cmd ::= with(W) insert_cmd(R) INTO fullname(X) idlist_opt(F) select(S). {
794   sqlite3WithPush(pParse, W, 1);
795   sqlite3Insert(pParse, X, S, F, R);
796 }
797 cmd ::= with(W) insert_cmd(R) INTO fullname(X) idlist_opt(F) DEFAULT VALUES.
798 {
799   sqlite3WithPush(pParse, W, 1);
800   sqlite3Insert(pParse, X, 0, F, R);
801 }
802 
803 %type insert_cmd {u8}
804 insert_cmd(A) ::= INSERT orconf(R).   {A = R;}
805 insert_cmd(A) ::= REPLACE.            {A = OE_Replace;}
806 
807 %type idlist_opt {IdList*}
808 %destructor idlist_opt {sqlite3IdListDelete(pParse->db, $$);}
809 %type idlist {IdList*}
810 %destructor idlist {sqlite3IdListDelete(pParse->db, $$);}
811 
812 idlist_opt(A) ::= .                       {A = 0;}
813 idlist_opt(A) ::= LP idlist(X) RP.    {A = X;}
814 idlist(A) ::= idlist(X) COMMA nm(Y).
815     {A = sqlite3IdListAppend(pParse->db,X,&Y);}
816 idlist(A) ::= nm(Y).
817     {A = sqlite3IdListAppend(pParse->db,0,&Y);}
818 
819 /////////////////////////// Expression Processing /////////////////////////////
820 //
821 
822 %type expr {ExprSpan}
823 %destructor expr {sqlite3ExprDelete(pParse->db, $$.pExpr);}
824 %type term {ExprSpan}
825 %destructor term {sqlite3ExprDelete(pParse->db, $$.pExpr);}
826 
827 %include {
828   /* This is a utility routine used to set the ExprSpan.zStart and
829   ** ExprSpan.zEnd values of pOut so that the span covers the complete
830   ** range of text beginning with pStart and going to the end of pEnd.
831   */
832   static void spanSet(ExprSpan *pOut, Token *pStart, Token *pEnd){
833     pOut->zStart = pStart->z;
834     pOut->zEnd = &pEnd->z[pEnd->n];
835   }
836 
837   /* Construct a new Expr object from a single identifier.  Use the
838   ** new Expr to populate pOut.  Set the span of pOut to be the identifier
839   ** that created the expression.
840   */
841   static void spanExpr(ExprSpan *pOut, Parse *pParse, int op, Token *pValue){
842     pOut->pExpr = sqlite3PExpr(pParse, op, 0, 0, pValue);
843     pOut->zStart = pValue->z;
844     pOut->zEnd = &pValue->z[pValue->n];
845   }
846 }
847 
848 expr(A) ::= term(X).             {A = X;}
849 expr(A) ::= LP(B) expr(X) RP(E). {A.pExpr = X.pExpr; spanSet(&A,&B,&E);}
850 term(A) ::= NULL(X).             {spanExpr(&A, pParse, @X, &X);}
851 expr(A) ::= id(X).               {spanExpr(&A, pParse, TK_ID, &X);}
852 expr(A) ::= JOIN_KW(X).          {spanExpr(&A, pParse, TK_ID, &X);}
853 expr(A) ::= nm(X) DOT nm(Y). {
854   Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X);
855   Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y);
856   A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0);
857   spanSet(&A,&X,&Y);
858 }
859 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). {
860   Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X);
861   Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y);
862   Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Z);
863   Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0);
864   A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0);
865   spanSet(&A,&X,&Z);
866 }
867 term(A) ::= INTEGER|FLOAT|BLOB(X).  {spanExpr(&A, pParse, @X, &X);}
868 term(A) ::= STRING(X).              {spanExpr(&A, pParse, @X, &X);}
869 expr(A) ::= VARIABLE(X).     {
870   if( X.n>=2 && X.z[0]=='#' && sqlite3Isdigit(X.z[1]) ){
871     /* When doing a nested parse, one can include terms in an expression
872     ** that look like this:   #1 #2 ...  These terms refer to registers
873     ** in the virtual machine.  #N is the N-th register. */
874     if( pParse->nested==0 ){
875       sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &X);
876       A.pExpr = 0;
877     }else{
878       A.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, &X);
879       if( A.pExpr ) sqlite3GetInt32(&X.z[1], &A.pExpr->iTable);
880     }
881   }else{
882     spanExpr(&A, pParse, TK_VARIABLE, &X);
883     sqlite3ExprAssignVarNumber(pParse, A.pExpr);
884   }
885   spanSet(&A, &X, &X);
886 }
887 expr(A) ::= expr(E) COLLATE ids(C). {
888   A.pExpr = sqlite3ExprAddCollateToken(pParse, E.pExpr, &C, 1);
889   A.zStart = E.zStart;
890   A.zEnd = &C.z[C.n];
891 }
892 %ifndef SQLITE_OMIT_CAST
893 expr(A) ::= CAST(X) LP expr(E) AS typetoken(T) RP(Y). {
894   A.pExpr = sqlite3PExpr(pParse, TK_CAST, E.pExpr, 0, &T);
895   spanSet(&A,&X,&Y);
896 }
897 %endif  SQLITE_OMIT_CAST
898 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP(E). {
899   if( Y && Y->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
900     sqlite3ErrorMsg(pParse, "too many arguments on function %T", &X);
901   }
902   A.pExpr = sqlite3ExprFunction(pParse, Y, &X);
903   spanSet(&A,&X,&E);
904   if( D==SF_Distinct && A.pExpr ){
905     A.pExpr->flags |= EP_Distinct;
906   }
907 }
908 expr(A) ::= id(X) LP STAR RP(E). {
909   A.pExpr = sqlite3ExprFunction(pParse, 0, &X);
910   spanSet(&A,&X,&E);
911 }
912 term(A) ::= CTIME_KW(OP). {
913   A.pExpr = sqlite3ExprFunction(pParse, 0, &OP);
914   spanSet(&A, &OP, &OP);
915 }
916 
917 %include {
918   /* This routine constructs a binary expression node out of two ExprSpan
919   ** objects and uses the result to populate a new ExprSpan object.
920   */
921   static void spanBinaryExpr(
922     ExprSpan *pOut,     /* Write the result here */
923     Parse *pParse,      /* The parsing context.  Errors accumulate here */
924     int op,             /* The binary operation */
925     ExprSpan *pLeft,    /* The left operand */
926     ExprSpan *pRight    /* The right operand */
927   ){
928     pOut->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr, 0);
929     pOut->zStart = pLeft->zStart;
930     pOut->zEnd = pRight->zEnd;
931   }
932 }
933 
934 expr(A) ::= expr(X) AND(OP) expr(Y).    {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
935 expr(A) ::= expr(X) OR(OP) expr(Y).     {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
936 expr(A) ::= expr(X) LT|GT|GE|LE(OP) expr(Y).
937                                         {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
938 expr(A) ::= expr(X) EQ|NE(OP) expr(Y).  {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
939 expr(A) ::= expr(X) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y).
940                                         {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
941 expr(A) ::= expr(X) PLUS|MINUS(OP) expr(Y).
942                                         {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
943 expr(A) ::= expr(X) STAR|SLASH|REM(OP) expr(Y).
944                                         {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
945 expr(A) ::= expr(X) CONCAT(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
946 %type likeop {struct LikeOp}
947 likeop(A) ::= LIKE_KW|MATCH(X).     {A.eOperator = X; A.bNot = 0;}
948 likeop(A) ::= NOT LIKE_KW|MATCH(X). {A.eOperator = X; A.bNot = 1;}
949 expr(A) ::= expr(X) likeop(OP) expr(Y).  [LIKE_KW]  {
950   ExprList *pList;
951   pList = sqlite3ExprListAppend(pParse,0, Y.pExpr);
952   pList = sqlite3ExprListAppend(pParse,pList, X.pExpr);
953   A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator);
954   if( OP.bNot ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
955   A.zStart = X.zStart;
956   A.zEnd = Y.zEnd;
957   if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc;
958 }
959 expr(A) ::= expr(X) likeop(OP) expr(Y) ESCAPE expr(E).  [LIKE_KW]  {
960   ExprList *pList;
961   pList = sqlite3ExprListAppend(pParse,0, Y.pExpr);
962   pList = sqlite3ExprListAppend(pParse,pList, X.pExpr);
963   pList = sqlite3ExprListAppend(pParse,pList, E.pExpr);
964   A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator);
965   if( OP.bNot ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
966   A.zStart = X.zStart;
967   A.zEnd = E.zEnd;
968   if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc;
969 }
970 
971 %include {
972   /* Construct an expression node for a unary postfix operator
973   */
974   static void spanUnaryPostfix(
975     ExprSpan *pOut,        /* Write the new expression node here */
976     Parse *pParse,         /* Parsing context to record errors */
977     int op,                /* The operator */
978     ExprSpan *pOperand,    /* The operand */
979     Token *pPostOp         /* The operand token for setting the span */
980   ){
981     pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0);
982     pOut->zStart = pOperand->zStart;
983     pOut->zEnd = &pPostOp->z[pPostOp->n];
984   }
985 }
986 
987 expr(A) ::= expr(X) ISNULL|NOTNULL(E).   {spanUnaryPostfix(&A,pParse,@E,&X,&E);}
988 expr(A) ::= expr(X) NOT NULL(E). {spanUnaryPostfix(&A,pParse,TK_NOTNULL,&X,&E);}
989 
990 %include {
991   /* A routine to convert a binary TK_IS or TK_ISNOT expression into a
992   ** unary TK_ISNULL or TK_NOTNULL expression. */
993   static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){
994     sqlite3 *db = pParse->db;
995     if( pY && pA && pY->op==TK_NULL ){
996       pA->op = (u8)op;
997       sqlite3ExprDelete(db, pA->pRight);
998       pA->pRight = 0;
999     }
1000   }
1001 }
1002 
1003 //    expr1 IS expr2
1004 //    expr1 IS NOT expr2
1005 //
1006 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL.  If expr2
1007 // is any other expression, code as TK_IS or TK_ISNOT.
1008 //
1009 expr(A) ::= expr(X) IS expr(Y).     {
1010   spanBinaryExpr(&A,pParse,TK_IS,&X,&Y);
1011   binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_ISNULL);
1012 }
1013 expr(A) ::= expr(X) IS NOT expr(Y). {
1014   spanBinaryExpr(&A,pParse,TK_ISNOT,&X,&Y);
1015   binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_NOTNULL);
1016 }
1017 
1018 %include {
1019   /* Construct an expression node for a unary prefix operator
1020   */
1021   static void spanUnaryPrefix(
1022     ExprSpan *pOut,        /* Write the new expression node here */
1023     Parse *pParse,         /* Parsing context to record errors */
1024     int op,                /* The operator */
1025     ExprSpan *pOperand,    /* The operand */
1026     Token *pPreOp         /* The operand token for setting the span */
1027   ){
1028     pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0);
1029     pOut->zStart = pPreOp->z;
1030     pOut->zEnd = pOperand->zEnd;
1031   }
1032 }
1033 
1034 
1035 
1036 expr(A) ::= NOT(B) expr(X).    {spanUnaryPrefix(&A,pParse,@B,&X,&B);}
1037 expr(A) ::= BITNOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);}
1038 expr(A) ::= MINUS(B) expr(X). [BITNOT]
1039                                {spanUnaryPrefix(&A,pParse,TK_UMINUS,&X,&B);}
1040 expr(A) ::= PLUS(B) expr(X). [BITNOT]
1041                                {spanUnaryPrefix(&A,pParse,TK_UPLUS,&X,&B);}
1042 
1043 %type between_op {int}
1044 between_op(A) ::= BETWEEN.     {A = 0;}
1045 between_op(A) ::= NOT BETWEEN. {A = 1;}
1046 expr(A) ::= expr(W) between_op(N) expr(X) AND expr(Y). [BETWEEN] {
1047   ExprList *pList = sqlite3ExprListAppend(pParse,0, X.pExpr);
1048   pList = sqlite3ExprListAppend(pParse,pList, Y.pExpr);
1049   A.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, W.pExpr, 0, 0);
1050   if( A.pExpr ){
1051     A.pExpr->x.pList = pList;
1052   }else{
1053     sqlite3ExprListDelete(pParse->db, pList);
1054   }
1055   if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
1056   A.zStart = W.zStart;
1057   A.zEnd = Y.zEnd;
1058 }
1059 %ifndef SQLITE_OMIT_SUBQUERY
1060   %type in_op {int}
1061   in_op(A) ::= IN.      {A = 0;}
1062   in_op(A) ::= NOT IN.  {A = 1;}
1063   expr(A) ::= expr(X) in_op(N) LP exprlist(Y) RP(E). [IN] {
1064     if( Y==0 ){
1065       /* Expressions of the form
1066       **
1067       **      expr1 IN ()
1068       **      expr1 NOT IN ()
1069       **
1070       ** simplify to constants 0 (false) and 1 (true), respectively,
1071       ** regardless of the value of expr1.
1072       */
1073       A.pExpr = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &sqlite3IntTokens[N]);
1074       sqlite3ExprDelete(pParse->db, X.pExpr);
1075     }else if( Y->nExpr==1 ){
1076       /* Expressions of the form:
1077       **
1078       **      expr1 IN (?1)
1079       **      expr1 NOT IN (?2)
1080       **
1081       ** with exactly one value on the RHS can be simplified to something
1082       ** like this:
1083       **
1084       **      expr1 == ?1
1085       **      expr1 <> ?2
1086       **
1087       ** But, the RHS of the == or <> is marked with the EP_Generic flag
1088       ** so that it may not contribute to the computation of comparison
1089       ** affinity or the collating sequence to use for comparison.  Otherwise,
1090       ** the semantics would be subtly different from IN or NOT IN.
1091       */
1092       Expr *pRHS = Y->a[0].pExpr;
1093       Y->a[0].pExpr = 0;
1094       sqlite3ExprListDelete(pParse->db, Y);
1095       /* pRHS cannot be NULL because a malloc error would have been detected
1096       ** before now and control would have never reached this point */
1097       if( ALWAYS(pRHS) ){
1098         pRHS->flags &= ~EP_Collate;
1099         pRHS->flags |= EP_Generic;
1100       }
1101       A.pExpr = sqlite3PExpr(pParse, N ? TK_NE : TK_EQ, X.pExpr, pRHS, 0);
1102     }else{
1103       A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0);
1104       if( A.pExpr ){
1105         A.pExpr->x.pList = Y;
1106         sqlite3ExprSetHeightAndFlags(pParse, A.pExpr);
1107       }else{
1108         sqlite3ExprListDelete(pParse->db, Y);
1109       }
1110       if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
1111     }
1112     A.zStart = X.zStart;
1113     A.zEnd = &E.z[E.n];
1114   }
1115   expr(A) ::= LP(B) select(X) RP(E). {
1116     A.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0);
1117     if( A.pExpr ){
1118       A.pExpr->x.pSelect = X;
1119       ExprSetProperty(A.pExpr, EP_xIsSelect|EP_Subquery);
1120       sqlite3ExprSetHeightAndFlags(pParse, A.pExpr);
1121     }else{
1122       sqlite3SelectDelete(pParse->db, X);
1123     }
1124     A.zStart = B.z;
1125     A.zEnd = &E.z[E.n];
1126   }
1127   expr(A) ::= expr(X) in_op(N) LP select(Y) RP(E).  [IN] {
1128     A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0);
1129     if( A.pExpr ){
1130       A.pExpr->x.pSelect = Y;
1131       ExprSetProperty(A.pExpr, EP_xIsSelect|EP_Subquery);
1132       sqlite3ExprSetHeightAndFlags(pParse, A.pExpr);
1133     }else{
1134       sqlite3SelectDelete(pParse->db, Y);
1135     }
1136     if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
1137     A.zStart = X.zStart;
1138     A.zEnd = &E.z[E.n];
1139   }
1140   expr(A) ::= expr(X) in_op(N) nm(Y) dbnm(Z). [IN] {
1141     SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z);
1142     A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0);
1143     if( A.pExpr ){
1144       A.pExpr->x.pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0);
1145       ExprSetProperty(A.pExpr, EP_xIsSelect|EP_Subquery);
1146       sqlite3ExprSetHeightAndFlags(pParse, A.pExpr);
1147     }else{
1148       sqlite3SrcListDelete(pParse->db, pSrc);
1149     }
1150     if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
1151     A.zStart = X.zStart;
1152     A.zEnd = Z.z ? &Z.z[Z.n] : &Y.z[Y.n];
1153   }
1154   expr(A) ::= EXISTS(B) LP select(Y) RP(E). {
1155     Expr *p = A.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0);
1156     if( p ){
1157       p->x.pSelect = Y;
1158       ExprSetProperty(p, EP_xIsSelect|EP_Subquery);
1159       sqlite3ExprSetHeightAndFlags(pParse, p);
1160     }else{
1161       sqlite3SelectDelete(pParse->db, Y);
1162     }
1163     A.zStart = B.z;
1164     A.zEnd = &E.z[E.n];
1165   }
1166 %endif SQLITE_OMIT_SUBQUERY
1167 
1168 /* CASE expressions */
1169 expr(A) ::= CASE(C) case_operand(X) case_exprlist(Y) case_else(Z) END(E). {
1170   A.pExpr = sqlite3PExpr(pParse, TK_CASE, X, 0, 0);
1171   if( A.pExpr ){
1172     A.pExpr->x.pList = Z ? sqlite3ExprListAppend(pParse,Y,Z) : Y;
1173     sqlite3ExprSetHeightAndFlags(pParse, A.pExpr);
1174   }else{
1175     sqlite3ExprListDelete(pParse->db, Y);
1176     sqlite3ExprDelete(pParse->db, Z);
1177   }
1178   A.zStart = C.z;
1179   A.zEnd = &E.z[E.n];
1180 }
1181 %type case_exprlist {ExprList*}
1182 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);}
1183 case_exprlist(A) ::= case_exprlist(X) WHEN expr(Y) THEN expr(Z). {
1184   A = sqlite3ExprListAppend(pParse,X, Y.pExpr);
1185   A = sqlite3ExprListAppend(pParse,A, Z.pExpr);
1186 }
1187 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). {
1188   A = sqlite3ExprListAppend(pParse,0, Y.pExpr);
1189   A = sqlite3ExprListAppend(pParse,A, Z.pExpr);
1190 }
1191 %type case_else {Expr*}
1192 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);}
1193 case_else(A) ::=  ELSE expr(X).         {A = X.pExpr;}
1194 case_else(A) ::=  .                     {A = 0;}
1195 %type case_operand {Expr*}
1196 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);}
1197 case_operand(A) ::= expr(X).            {A = X.pExpr;}
1198 case_operand(A) ::= .                   {A = 0;}
1199 
1200 %type exprlist {ExprList*}
1201 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);}
1202 %type nexprlist {ExprList*}
1203 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);}
1204 
1205 exprlist(A) ::= nexprlist(X).                {A = X;}
1206 exprlist(A) ::= .                            {A = 0;}
1207 nexprlist(A) ::= nexprlist(X) COMMA expr(Y).
1208     {A = sqlite3ExprListAppend(pParse,X,Y.pExpr);}
1209 nexprlist(A) ::= expr(Y).
1210     {A = sqlite3ExprListAppend(pParse,0,Y.pExpr);}
1211 
1212 
1213 ///////////////////////////// The CREATE INDEX command ///////////////////////
1214 //
1215 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D)
1216         ON nm(Y) LP sortlist(Z) RP where_opt(W). {
1217   sqlite3CreateIndex(pParse, &X, &D,
1218                      sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U,
1219                       &S, W, SQLITE_SO_ASC, NE);
1220 }
1221 
1222 %type uniqueflag {int}
1223 uniqueflag(A) ::= UNIQUE.  {A = OE_Abort;}
1224 uniqueflag(A) ::= .        {A = OE_None;}
1225 
1226 
1227 // The eidlist non-terminal (Expression Id List) generates an ExprList
1228 // from a list of identifiers.  The identifier names are in ExprList.a[].zName.
1229 // This list is stored in an ExprList rather than an IdList so that it
1230 // can be easily sent to sqlite3ColumnsExprList().
1231 //
1232 // eidlist is grouped with CREATE INDEX because it used to be the non-terminal
1233 // used for the arguments to an index.  That is just an historical accident.
1234 //
1235 // IMPORTANT COMPATIBILITY NOTE:  Some prior versions of SQLite accepted
1236 // COLLATE clauses and ASC or DESC keywords on ID lists in inappropriate
1237 // places - places that might have been stored in the sqlite_master schema.
1238 // Those extra features were ignored.  But because they might be in some
1239 // (busted) old databases, we need to continue parsing them when loading
1240 // historical schemas.
1241 //
1242 %type eidlist {ExprList*}
1243 %destructor eidlist {sqlite3ExprListDelete(pParse->db, $$);}
1244 %type eidlist_opt {ExprList*}
1245 %destructor eidlist_opt {sqlite3ExprListDelete(pParse->db, $$);}
1246 
1247 %include {
1248   /* Add a single new term to an ExprList that is used to store a
1249   ** list of identifiers.  Report an error if the ID list contains
1250   ** a COLLATE clause or an ASC or DESC keyword, except ignore the
1251   ** error while parsing a legacy schema.
1252   */
1253   static ExprList *parserAddExprIdListTerm(
1254     Parse *pParse,
1255     ExprList *pPrior,
1256     Token *pIdToken,
1257     int hasCollate,
1258     int sortOrder
1259   ){
1260     ExprList *p = sqlite3ExprListAppend(pParse, pPrior, 0);
1261     if( (hasCollate || sortOrder!=SQLITE_SO_UNDEFINED)
1262         && pParse->db->init.busy==0
1263     ){
1264       sqlite3ErrorMsg(pParse, "syntax error after column name \"%.*s\"",
1265                          pIdToken->n, pIdToken->z);
1266     }
1267     sqlite3ExprListSetName(pParse, p, pIdToken, 1);
1268     return p;
1269   }
1270 } // end %include
1271 
1272 eidlist_opt(A) ::= .                         {A = 0;}
1273 eidlist_opt(A) ::= LP eidlist(X) RP.         {A = X;}
1274 eidlist(A) ::= eidlist(X) COMMA nm(Y) collate(C) sortorder(Z).  {
1275   A = parserAddExprIdListTerm(pParse, X, &Y, C, Z);
1276 }
1277 eidlist(A) ::= nm(Y) collate(C) sortorder(Z). {
1278   A = parserAddExprIdListTerm(pParse, 0, &Y, C, Z);
1279 }
1280 
1281 %type collate {int}
1282 collate(C) ::= .              {C = 0;}
1283 collate(C) ::= COLLATE ids.   {C = 1;}
1284 
1285 
1286 ///////////////////////////// The DROP INDEX command /////////////////////////
1287 //
1288 cmd ::= DROP INDEX ifexists(E) fullname(X).   {sqlite3DropIndex(pParse, X, E);}
1289 
1290 ///////////////////////////// The VACUUM command /////////////////////////////
1291 //
1292 %ifndef SQLITE_OMIT_VACUUM
1293 %ifndef SQLITE_OMIT_ATTACH
1294 cmd ::= VACUUM.                {sqlite3Vacuum(pParse);}
1295 cmd ::= VACUUM nm.             {sqlite3Vacuum(pParse);}
1296 %endif  SQLITE_OMIT_ATTACH
1297 %endif  SQLITE_OMIT_VACUUM
1298 
1299 ///////////////////////////// The PRAGMA command /////////////////////////////
1300 //
1301 %ifndef SQLITE_OMIT_PRAGMA
1302 cmd ::= PRAGMA nm(X) dbnm(Z).                {sqlite3Pragma(pParse,&X,&Z,0,0);}
1303 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y).    {sqlite3Pragma(pParse,&X,&Z,&Y,0);}
1304 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);}
1305 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y).
1306                                              {sqlite3Pragma(pParse,&X,&Z,&Y,1);}
1307 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP.
1308                                              {sqlite3Pragma(pParse,&X,&Z,&Y,1);}
1309 
1310 nmnum(A) ::= plus_num(X).             {A = X;}
1311 nmnum(A) ::= nm(X).                   {A = X;}
1312 nmnum(A) ::= ON(X).                   {A = X;}
1313 nmnum(A) ::= DELETE(X).               {A = X;}
1314 nmnum(A) ::= DEFAULT(X).              {A = X;}
1315 %endif SQLITE_OMIT_PRAGMA
1316 %token_class number INTEGER|FLOAT.
1317 plus_num(A) ::= PLUS number(X).       {A = X;}
1318 plus_num(A) ::= number(X).            {A = X;}
1319 minus_num(A) ::= MINUS number(X).     {A = X;}
1320 //////////////////////////// The CREATE TRIGGER command /////////////////////
1321 
1322 %ifndef SQLITE_OMIT_TRIGGER
1323 
1324 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). {
1325   Token all;
1326   all.z = A.z;
1327   all.n = (int)(Z.z - A.z) + Z.n;
1328   sqlite3FinishTrigger(pParse, S, &all);
1329 }
1330 
1331 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z)
1332                     trigger_time(C) trigger_event(D)
1333                     ON fullname(E) foreach_clause when_clause(G). {
1334   sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR);
1335   A = (Z.n==0?B:Z);
1336 }
1337 
1338 %type trigger_time {int}
1339 trigger_time(A) ::= BEFORE.      { A = TK_BEFORE; }
1340 trigger_time(A) ::= AFTER.       { A = TK_AFTER;  }
1341 trigger_time(A) ::= INSTEAD OF.  { A = TK_INSTEAD;}
1342 trigger_time(A) ::= .            { A = TK_BEFORE; }
1343 
1344 %type trigger_event {struct TrigEvent}
1345 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);}
1346 trigger_event(A) ::= DELETE|INSERT(OP).       {A.a = @OP; A.b = 0;}
1347 trigger_event(A) ::= UPDATE(OP).              {A.a = @OP; A.b = 0;}
1348 trigger_event(A) ::= UPDATE OF idlist(X). {A.a = TK_UPDATE; A.b = X;}
1349 
1350 foreach_clause ::= .
1351 foreach_clause ::= FOR EACH ROW.
1352 
1353 %type when_clause {Expr*}
1354 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);}
1355 when_clause(A) ::= .             { A = 0; }
1356 when_clause(A) ::= WHEN expr(X). { A = X.pExpr; }
1357 
1358 %type trigger_cmd_list {TriggerStep*}
1359 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);}
1360 trigger_cmd_list(A) ::= trigger_cmd_list(Y) trigger_cmd(X) SEMI. {
1361   assert( Y!=0 );
1362   Y->pLast->pNext = X;
1363   Y->pLast = X;
1364   A = Y;
1365 }
1366 trigger_cmd_list(A) ::= trigger_cmd(X) SEMI. {
1367   assert( X!=0 );
1368   X->pLast = X;
1369   A = X;
1370 }
1371 
1372 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements
1373 // within a trigger.  The table to INSERT, UPDATE, or DELETE is always in
1374 // the same database as the table that the trigger fires on.
1375 //
1376 %type trnm {Token}
1377 trnm(A) ::= nm(X).   {A = X;}
1378 trnm(A) ::= nm DOT nm(X). {
1379   A = X;
1380   sqlite3ErrorMsg(pParse,
1381         "qualified table names are not allowed on INSERT, UPDATE, and DELETE "
1382         "statements within triggers");
1383 }
1384 
1385 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE
1386 // statements within triggers.  We make a specific error message for this
1387 // since it is an exception to the default grammar rules.
1388 //
1389 tridxby ::= .
1390 tridxby ::= INDEXED BY nm. {
1391   sqlite3ErrorMsg(pParse,
1392         "the INDEXED BY clause is not allowed on UPDATE or DELETE statements "
1393         "within triggers");
1394 }
1395 tridxby ::= NOT INDEXED. {
1396   sqlite3ErrorMsg(pParse,
1397         "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements "
1398         "within triggers");
1399 }
1400 
1401 
1402 
1403 %type trigger_cmd {TriggerStep*}
1404 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);}
1405 // UPDATE
1406 trigger_cmd(A) ::=
1407    UPDATE orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z).
1408    { A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R); }
1409 
1410 // INSERT
1411 trigger_cmd(A) ::= insert_cmd(R) INTO trnm(X) idlist_opt(F) select(S).
1412                {A = sqlite3TriggerInsertStep(pParse->db, &X, F, S, R);}
1413 
1414 // DELETE
1415 trigger_cmd(A) ::= DELETE FROM trnm(X) tridxby where_opt(Y).
1416                {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y);}
1417 
1418 // SELECT
1419 trigger_cmd(A) ::= select(X).  {A = sqlite3TriggerSelectStep(pParse->db, X); }
1420 
1421 // The special RAISE expression that may occur in trigger programs
1422 expr(A) ::= RAISE(X) LP IGNORE RP(Y).  {
1423   A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0);
1424   if( A.pExpr ){
1425     A.pExpr->affinity = OE_Ignore;
1426   }
1427   A.zStart = X.z;
1428   A.zEnd = &Y.z[Y.n];
1429 }
1430 expr(A) ::= RAISE(X) LP raisetype(T) COMMA nm(Z) RP(Y).  {
1431   A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &Z);
1432   if( A.pExpr ) {
1433     A.pExpr->affinity = (char)T;
1434   }
1435   A.zStart = X.z;
1436   A.zEnd = &Y.z[Y.n];
1437 }
1438 %endif  !SQLITE_OMIT_TRIGGER
1439 
1440 %type raisetype {int}
1441 raisetype(A) ::= ROLLBACK.  {A = OE_Rollback;}
1442 raisetype(A) ::= ABORT.     {A = OE_Abort;}
1443 raisetype(A) ::= FAIL.      {A = OE_Fail;}
1444 
1445 
1446 ////////////////////////  DROP TRIGGER statement //////////////////////////////
1447 %ifndef SQLITE_OMIT_TRIGGER
1448 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). {
1449   sqlite3DropTrigger(pParse,X,NOERR);
1450 }
1451 %endif  !SQLITE_OMIT_TRIGGER
1452 
1453 //////////////////////// ATTACH DATABASE file AS name /////////////////////////
1454 %ifndef SQLITE_OMIT_ATTACH
1455 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). {
1456   sqlite3Attach(pParse, F.pExpr, D.pExpr, K);
1457 }
1458 cmd ::= DETACH database_kw_opt expr(D). {
1459   sqlite3Detach(pParse, D.pExpr);
1460 }
1461 
1462 %type key_opt {Expr*}
1463 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);}
1464 key_opt(A) ::= .                     { A = 0; }
1465 key_opt(A) ::= KEY expr(X).          { A = X.pExpr; }
1466 
1467 database_kw_opt ::= DATABASE.
1468 database_kw_opt ::= .
1469 %endif SQLITE_OMIT_ATTACH
1470 
1471 ////////////////////////// REINDEX collation //////////////////////////////////
1472 %ifndef SQLITE_OMIT_REINDEX
1473 cmd ::= REINDEX.                {sqlite3Reindex(pParse, 0, 0);}
1474 cmd ::= REINDEX nm(X) dbnm(Y).  {sqlite3Reindex(pParse, &X, &Y);}
1475 %endif  SQLITE_OMIT_REINDEX
1476 
1477 /////////////////////////////////// ANALYZE ///////////////////////////////////
1478 %ifndef SQLITE_OMIT_ANALYZE
1479 cmd ::= ANALYZE.                {sqlite3Analyze(pParse, 0, 0);}
1480 cmd ::= ANALYZE nm(X) dbnm(Y).  {sqlite3Analyze(pParse, &X, &Y);}
1481 %endif
1482 
1483 //////////////////////// ALTER TABLE table ... ////////////////////////////////
1484 %ifndef SQLITE_OMIT_ALTERTABLE
1485 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). {
1486   sqlite3AlterRenameTable(pParse,X,&Z);
1487 }
1488 cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column(Y). {
1489   sqlite3AlterFinishAddColumn(pParse, &Y);
1490 }
1491 add_column_fullname ::= fullname(X). {
1492   pParse->db->lookaside.bEnabled = 0;
1493   sqlite3AlterBeginAddColumn(pParse, X);
1494 }
1495 kwcolumn_opt ::= .
1496 kwcolumn_opt ::= COLUMNKW.
1497 %endif  SQLITE_OMIT_ALTERTABLE
1498 
1499 //////////////////////// CREATE VIRTUAL TABLE ... /////////////////////////////
1500 %ifndef SQLITE_OMIT_VIRTUALTABLE
1501 cmd ::= create_vtab.                       {sqlite3VtabFinishParse(pParse,0);}
1502 cmd ::= create_vtab LP vtabarglist RP(X).  {sqlite3VtabFinishParse(pParse,&X);}
1503 create_vtab ::= createkw VIRTUAL TABLE ifnotexists(E)
1504                 nm(X) dbnm(Y) USING nm(Z). {
1505     sqlite3VtabBeginParse(pParse, &X, &Y, &Z, E);
1506 }
1507 vtabarglist ::= vtabarg.
1508 vtabarglist ::= vtabarglist COMMA vtabarg.
1509 vtabarg ::= .                       {sqlite3VtabArgInit(pParse);}
1510 vtabarg ::= vtabarg vtabargtoken.
1511 vtabargtoken ::= ANY(X).            {sqlite3VtabArgExtend(pParse,&X);}
1512 vtabargtoken ::= lp anylist RP(X).  {sqlite3VtabArgExtend(pParse,&X);}
1513 lp ::= LP(X).                       {sqlite3VtabArgExtend(pParse,&X);}
1514 anylist ::= .
1515 anylist ::= anylist LP anylist RP.
1516 anylist ::= anylist ANY.
1517 %endif  SQLITE_OMIT_VIRTUALTABLE
1518 
1519 
1520 //////////////////////// COMMON TABLE EXPRESSIONS ////////////////////////////
1521 %type with {With*}
1522 %type wqlist {With*}
1523 %destructor with {sqlite3WithDelete(pParse->db, $$);}
1524 %destructor wqlist {sqlite3WithDelete(pParse->db, $$);}
1525 
1526 with(A) ::= . {A = 0;}
1527 %ifndef SQLITE_OMIT_CTE
1528 with(A) ::= WITH wqlist(W).              { A = W; }
1529 with(A) ::= WITH RECURSIVE wqlist(W).    { A = W; }
1530 
1531 wqlist(A) ::= nm(X) eidlist_opt(Y) AS LP select(Z) RP. {
1532   A = sqlite3WithAdd(pParse, 0, &X, Y, Z);
1533 }
1534 wqlist(A) ::= wqlist(W) COMMA nm(X) eidlist_opt(Y) AS LP select(Z) RP. {
1535   A = sqlite3WithAdd(pParse, W, &X, Y, Z);
1536 }
1537 %endif  SQLITE_OMIT_CTE
1538