1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains SQLite's grammar for SQL. Process this file 13 ** using the lemon parser generator to generate C code that runs 14 ** the parser. Lemon will also generate a header file containing 15 ** numeric codes for all of the tokens. 16 */ 17 18 // All token codes are small integers with #defines that begin with "TK_" 19 %token_prefix TK_ 20 21 // The type of the data attached to each token is Token. This is also the 22 // default type for non-terminals. 23 // 24 %token_type {Token} 25 %default_type {Token} 26 27 // The generated parser function takes a 4th argument as follows: 28 %extra_argument {Parse *pParse} 29 30 // This code runs whenever there is a syntax error 31 // 32 %syntax_error { 33 UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */ 34 assert( TOKEN.z[0] ); /* The tokenizer always gives us a token */ 35 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN); 36 } 37 %stack_overflow { 38 UNUSED_PARAMETER(yypMinor); /* Silence some compiler warnings */ 39 sqlite3ErrorMsg(pParse, "parser stack overflow"); 40 } 41 42 // The name of the generated procedure that implements the parser 43 // is as follows: 44 %name sqlite3Parser 45 46 // The following text is included near the beginning of the C source 47 // code file that implements the parser. 48 // 49 %include { 50 #include "sqliteInt.h" 51 52 /* 53 ** Disable all error recovery processing in the parser push-down 54 ** automaton. 55 */ 56 #define YYNOERRORRECOVERY 1 57 58 /* 59 ** Make yytestcase() the same as testcase() 60 */ 61 #define yytestcase(X) testcase(X) 62 63 /* 64 ** An instance of this structure holds information about the 65 ** LIMIT clause of a SELECT statement. 66 */ 67 struct LimitVal { 68 Expr *pLimit; /* The LIMIT expression. NULL if there is no limit */ 69 Expr *pOffset; /* The OFFSET expression. NULL if there is none */ 70 }; 71 72 /* 73 ** An instance of this structure is used to store the LIKE, 74 ** GLOB, NOT LIKE, and NOT GLOB operators. 75 */ 76 struct LikeOp { 77 Token eOperator; /* "like" or "glob" or "regexp" */ 78 int bNot; /* True if the NOT keyword is present */ 79 }; 80 81 /* 82 ** An instance of the following structure describes the event of a 83 ** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT, 84 ** TK_DELETE, or TK_INSTEAD. If the event is of the form 85 ** 86 ** UPDATE ON (a,b,c) 87 ** 88 ** Then the "b" IdList records the list "a,b,c". 89 */ 90 struct TrigEvent { int a; IdList * b; }; 91 92 /* 93 ** An instance of this structure holds the ATTACH key and the key type. 94 */ 95 struct AttachKey { int type; Token key; }; 96 97 } // end %include 98 99 // Input is a single SQL command 100 input ::= cmdlist. 101 cmdlist ::= cmdlist ecmd. 102 cmdlist ::= ecmd. 103 ecmd ::= SEMI. 104 ecmd ::= explain cmdx SEMI. 105 explain ::= . { sqlite3BeginParse(pParse, 0); } 106 %ifndef SQLITE_OMIT_EXPLAIN 107 explain ::= EXPLAIN. { sqlite3BeginParse(pParse, 1); } 108 explain ::= EXPLAIN QUERY PLAN. { sqlite3BeginParse(pParse, 2); } 109 %endif SQLITE_OMIT_EXPLAIN 110 cmdx ::= cmd. { sqlite3FinishCoding(pParse); } 111 112 ///////////////////// Begin and end transactions. //////////////////////////// 113 // 114 115 cmd ::= BEGIN transtype(Y) trans_opt. {sqlite3BeginTransaction(pParse, Y);} 116 trans_opt ::= . 117 trans_opt ::= TRANSACTION. 118 trans_opt ::= TRANSACTION nm. 119 %type transtype {int} 120 transtype(A) ::= . {A = TK_DEFERRED;} 121 transtype(A) ::= DEFERRED(X). {A = @X;} 122 transtype(A) ::= IMMEDIATE(X). {A = @X;} 123 transtype(A) ::= EXCLUSIVE(X). {A = @X;} 124 cmd ::= COMMIT trans_opt. {sqlite3CommitTransaction(pParse);} 125 cmd ::= END trans_opt. {sqlite3CommitTransaction(pParse);} 126 cmd ::= ROLLBACK trans_opt. {sqlite3RollbackTransaction(pParse);} 127 128 savepoint_opt ::= SAVEPOINT. 129 savepoint_opt ::= . 130 cmd ::= SAVEPOINT nm(X). { 131 sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X); 132 } 133 cmd ::= RELEASE savepoint_opt nm(X). { 134 sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X); 135 } 136 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). { 137 sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X); 138 } 139 140 ///////////////////// The CREATE TABLE statement //////////////////////////// 141 // 142 cmd ::= create_table create_table_args. 143 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). { 144 sqlite3StartTable(pParse,&Y,&Z,T,0,0,E); 145 } 146 createkw(A) ::= CREATE(X). { 147 pParse->db->lookaside.bEnabled = 0; 148 A = X; 149 } 150 %type ifnotexists {int} 151 ifnotexists(A) ::= . {A = 0;} 152 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;} 153 %type temp {int} 154 %ifndef SQLITE_OMIT_TEMPDB 155 temp(A) ::= TEMP. {A = 1;} 156 %endif SQLITE_OMIT_TEMPDB 157 temp(A) ::= . {A = 0;} 158 create_table_args ::= LP columnlist conslist_opt(X) RP(E) table_options(F). { 159 sqlite3EndTable(pParse,&X,&E,F,0); 160 } 161 create_table_args ::= AS select(S). { 162 sqlite3EndTable(pParse,0,0,0,S); 163 sqlite3SelectDelete(pParse->db, S); 164 } 165 %type table_options {u8} 166 table_options(A) ::= . {A = 0;} 167 table_options(A) ::= WITHOUT nm(X). { 168 if( X.n==5 && sqlite3_strnicmp(X.z,"rowid",5)==0 ){ 169 A = TF_WithoutRowid | TF_NoVisibleRowid; 170 }else{ 171 A = 0; 172 sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z); 173 } 174 } 175 columnlist ::= columnlist COMMA column. 176 columnlist ::= column. 177 178 // A "column" is a complete description of a single column in a 179 // CREATE TABLE statement. This includes the column name, its 180 // datatype, and other keywords such as PRIMARY KEY, UNIQUE, REFERENCES, 181 // NOT NULL and so forth. 182 // 183 column(A) ::= columnid(X) type carglist. { 184 A.z = X.z; 185 A.n = (int)(pParse->sLastToken.z-X.z) + pParse->sLastToken.n; 186 } 187 columnid(A) ::= nm(X). { 188 sqlite3AddColumn(pParse,&X); 189 A = X; 190 pParse->constraintName.n = 0; 191 } 192 193 194 // An IDENTIFIER can be a generic identifier, or one of several 195 // keywords. Any non-standard keyword can also be an identifier. 196 // 197 %token_class id ID|INDEXED. 198 199 // The following directive causes tokens ABORT, AFTER, ASC, etc. to 200 // fallback to ID if they will not parse as their original value. 201 // This obviates the need for the "id" nonterminal. 202 // 203 %fallback ID 204 ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW 205 CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL FOR 206 IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN 207 QUERY KEY OF OFFSET PRAGMA RAISE RECURSIVE RELEASE REPLACE RESTRICT ROW 208 ROLLBACK SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL WITH WITHOUT 209 %ifdef SQLITE_OMIT_COMPOUND_SELECT 210 EXCEPT INTERSECT UNION 211 %endif SQLITE_OMIT_COMPOUND_SELECT 212 REINDEX RENAME CTIME_KW IF 213 . 214 %wildcard ANY. 215 216 // Define operator precedence early so that this is the first occurrence 217 // of the operator tokens in the grammer. Keeping the operators together 218 // causes them to be assigned integer values that are close together, 219 // which keeps parser tables smaller. 220 // 221 // The token values assigned to these symbols is determined by the order 222 // in which lemon first sees them. It must be the case that ISNULL/NOTNULL, 223 // NE/EQ, GT/LE, and GE/LT are separated by only a single value. See 224 // the sqlite3ExprIfFalse() routine for additional information on this 225 // constraint. 226 // 227 %left OR. 228 %left AND. 229 %right NOT. 230 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. 231 %left GT LE LT GE. 232 %right ESCAPE. 233 %left BITAND BITOR LSHIFT RSHIFT. 234 %left PLUS MINUS. 235 %left STAR SLASH REM. 236 %left CONCAT. 237 %left COLLATE. 238 %right BITNOT. 239 240 // And "ids" is an identifer-or-string. 241 // 242 %token_class ids ID|STRING. 243 244 // The name of a column or table can be any of the following: 245 // 246 %type nm {Token} 247 nm(A) ::= id(X). {A = X;} 248 nm(A) ::= STRING(X). {A = X;} 249 nm(A) ::= JOIN_KW(X). {A = X;} 250 251 // A typetoken is really one or more tokens that form a type name such 252 // as can be found after the column name in a CREATE TABLE statement. 253 // Multiple tokens are concatenated to form the value of the typetoken. 254 // 255 %type typetoken {Token} 256 type ::= . 257 type ::= typetoken(X). {sqlite3AddColumnType(pParse,&X);} 258 typetoken(A) ::= typename(X). {A = X;} 259 typetoken(A) ::= typename(X) LP signed RP(Y). { 260 A.z = X.z; 261 A.n = (int)(&Y.z[Y.n] - X.z); 262 } 263 typetoken(A) ::= typename(X) LP signed COMMA signed RP(Y). { 264 A.z = X.z; 265 A.n = (int)(&Y.z[Y.n] - X.z); 266 } 267 %type typename {Token} 268 typename(A) ::= ids(X). {A = X;} 269 typename(A) ::= typename(X) ids(Y). {A.z=X.z; A.n=Y.n+(int)(Y.z-X.z);} 270 signed ::= plus_num. 271 signed ::= minus_num. 272 273 // "carglist" is a list of additional constraints that come after the 274 // column name and column type in a CREATE TABLE statement. 275 // 276 carglist ::= carglist ccons. 277 carglist ::= . 278 ccons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} 279 ccons ::= DEFAULT term(X). {sqlite3AddDefaultValue(pParse,&X);} 280 ccons ::= DEFAULT LP expr(X) RP. {sqlite3AddDefaultValue(pParse,&X);} 281 ccons ::= DEFAULT PLUS term(X). {sqlite3AddDefaultValue(pParse,&X);} 282 ccons ::= DEFAULT MINUS(A) term(X). { 283 ExprSpan v; 284 v.pExpr = sqlite3PExpr(pParse, TK_UMINUS, X.pExpr, 0, 0); 285 v.zStart = A.z; 286 v.zEnd = X.zEnd; 287 sqlite3AddDefaultValue(pParse,&v); 288 } 289 ccons ::= DEFAULT id(X). { 290 ExprSpan v; 291 spanExpr(&v, pParse, TK_STRING, &X); 292 sqlite3AddDefaultValue(pParse,&v); 293 } 294 295 // In addition to the type name, we also care about the primary key and 296 // UNIQUE constraints. 297 // 298 ccons ::= NULL onconf. 299 ccons ::= NOT NULL onconf(R). {sqlite3AddNotNull(pParse, R);} 300 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I). 301 {sqlite3AddPrimaryKey(pParse,0,R,I,Z);} 302 ccons ::= UNIQUE onconf(R). {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0);} 303 ccons ::= CHECK LP expr(X) RP. {sqlite3AddCheckConstraint(pParse,X.pExpr);} 304 ccons ::= REFERENCES nm(T) eidlist_opt(TA) refargs(R). 305 {sqlite3CreateForeignKey(pParse,0,&T,TA,R);} 306 ccons ::= defer_subclause(D). {sqlite3DeferForeignKey(pParse,D);} 307 ccons ::= COLLATE ids(C). {sqlite3AddCollateType(pParse, &C);} 308 309 // The optional AUTOINCREMENT keyword 310 %type autoinc {int} 311 autoinc(X) ::= . {X = 0;} 312 autoinc(X) ::= AUTOINCR. {X = 1;} 313 314 // The next group of rules parses the arguments to a REFERENCES clause 315 // that determine if the referential integrity checking is deferred or 316 // or immediate and which determine what action to take if a ref-integ 317 // check fails. 318 // 319 %type refargs {int} 320 refargs(A) ::= . { A = OE_None*0x0101; /* EV: R-19803-45884 */} 321 refargs(A) ::= refargs(X) refarg(Y). { A = (X & ~Y.mask) | Y.value; } 322 %type refarg {struct {int value; int mask;}} 323 refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; } 324 refarg(A) ::= ON INSERT refact. { A.value = 0; A.mask = 0x000000; } 325 refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; } 326 refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; } 327 %type refact {int} 328 refact(A) ::= SET NULL. { A = OE_SetNull; /* EV: R-33326-45252 */} 329 refact(A) ::= SET DEFAULT. { A = OE_SetDflt; /* EV: R-33326-45252 */} 330 refact(A) ::= CASCADE. { A = OE_Cascade; /* EV: R-33326-45252 */} 331 refact(A) ::= RESTRICT. { A = OE_Restrict; /* EV: R-33326-45252 */} 332 refact(A) ::= NO ACTION. { A = OE_None; /* EV: R-33326-45252 */} 333 %type defer_subclause {int} 334 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt. {A = 0;} 335 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;} 336 %type init_deferred_pred_opt {int} 337 init_deferred_pred_opt(A) ::= . {A = 0;} 338 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;} 339 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;} 340 341 conslist_opt(A) ::= . {A.n = 0; A.z = 0;} 342 conslist_opt(A) ::= COMMA(X) conslist. {A = X;} 343 conslist ::= conslist tconscomma tcons. 344 conslist ::= tcons. 345 tconscomma ::= COMMA. {pParse->constraintName.n = 0;} 346 tconscomma ::= . 347 tcons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} 348 tcons ::= PRIMARY KEY LP sortlist(X) autoinc(I) RP onconf(R). 349 {sqlite3AddPrimaryKey(pParse,X,R,I,0);} 350 tcons ::= UNIQUE LP sortlist(X) RP onconf(R). 351 {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0);} 352 tcons ::= CHECK LP expr(E) RP onconf. 353 {sqlite3AddCheckConstraint(pParse,E.pExpr);} 354 tcons ::= FOREIGN KEY LP eidlist(FA) RP 355 REFERENCES nm(T) eidlist_opt(TA) refargs(R) defer_subclause_opt(D). { 356 sqlite3CreateForeignKey(pParse, FA, &T, TA, R); 357 sqlite3DeferForeignKey(pParse, D); 358 } 359 %type defer_subclause_opt {int} 360 defer_subclause_opt(A) ::= . {A = 0;} 361 defer_subclause_opt(A) ::= defer_subclause(X). {A = X;} 362 363 // The following is a non-standard extension that allows us to declare the 364 // default behavior when there is a constraint conflict. 365 // 366 %type onconf {int} 367 %type orconf {u8} 368 %type resolvetype {int} 369 onconf(A) ::= . {A = OE_Default;} 370 onconf(A) ::= ON CONFLICT resolvetype(X). {A = X;} 371 orconf(A) ::= . {A = OE_Default;} 372 orconf(A) ::= OR resolvetype(X). {A = (u8)X;} 373 resolvetype(A) ::= raisetype(X). {A = X;} 374 resolvetype(A) ::= IGNORE. {A = OE_Ignore;} 375 resolvetype(A) ::= REPLACE. {A = OE_Replace;} 376 377 ////////////////////////// The DROP TABLE ///////////////////////////////////// 378 // 379 cmd ::= DROP TABLE ifexists(E) fullname(X). { 380 sqlite3DropTable(pParse, X, 0, E); 381 } 382 %type ifexists {int} 383 ifexists(A) ::= IF EXISTS. {A = 1;} 384 ifexists(A) ::= . {A = 0;} 385 386 ///////////////////// The CREATE VIEW statement ///////////////////////////// 387 // 388 %ifndef SQLITE_OMIT_VIEW 389 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) eidlist_opt(C) 390 AS select(S). { 391 sqlite3CreateView(pParse, &X, &Y, &Z, C, S, T, E); 392 } 393 cmd ::= DROP VIEW ifexists(E) fullname(X). { 394 sqlite3DropTable(pParse, X, 1, E); 395 } 396 %endif SQLITE_OMIT_VIEW 397 398 //////////////////////// The SELECT statement ///////////////////////////////// 399 // 400 cmd ::= select(X). { 401 SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0}; 402 sqlite3Select(pParse, X, &dest); 403 sqlite3SelectDelete(pParse->db, X); 404 } 405 406 %type select {Select*} 407 %destructor select {sqlite3SelectDelete(pParse->db, $$);} 408 %type selectnowith {Select*} 409 %destructor selectnowith {sqlite3SelectDelete(pParse->db, $$);} 410 %type oneselect {Select*} 411 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);} 412 413 %include { 414 /* 415 ** For a compound SELECT statement, make sure p->pPrior->pNext==p for 416 ** all elements in the list. And make sure list length does not exceed 417 ** SQLITE_LIMIT_COMPOUND_SELECT. 418 */ 419 static void parserDoubleLinkSelect(Parse *pParse, Select *p){ 420 if( p->pPrior ){ 421 Select *pNext = 0, *pLoop; 422 int mxSelect, cnt = 0; 423 for(pLoop=p; pLoop; pNext=pLoop, pLoop=pLoop->pPrior, cnt++){ 424 pLoop->pNext = pNext; 425 pLoop->selFlags |= SF_Compound; 426 } 427 if( (p->selFlags & SF_MultiValue)==0 && 428 (mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT])>0 && 429 cnt>mxSelect 430 ){ 431 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 432 } 433 } 434 } 435 } 436 437 select(A) ::= with(W) selectnowith(X). { 438 Select *p = X; 439 if( p ){ 440 p->pWith = W; 441 parserDoubleLinkSelect(pParse, p); 442 }else{ 443 sqlite3WithDelete(pParse->db, W); 444 } 445 A = p; 446 } 447 448 selectnowith(A) ::= oneselect(X). {A = X;} 449 %ifndef SQLITE_OMIT_COMPOUND_SELECT 450 selectnowith(A) ::= selectnowith(X) multiselect_op(Y) oneselect(Z). { 451 Select *pRhs = Z; 452 Select *pLhs = X; 453 if( pRhs && pRhs->pPrior ){ 454 SrcList *pFrom; 455 Token x; 456 x.n = 0; 457 parserDoubleLinkSelect(pParse, pRhs); 458 pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0); 459 pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0,0); 460 } 461 if( pRhs ){ 462 pRhs->op = (u8)Y; 463 pRhs->pPrior = pLhs; 464 if( ALWAYS(pLhs) ) pLhs->selFlags &= ~SF_MultiValue; 465 pRhs->selFlags &= ~SF_MultiValue; 466 if( Y!=TK_ALL ) pParse->hasCompound = 1; 467 }else{ 468 sqlite3SelectDelete(pParse->db, pLhs); 469 } 470 A = pRhs; 471 } 472 %type multiselect_op {int} 473 multiselect_op(A) ::= UNION(OP). {A = @OP;} 474 multiselect_op(A) ::= UNION ALL. {A = TK_ALL;} 475 multiselect_op(A) ::= EXCEPT|INTERSECT(OP). {A = @OP;} 476 %endif SQLITE_OMIT_COMPOUND_SELECT 477 oneselect(A) ::= SELECT(S) distinct(D) selcollist(W) from(X) where_opt(Y) 478 groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). { 479 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L.pLimit,L.pOffset); 480 #if SELECTTRACE_ENABLED 481 /* Populate the Select.zSelName[] string that is used to help with 482 ** query planner debugging, to differentiate between multiple Select 483 ** objects in a complex query. 484 ** 485 ** If the SELECT keyword is immediately followed by a C-style comment 486 ** then extract the first few alphanumeric characters from within that 487 ** comment to be the zSelName value. Otherwise, the label is #N where 488 ** is an integer that is incremented with each SELECT statement seen. 489 */ 490 if( A!=0 ){ 491 const char *z = S.z+6; 492 int i; 493 sqlite3_snprintf(sizeof(A->zSelName), A->zSelName, "#%d", 494 ++pParse->nSelect); 495 while( z[0]==' ' ) z++; 496 if( z[0]=='/' && z[1]=='*' ){ 497 z += 2; 498 while( z[0]==' ' ) z++; 499 for(i=0; sqlite3Isalnum(z[i]); i++){} 500 sqlite3_snprintf(sizeof(A->zSelName), A->zSelName, "%.*s", i, z); 501 } 502 } 503 #endif /* SELECTRACE_ENABLED */ 504 } 505 oneselect(A) ::= values(X). {A = X;} 506 507 %type values {Select*} 508 %destructor values {sqlite3SelectDelete(pParse->db, $$);} 509 values(A) ::= VALUES LP nexprlist(X) RP. { 510 A = sqlite3SelectNew(pParse,X,0,0,0,0,0,SF_Values,0,0); 511 } 512 values(A) ::= values(X) COMMA LP exprlist(Y) RP. { 513 Select *pRight, *pLeft = X; 514 pRight = sqlite3SelectNew(pParse,Y,0,0,0,0,0,SF_Values|SF_MultiValue,0,0); 515 if( ALWAYS(pLeft) ) pLeft->selFlags &= ~SF_MultiValue; 516 if( pRight ){ 517 pRight->op = TK_ALL; 518 pLeft = X; 519 pRight->pPrior = pLeft; 520 A = pRight; 521 }else{ 522 A = pLeft; 523 } 524 } 525 526 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is 527 // present and false (0) if it is not. 528 // 529 %type distinct {u16} 530 distinct(A) ::= DISTINCT. {A = SF_Distinct;} 531 distinct(A) ::= ALL. {A = SF_All;} 532 distinct(A) ::= . {A = 0;} 533 534 // selcollist is a list of expressions that are to become the return 535 // values of the SELECT statement. The "*" in statements like 536 // "SELECT * FROM ..." is encoded as a special expression with an 537 // opcode of TK_ALL. 538 // 539 %type selcollist {ExprList*} 540 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);} 541 %type sclp {ExprList*} 542 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);} 543 sclp(A) ::= selcollist(X) COMMA. {A = X;} 544 sclp(A) ::= . {A = 0;} 545 selcollist(A) ::= sclp(P) expr(X) as(Y). { 546 A = sqlite3ExprListAppend(pParse, P, X.pExpr); 547 if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1); 548 sqlite3ExprListSetSpan(pParse,A,&X); 549 } 550 selcollist(A) ::= sclp(P) STAR. { 551 Expr *p = sqlite3Expr(pParse->db, TK_ALL, 0); 552 A = sqlite3ExprListAppend(pParse, P, p); 553 } 554 selcollist(A) ::= sclp(P) nm(X) DOT STAR(Y). { 555 Expr *pRight = sqlite3PExpr(pParse, TK_ALL, 0, 0, &Y); 556 Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); 557 Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 558 A = sqlite3ExprListAppend(pParse,P, pDot); 559 } 560 561 // An option "AS <id>" phrase that can follow one of the expressions that 562 // define the result set, or one of the tables in the FROM clause. 563 // 564 %type as {Token} 565 as(X) ::= AS nm(Y). {X = Y;} 566 as(X) ::= ids(Y). {X = Y;} 567 as(X) ::= . {X.n = 0;} 568 569 570 %type seltablist {SrcList*} 571 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);} 572 %type stl_prefix {SrcList*} 573 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);} 574 %type from {SrcList*} 575 %destructor from {sqlite3SrcListDelete(pParse->db, $$);} 576 577 // A complete FROM clause. 578 // 579 from(A) ::= . {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));} 580 from(A) ::= FROM seltablist(X). { 581 A = X; 582 sqlite3SrcListShiftJoinType(A); 583 } 584 585 // "seltablist" is a "Select Table List" - the content of the FROM clause 586 // in a SELECT statement. "stl_prefix" is a prefix of this list. 587 // 588 stl_prefix(A) ::= seltablist(X) joinop(Y). { 589 A = X; 590 if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].fg.jointype = (u8)Y; 591 } 592 stl_prefix(A) ::= . {A = 0;} 593 seltablist(A) ::= stl_prefix(X) nm(Y) dbnm(D) as(Z) indexed_opt(I) 594 on_opt(N) using_opt(U). { 595 A = sqlite3SrcListAppendFromTerm(pParse,X,&Y,&D,&Z,0,N,U); 596 sqlite3SrcListIndexedBy(pParse, A, &I); 597 } 598 seltablist(A) ::= stl_prefix(X) nm(Y) dbnm(D) LP exprlist(E) RP as(Z) 599 on_opt(N) using_opt(U). { 600 A = sqlite3SrcListAppendFromTerm(pParse,X,&Y,&D,&Z,0,N,U); 601 sqlite3SrcListFuncArgs(pParse, A, E); 602 } 603 %ifndef SQLITE_OMIT_SUBQUERY 604 seltablist(A) ::= stl_prefix(X) LP select(S) RP 605 as(Z) on_opt(N) using_opt(U). { 606 A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,S,N,U); 607 } 608 seltablist(A) ::= stl_prefix(X) LP seltablist(F) RP 609 as(Z) on_opt(N) using_opt(U). { 610 if( X==0 && Z.n==0 && N==0 && U==0 ){ 611 A = F; 612 }else if( F->nSrc==1 ){ 613 A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,0,N,U); 614 if( A ){ 615 struct SrcList_item *pNew = &A->a[A->nSrc-1]; 616 struct SrcList_item *pOld = F->a; 617 pNew->zName = pOld->zName; 618 pNew->zDatabase = pOld->zDatabase; 619 pNew->pSelect = pOld->pSelect; 620 pOld->zName = pOld->zDatabase = 0; 621 pOld->pSelect = 0; 622 } 623 sqlite3SrcListDelete(pParse->db, F); 624 }else{ 625 Select *pSubquery; 626 sqlite3SrcListShiftJoinType(F); 627 pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,SF_NestedFrom,0,0); 628 A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,pSubquery,N,U); 629 } 630 } 631 %endif SQLITE_OMIT_SUBQUERY 632 633 %type dbnm {Token} 634 dbnm(A) ::= . {A.z=0; A.n=0;} 635 dbnm(A) ::= DOT nm(X). {A = X;} 636 637 %type fullname {SrcList*} 638 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);} 639 fullname(A) ::= nm(X) dbnm(Y). {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y);} 640 641 %type joinop {int} 642 %type joinop2 {int} 643 joinop(X) ::= COMMA|JOIN. { X = JT_INNER; } 644 joinop(X) ::= JOIN_KW(A) JOIN. { X = sqlite3JoinType(pParse,&A,0,0); } 645 joinop(X) ::= JOIN_KW(A) nm(B) JOIN. { X = sqlite3JoinType(pParse,&A,&B,0); } 646 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN. 647 { X = sqlite3JoinType(pParse,&A,&B,&C); } 648 649 %type on_opt {Expr*} 650 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);} 651 on_opt(N) ::= ON expr(E). {N = E.pExpr;} 652 on_opt(N) ::= . {N = 0;} 653 654 // Note that this block abuses the Token type just a little. If there is 655 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If 656 // there is an INDEXED BY clause, then the token is populated as per normal, 657 // with z pointing to the token data and n containing the number of bytes 658 // in the token. 659 // 660 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is 661 // normally illegal. The sqlite3SrcListIndexedBy() function 662 // recognizes and interprets this as a special case. 663 // 664 %type indexed_opt {Token} 665 indexed_opt(A) ::= . {A.z=0; A.n=0;} 666 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;} 667 indexed_opt(A) ::= NOT INDEXED. {A.z=0; A.n=1;} 668 669 %type using_opt {IdList*} 670 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);} 671 using_opt(U) ::= USING LP idlist(L) RP. {U = L;} 672 using_opt(U) ::= . {U = 0;} 673 674 675 %type orderby_opt {ExprList*} 676 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);} 677 678 // the sortlist non-terminal stores a list of expression where each 679 // expression is optionally followed by ASC or DESC to indicate the 680 // sort order. 681 // 682 %type sortlist {ExprList*} 683 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);} 684 685 orderby_opt(A) ::= . {A = 0;} 686 orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;} 687 sortlist(A) ::= sortlist(X) COMMA expr(Y) sortorder(Z). { 688 A = sqlite3ExprListAppend(pParse,X,Y.pExpr); 689 sqlite3ExprListSetSortOrder(A,Z); 690 } 691 sortlist(A) ::= expr(Y) sortorder(Z). { 692 A = sqlite3ExprListAppend(pParse,0,Y.pExpr); 693 sqlite3ExprListSetSortOrder(A,Z); 694 } 695 696 %type sortorder {int} 697 698 sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;} 699 sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;} 700 sortorder(A) ::= . {A = SQLITE_SO_UNDEFINED;} 701 702 %type groupby_opt {ExprList*} 703 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);} 704 groupby_opt(A) ::= . {A = 0;} 705 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;} 706 707 %type having_opt {Expr*} 708 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);} 709 having_opt(A) ::= . {A = 0;} 710 having_opt(A) ::= HAVING expr(X). {A = X.pExpr;} 711 712 %type limit_opt {struct LimitVal} 713 714 // The destructor for limit_opt will never fire in the current grammar. 715 // The limit_opt non-terminal only occurs at the end of a single production 716 // rule for SELECT statements. As soon as the rule that create the 717 // limit_opt non-terminal reduces, the SELECT statement rule will also 718 // reduce. So there is never a limit_opt non-terminal on the stack 719 // except as a transient. So there is never anything to destroy. 720 // 721 //%destructor limit_opt { 722 // sqlite3ExprDelete(pParse->db, $$.pLimit); 723 // sqlite3ExprDelete(pParse->db, $$.pOffset); 724 //} 725 limit_opt(A) ::= . {A.pLimit = 0; A.pOffset = 0;} 726 limit_opt(A) ::= LIMIT expr(X). {A.pLimit = X.pExpr; A.pOffset = 0;} 727 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y). 728 {A.pLimit = X.pExpr; A.pOffset = Y.pExpr;} 729 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y). 730 {A.pOffset = X.pExpr; A.pLimit = Y.pExpr;} 731 732 /////////////////////////// The DELETE statement ///////////////////////////// 733 // 734 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 735 cmd ::= with(C) DELETE FROM fullname(X) indexed_opt(I) where_opt(W) 736 orderby_opt(O) limit_opt(L). { 737 sqlite3WithPush(pParse, C, 1); 738 sqlite3SrcListIndexedBy(pParse, X, &I); 739 W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "DELETE"); 740 sqlite3DeleteFrom(pParse,X,W); 741 } 742 %endif 743 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 744 cmd ::= with(C) DELETE FROM fullname(X) indexed_opt(I) where_opt(W). { 745 sqlite3WithPush(pParse, C, 1); 746 sqlite3SrcListIndexedBy(pParse, X, &I); 747 sqlite3DeleteFrom(pParse,X,W); 748 } 749 %endif 750 751 %type where_opt {Expr*} 752 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);} 753 754 where_opt(A) ::= . {A = 0;} 755 where_opt(A) ::= WHERE expr(X). {A = X.pExpr;} 756 757 ////////////////////////// The UPDATE command //////////////////////////////// 758 // 759 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 760 cmd ::= with(C) UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) 761 where_opt(W) orderby_opt(O) limit_opt(L). { 762 sqlite3WithPush(pParse, C, 1); 763 sqlite3SrcListIndexedBy(pParse, X, &I); 764 sqlite3ExprListCheckLength(pParse,Y,"set list"); 765 W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "UPDATE"); 766 sqlite3Update(pParse,X,Y,W,R); 767 } 768 %endif 769 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 770 cmd ::= with(C) UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) 771 where_opt(W). { 772 sqlite3WithPush(pParse, C, 1); 773 sqlite3SrcListIndexedBy(pParse, X, &I); 774 sqlite3ExprListCheckLength(pParse,Y,"set list"); 775 sqlite3Update(pParse,X,Y,W,R); 776 } 777 %endif 778 779 %type setlist {ExprList*} 780 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);} 781 782 setlist(A) ::= setlist(Z) COMMA nm(X) EQ expr(Y). { 783 A = sqlite3ExprListAppend(pParse, Z, Y.pExpr); 784 sqlite3ExprListSetName(pParse, A, &X, 1); 785 } 786 setlist(A) ::= nm(X) EQ expr(Y). { 787 A = sqlite3ExprListAppend(pParse, 0, Y.pExpr); 788 sqlite3ExprListSetName(pParse, A, &X, 1); 789 } 790 791 ////////////////////////// The INSERT command ///////////////////////////////// 792 // 793 cmd ::= with(W) insert_cmd(R) INTO fullname(X) idlist_opt(F) select(S). { 794 sqlite3WithPush(pParse, W, 1); 795 sqlite3Insert(pParse, X, S, F, R); 796 } 797 cmd ::= with(W) insert_cmd(R) INTO fullname(X) idlist_opt(F) DEFAULT VALUES. 798 { 799 sqlite3WithPush(pParse, W, 1); 800 sqlite3Insert(pParse, X, 0, F, R); 801 } 802 803 %type insert_cmd {u8} 804 insert_cmd(A) ::= INSERT orconf(R). {A = R;} 805 insert_cmd(A) ::= REPLACE. {A = OE_Replace;} 806 807 %type idlist_opt {IdList*} 808 %destructor idlist_opt {sqlite3IdListDelete(pParse->db, $$);} 809 %type idlist {IdList*} 810 %destructor idlist {sqlite3IdListDelete(pParse->db, $$);} 811 812 idlist_opt(A) ::= . {A = 0;} 813 idlist_opt(A) ::= LP idlist(X) RP. {A = X;} 814 idlist(A) ::= idlist(X) COMMA nm(Y). 815 {A = sqlite3IdListAppend(pParse->db,X,&Y);} 816 idlist(A) ::= nm(Y). 817 {A = sqlite3IdListAppend(pParse->db,0,&Y);} 818 819 /////////////////////////// Expression Processing ///////////////////////////// 820 // 821 822 %type expr {ExprSpan} 823 %destructor expr {sqlite3ExprDelete(pParse->db, $$.pExpr);} 824 %type term {ExprSpan} 825 %destructor term {sqlite3ExprDelete(pParse->db, $$.pExpr);} 826 827 %include { 828 /* This is a utility routine used to set the ExprSpan.zStart and 829 ** ExprSpan.zEnd values of pOut so that the span covers the complete 830 ** range of text beginning with pStart and going to the end of pEnd. 831 */ 832 static void spanSet(ExprSpan *pOut, Token *pStart, Token *pEnd){ 833 pOut->zStart = pStart->z; 834 pOut->zEnd = &pEnd->z[pEnd->n]; 835 } 836 837 /* Construct a new Expr object from a single identifier. Use the 838 ** new Expr to populate pOut. Set the span of pOut to be the identifier 839 ** that created the expression. 840 */ 841 static void spanExpr(ExprSpan *pOut, Parse *pParse, int op, Token *pValue){ 842 pOut->pExpr = sqlite3PExpr(pParse, op, 0, 0, pValue); 843 pOut->zStart = pValue->z; 844 pOut->zEnd = &pValue->z[pValue->n]; 845 } 846 } 847 848 expr(A) ::= term(X). {A = X;} 849 expr(A) ::= LP(B) expr(X) RP(E). {A.pExpr = X.pExpr; spanSet(&A,&B,&E);} 850 term(A) ::= NULL(X). {spanExpr(&A, pParse, @X, &X);} 851 expr(A) ::= id(X). {spanExpr(&A, pParse, TK_ID, &X);} 852 expr(A) ::= JOIN_KW(X). {spanExpr(&A, pParse, TK_ID, &X);} 853 expr(A) ::= nm(X) DOT nm(Y). { 854 Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); 855 Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y); 856 A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0); 857 spanSet(&A,&X,&Y); 858 } 859 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). { 860 Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); 861 Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y); 862 Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Z); 863 Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0); 864 A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0); 865 spanSet(&A,&X,&Z); 866 } 867 term(A) ::= INTEGER|FLOAT|BLOB(X). {spanExpr(&A, pParse, @X, &X);} 868 term(A) ::= STRING(X). {spanExpr(&A, pParse, @X, &X);} 869 expr(A) ::= VARIABLE(X). { 870 if( X.n>=2 && X.z[0]=='#' && sqlite3Isdigit(X.z[1]) ){ 871 /* When doing a nested parse, one can include terms in an expression 872 ** that look like this: #1 #2 ... These terms refer to registers 873 ** in the virtual machine. #N is the N-th register. */ 874 if( pParse->nested==0 ){ 875 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &X); 876 A.pExpr = 0; 877 }else{ 878 A.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, &X); 879 if( A.pExpr ) sqlite3GetInt32(&X.z[1], &A.pExpr->iTable); 880 } 881 }else{ 882 spanExpr(&A, pParse, TK_VARIABLE, &X); 883 sqlite3ExprAssignVarNumber(pParse, A.pExpr); 884 } 885 spanSet(&A, &X, &X); 886 } 887 expr(A) ::= expr(E) COLLATE ids(C). { 888 A.pExpr = sqlite3ExprAddCollateToken(pParse, E.pExpr, &C, 1); 889 A.zStart = E.zStart; 890 A.zEnd = &C.z[C.n]; 891 } 892 %ifndef SQLITE_OMIT_CAST 893 expr(A) ::= CAST(X) LP expr(E) AS typetoken(T) RP(Y). { 894 A.pExpr = sqlite3PExpr(pParse, TK_CAST, E.pExpr, 0, &T); 895 spanSet(&A,&X,&Y); 896 } 897 %endif SQLITE_OMIT_CAST 898 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP(E). { 899 if( Y && Y->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 900 sqlite3ErrorMsg(pParse, "too many arguments on function %T", &X); 901 } 902 A.pExpr = sqlite3ExprFunction(pParse, Y, &X); 903 spanSet(&A,&X,&E); 904 if( D==SF_Distinct && A.pExpr ){ 905 A.pExpr->flags |= EP_Distinct; 906 } 907 } 908 expr(A) ::= id(X) LP STAR RP(E). { 909 A.pExpr = sqlite3ExprFunction(pParse, 0, &X); 910 spanSet(&A,&X,&E); 911 } 912 term(A) ::= CTIME_KW(OP). { 913 A.pExpr = sqlite3ExprFunction(pParse, 0, &OP); 914 spanSet(&A, &OP, &OP); 915 } 916 917 %include { 918 /* This routine constructs a binary expression node out of two ExprSpan 919 ** objects and uses the result to populate a new ExprSpan object. 920 */ 921 static void spanBinaryExpr( 922 ExprSpan *pOut, /* Write the result here */ 923 Parse *pParse, /* The parsing context. Errors accumulate here */ 924 int op, /* The binary operation */ 925 ExprSpan *pLeft, /* The left operand */ 926 ExprSpan *pRight /* The right operand */ 927 ){ 928 pOut->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr, 0); 929 pOut->zStart = pLeft->zStart; 930 pOut->zEnd = pRight->zEnd; 931 } 932 } 933 934 expr(A) ::= expr(X) AND(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 935 expr(A) ::= expr(X) OR(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 936 expr(A) ::= expr(X) LT|GT|GE|LE(OP) expr(Y). 937 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 938 expr(A) ::= expr(X) EQ|NE(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 939 expr(A) ::= expr(X) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y). 940 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 941 expr(A) ::= expr(X) PLUS|MINUS(OP) expr(Y). 942 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 943 expr(A) ::= expr(X) STAR|SLASH|REM(OP) expr(Y). 944 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 945 expr(A) ::= expr(X) CONCAT(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 946 %type likeop {struct LikeOp} 947 likeop(A) ::= LIKE_KW|MATCH(X). {A.eOperator = X; A.bNot = 0;} 948 likeop(A) ::= NOT LIKE_KW|MATCH(X). {A.eOperator = X; A.bNot = 1;} 949 expr(A) ::= expr(X) likeop(OP) expr(Y). [LIKE_KW] { 950 ExprList *pList; 951 pList = sqlite3ExprListAppend(pParse,0, Y.pExpr); 952 pList = sqlite3ExprListAppend(pParse,pList, X.pExpr); 953 A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator); 954 if( OP.bNot ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 955 A.zStart = X.zStart; 956 A.zEnd = Y.zEnd; 957 if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc; 958 } 959 expr(A) ::= expr(X) likeop(OP) expr(Y) ESCAPE expr(E). [LIKE_KW] { 960 ExprList *pList; 961 pList = sqlite3ExprListAppend(pParse,0, Y.pExpr); 962 pList = sqlite3ExprListAppend(pParse,pList, X.pExpr); 963 pList = sqlite3ExprListAppend(pParse,pList, E.pExpr); 964 A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator); 965 if( OP.bNot ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 966 A.zStart = X.zStart; 967 A.zEnd = E.zEnd; 968 if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc; 969 } 970 971 %include { 972 /* Construct an expression node for a unary postfix operator 973 */ 974 static void spanUnaryPostfix( 975 ExprSpan *pOut, /* Write the new expression node here */ 976 Parse *pParse, /* Parsing context to record errors */ 977 int op, /* The operator */ 978 ExprSpan *pOperand, /* The operand */ 979 Token *pPostOp /* The operand token for setting the span */ 980 ){ 981 pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0); 982 pOut->zStart = pOperand->zStart; 983 pOut->zEnd = &pPostOp->z[pPostOp->n]; 984 } 985 } 986 987 expr(A) ::= expr(X) ISNULL|NOTNULL(E). {spanUnaryPostfix(&A,pParse,@E,&X,&E);} 988 expr(A) ::= expr(X) NOT NULL(E). {spanUnaryPostfix(&A,pParse,TK_NOTNULL,&X,&E);} 989 990 %include { 991 /* A routine to convert a binary TK_IS or TK_ISNOT expression into a 992 ** unary TK_ISNULL or TK_NOTNULL expression. */ 993 static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){ 994 sqlite3 *db = pParse->db; 995 if( pY && pA && pY->op==TK_NULL ){ 996 pA->op = (u8)op; 997 sqlite3ExprDelete(db, pA->pRight); 998 pA->pRight = 0; 999 } 1000 } 1001 } 1002 1003 // expr1 IS expr2 1004 // expr1 IS NOT expr2 1005 // 1006 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL. If expr2 1007 // is any other expression, code as TK_IS or TK_ISNOT. 1008 // 1009 expr(A) ::= expr(X) IS expr(Y). { 1010 spanBinaryExpr(&A,pParse,TK_IS,&X,&Y); 1011 binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_ISNULL); 1012 } 1013 expr(A) ::= expr(X) IS NOT expr(Y). { 1014 spanBinaryExpr(&A,pParse,TK_ISNOT,&X,&Y); 1015 binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_NOTNULL); 1016 } 1017 1018 %include { 1019 /* Construct an expression node for a unary prefix operator 1020 */ 1021 static void spanUnaryPrefix( 1022 ExprSpan *pOut, /* Write the new expression node here */ 1023 Parse *pParse, /* Parsing context to record errors */ 1024 int op, /* The operator */ 1025 ExprSpan *pOperand, /* The operand */ 1026 Token *pPreOp /* The operand token for setting the span */ 1027 ){ 1028 pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0); 1029 pOut->zStart = pPreOp->z; 1030 pOut->zEnd = pOperand->zEnd; 1031 } 1032 } 1033 1034 1035 1036 expr(A) ::= NOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);} 1037 expr(A) ::= BITNOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);} 1038 expr(A) ::= MINUS(B) expr(X). [BITNOT] 1039 {spanUnaryPrefix(&A,pParse,TK_UMINUS,&X,&B);} 1040 expr(A) ::= PLUS(B) expr(X). [BITNOT] 1041 {spanUnaryPrefix(&A,pParse,TK_UPLUS,&X,&B);} 1042 1043 %type between_op {int} 1044 between_op(A) ::= BETWEEN. {A = 0;} 1045 between_op(A) ::= NOT BETWEEN. {A = 1;} 1046 expr(A) ::= expr(W) between_op(N) expr(X) AND expr(Y). [BETWEEN] { 1047 ExprList *pList = sqlite3ExprListAppend(pParse,0, X.pExpr); 1048 pList = sqlite3ExprListAppend(pParse,pList, Y.pExpr); 1049 A.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, W.pExpr, 0, 0); 1050 if( A.pExpr ){ 1051 A.pExpr->x.pList = pList; 1052 }else{ 1053 sqlite3ExprListDelete(pParse->db, pList); 1054 } 1055 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 1056 A.zStart = W.zStart; 1057 A.zEnd = Y.zEnd; 1058 } 1059 %ifndef SQLITE_OMIT_SUBQUERY 1060 %type in_op {int} 1061 in_op(A) ::= IN. {A = 0;} 1062 in_op(A) ::= NOT IN. {A = 1;} 1063 expr(A) ::= expr(X) in_op(N) LP exprlist(Y) RP(E). [IN] { 1064 if( Y==0 ){ 1065 /* Expressions of the form 1066 ** 1067 ** expr1 IN () 1068 ** expr1 NOT IN () 1069 ** 1070 ** simplify to constants 0 (false) and 1 (true), respectively, 1071 ** regardless of the value of expr1. 1072 */ 1073 A.pExpr = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &sqlite3IntTokens[N]); 1074 sqlite3ExprDelete(pParse->db, X.pExpr); 1075 }else if( Y->nExpr==1 ){ 1076 /* Expressions of the form: 1077 ** 1078 ** expr1 IN (?1) 1079 ** expr1 NOT IN (?2) 1080 ** 1081 ** with exactly one value on the RHS can be simplified to something 1082 ** like this: 1083 ** 1084 ** expr1 == ?1 1085 ** expr1 <> ?2 1086 ** 1087 ** But, the RHS of the == or <> is marked with the EP_Generic flag 1088 ** so that it may not contribute to the computation of comparison 1089 ** affinity or the collating sequence to use for comparison. Otherwise, 1090 ** the semantics would be subtly different from IN or NOT IN. 1091 */ 1092 Expr *pRHS = Y->a[0].pExpr; 1093 Y->a[0].pExpr = 0; 1094 sqlite3ExprListDelete(pParse->db, Y); 1095 /* pRHS cannot be NULL because a malloc error would have been detected 1096 ** before now and control would have never reached this point */ 1097 if( ALWAYS(pRHS) ){ 1098 pRHS->flags &= ~EP_Collate; 1099 pRHS->flags |= EP_Generic; 1100 } 1101 A.pExpr = sqlite3PExpr(pParse, N ? TK_NE : TK_EQ, X.pExpr, pRHS, 0); 1102 }else{ 1103 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); 1104 if( A.pExpr ){ 1105 A.pExpr->x.pList = Y; 1106 sqlite3ExprSetHeightAndFlags(pParse, A.pExpr); 1107 }else{ 1108 sqlite3ExprListDelete(pParse->db, Y); 1109 } 1110 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 1111 } 1112 A.zStart = X.zStart; 1113 A.zEnd = &E.z[E.n]; 1114 } 1115 expr(A) ::= LP(B) select(X) RP(E). { 1116 A.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0); 1117 if( A.pExpr ){ 1118 A.pExpr->x.pSelect = X; 1119 ExprSetProperty(A.pExpr, EP_xIsSelect|EP_Subquery); 1120 sqlite3ExprSetHeightAndFlags(pParse, A.pExpr); 1121 }else{ 1122 sqlite3SelectDelete(pParse->db, X); 1123 } 1124 A.zStart = B.z; 1125 A.zEnd = &E.z[E.n]; 1126 } 1127 expr(A) ::= expr(X) in_op(N) LP select(Y) RP(E). [IN] { 1128 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); 1129 if( A.pExpr ){ 1130 A.pExpr->x.pSelect = Y; 1131 ExprSetProperty(A.pExpr, EP_xIsSelect|EP_Subquery); 1132 sqlite3ExprSetHeightAndFlags(pParse, A.pExpr); 1133 }else{ 1134 sqlite3SelectDelete(pParse->db, Y); 1135 } 1136 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 1137 A.zStart = X.zStart; 1138 A.zEnd = &E.z[E.n]; 1139 } 1140 expr(A) ::= expr(X) in_op(N) nm(Y) dbnm(Z). [IN] { 1141 SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z); 1142 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); 1143 if( A.pExpr ){ 1144 A.pExpr->x.pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0); 1145 ExprSetProperty(A.pExpr, EP_xIsSelect|EP_Subquery); 1146 sqlite3ExprSetHeightAndFlags(pParse, A.pExpr); 1147 }else{ 1148 sqlite3SrcListDelete(pParse->db, pSrc); 1149 } 1150 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 1151 A.zStart = X.zStart; 1152 A.zEnd = Z.z ? &Z.z[Z.n] : &Y.z[Y.n]; 1153 } 1154 expr(A) ::= EXISTS(B) LP select(Y) RP(E). { 1155 Expr *p = A.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0); 1156 if( p ){ 1157 p->x.pSelect = Y; 1158 ExprSetProperty(p, EP_xIsSelect|EP_Subquery); 1159 sqlite3ExprSetHeightAndFlags(pParse, p); 1160 }else{ 1161 sqlite3SelectDelete(pParse->db, Y); 1162 } 1163 A.zStart = B.z; 1164 A.zEnd = &E.z[E.n]; 1165 } 1166 %endif SQLITE_OMIT_SUBQUERY 1167 1168 /* CASE expressions */ 1169 expr(A) ::= CASE(C) case_operand(X) case_exprlist(Y) case_else(Z) END(E). { 1170 A.pExpr = sqlite3PExpr(pParse, TK_CASE, X, 0, 0); 1171 if( A.pExpr ){ 1172 A.pExpr->x.pList = Z ? sqlite3ExprListAppend(pParse,Y,Z) : Y; 1173 sqlite3ExprSetHeightAndFlags(pParse, A.pExpr); 1174 }else{ 1175 sqlite3ExprListDelete(pParse->db, Y); 1176 sqlite3ExprDelete(pParse->db, Z); 1177 } 1178 A.zStart = C.z; 1179 A.zEnd = &E.z[E.n]; 1180 } 1181 %type case_exprlist {ExprList*} 1182 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1183 case_exprlist(A) ::= case_exprlist(X) WHEN expr(Y) THEN expr(Z). { 1184 A = sqlite3ExprListAppend(pParse,X, Y.pExpr); 1185 A = sqlite3ExprListAppend(pParse,A, Z.pExpr); 1186 } 1187 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). { 1188 A = sqlite3ExprListAppend(pParse,0, Y.pExpr); 1189 A = sqlite3ExprListAppend(pParse,A, Z.pExpr); 1190 } 1191 %type case_else {Expr*} 1192 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);} 1193 case_else(A) ::= ELSE expr(X). {A = X.pExpr;} 1194 case_else(A) ::= . {A = 0;} 1195 %type case_operand {Expr*} 1196 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);} 1197 case_operand(A) ::= expr(X). {A = X.pExpr;} 1198 case_operand(A) ::= . {A = 0;} 1199 1200 %type exprlist {ExprList*} 1201 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1202 %type nexprlist {ExprList*} 1203 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);} 1204 1205 exprlist(A) ::= nexprlist(X). {A = X;} 1206 exprlist(A) ::= . {A = 0;} 1207 nexprlist(A) ::= nexprlist(X) COMMA expr(Y). 1208 {A = sqlite3ExprListAppend(pParse,X,Y.pExpr);} 1209 nexprlist(A) ::= expr(Y). 1210 {A = sqlite3ExprListAppend(pParse,0,Y.pExpr);} 1211 1212 1213 ///////////////////////////// The CREATE INDEX command /////////////////////// 1214 // 1215 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D) 1216 ON nm(Y) LP sortlist(Z) RP where_opt(W). { 1217 sqlite3CreateIndex(pParse, &X, &D, 1218 sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U, 1219 &S, W, SQLITE_SO_ASC, NE); 1220 } 1221 1222 %type uniqueflag {int} 1223 uniqueflag(A) ::= UNIQUE. {A = OE_Abort;} 1224 uniqueflag(A) ::= . {A = OE_None;} 1225 1226 1227 // The eidlist non-terminal (Expression Id List) generates an ExprList 1228 // from a list of identifiers. The identifier names are in ExprList.a[].zName. 1229 // This list is stored in an ExprList rather than an IdList so that it 1230 // can be easily sent to sqlite3ColumnsExprList(). 1231 // 1232 // eidlist is grouped with CREATE INDEX because it used to be the non-terminal 1233 // used for the arguments to an index. That is just an historical accident. 1234 // 1235 // IMPORTANT COMPATIBILITY NOTE: Some prior versions of SQLite accepted 1236 // COLLATE clauses and ASC or DESC keywords on ID lists in inappropriate 1237 // places - places that might have been stored in the sqlite_master schema. 1238 // Those extra features were ignored. But because they might be in some 1239 // (busted) old databases, we need to continue parsing them when loading 1240 // historical schemas. 1241 // 1242 %type eidlist {ExprList*} 1243 %destructor eidlist {sqlite3ExprListDelete(pParse->db, $$);} 1244 %type eidlist_opt {ExprList*} 1245 %destructor eidlist_opt {sqlite3ExprListDelete(pParse->db, $$);} 1246 1247 %include { 1248 /* Add a single new term to an ExprList that is used to store a 1249 ** list of identifiers. Report an error if the ID list contains 1250 ** a COLLATE clause or an ASC or DESC keyword, except ignore the 1251 ** error while parsing a legacy schema. 1252 */ 1253 static ExprList *parserAddExprIdListTerm( 1254 Parse *pParse, 1255 ExprList *pPrior, 1256 Token *pIdToken, 1257 int hasCollate, 1258 int sortOrder 1259 ){ 1260 ExprList *p = sqlite3ExprListAppend(pParse, pPrior, 0); 1261 if( (hasCollate || sortOrder!=SQLITE_SO_UNDEFINED) 1262 && pParse->db->init.busy==0 1263 ){ 1264 sqlite3ErrorMsg(pParse, "syntax error after column name \"%.*s\"", 1265 pIdToken->n, pIdToken->z); 1266 } 1267 sqlite3ExprListSetName(pParse, p, pIdToken, 1); 1268 return p; 1269 } 1270 } // end %include 1271 1272 eidlist_opt(A) ::= . {A = 0;} 1273 eidlist_opt(A) ::= LP eidlist(X) RP. {A = X;} 1274 eidlist(A) ::= eidlist(X) COMMA nm(Y) collate(C) sortorder(Z). { 1275 A = parserAddExprIdListTerm(pParse, X, &Y, C, Z); 1276 } 1277 eidlist(A) ::= nm(Y) collate(C) sortorder(Z). { 1278 A = parserAddExprIdListTerm(pParse, 0, &Y, C, Z); 1279 } 1280 1281 %type collate {int} 1282 collate(C) ::= . {C = 0;} 1283 collate(C) ::= COLLATE ids. {C = 1;} 1284 1285 1286 ///////////////////////////// The DROP INDEX command ///////////////////////// 1287 // 1288 cmd ::= DROP INDEX ifexists(E) fullname(X). {sqlite3DropIndex(pParse, X, E);} 1289 1290 ///////////////////////////// The VACUUM command ///////////////////////////// 1291 // 1292 %ifndef SQLITE_OMIT_VACUUM 1293 %ifndef SQLITE_OMIT_ATTACH 1294 cmd ::= VACUUM. {sqlite3Vacuum(pParse);} 1295 cmd ::= VACUUM nm. {sqlite3Vacuum(pParse);} 1296 %endif SQLITE_OMIT_ATTACH 1297 %endif SQLITE_OMIT_VACUUM 1298 1299 ///////////////////////////// The PRAGMA command ///////////////////////////// 1300 // 1301 %ifndef SQLITE_OMIT_PRAGMA 1302 cmd ::= PRAGMA nm(X) dbnm(Z). {sqlite3Pragma(pParse,&X,&Z,0,0);} 1303 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1304 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1305 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y). 1306 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1307 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP. 1308 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1309 1310 nmnum(A) ::= plus_num(X). {A = X;} 1311 nmnum(A) ::= nm(X). {A = X;} 1312 nmnum(A) ::= ON(X). {A = X;} 1313 nmnum(A) ::= DELETE(X). {A = X;} 1314 nmnum(A) ::= DEFAULT(X). {A = X;} 1315 %endif SQLITE_OMIT_PRAGMA 1316 %token_class number INTEGER|FLOAT. 1317 plus_num(A) ::= PLUS number(X). {A = X;} 1318 plus_num(A) ::= number(X). {A = X;} 1319 minus_num(A) ::= MINUS number(X). {A = X;} 1320 //////////////////////////// The CREATE TRIGGER command ///////////////////// 1321 1322 %ifndef SQLITE_OMIT_TRIGGER 1323 1324 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). { 1325 Token all; 1326 all.z = A.z; 1327 all.n = (int)(Z.z - A.z) + Z.n; 1328 sqlite3FinishTrigger(pParse, S, &all); 1329 } 1330 1331 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z) 1332 trigger_time(C) trigger_event(D) 1333 ON fullname(E) foreach_clause when_clause(G). { 1334 sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR); 1335 A = (Z.n==0?B:Z); 1336 } 1337 1338 %type trigger_time {int} 1339 trigger_time(A) ::= BEFORE. { A = TK_BEFORE; } 1340 trigger_time(A) ::= AFTER. { A = TK_AFTER; } 1341 trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;} 1342 trigger_time(A) ::= . { A = TK_BEFORE; } 1343 1344 %type trigger_event {struct TrigEvent} 1345 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);} 1346 trigger_event(A) ::= DELETE|INSERT(OP). {A.a = @OP; A.b = 0;} 1347 trigger_event(A) ::= UPDATE(OP). {A.a = @OP; A.b = 0;} 1348 trigger_event(A) ::= UPDATE OF idlist(X). {A.a = TK_UPDATE; A.b = X;} 1349 1350 foreach_clause ::= . 1351 foreach_clause ::= FOR EACH ROW. 1352 1353 %type when_clause {Expr*} 1354 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);} 1355 when_clause(A) ::= . { A = 0; } 1356 when_clause(A) ::= WHEN expr(X). { A = X.pExpr; } 1357 1358 %type trigger_cmd_list {TriggerStep*} 1359 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);} 1360 trigger_cmd_list(A) ::= trigger_cmd_list(Y) trigger_cmd(X) SEMI. { 1361 assert( Y!=0 ); 1362 Y->pLast->pNext = X; 1363 Y->pLast = X; 1364 A = Y; 1365 } 1366 trigger_cmd_list(A) ::= trigger_cmd(X) SEMI. { 1367 assert( X!=0 ); 1368 X->pLast = X; 1369 A = X; 1370 } 1371 1372 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements 1373 // within a trigger. The table to INSERT, UPDATE, or DELETE is always in 1374 // the same database as the table that the trigger fires on. 1375 // 1376 %type trnm {Token} 1377 trnm(A) ::= nm(X). {A = X;} 1378 trnm(A) ::= nm DOT nm(X). { 1379 A = X; 1380 sqlite3ErrorMsg(pParse, 1381 "qualified table names are not allowed on INSERT, UPDATE, and DELETE " 1382 "statements within triggers"); 1383 } 1384 1385 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE 1386 // statements within triggers. We make a specific error message for this 1387 // since it is an exception to the default grammar rules. 1388 // 1389 tridxby ::= . 1390 tridxby ::= INDEXED BY nm. { 1391 sqlite3ErrorMsg(pParse, 1392 "the INDEXED BY clause is not allowed on UPDATE or DELETE statements " 1393 "within triggers"); 1394 } 1395 tridxby ::= NOT INDEXED. { 1396 sqlite3ErrorMsg(pParse, 1397 "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements " 1398 "within triggers"); 1399 } 1400 1401 1402 1403 %type trigger_cmd {TriggerStep*} 1404 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);} 1405 // UPDATE 1406 trigger_cmd(A) ::= 1407 UPDATE orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z). 1408 { A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R); } 1409 1410 // INSERT 1411 trigger_cmd(A) ::= insert_cmd(R) INTO trnm(X) idlist_opt(F) select(S). 1412 {A = sqlite3TriggerInsertStep(pParse->db, &X, F, S, R);} 1413 1414 // DELETE 1415 trigger_cmd(A) ::= DELETE FROM trnm(X) tridxby where_opt(Y). 1416 {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y);} 1417 1418 // SELECT 1419 trigger_cmd(A) ::= select(X). {A = sqlite3TriggerSelectStep(pParse->db, X); } 1420 1421 // The special RAISE expression that may occur in trigger programs 1422 expr(A) ::= RAISE(X) LP IGNORE RP(Y). { 1423 A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0); 1424 if( A.pExpr ){ 1425 A.pExpr->affinity = OE_Ignore; 1426 } 1427 A.zStart = X.z; 1428 A.zEnd = &Y.z[Y.n]; 1429 } 1430 expr(A) ::= RAISE(X) LP raisetype(T) COMMA nm(Z) RP(Y). { 1431 A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &Z); 1432 if( A.pExpr ) { 1433 A.pExpr->affinity = (char)T; 1434 } 1435 A.zStart = X.z; 1436 A.zEnd = &Y.z[Y.n]; 1437 } 1438 %endif !SQLITE_OMIT_TRIGGER 1439 1440 %type raisetype {int} 1441 raisetype(A) ::= ROLLBACK. {A = OE_Rollback;} 1442 raisetype(A) ::= ABORT. {A = OE_Abort;} 1443 raisetype(A) ::= FAIL. {A = OE_Fail;} 1444 1445 1446 //////////////////////// DROP TRIGGER statement ////////////////////////////// 1447 %ifndef SQLITE_OMIT_TRIGGER 1448 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). { 1449 sqlite3DropTrigger(pParse,X,NOERR); 1450 } 1451 %endif !SQLITE_OMIT_TRIGGER 1452 1453 //////////////////////// ATTACH DATABASE file AS name ///////////////////////// 1454 %ifndef SQLITE_OMIT_ATTACH 1455 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). { 1456 sqlite3Attach(pParse, F.pExpr, D.pExpr, K); 1457 } 1458 cmd ::= DETACH database_kw_opt expr(D). { 1459 sqlite3Detach(pParse, D.pExpr); 1460 } 1461 1462 %type key_opt {Expr*} 1463 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);} 1464 key_opt(A) ::= . { A = 0; } 1465 key_opt(A) ::= KEY expr(X). { A = X.pExpr; } 1466 1467 database_kw_opt ::= DATABASE. 1468 database_kw_opt ::= . 1469 %endif SQLITE_OMIT_ATTACH 1470 1471 ////////////////////////// REINDEX collation ////////////////////////////////// 1472 %ifndef SQLITE_OMIT_REINDEX 1473 cmd ::= REINDEX. {sqlite3Reindex(pParse, 0, 0);} 1474 cmd ::= REINDEX nm(X) dbnm(Y). {sqlite3Reindex(pParse, &X, &Y);} 1475 %endif SQLITE_OMIT_REINDEX 1476 1477 /////////////////////////////////// ANALYZE /////////////////////////////////// 1478 %ifndef SQLITE_OMIT_ANALYZE 1479 cmd ::= ANALYZE. {sqlite3Analyze(pParse, 0, 0);} 1480 cmd ::= ANALYZE nm(X) dbnm(Y). {sqlite3Analyze(pParse, &X, &Y);} 1481 %endif 1482 1483 //////////////////////// ALTER TABLE table ... //////////////////////////////// 1484 %ifndef SQLITE_OMIT_ALTERTABLE 1485 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). { 1486 sqlite3AlterRenameTable(pParse,X,&Z); 1487 } 1488 cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column(Y). { 1489 sqlite3AlterFinishAddColumn(pParse, &Y); 1490 } 1491 add_column_fullname ::= fullname(X). { 1492 pParse->db->lookaside.bEnabled = 0; 1493 sqlite3AlterBeginAddColumn(pParse, X); 1494 } 1495 kwcolumn_opt ::= . 1496 kwcolumn_opt ::= COLUMNKW. 1497 %endif SQLITE_OMIT_ALTERTABLE 1498 1499 //////////////////////// CREATE VIRTUAL TABLE ... ///////////////////////////// 1500 %ifndef SQLITE_OMIT_VIRTUALTABLE 1501 cmd ::= create_vtab. {sqlite3VtabFinishParse(pParse,0);} 1502 cmd ::= create_vtab LP vtabarglist RP(X). {sqlite3VtabFinishParse(pParse,&X);} 1503 create_vtab ::= createkw VIRTUAL TABLE ifnotexists(E) 1504 nm(X) dbnm(Y) USING nm(Z). { 1505 sqlite3VtabBeginParse(pParse, &X, &Y, &Z, E); 1506 } 1507 vtabarglist ::= vtabarg. 1508 vtabarglist ::= vtabarglist COMMA vtabarg. 1509 vtabarg ::= . {sqlite3VtabArgInit(pParse);} 1510 vtabarg ::= vtabarg vtabargtoken. 1511 vtabargtoken ::= ANY(X). {sqlite3VtabArgExtend(pParse,&X);} 1512 vtabargtoken ::= lp anylist RP(X). {sqlite3VtabArgExtend(pParse,&X);} 1513 lp ::= LP(X). {sqlite3VtabArgExtend(pParse,&X);} 1514 anylist ::= . 1515 anylist ::= anylist LP anylist RP. 1516 anylist ::= anylist ANY. 1517 %endif SQLITE_OMIT_VIRTUALTABLE 1518 1519 1520 //////////////////////// COMMON TABLE EXPRESSIONS //////////////////////////// 1521 %type with {With*} 1522 %type wqlist {With*} 1523 %destructor with {sqlite3WithDelete(pParse->db, $$);} 1524 %destructor wqlist {sqlite3WithDelete(pParse->db, $$);} 1525 1526 with(A) ::= . {A = 0;} 1527 %ifndef SQLITE_OMIT_CTE 1528 with(A) ::= WITH wqlist(W). { A = W; } 1529 with(A) ::= WITH RECURSIVE wqlist(W). { A = W; } 1530 1531 wqlist(A) ::= nm(X) eidlist_opt(Y) AS LP select(Z) RP. { 1532 A = sqlite3WithAdd(pParse, 0, &X, Y, Z); 1533 } 1534 wqlist(A) ::= wqlist(W) COMMA nm(X) eidlist_opt(Y) AS LP select(Z) RP. { 1535 A = sqlite3WithAdd(pParse, W, &X, Y, Z); 1536 } 1537 %endif SQLITE_OMIT_CTE 1538