xref: /sqlite-3.40.0/src/parse.y (revision 4b8035e6)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains SQLite's grammar for SQL.  Process this file
13 ** using the lemon parser generator to generate C code that runs
14 ** the parser.  Lemon will also generate a header file containing
15 ** numeric codes for all of the tokens.
16 */
17 
18 // All token codes are small integers with #defines that begin with "TK_"
19 %token_prefix TK_
20 
21 // The type of the data attached to each token is Token.  This is also the
22 // default type for non-terminals.
23 //
24 %token_type {Token}
25 %default_type {Token}
26 
27 // The generated parser function takes a 4th argument as follows:
28 %extra_argument {Parse *pParse}
29 
30 // This code runs whenever there is a syntax error
31 //
32 %syntax_error {
33   UNUSED_PARAMETER(yymajor);  /* Silence some compiler warnings */
34   assert( TOKEN.z[0] );  /* The tokenizer always gives us a token */
35   sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);
36 }
37 %stack_overflow {
38   sqlite3ErrorMsg(pParse, "parser stack overflow");
39 }
40 
41 // The name of the generated procedure that implements the parser
42 // is as follows:
43 %name sqlite3Parser
44 
45 // The following text is included near the beginning of the C source
46 // code file that implements the parser.
47 //
48 %include {
49 #include "sqliteInt.h"
50 
51 /*
52 ** Disable all error recovery processing in the parser push-down
53 ** automaton.
54 */
55 #define YYNOERRORRECOVERY 1
56 
57 /*
58 ** Make yytestcase() the same as testcase()
59 */
60 #define yytestcase(X) testcase(X)
61 
62 /*
63 ** Indicate that sqlite3ParserFree() will never be called with a null
64 ** pointer.
65 */
66 #define YYPARSEFREENEVERNULL 1
67 
68 /*
69 ** In the amalgamation, the parse.c file generated by lemon and the
70 ** tokenize.c file are concatenated.  In that case, sqlite3RunParser()
71 ** has access to the the size of the yyParser object and so the parser
72 ** engine can be allocated from stack.  In that case, only the
73 ** sqlite3ParserInit() and sqlite3ParserFinalize() routines are invoked
74 ** and the sqlite3ParserAlloc() and sqlite3ParserFree() routines can be
75 ** omitted.
76 */
77 #ifdef SQLITE_AMALGAMATION
78 # define sqlite3Parser_ENGINEALWAYSONSTACK 1
79 #endif
80 
81 /*
82 ** Alternative datatype for the argument to the malloc() routine passed
83 ** into sqlite3ParserAlloc().  The default is size_t.
84 */
85 #define YYMALLOCARGTYPE  u64
86 
87 /*
88 ** An instance of this structure holds information about the
89 ** LIMIT clause of a SELECT statement.
90 */
91 struct LimitVal {
92   Expr *pLimit;    /* The LIMIT expression.  NULL if there is no limit */
93   Expr *pOffset;   /* The OFFSET expression.  NULL if there is none */
94 };
95 
96 /*
97 ** An instance of the following structure describes the event of a
98 ** TRIGGER.  "a" is the event type, one of TK_UPDATE, TK_INSERT,
99 ** TK_DELETE, or TK_INSTEAD.  If the event is of the form
100 **
101 **      UPDATE ON (a,b,c)
102 **
103 ** Then the "b" IdList records the list "a,b,c".
104 */
105 struct TrigEvent { int a; IdList * b; };
106 
107 /*
108 ** Disable lookaside memory allocation for objects that might be
109 ** shared across database connections.
110 */
111 static void disableLookaside(Parse *pParse){
112   pParse->disableLookaside++;
113   pParse->db->lookaside.bDisable++;
114 }
115 
116 } // end %include
117 
118 // Input is a single SQL command
119 input ::= cmdlist.
120 cmdlist ::= cmdlist ecmd.
121 cmdlist ::= ecmd.
122 ecmd ::= SEMI.
123 ecmd ::= explain cmdx SEMI.
124 explain ::= .
125 %ifndef SQLITE_OMIT_EXPLAIN
126 explain ::= EXPLAIN.              { pParse->explain = 1; }
127 explain ::= EXPLAIN QUERY PLAN.   { pParse->explain = 2; }
128 %endif  SQLITE_OMIT_EXPLAIN
129 cmdx ::= cmd.           { sqlite3FinishCoding(pParse); }
130 
131 ///////////////////// Begin and end transactions. ////////////////////////////
132 //
133 
134 cmd ::= BEGIN transtype(Y) trans_opt.  {sqlite3BeginTransaction(pParse, Y);}
135 trans_opt ::= .
136 trans_opt ::= TRANSACTION.
137 trans_opt ::= TRANSACTION nm.
138 %type transtype {int}
139 transtype(A) ::= .             {A = TK_DEFERRED;}
140 transtype(A) ::= DEFERRED(X).  {A = @X; /*A-overwrites-X*/}
141 transtype(A) ::= IMMEDIATE(X). {A = @X; /*A-overwrites-X*/}
142 transtype(A) ::= EXCLUSIVE(X). {A = @X; /*A-overwrites-X*/}
143 cmd ::= COMMIT|END(X) trans_opt.   {sqlite3EndTransaction(pParse,@X);}
144 cmd ::= ROLLBACK(X) trans_opt.     {sqlite3EndTransaction(pParse,@X);}
145 
146 savepoint_opt ::= SAVEPOINT.
147 savepoint_opt ::= .
148 cmd ::= SAVEPOINT nm(X). {
149   sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X);
150 }
151 cmd ::= RELEASE savepoint_opt nm(X). {
152   sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X);
153 }
154 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). {
155   sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X);
156 }
157 
158 ///////////////////// The CREATE TABLE statement ////////////////////////////
159 //
160 cmd ::= create_table create_table_args.
161 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). {
162    sqlite3StartTable(pParse,&Y,&Z,T,0,0,E);
163 }
164 createkw(A) ::= CREATE(A).  {disableLookaside(pParse);}
165 
166 %type ifnotexists {int}
167 ifnotexists(A) ::= .              {A = 0;}
168 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;}
169 %type temp {int}
170 %ifndef SQLITE_OMIT_TEMPDB
171 temp(A) ::= TEMP.  {A = 1;}
172 %endif  SQLITE_OMIT_TEMPDB
173 temp(A) ::= .      {A = 0;}
174 create_table_args ::= LP columnlist conslist_opt(X) RP(E) table_options(F). {
175   sqlite3EndTable(pParse,&X,&E,F,0);
176 }
177 create_table_args ::= AS select(S). {
178   sqlite3EndTable(pParse,0,0,0,S);
179   sqlite3SelectDelete(pParse->db, S);
180 }
181 %type table_options {int}
182 table_options(A) ::= .    {A = 0;}
183 table_options(A) ::= WITHOUT nm(X). {
184   if( X.n==5 && sqlite3_strnicmp(X.z,"rowid",5)==0 ){
185     A = TF_WithoutRowid | TF_NoVisibleRowid;
186   }else{
187     A = 0;
188     sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z);
189   }
190 }
191 columnlist ::= columnlist COMMA columnname carglist.
192 columnlist ::= columnname carglist.
193 columnname(A) ::= nm(A) typetoken(Y). {sqlite3AddColumn(pParse,&A,&Y);}
194 
195 // The following directive causes tokens ABORT, AFTER, ASC, etc. to
196 // fallback to ID if they will not parse as their original value.
197 // This obviates the need for the "id" nonterminal.
198 //
199 %fallback ID
200   ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW
201   CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL FOR
202   IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN
203   QUERY KEY OF OFFSET PRAGMA RAISE RECURSIVE RELEASE REPLACE RESTRICT ROW
204   ROLLBACK SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL WITH WITHOUT
205 %ifdef SQLITE_OMIT_COMPOUND_SELECT
206   EXCEPT INTERSECT UNION
207 %endif SQLITE_OMIT_COMPOUND_SELECT
208   REINDEX RENAME CTIME_KW IF
209   .
210 %wildcard ANY.
211 
212 // Define operator precedence early so that this is the first occurrence
213 // of the operator tokens in the grammer.  Keeping the operators together
214 // causes them to be assigned integer values that are close together,
215 // which keeps parser tables smaller.
216 //
217 // The token values assigned to these symbols is determined by the order
218 // in which lemon first sees them.  It must be the case that ISNULL/NOTNULL,
219 // NE/EQ, GT/LE, and GE/LT are separated by only a single value.  See
220 // the sqlite3ExprIfFalse() routine for additional information on this
221 // constraint.
222 //
223 %left OR.
224 %left AND.
225 %right NOT.
226 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ.
227 %left GT LE LT GE.
228 %right ESCAPE.
229 %left BITAND BITOR LSHIFT RSHIFT.
230 %left PLUS MINUS.
231 %left STAR SLASH REM.
232 %left CONCAT.
233 %left COLLATE.
234 %right BITNOT.
235 
236 // An IDENTIFIER can be a generic identifier, or one of several
237 // keywords.  Any non-standard keyword can also be an identifier.
238 //
239 %token_class id  ID|INDEXED.
240 
241 
242 // And "ids" is an identifer-or-string.
243 //
244 %token_class ids  ID|STRING.
245 
246 // The name of a column or table can be any of the following:
247 //
248 %type nm {Token}
249 nm(A) ::= id(A).
250 nm(A) ::= STRING(A).
251 nm(A) ::= JOIN_KW(A).
252 
253 // A typetoken is really zero or more tokens that form a type name such
254 // as can be found after the column name in a CREATE TABLE statement.
255 // Multiple tokens are concatenated to form the value of the typetoken.
256 //
257 %type typetoken {Token}
258 typetoken(A) ::= .   {A.n = 0; A.z = 0;}
259 typetoken(A) ::= typename(A).
260 typetoken(A) ::= typename(A) LP signed RP(Y). {
261   A.n = (int)(&Y.z[Y.n] - A.z);
262 }
263 typetoken(A) ::= typename(A) LP signed COMMA signed RP(Y). {
264   A.n = (int)(&Y.z[Y.n] - A.z);
265 }
266 %type typename {Token}
267 typename(A) ::= ids(A).
268 typename(A) ::= typename(A) ids(Y). {A.n=Y.n+(int)(Y.z-A.z);}
269 signed ::= plus_num.
270 signed ::= minus_num.
271 
272 // "carglist" is a list of additional constraints that come after the
273 // column name and column type in a CREATE TABLE statement.
274 //
275 carglist ::= carglist ccons.
276 carglist ::= .
277 ccons ::= CONSTRAINT nm(X).           {pParse->constraintName = X;}
278 ccons ::= DEFAULT term(X).            {sqlite3AddDefaultValue(pParse,&X);}
279 ccons ::= DEFAULT LP expr(X) RP.      {sqlite3AddDefaultValue(pParse,&X);}
280 ccons ::= DEFAULT PLUS term(X).       {sqlite3AddDefaultValue(pParse,&X);}
281 ccons ::= DEFAULT MINUS(A) term(X).      {
282   ExprSpan v;
283   v.pExpr = sqlite3PExpr(pParse, TK_UMINUS, X.pExpr, 0);
284   v.zStart = A.z;
285   v.zEnd = X.zEnd;
286   sqlite3AddDefaultValue(pParse,&v);
287 }
288 ccons ::= DEFAULT id(X).              {
289   ExprSpan v;
290   spanExpr(&v, pParse, TK_STRING, X);
291   sqlite3AddDefaultValue(pParse,&v);
292 }
293 
294 // In addition to the type name, we also care about the primary key and
295 // UNIQUE constraints.
296 //
297 ccons ::= NULL onconf.
298 ccons ::= NOT NULL onconf(R).    {sqlite3AddNotNull(pParse, R);}
299 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I).
300                                  {sqlite3AddPrimaryKey(pParse,0,R,I,Z);}
301 ccons ::= UNIQUE onconf(R).      {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0,
302                                    SQLITE_IDXTYPE_UNIQUE);}
303 ccons ::= CHECK LP expr(X) RP.   {sqlite3AddCheckConstraint(pParse,X.pExpr);}
304 ccons ::= REFERENCES nm(T) eidlist_opt(TA) refargs(R).
305                                  {sqlite3CreateForeignKey(pParse,0,&T,TA,R);}
306 ccons ::= defer_subclause(D).    {sqlite3DeferForeignKey(pParse,D);}
307 ccons ::= COLLATE ids(C).        {sqlite3AddCollateType(pParse, &C);}
308 
309 // The optional AUTOINCREMENT keyword
310 %type autoinc {int}
311 autoinc(X) ::= .          {X = 0;}
312 autoinc(X) ::= AUTOINCR.  {X = 1;}
313 
314 // The next group of rules parses the arguments to a REFERENCES clause
315 // that determine if the referential integrity checking is deferred or
316 // or immediate and which determine what action to take if a ref-integ
317 // check fails.
318 //
319 %type refargs {int}
320 refargs(A) ::= .                  { A = OE_None*0x0101; /* EV: R-19803-45884 */}
321 refargs(A) ::= refargs(A) refarg(Y). { A = (A & ~Y.mask) | Y.value; }
322 %type refarg {struct {int value; int mask;}}
323 refarg(A) ::= MATCH nm.              { A.value = 0;     A.mask = 0x000000; }
324 refarg(A) ::= ON INSERT refact.      { A.value = 0;     A.mask = 0x000000; }
325 refarg(A) ::= ON DELETE refact(X).   { A.value = X;     A.mask = 0x0000ff; }
326 refarg(A) ::= ON UPDATE refact(X).   { A.value = X<<8;  A.mask = 0x00ff00; }
327 %type refact {int}
328 refact(A) ::= SET NULL.              { A = OE_SetNull;  /* EV: R-33326-45252 */}
329 refact(A) ::= SET DEFAULT.           { A = OE_SetDflt;  /* EV: R-33326-45252 */}
330 refact(A) ::= CASCADE.               { A = OE_Cascade;  /* EV: R-33326-45252 */}
331 refact(A) ::= RESTRICT.              { A = OE_Restrict; /* EV: R-33326-45252 */}
332 refact(A) ::= NO ACTION.             { A = OE_None;     /* EV: R-33326-45252 */}
333 %type defer_subclause {int}
334 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt.     {A = 0;}
335 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X).      {A = X;}
336 %type init_deferred_pred_opt {int}
337 init_deferred_pred_opt(A) ::= .                       {A = 0;}
338 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED.     {A = 1;}
339 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE.    {A = 0;}
340 
341 conslist_opt(A) ::= .                         {A.n = 0; A.z = 0;}
342 conslist_opt(A) ::= COMMA(A) conslist.
343 conslist ::= conslist tconscomma tcons.
344 conslist ::= tcons.
345 tconscomma ::= COMMA.            {pParse->constraintName.n = 0;}
346 tconscomma ::= .
347 tcons ::= CONSTRAINT nm(X).      {pParse->constraintName = X;}
348 tcons ::= PRIMARY KEY LP sortlist(X) autoinc(I) RP onconf(R).
349                                  {sqlite3AddPrimaryKey(pParse,X,R,I,0);}
350 tcons ::= UNIQUE LP sortlist(X) RP onconf(R).
351                                  {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0,
352                                        SQLITE_IDXTYPE_UNIQUE);}
353 tcons ::= CHECK LP expr(E) RP onconf.
354                                  {sqlite3AddCheckConstraint(pParse,E.pExpr);}
355 tcons ::= FOREIGN KEY LP eidlist(FA) RP
356           REFERENCES nm(T) eidlist_opt(TA) refargs(R) defer_subclause_opt(D). {
357     sqlite3CreateForeignKey(pParse, FA, &T, TA, R);
358     sqlite3DeferForeignKey(pParse, D);
359 }
360 %type defer_subclause_opt {int}
361 defer_subclause_opt(A) ::= .                    {A = 0;}
362 defer_subclause_opt(A) ::= defer_subclause(A).
363 
364 // The following is a non-standard extension that allows us to declare the
365 // default behavior when there is a constraint conflict.
366 //
367 %type onconf {int}
368 %type orconf {int}
369 %type resolvetype {int}
370 onconf(A) ::= .                              {A = OE_Default;}
371 onconf(A) ::= ON CONFLICT resolvetype(X).    {A = X;}
372 orconf(A) ::= .                              {A = OE_Default;}
373 orconf(A) ::= OR resolvetype(X).             {A = X;}
374 resolvetype(A) ::= raisetype(A).
375 resolvetype(A) ::= IGNORE.                   {A = OE_Ignore;}
376 resolvetype(A) ::= REPLACE.                  {A = OE_Replace;}
377 
378 ////////////////////////// The DROP TABLE /////////////////////////////////////
379 //
380 cmd ::= DROP TABLE ifexists(E) fullname(X). {
381   sqlite3DropTable(pParse, X, 0, E);
382 }
383 %type ifexists {int}
384 ifexists(A) ::= IF EXISTS.   {A = 1;}
385 ifexists(A) ::= .            {A = 0;}
386 
387 ///////////////////// The CREATE VIEW statement /////////////////////////////
388 //
389 %ifndef SQLITE_OMIT_VIEW
390 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) eidlist_opt(C)
391           AS select(S). {
392   sqlite3CreateView(pParse, &X, &Y, &Z, C, S, T, E);
393 }
394 cmd ::= DROP VIEW ifexists(E) fullname(X). {
395   sqlite3DropTable(pParse, X, 1, E);
396 }
397 %endif  SQLITE_OMIT_VIEW
398 
399 //////////////////////// The SELECT statement /////////////////////////////////
400 //
401 cmd ::= select(X).  {
402   SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0};
403   sqlite3Select(pParse, X, &dest);
404   sqlite3SelectDelete(pParse->db, X);
405 }
406 
407 %type select {Select*}
408 %destructor select {sqlite3SelectDelete(pParse->db, $$);}
409 %type selectnowith {Select*}
410 %destructor selectnowith {sqlite3SelectDelete(pParse->db, $$);}
411 %type oneselect {Select*}
412 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);}
413 
414 %include {
415   /*
416   ** For a compound SELECT statement, make sure p->pPrior->pNext==p for
417   ** all elements in the list.  And make sure list length does not exceed
418   ** SQLITE_LIMIT_COMPOUND_SELECT.
419   */
420   static void parserDoubleLinkSelect(Parse *pParse, Select *p){
421     if( p->pPrior ){
422       Select *pNext = 0, *pLoop;
423       int mxSelect, cnt = 0;
424       for(pLoop=p; pLoop; pNext=pLoop, pLoop=pLoop->pPrior, cnt++){
425         pLoop->pNext = pNext;
426         pLoop->selFlags |= SF_Compound;
427       }
428       if( (p->selFlags & SF_MultiValue)==0 &&
429         (mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT])>0 &&
430         cnt>mxSelect
431       ){
432         sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
433       }
434     }
435   }
436 }
437 
438 select(A) ::= with(W) selectnowith(X). {
439   Select *p = X;
440   if( p ){
441     p->pWith = W;
442     parserDoubleLinkSelect(pParse, p);
443   }else{
444     sqlite3WithDelete(pParse->db, W);
445   }
446   A = p; /*A-overwrites-W*/
447 }
448 
449 selectnowith(A) ::= oneselect(A).
450 %ifndef SQLITE_OMIT_COMPOUND_SELECT
451 selectnowith(A) ::= selectnowith(A) multiselect_op(Y) oneselect(Z).  {
452   Select *pRhs = Z;
453   Select *pLhs = A;
454   if( pRhs && pRhs->pPrior ){
455     SrcList *pFrom;
456     Token x;
457     x.n = 0;
458     parserDoubleLinkSelect(pParse, pRhs);
459     pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0);
460     pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0,0);
461   }
462   if( pRhs ){
463     pRhs->op = (u8)Y;
464     pRhs->pPrior = pLhs;
465     if( ALWAYS(pLhs) ) pLhs->selFlags &= ~SF_MultiValue;
466     pRhs->selFlags &= ~SF_MultiValue;
467     if( Y!=TK_ALL ) pParse->hasCompound = 1;
468   }else{
469     sqlite3SelectDelete(pParse->db, pLhs);
470   }
471   A = pRhs;
472 }
473 %type multiselect_op {int}
474 multiselect_op(A) ::= UNION(OP).             {A = @OP; /*A-overwrites-OP*/}
475 multiselect_op(A) ::= UNION ALL.             {A = TK_ALL;}
476 multiselect_op(A) ::= EXCEPT|INTERSECT(OP).  {A = @OP; /*A-overwrites-OP*/}
477 %endif SQLITE_OMIT_COMPOUND_SELECT
478 oneselect(A) ::= SELECT(S) distinct(D) selcollist(W) from(X) where_opt(Y)
479                  groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). {
480 #if SELECTTRACE_ENABLED
481   Token s = S; /*A-overwrites-S*/
482 #endif
483   A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L.pLimit,L.pOffset);
484 #if SELECTTRACE_ENABLED
485   /* Populate the Select.zSelName[] string that is used to help with
486   ** query planner debugging, to differentiate between multiple Select
487   ** objects in a complex query.
488   **
489   ** If the SELECT keyword is immediately followed by a C-style comment
490   ** then extract the first few alphanumeric characters from within that
491   ** comment to be the zSelName value.  Otherwise, the label is #N where
492   ** is an integer that is incremented with each SELECT statement seen.
493   */
494   if( A!=0 ){
495     const char *z = s.z+6;
496     int i;
497     sqlite3_snprintf(sizeof(A->zSelName), A->zSelName, "#%d",
498                      ++pParse->nSelect);
499     while( z[0]==' ' ) z++;
500     if( z[0]=='/' && z[1]=='*' ){
501       z += 2;
502       while( z[0]==' ' ) z++;
503       for(i=0; sqlite3Isalnum(z[i]); i++){}
504       sqlite3_snprintf(sizeof(A->zSelName), A->zSelName, "%.*s", i, z);
505     }
506   }
507 #endif /* SELECTRACE_ENABLED */
508 }
509 oneselect(A) ::= values(A).
510 
511 %type values {Select*}
512 %destructor values {sqlite3SelectDelete(pParse->db, $$);}
513 values(A) ::= VALUES LP nexprlist(X) RP. {
514   A = sqlite3SelectNew(pParse,X,0,0,0,0,0,SF_Values,0,0);
515 }
516 values(A) ::= values(A) COMMA LP exprlist(Y) RP. {
517   Select *pRight, *pLeft = A;
518   pRight = sqlite3SelectNew(pParse,Y,0,0,0,0,0,SF_Values|SF_MultiValue,0,0);
519   if( ALWAYS(pLeft) ) pLeft->selFlags &= ~SF_MultiValue;
520   if( pRight ){
521     pRight->op = TK_ALL;
522     pRight->pPrior = pLeft;
523     A = pRight;
524   }else{
525     A = pLeft;
526   }
527 }
528 
529 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is
530 // present and false (0) if it is not.
531 //
532 %type distinct {int}
533 distinct(A) ::= DISTINCT.   {A = SF_Distinct;}
534 distinct(A) ::= ALL.        {A = SF_All;}
535 distinct(A) ::= .           {A = 0;}
536 
537 // selcollist is a list of expressions that are to become the return
538 // values of the SELECT statement.  The "*" in statements like
539 // "SELECT * FROM ..." is encoded as a special expression with an
540 // opcode of TK_ASTERISK.
541 //
542 %type selcollist {ExprList*}
543 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);}
544 %type sclp {ExprList*}
545 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);}
546 sclp(A) ::= selcollist(A) COMMA.
547 sclp(A) ::= .                                {A = 0;}
548 selcollist(A) ::= sclp(A) expr(X) as(Y).     {
549    A = sqlite3ExprListAppend(pParse, A, X.pExpr);
550    if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1);
551    sqlite3ExprListSetSpan(pParse,A,&X);
552 }
553 selcollist(A) ::= sclp(A) STAR. {
554   Expr *p = sqlite3Expr(pParse->db, TK_ASTERISK, 0);
555   A = sqlite3ExprListAppend(pParse, A, p);
556 }
557 selcollist(A) ::= sclp(A) nm(X) DOT STAR. {
558   Expr *pRight = sqlite3PExpr(pParse, TK_ASTERISK, 0, 0);
559   Expr *pLeft = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1);
560   Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
561   A = sqlite3ExprListAppend(pParse,A, pDot);
562 }
563 
564 // An option "AS <id>" phrase that can follow one of the expressions that
565 // define the result set, or one of the tables in the FROM clause.
566 //
567 %type as {Token}
568 as(X) ::= AS nm(Y).    {X = Y;}
569 as(X) ::= ids(X).
570 as(X) ::= .            {X.n = 0; X.z = 0;}
571 
572 
573 %type seltablist {SrcList*}
574 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);}
575 %type stl_prefix {SrcList*}
576 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);}
577 %type from {SrcList*}
578 %destructor from {sqlite3SrcListDelete(pParse->db, $$);}
579 
580 // A complete FROM clause.
581 //
582 from(A) ::= .                {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));}
583 from(A) ::= FROM seltablist(X). {
584   A = X;
585   sqlite3SrcListShiftJoinType(A);
586 }
587 
588 // "seltablist" is a "Select Table List" - the content of the FROM clause
589 // in a SELECT statement.  "stl_prefix" is a prefix of this list.
590 //
591 stl_prefix(A) ::= seltablist(A) joinop(Y).    {
592    if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].fg.jointype = (u8)Y;
593 }
594 stl_prefix(A) ::= .                           {A = 0;}
595 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) as(Z) indexed_opt(I)
596                   on_opt(N) using_opt(U). {
597   A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U);
598   sqlite3SrcListIndexedBy(pParse, A, &I);
599 }
600 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) LP exprlist(E) RP as(Z)
601                   on_opt(N) using_opt(U). {
602   A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U);
603   sqlite3SrcListFuncArgs(pParse, A, E);
604 }
605 %ifndef SQLITE_OMIT_SUBQUERY
606   seltablist(A) ::= stl_prefix(A) LP select(S) RP
607                     as(Z) on_opt(N) using_opt(U). {
608     A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,S,N,U);
609   }
610   seltablist(A) ::= stl_prefix(A) LP seltablist(F) RP
611                     as(Z) on_opt(N) using_opt(U). {
612     if( A==0 && Z.n==0 && N==0 && U==0 ){
613       A = F;
614     }else if( F->nSrc==1 ){
615       A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,0,N,U);
616       if( A ){
617         struct SrcList_item *pNew = &A->a[A->nSrc-1];
618         struct SrcList_item *pOld = F->a;
619         pNew->zName = pOld->zName;
620         pNew->zDatabase = pOld->zDatabase;
621         pNew->pSelect = pOld->pSelect;
622         pOld->zName = pOld->zDatabase = 0;
623         pOld->pSelect = 0;
624       }
625       sqlite3SrcListDelete(pParse->db, F);
626     }else{
627       Select *pSubquery;
628       sqlite3SrcListShiftJoinType(F);
629       pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,SF_NestedFrom,0,0);
630       A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,pSubquery,N,U);
631     }
632   }
633 %endif  SQLITE_OMIT_SUBQUERY
634 
635 %type dbnm {Token}
636 dbnm(A) ::= .          {A.z=0; A.n=0;}
637 dbnm(A) ::= DOT nm(X). {A = X;}
638 
639 %type fullname {SrcList*}
640 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);}
641 fullname(A) ::= nm(X) dbnm(Y).
642    {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y); /*A-overwrites-X*/}
643 
644 %type joinop {int}
645 joinop(X) ::= COMMA|JOIN.              { X = JT_INNER; }
646 joinop(X) ::= JOIN_KW(A) JOIN.
647                   {X = sqlite3JoinType(pParse,&A,0,0);  /*X-overwrites-A*/}
648 joinop(X) ::= JOIN_KW(A) nm(B) JOIN.
649                   {X = sqlite3JoinType(pParse,&A,&B,0); /*X-overwrites-A*/}
650 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN.
651                   {X = sqlite3JoinType(pParse,&A,&B,&C);/*X-overwrites-A*/}
652 
653 %type on_opt {Expr*}
654 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);}
655 on_opt(N) ::= ON expr(E).   {N = E.pExpr;}
656 on_opt(N) ::= .             {N = 0;}
657 
658 // Note that this block abuses the Token type just a little. If there is
659 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If
660 // there is an INDEXED BY clause, then the token is populated as per normal,
661 // with z pointing to the token data and n containing the number of bytes
662 // in the token.
663 //
664 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is
665 // normally illegal. The sqlite3SrcListIndexedBy() function
666 // recognizes and interprets this as a special case.
667 //
668 %type indexed_opt {Token}
669 indexed_opt(A) ::= .                 {A.z=0; A.n=0;}
670 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;}
671 indexed_opt(A) ::= NOT INDEXED.      {A.z=0; A.n=1;}
672 
673 %type using_opt {IdList*}
674 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);}
675 using_opt(U) ::= USING LP idlist(L) RP.  {U = L;}
676 using_opt(U) ::= .                        {U = 0;}
677 
678 
679 %type orderby_opt {ExprList*}
680 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);}
681 
682 // the sortlist non-terminal stores a list of expression where each
683 // expression is optionally followed by ASC or DESC to indicate the
684 // sort order.
685 //
686 %type sortlist {ExprList*}
687 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);}
688 
689 orderby_opt(A) ::= .                          {A = 0;}
690 orderby_opt(A) ::= ORDER BY sortlist(X).      {A = X;}
691 sortlist(A) ::= sortlist(A) COMMA expr(Y) sortorder(Z). {
692   A = sqlite3ExprListAppend(pParse,A,Y.pExpr);
693   sqlite3ExprListSetSortOrder(A,Z);
694 }
695 sortlist(A) ::= expr(Y) sortorder(Z). {
696   A = sqlite3ExprListAppend(pParse,0,Y.pExpr); /*A-overwrites-Y*/
697   sqlite3ExprListSetSortOrder(A,Z);
698 }
699 
700 %type sortorder {int}
701 
702 sortorder(A) ::= ASC.           {A = SQLITE_SO_ASC;}
703 sortorder(A) ::= DESC.          {A = SQLITE_SO_DESC;}
704 sortorder(A) ::= .              {A = SQLITE_SO_UNDEFINED;}
705 
706 %type groupby_opt {ExprList*}
707 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);}
708 groupby_opt(A) ::= .                      {A = 0;}
709 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;}
710 
711 %type having_opt {Expr*}
712 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);}
713 having_opt(A) ::= .                {A = 0;}
714 having_opt(A) ::= HAVING expr(X).  {A = X.pExpr;}
715 
716 %type limit_opt {struct LimitVal}
717 
718 // The destructor for limit_opt will never fire in the current grammar.
719 // The limit_opt non-terminal only occurs at the end of a single production
720 // rule for SELECT statements.  As soon as the rule that create the
721 // limit_opt non-terminal reduces, the SELECT statement rule will also
722 // reduce.  So there is never a limit_opt non-terminal on the stack
723 // except as a transient.  So there is never anything to destroy.
724 //
725 //%destructor limit_opt {
726 //  sqlite3ExprDelete(pParse->db, $$.pLimit);
727 //  sqlite3ExprDelete(pParse->db, $$.pOffset);
728 //}
729 limit_opt(A) ::= .                    {A.pLimit = 0; A.pOffset = 0;}
730 limit_opt(A) ::= LIMIT expr(X).       {A.pLimit = X.pExpr; A.pOffset = 0;}
731 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y).
732                                       {A.pLimit = X.pExpr; A.pOffset = Y.pExpr;}
733 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y).
734                                       {A.pOffset = X.pExpr; A.pLimit = Y.pExpr;}
735 
736 /////////////////////////// The DELETE statement /////////////////////////////
737 //
738 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
739 cmd ::= with(C) DELETE FROM fullname(X) indexed_opt(I) where_opt(W)
740         orderby_opt(O) limit_opt(L). {
741   sqlite3WithPush(pParse, C, 1);
742   sqlite3SrcListIndexedBy(pParse, X, &I);
743   W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "DELETE");
744   sqlite3DeleteFrom(pParse,X,W);
745 }
746 %endif
747 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
748 cmd ::= with(C) DELETE FROM fullname(X) indexed_opt(I) where_opt(W). {
749   sqlite3WithPush(pParse, C, 1);
750   sqlite3SrcListIndexedBy(pParse, X, &I);
751   sqlite3DeleteFrom(pParse,X,W);
752 }
753 %endif
754 
755 %type where_opt {Expr*}
756 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);}
757 
758 where_opt(A) ::= .                    {A = 0;}
759 where_opt(A) ::= WHERE expr(X).       {A = X.pExpr;}
760 
761 ////////////////////////// The UPDATE command ////////////////////////////////
762 //
763 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
764 cmd ::= with(C) UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y)
765         where_opt(W) orderby_opt(O) limit_opt(L).  {
766   sqlite3WithPush(pParse, C, 1);
767   sqlite3SrcListIndexedBy(pParse, X, &I);
768   sqlite3ExprListCheckLength(pParse,Y,"set list");
769   W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "UPDATE");
770   sqlite3Update(pParse,X,Y,W,R);
771 }
772 %endif
773 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
774 cmd ::= with(C) UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y)
775         where_opt(W).  {
776   sqlite3WithPush(pParse, C, 1);
777   sqlite3SrcListIndexedBy(pParse, X, &I);
778   sqlite3ExprListCheckLength(pParse,Y,"set list");
779   sqlite3Update(pParse,X,Y,W,R);
780 }
781 %endif
782 
783 %type setlist {ExprList*}
784 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);}
785 
786 setlist(A) ::= setlist(A) COMMA nm(X) EQ expr(Y). {
787   A = sqlite3ExprListAppend(pParse, A, Y.pExpr);
788   sqlite3ExprListSetName(pParse, A, &X, 1);
789 }
790 setlist(A) ::= setlist(A) COMMA LP idlist(X) RP EQ expr(Y). {
791   A = sqlite3ExprListAppendVector(pParse, A, X, Y.pExpr);
792 }
793 setlist(A) ::= nm(X) EQ expr(Y). {
794   A = sqlite3ExprListAppend(pParse, 0, Y.pExpr);
795   sqlite3ExprListSetName(pParse, A, &X, 1);
796 }
797 setlist(A) ::= LP idlist(X) RP EQ expr(Y). {
798   A = sqlite3ExprListAppendVector(pParse, 0, X, Y.pExpr);
799 }
800 
801 ////////////////////////// The INSERT command /////////////////////////////////
802 //
803 cmd ::= with(W) insert_cmd(R) INTO fullname(X) idlist_opt(F) select(S). {
804   sqlite3WithPush(pParse, W, 1);
805   sqlite3Insert(pParse, X, S, F, R);
806 }
807 cmd ::= with(W) insert_cmd(R) INTO fullname(X) idlist_opt(F) DEFAULT VALUES.
808 {
809   sqlite3WithPush(pParse, W, 1);
810   sqlite3Insert(pParse, X, 0, F, R);
811 }
812 
813 %type insert_cmd {int}
814 insert_cmd(A) ::= INSERT orconf(R).   {A = R;}
815 insert_cmd(A) ::= REPLACE.            {A = OE_Replace;}
816 
817 %type idlist_opt {IdList*}
818 %destructor idlist_opt {sqlite3IdListDelete(pParse->db, $$);}
819 %type idlist {IdList*}
820 %destructor idlist {sqlite3IdListDelete(pParse->db, $$);}
821 
822 idlist_opt(A) ::= .                       {A = 0;}
823 idlist_opt(A) ::= LP idlist(X) RP.    {A = X;}
824 idlist(A) ::= idlist(A) COMMA nm(Y).
825     {A = sqlite3IdListAppend(pParse->db,A,&Y);}
826 idlist(A) ::= nm(Y).
827     {A = sqlite3IdListAppend(pParse->db,0,&Y); /*A-overwrites-Y*/}
828 
829 /////////////////////////// Expression Processing /////////////////////////////
830 //
831 
832 %type expr {ExprSpan}
833 %destructor expr {sqlite3ExprDelete(pParse->db, $$.pExpr);}
834 %type term {ExprSpan}
835 %destructor term {sqlite3ExprDelete(pParse->db, $$.pExpr);}
836 
837 %include {
838   /* This is a utility routine used to set the ExprSpan.zStart and
839   ** ExprSpan.zEnd values of pOut so that the span covers the complete
840   ** range of text beginning with pStart and going to the end of pEnd.
841   */
842   static void spanSet(ExprSpan *pOut, Token *pStart, Token *pEnd){
843     pOut->zStart = pStart->z;
844     pOut->zEnd = &pEnd->z[pEnd->n];
845   }
846 
847   /* Construct a new Expr object from a single identifier.  Use the
848   ** new Expr to populate pOut.  Set the span of pOut to be the identifier
849   ** that created the expression.
850   */
851   static void spanExpr(ExprSpan *pOut, Parse *pParse, int op, Token t){
852     Expr *p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)+t.n+1);
853     if( p ){
854       memset(p, 0, sizeof(Expr));
855       p->op = (u8)op;
856       p->flags = EP_Leaf;
857       p->iAgg = -1;
858       p->u.zToken = (char*)&p[1];
859       memcpy(p->u.zToken, t.z, t.n);
860       p->u.zToken[t.n] = 0;
861       if( sqlite3Isquote(p->u.zToken[0]) ){
862         if( p->u.zToken[0]=='"' ) p->flags |= EP_DblQuoted;
863         sqlite3Dequote(p->u.zToken);
864       }
865 #if SQLITE_MAX_EXPR_DEPTH>0
866       p->nHeight = 1;
867 #endif
868     }
869     pOut->pExpr = p;
870     pOut->zStart = t.z;
871     pOut->zEnd = &t.z[t.n];
872   }
873 }
874 
875 expr(A) ::= term(A).
876 expr(A) ::= LP(B) expr(X) RP(E).
877             {spanSet(&A,&B,&E); /*A-overwrites-B*/  A.pExpr = X.pExpr;}
878 expr(A) ::= id(X).          {spanExpr(&A,pParse,TK_ID,X); /*A-overwrites-X*/}
879 expr(A) ::= JOIN_KW(X).     {spanExpr(&A,pParse,TK_ID,X); /*A-overwrites-X*/}
880 expr(A) ::= nm(X) DOT nm(Y). {
881   Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1);
882   Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1);
883   spanSet(&A,&X,&Y); /*A-overwrites-X*/
884   A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp2);
885 }
886 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). {
887   Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1);
888   Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1);
889   Expr *temp3 = sqlite3ExprAlloc(pParse->db, TK_ID, &Z, 1);
890   Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3);
891   spanSet(&A,&X,&Z); /*A-overwrites-X*/
892   A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4);
893 }
894 term(A) ::= NULL|FLOAT|BLOB(X). {spanExpr(&A,pParse,@X,X); /*A-overwrites-X*/}
895 term(A) ::= STRING(X).          {spanExpr(&A,pParse,@X,X); /*A-overwrites-X*/}
896 term(A) ::= INTEGER(X). {
897   A.pExpr = sqlite3ExprAlloc(pParse->db, TK_INTEGER, &X, 1);
898   A.zStart = X.z;
899   A.zEnd = X.z + X.n;
900 }
901 expr(A) ::= VARIABLE(X).     {
902   if( !(X.z[0]=='#' && sqlite3Isdigit(X.z[1])) ){
903     u32 n = X.n;
904     spanExpr(&A, pParse, TK_VARIABLE, X);
905     sqlite3ExprAssignVarNumber(pParse, A.pExpr, n);
906   }else{
907     /* When doing a nested parse, one can include terms in an expression
908     ** that look like this:   #1 #2 ...  These terms refer to registers
909     ** in the virtual machine.  #N is the N-th register. */
910     Token t = X; /*A-overwrites-X*/
911     assert( t.n>=2 );
912     spanSet(&A, &t, &t);
913     if( pParse->nested==0 ){
914       sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &t);
915       A.pExpr = 0;
916     }else{
917       A.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0);
918       if( A.pExpr ) sqlite3GetInt32(&t.z[1], &A.pExpr->iTable);
919     }
920   }
921 }
922 expr(A) ::= expr(A) COLLATE ids(C). {
923   A.pExpr = sqlite3ExprAddCollateToken(pParse, A.pExpr, &C, 1);
924   A.zEnd = &C.z[C.n];
925 }
926 %ifndef SQLITE_OMIT_CAST
927 expr(A) ::= CAST(X) LP expr(E) AS typetoken(T) RP(Y). {
928   spanSet(&A,&X,&Y); /*A-overwrites-X*/
929   A.pExpr = sqlite3ExprAlloc(pParse->db, TK_CAST, &T, 1);
930   sqlite3ExprAttachSubtrees(pParse->db, A.pExpr, E.pExpr, 0);
931 }
932 %endif  SQLITE_OMIT_CAST
933 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP(E). {
934   if( Y && Y->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
935     sqlite3ErrorMsg(pParse, "too many arguments on function %T", &X);
936   }
937   A.pExpr = sqlite3ExprFunction(pParse, Y, &X);
938   spanSet(&A,&X,&E);
939   if( D==SF_Distinct && A.pExpr ){
940     A.pExpr->flags |= EP_Distinct;
941   }
942 }
943 expr(A) ::= id(X) LP STAR RP(E). {
944   A.pExpr = sqlite3ExprFunction(pParse, 0, &X);
945   spanSet(&A,&X,&E);
946 }
947 term(A) ::= CTIME_KW(OP). {
948   A.pExpr = sqlite3ExprFunction(pParse, 0, &OP);
949   spanSet(&A, &OP, &OP);
950 }
951 
952 %include {
953   /* This routine constructs a binary expression node out of two ExprSpan
954   ** objects and uses the result to populate a new ExprSpan object.
955   */
956   static void spanBinaryExpr(
957     Parse *pParse,      /* The parsing context.  Errors accumulate here */
958     int op,             /* The binary operation */
959     ExprSpan *pLeft,    /* The left operand, and output */
960     ExprSpan *pRight    /* The right operand */
961   ){
962     pLeft->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr);
963     pLeft->zEnd = pRight->zEnd;
964   }
965 
966   /* If doNot is true, then add a TK_NOT Expr-node wrapper around the
967   ** outside of *ppExpr.
968   */
969   static void exprNot(Parse *pParse, int doNot, ExprSpan *pSpan){
970     if( doNot ){
971       pSpan->pExpr = sqlite3PExpr(pParse, TK_NOT, pSpan->pExpr, 0);
972     }
973   }
974 }
975 
976 expr(A) ::= LP(L) nexprlist(X) COMMA expr(Y) RP(R). {
977   ExprList *pList = sqlite3ExprListAppend(pParse, X, Y.pExpr);
978   A.pExpr = sqlite3PExpr(pParse, TK_VECTOR, 0, 0);
979   if( A.pExpr ){
980     A.pExpr->x.pList = pList;
981     spanSet(&A, &L, &R);
982   }else{
983     sqlite3ExprListDelete(pParse->db, pList);
984   }
985 }
986 
987 expr(A) ::= expr(A) AND(OP) expr(Y).    {spanBinaryExpr(pParse,@OP,&A,&Y);}
988 expr(A) ::= expr(A) OR(OP) expr(Y).     {spanBinaryExpr(pParse,@OP,&A,&Y);}
989 expr(A) ::= expr(A) LT|GT|GE|LE(OP) expr(Y).
990                                         {spanBinaryExpr(pParse,@OP,&A,&Y);}
991 expr(A) ::= expr(A) EQ|NE(OP) expr(Y).  {spanBinaryExpr(pParse,@OP,&A,&Y);}
992 expr(A) ::= expr(A) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y).
993                                         {spanBinaryExpr(pParse,@OP,&A,&Y);}
994 expr(A) ::= expr(A) PLUS|MINUS(OP) expr(Y).
995                                         {spanBinaryExpr(pParse,@OP,&A,&Y);}
996 expr(A) ::= expr(A) STAR|SLASH|REM(OP) expr(Y).
997                                         {spanBinaryExpr(pParse,@OP,&A,&Y);}
998 expr(A) ::= expr(A) CONCAT(OP) expr(Y). {spanBinaryExpr(pParse,@OP,&A,&Y);}
999 %type likeop {Token}
1000 likeop(A) ::= LIKE_KW|MATCH(A).
1001 likeop(A) ::= NOT LIKE_KW|MATCH(X). {A=X; A.n|=0x80000000; /*A-overwrite-X*/}
1002 expr(A) ::= expr(A) likeop(OP) expr(Y).  [LIKE_KW]  {
1003   ExprList *pList;
1004   int bNot = OP.n & 0x80000000;
1005   OP.n &= 0x7fffffff;
1006   pList = sqlite3ExprListAppend(pParse,0, Y.pExpr);
1007   pList = sqlite3ExprListAppend(pParse,pList, A.pExpr);
1008   A.pExpr = sqlite3ExprFunction(pParse, pList, &OP);
1009   exprNot(pParse, bNot, &A);
1010   A.zEnd = Y.zEnd;
1011   if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc;
1012 }
1013 expr(A) ::= expr(A) likeop(OP) expr(Y) ESCAPE expr(E).  [LIKE_KW]  {
1014   ExprList *pList;
1015   int bNot = OP.n & 0x80000000;
1016   OP.n &= 0x7fffffff;
1017   pList = sqlite3ExprListAppend(pParse,0, Y.pExpr);
1018   pList = sqlite3ExprListAppend(pParse,pList, A.pExpr);
1019   pList = sqlite3ExprListAppend(pParse,pList, E.pExpr);
1020   A.pExpr = sqlite3ExprFunction(pParse, pList, &OP);
1021   exprNot(pParse, bNot, &A);
1022   A.zEnd = E.zEnd;
1023   if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc;
1024 }
1025 
1026 %include {
1027   /* Construct an expression node for a unary postfix operator
1028   */
1029   static void spanUnaryPostfix(
1030     Parse *pParse,         /* Parsing context to record errors */
1031     int op,                /* The operator */
1032     ExprSpan *pOperand,    /* The operand, and output */
1033     Token *pPostOp         /* The operand token for setting the span */
1034   ){
1035     pOperand->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0);
1036     pOperand->zEnd = &pPostOp->z[pPostOp->n];
1037   }
1038 }
1039 
1040 expr(A) ::= expr(A) ISNULL|NOTNULL(E).   {spanUnaryPostfix(pParse,@E,&A,&E);}
1041 expr(A) ::= expr(A) NOT NULL(E). {spanUnaryPostfix(pParse,TK_NOTNULL,&A,&E);}
1042 
1043 %include {
1044   /* A routine to convert a binary TK_IS or TK_ISNOT expression into a
1045   ** unary TK_ISNULL or TK_NOTNULL expression. */
1046   static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){
1047     sqlite3 *db = pParse->db;
1048     if( pA && pY && pY->op==TK_NULL ){
1049       pA->op = (u8)op;
1050       sqlite3ExprDelete(db, pA->pRight);
1051       pA->pRight = 0;
1052     }
1053   }
1054 }
1055 
1056 //    expr1 IS expr2
1057 //    expr1 IS NOT expr2
1058 //
1059 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL.  If expr2
1060 // is any other expression, code as TK_IS or TK_ISNOT.
1061 //
1062 expr(A) ::= expr(A) IS expr(Y).     {
1063   spanBinaryExpr(pParse,TK_IS,&A,&Y);
1064   binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_ISNULL);
1065 }
1066 expr(A) ::= expr(A) IS NOT expr(Y). {
1067   spanBinaryExpr(pParse,TK_ISNOT,&A,&Y);
1068   binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_NOTNULL);
1069 }
1070 
1071 %include {
1072   /* Construct an expression node for a unary prefix operator
1073   */
1074   static void spanUnaryPrefix(
1075     ExprSpan *pOut,        /* Write the new expression node here */
1076     Parse *pParse,         /* Parsing context to record errors */
1077     int op,                /* The operator */
1078     ExprSpan *pOperand,    /* The operand */
1079     Token *pPreOp         /* The operand token for setting the span */
1080   ){
1081     pOut->zStart = pPreOp->z;
1082     pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0);
1083     pOut->zEnd = pOperand->zEnd;
1084   }
1085 }
1086 
1087 
1088 
1089 expr(A) ::= NOT(B) expr(X).
1090               {spanUnaryPrefix(&A,pParse,@B,&X,&B);/*A-overwrites-B*/}
1091 expr(A) ::= BITNOT(B) expr(X).
1092               {spanUnaryPrefix(&A,pParse,@B,&X,&B);/*A-overwrites-B*/}
1093 expr(A) ::= MINUS(B) expr(X). [BITNOT]
1094               {spanUnaryPrefix(&A,pParse,TK_UMINUS,&X,&B);/*A-overwrites-B*/}
1095 expr(A) ::= PLUS(B) expr(X). [BITNOT]
1096               {spanUnaryPrefix(&A,pParse,TK_UPLUS,&X,&B);/*A-overwrites-B*/}
1097 
1098 %type between_op {int}
1099 between_op(A) ::= BETWEEN.     {A = 0;}
1100 between_op(A) ::= NOT BETWEEN. {A = 1;}
1101 expr(A) ::= expr(A) between_op(N) expr(X) AND expr(Y). [BETWEEN] {
1102   ExprList *pList = sqlite3ExprListAppend(pParse,0, X.pExpr);
1103   pList = sqlite3ExprListAppend(pParse,pList, Y.pExpr);
1104   A.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, A.pExpr, 0);
1105   if( A.pExpr ){
1106     A.pExpr->x.pList = pList;
1107   }else{
1108     sqlite3ExprListDelete(pParse->db, pList);
1109   }
1110   exprNot(pParse, N, &A);
1111   A.zEnd = Y.zEnd;
1112 }
1113 %ifndef SQLITE_OMIT_SUBQUERY
1114   %type in_op {int}
1115   in_op(A) ::= IN.      {A = 0;}
1116   in_op(A) ::= NOT IN.  {A = 1;}
1117   expr(A) ::= expr(A) in_op(N) LP exprlist(Y) RP(E). [IN] {
1118     if( Y==0 ){
1119       /* Expressions of the form
1120       **
1121       **      expr1 IN ()
1122       **      expr1 NOT IN ()
1123       **
1124       ** simplify to constants 0 (false) and 1 (true), respectively,
1125       ** regardless of the value of expr1.
1126       */
1127       sqlite3ExprDelete(pParse->db, A.pExpr);
1128       A.pExpr = sqlite3ExprAlloc(pParse->db, TK_INTEGER,&sqlite3IntTokens[N],1);
1129     }else if( Y->nExpr==1 ){
1130       /* Expressions of the form:
1131       **
1132       **      expr1 IN (?1)
1133       **      expr1 NOT IN (?2)
1134       **
1135       ** with exactly one value on the RHS can be simplified to something
1136       ** like this:
1137       **
1138       **      expr1 == ?1
1139       **      expr1 <> ?2
1140       **
1141       ** But, the RHS of the == or <> is marked with the EP_Generic flag
1142       ** so that it may not contribute to the computation of comparison
1143       ** affinity or the collating sequence to use for comparison.  Otherwise,
1144       ** the semantics would be subtly different from IN or NOT IN.
1145       */
1146       Expr *pRHS = Y->a[0].pExpr;
1147       Y->a[0].pExpr = 0;
1148       sqlite3ExprListDelete(pParse->db, Y);
1149       /* pRHS cannot be NULL because a malloc error would have been detected
1150       ** before now and control would have never reached this point */
1151       if( ALWAYS(pRHS) ){
1152         pRHS->flags &= ~EP_Collate;
1153         pRHS->flags |= EP_Generic;
1154       }
1155       A.pExpr = sqlite3PExpr(pParse, N ? TK_NE : TK_EQ, A.pExpr, pRHS);
1156     }else{
1157       A.pExpr = sqlite3PExpr(pParse, TK_IN, A.pExpr, 0);
1158       if( A.pExpr ){
1159         A.pExpr->x.pList = Y;
1160         sqlite3ExprSetHeightAndFlags(pParse, A.pExpr);
1161       }else{
1162         sqlite3ExprListDelete(pParse->db, Y);
1163       }
1164       exprNot(pParse, N, &A);
1165     }
1166     A.zEnd = &E.z[E.n];
1167   }
1168   expr(A) ::= LP(B) select(X) RP(E). {
1169     spanSet(&A,&B,&E); /*A-overwrites-B*/
1170     A.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
1171     sqlite3PExprAddSelect(pParse, A.pExpr, X);
1172   }
1173   expr(A) ::= expr(A) in_op(N) LP select(Y) RP(E).  [IN] {
1174     A.pExpr = sqlite3PExpr(pParse, TK_IN, A.pExpr, 0);
1175     sqlite3PExprAddSelect(pParse, A.pExpr, Y);
1176     exprNot(pParse, N, &A);
1177     A.zEnd = &E.z[E.n];
1178   }
1179   expr(A) ::= expr(A) in_op(N) nm(Y) dbnm(Z) paren_exprlist(E). [IN] {
1180     SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z);
1181     Select *pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0);
1182     if( E )  sqlite3SrcListFuncArgs(pParse, pSelect ? pSrc : 0, E);
1183     A.pExpr = sqlite3PExpr(pParse, TK_IN, A.pExpr, 0);
1184     sqlite3PExprAddSelect(pParse, A.pExpr, pSelect);
1185     exprNot(pParse, N, &A);
1186     A.zEnd = Z.z ? &Z.z[Z.n] : &Y.z[Y.n];
1187   }
1188   expr(A) ::= EXISTS(B) LP select(Y) RP(E). {
1189     Expr *p;
1190     spanSet(&A,&B,&E); /*A-overwrites-B*/
1191     p = A.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0);
1192     sqlite3PExprAddSelect(pParse, p, Y);
1193   }
1194 %endif SQLITE_OMIT_SUBQUERY
1195 
1196 /* CASE expressions */
1197 expr(A) ::= CASE(C) case_operand(X) case_exprlist(Y) case_else(Z) END(E). {
1198   spanSet(&A,&C,&E);  /*A-overwrites-C*/
1199   A.pExpr = sqlite3PExpr(pParse, TK_CASE, X, 0);
1200   if( A.pExpr ){
1201     A.pExpr->x.pList = Z ? sqlite3ExprListAppend(pParse,Y,Z) : Y;
1202     sqlite3ExprSetHeightAndFlags(pParse, A.pExpr);
1203   }else{
1204     sqlite3ExprListDelete(pParse->db, Y);
1205     sqlite3ExprDelete(pParse->db, Z);
1206   }
1207 }
1208 %type case_exprlist {ExprList*}
1209 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);}
1210 case_exprlist(A) ::= case_exprlist(A) WHEN expr(Y) THEN expr(Z). {
1211   A = sqlite3ExprListAppend(pParse,A, Y.pExpr);
1212   A = sqlite3ExprListAppend(pParse,A, Z.pExpr);
1213 }
1214 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). {
1215   A = sqlite3ExprListAppend(pParse,0, Y.pExpr);
1216   A = sqlite3ExprListAppend(pParse,A, Z.pExpr);
1217 }
1218 %type case_else {Expr*}
1219 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);}
1220 case_else(A) ::=  ELSE expr(X).         {A = X.pExpr;}
1221 case_else(A) ::=  .                     {A = 0;}
1222 %type case_operand {Expr*}
1223 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);}
1224 case_operand(A) ::= expr(X).            {A = X.pExpr; /*A-overwrites-X*/}
1225 case_operand(A) ::= .                   {A = 0;}
1226 
1227 %type exprlist {ExprList*}
1228 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);}
1229 %type nexprlist {ExprList*}
1230 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);}
1231 
1232 exprlist(A) ::= nexprlist(A).
1233 exprlist(A) ::= .                            {A = 0;}
1234 nexprlist(A) ::= nexprlist(A) COMMA expr(Y).
1235     {A = sqlite3ExprListAppend(pParse,A,Y.pExpr);}
1236 nexprlist(A) ::= expr(Y).
1237     {A = sqlite3ExprListAppend(pParse,0,Y.pExpr); /*A-overwrites-Y*/}
1238 
1239 %ifndef SQLITE_OMIT_SUBQUERY
1240 /* A paren_exprlist is an optional expression list contained inside
1241 ** of parenthesis */
1242 %type paren_exprlist {ExprList*}
1243 %destructor paren_exprlist {sqlite3ExprListDelete(pParse->db, $$);}
1244 paren_exprlist(A) ::= .   {A = 0;}
1245 paren_exprlist(A) ::= LP exprlist(X) RP.  {A = X;}
1246 %endif SQLITE_OMIT_SUBQUERY
1247 
1248 
1249 ///////////////////////////// The CREATE INDEX command ///////////////////////
1250 //
1251 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D)
1252         ON nm(Y) LP sortlist(Z) RP where_opt(W). {
1253   sqlite3CreateIndex(pParse, &X, &D,
1254                      sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U,
1255                       &S, W, SQLITE_SO_ASC, NE, SQLITE_IDXTYPE_APPDEF);
1256 }
1257 
1258 %type uniqueflag {int}
1259 uniqueflag(A) ::= UNIQUE.  {A = OE_Abort;}
1260 uniqueflag(A) ::= .        {A = OE_None;}
1261 
1262 
1263 // The eidlist non-terminal (Expression Id List) generates an ExprList
1264 // from a list of identifiers.  The identifier names are in ExprList.a[].zName.
1265 // This list is stored in an ExprList rather than an IdList so that it
1266 // can be easily sent to sqlite3ColumnsExprList().
1267 //
1268 // eidlist is grouped with CREATE INDEX because it used to be the non-terminal
1269 // used for the arguments to an index.  That is just an historical accident.
1270 //
1271 // IMPORTANT COMPATIBILITY NOTE:  Some prior versions of SQLite accepted
1272 // COLLATE clauses and ASC or DESC keywords on ID lists in inappropriate
1273 // places - places that might have been stored in the sqlite_master schema.
1274 // Those extra features were ignored.  But because they might be in some
1275 // (busted) old databases, we need to continue parsing them when loading
1276 // historical schemas.
1277 //
1278 %type eidlist {ExprList*}
1279 %destructor eidlist {sqlite3ExprListDelete(pParse->db, $$);}
1280 %type eidlist_opt {ExprList*}
1281 %destructor eidlist_opt {sqlite3ExprListDelete(pParse->db, $$);}
1282 
1283 %include {
1284   /* Add a single new term to an ExprList that is used to store a
1285   ** list of identifiers.  Report an error if the ID list contains
1286   ** a COLLATE clause or an ASC or DESC keyword, except ignore the
1287   ** error while parsing a legacy schema.
1288   */
1289   static ExprList *parserAddExprIdListTerm(
1290     Parse *pParse,
1291     ExprList *pPrior,
1292     Token *pIdToken,
1293     int hasCollate,
1294     int sortOrder
1295   ){
1296     ExprList *p = sqlite3ExprListAppend(pParse, pPrior, 0);
1297     if( (hasCollate || sortOrder!=SQLITE_SO_UNDEFINED)
1298         && pParse->db->init.busy==0
1299     ){
1300       sqlite3ErrorMsg(pParse, "syntax error after column name \"%.*s\"",
1301                          pIdToken->n, pIdToken->z);
1302     }
1303     sqlite3ExprListSetName(pParse, p, pIdToken, 1);
1304     return p;
1305   }
1306 } // end %include
1307 
1308 eidlist_opt(A) ::= .                         {A = 0;}
1309 eidlist_opt(A) ::= LP eidlist(X) RP.         {A = X;}
1310 eidlist(A) ::= eidlist(A) COMMA nm(Y) collate(C) sortorder(Z).  {
1311   A = parserAddExprIdListTerm(pParse, A, &Y, C, Z);
1312 }
1313 eidlist(A) ::= nm(Y) collate(C) sortorder(Z). {
1314   A = parserAddExprIdListTerm(pParse, 0, &Y, C, Z); /*A-overwrites-Y*/
1315 }
1316 
1317 %type collate {int}
1318 collate(C) ::= .              {C = 0;}
1319 collate(C) ::= COLLATE ids.   {C = 1;}
1320 
1321 
1322 ///////////////////////////// The DROP INDEX command /////////////////////////
1323 //
1324 cmd ::= DROP INDEX ifexists(E) fullname(X).   {sqlite3DropIndex(pParse, X, E);}
1325 
1326 ///////////////////////////// The VACUUM command /////////////////////////////
1327 //
1328 %ifndef SQLITE_OMIT_VACUUM
1329 %ifndef SQLITE_OMIT_ATTACH
1330 cmd ::= VACUUM.                {sqlite3Vacuum(pParse,0);}
1331 cmd ::= VACUUM nm(X).          {sqlite3Vacuum(pParse,&X);}
1332 %endif  SQLITE_OMIT_ATTACH
1333 %endif  SQLITE_OMIT_VACUUM
1334 
1335 ///////////////////////////// The PRAGMA command /////////////////////////////
1336 //
1337 %ifndef SQLITE_OMIT_PRAGMA
1338 cmd ::= PRAGMA nm(X) dbnm(Z).                {sqlite3Pragma(pParse,&X,&Z,0,0);}
1339 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y).    {sqlite3Pragma(pParse,&X,&Z,&Y,0);}
1340 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);}
1341 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y).
1342                                              {sqlite3Pragma(pParse,&X,&Z,&Y,1);}
1343 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP.
1344                                              {sqlite3Pragma(pParse,&X,&Z,&Y,1);}
1345 
1346 nmnum(A) ::= plus_num(A).
1347 nmnum(A) ::= nm(A).
1348 nmnum(A) ::= ON(A).
1349 nmnum(A) ::= DELETE(A).
1350 nmnum(A) ::= DEFAULT(A).
1351 %endif SQLITE_OMIT_PRAGMA
1352 %token_class number INTEGER|FLOAT.
1353 plus_num(A) ::= PLUS number(X).       {A = X;}
1354 plus_num(A) ::= number(A).
1355 minus_num(A) ::= MINUS number(X).     {A = X;}
1356 //////////////////////////// The CREATE TRIGGER command /////////////////////
1357 
1358 %ifndef SQLITE_OMIT_TRIGGER
1359 
1360 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). {
1361   Token all;
1362   all.z = A.z;
1363   all.n = (int)(Z.z - A.z) + Z.n;
1364   sqlite3FinishTrigger(pParse, S, &all);
1365 }
1366 
1367 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z)
1368                     trigger_time(C) trigger_event(D)
1369                     ON fullname(E) foreach_clause when_clause(G). {
1370   sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR);
1371   A = (Z.n==0?B:Z); /*A-overwrites-T*/
1372 }
1373 
1374 %type trigger_time {int}
1375 trigger_time(A) ::= BEFORE|AFTER(X).  { A = @X; /*A-overwrites-X*/ }
1376 trigger_time(A) ::= INSTEAD OF.  { A = TK_INSTEAD;}
1377 trigger_time(A) ::= .            { A = TK_BEFORE; }
1378 
1379 %type trigger_event {struct TrigEvent}
1380 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);}
1381 trigger_event(A) ::= DELETE|INSERT(X).   {A.a = @X; /*A-overwrites-X*/ A.b = 0;}
1382 trigger_event(A) ::= UPDATE(X).          {A.a = @X; /*A-overwrites-X*/ A.b = 0;}
1383 trigger_event(A) ::= UPDATE OF idlist(X).{A.a = TK_UPDATE; A.b = X;}
1384 
1385 foreach_clause ::= .
1386 foreach_clause ::= FOR EACH ROW.
1387 
1388 %type when_clause {Expr*}
1389 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);}
1390 when_clause(A) ::= .             { A = 0; }
1391 when_clause(A) ::= WHEN expr(X). { A = X.pExpr; }
1392 
1393 %type trigger_cmd_list {TriggerStep*}
1394 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);}
1395 trigger_cmd_list(A) ::= trigger_cmd_list(A) trigger_cmd(X) SEMI. {
1396   assert( A!=0 );
1397   A->pLast->pNext = X;
1398   A->pLast = X;
1399 }
1400 trigger_cmd_list(A) ::= trigger_cmd(A) SEMI. {
1401   assert( A!=0 );
1402   A->pLast = A;
1403 }
1404 
1405 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements
1406 // within a trigger.  The table to INSERT, UPDATE, or DELETE is always in
1407 // the same database as the table that the trigger fires on.
1408 //
1409 %type trnm {Token}
1410 trnm(A) ::= nm(A).
1411 trnm(A) ::= nm DOT nm(X). {
1412   A = X;
1413   sqlite3ErrorMsg(pParse,
1414         "qualified table names are not allowed on INSERT, UPDATE, and DELETE "
1415         "statements within triggers");
1416 }
1417 
1418 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE
1419 // statements within triggers.  We make a specific error message for this
1420 // since it is an exception to the default grammar rules.
1421 //
1422 tridxby ::= .
1423 tridxby ::= INDEXED BY nm. {
1424   sqlite3ErrorMsg(pParse,
1425         "the INDEXED BY clause is not allowed on UPDATE or DELETE statements "
1426         "within triggers");
1427 }
1428 tridxby ::= NOT INDEXED. {
1429   sqlite3ErrorMsg(pParse,
1430         "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements "
1431         "within triggers");
1432 }
1433 
1434 
1435 
1436 %type trigger_cmd {TriggerStep*}
1437 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);}
1438 // UPDATE
1439 trigger_cmd(A) ::=
1440    UPDATE orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z).
1441    {A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R);}
1442 
1443 // INSERT
1444 trigger_cmd(A) ::= insert_cmd(R) INTO trnm(X) idlist_opt(F) select(S).
1445    {A = sqlite3TriggerInsertStep(pParse->db, &X, F, S, R);/*A-overwrites-R*/}
1446 
1447 // DELETE
1448 trigger_cmd(A) ::= DELETE FROM trnm(X) tridxby where_opt(Y).
1449    {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y);}
1450 
1451 // SELECT
1452 trigger_cmd(A) ::= select(X).
1453    {A = sqlite3TriggerSelectStep(pParse->db, X); /*A-overwrites-X*/}
1454 
1455 // The special RAISE expression that may occur in trigger programs
1456 expr(A) ::= RAISE(X) LP IGNORE RP(Y).  {
1457   spanSet(&A,&X,&Y);  /*A-overwrites-X*/
1458   A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0);
1459   if( A.pExpr ){
1460     A.pExpr->affinity = OE_Ignore;
1461   }
1462 }
1463 expr(A) ::= RAISE(X) LP raisetype(T) COMMA nm(Z) RP(Y).  {
1464   spanSet(&A,&X,&Y);  /*A-overwrites-X*/
1465   A.pExpr = sqlite3ExprAlloc(pParse->db, TK_RAISE, &Z, 1);
1466   if( A.pExpr ) {
1467     A.pExpr->affinity = (char)T;
1468   }
1469 }
1470 %endif  !SQLITE_OMIT_TRIGGER
1471 
1472 %type raisetype {int}
1473 raisetype(A) ::= ROLLBACK.  {A = OE_Rollback;}
1474 raisetype(A) ::= ABORT.     {A = OE_Abort;}
1475 raisetype(A) ::= FAIL.      {A = OE_Fail;}
1476 
1477 
1478 ////////////////////////  DROP TRIGGER statement //////////////////////////////
1479 %ifndef SQLITE_OMIT_TRIGGER
1480 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). {
1481   sqlite3DropTrigger(pParse,X,NOERR);
1482 }
1483 %endif  !SQLITE_OMIT_TRIGGER
1484 
1485 //////////////////////// ATTACH DATABASE file AS name /////////////////////////
1486 %ifndef SQLITE_OMIT_ATTACH
1487 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). {
1488   sqlite3Attach(pParse, F.pExpr, D.pExpr, K);
1489 }
1490 cmd ::= DETACH database_kw_opt expr(D). {
1491   sqlite3Detach(pParse, D.pExpr);
1492 }
1493 
1494 %type key_opt {Expr*}
1495 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);}
1496 key_opt(A) ::= .                     { A = 0; }
1497 key_opt(A) ::= KEY expr(X).          { A = X.pExpr; }
1498 
1499 database_kw_opt ::= DATABASE.
1500 database_kw_opt ::= .
1501 %endif SQLITE_OMIT_ATTACH
1502 
1503 ////////////////////////// REINDEX collation //////////////////////////////////
1504 %ifndef SQLITE_OMIT_REINDEX
1505 cmd ::= REINDEX.                {sqlite3Reindex(pParse, 0, 0);}
1506 cmd ::= REINDEX nm(X) dbnm(Y).  {sqlite3Reindex(pParse, &X, &Y);}
1507 %endif  SQLITE_OMIT_REINDEX
1508 
1509 /////////////////////////////////// ANALYZE ///////////////////////////////////
1510 %ifndef SQLITE_OMIT_ANALYZE
1511 cmd ::= ANALYZE.                {sqlite3Analyze(pParse, 0, 0);}
1512 cmd ::= ANALYZE nm(X) dbnm(Y).  {sqlite3Analyze(pParse, &X, &Y);}
1513 %endif
1514 
1515 //////////////////////// ALTER TABLE table ... ////////////////////////////////
1516 %ifndef SQLITE_OMIT_ALTERTABLE
1517 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). {
1518   sqlite3AlterRenameTable(pParse,X,&Z);
1519 }
1520 cmd ::= ALTER TABLE add_column_fullname
1521         ADD kwcolumn_opt columnname(Y) carglist. {
1522   Y.n = (int)(pParse->sLastToken.z-Y.z) + pParse->sLastToken.n;
1523   sqlite3AlterFinishAddColumn(pParse, &Y);
1524 }
1525 add_column_fullname ::= fullname(X). {
1526   disableLookaside(pParse);
1527   sqlite3AlterBeginAddColumn(pParse, X);
1528 }
1529 kwcolumn_opt ::= .
1530 kwcolumn_opt ::= COLUMNKW.
1531 %endif  SQLITE_OMIT_ALTERTABLE
1532 
1533 //////////////////////// CREATE VIRTUAL TABLE ... /////////////////////////////
1534 %ifndef SQLITE_OMIT_VIRTUALTABLE
1535 cmd ::= create_vtab.                       {sqlite3VtabFinishParse(pParse,0);}
1536 cmd ::= create_vtab LP vtabarglist RP(X).  {sqlite3VtabFinishParse(pParse,&X);}
1537 create_vtab ::= createkw VIRTUAL TABLE ifnotexists(E)
1538                 nm(X) dbnm(Y) USING nm(Z). {
1539     sqlite3VtabBeginParse(pParse, &X, &Y, &Z, E);
1540 }
1541 vtabarglist ::= vtabarg.
1542 vtabarglist ::= vtabarglist COMMA vtabarg.
1543 vtabarg ::= .                       {sqlite3VtabArgInit(pParse);}
1544 vtabarg ::= vtabarg vtabargtoken.
1545 vtabargtoken ::= ANY(X).            {sqlite3VtabArgExtend(pParse,&X);}
1546 vtabargtoken ::= lp anylist RP(X).  {sqlite3VtabArgExtend(pParse,&X);}
1547 lp ::= LP(X).                       {sqlite3VtabArgExtend(pParse,&X);}
1548 anylist ::= .
1549 anylist ::= anylist LP anylist RP.
1550 anylist ::= anylist ANY.
1551 %endif  SQLITE_OMIT_VIRTUALTABLE
1552 
1553 
1554 //////////////////////// COMMON TABLE EXPRESSIONS ////////////////////////////
1555 %type with {With*}
1556 %type wqlist {With*}
1557 %destructor with {sqlite3WithDelete(pParse->db, $$);}
1558 %destructor wqlist {sqlite3WithDelete(pParse->db, $$);}
1559 
1560 with(A) ::= . {A = 0;}
1561 %ifndef SQLITE_OMIT_CTE
1562 with(A) ::= WITH wqlist(W).              { A = W; }
1563 with(A) ::= WITH RECURSIVE wqlist(W).    { A = W; }
1564 
1565 wqlist(A) ::= nm(X) eidlist_opt(Y) AS LP select(Z) RP. {
1566   A = sqlite3WithAdd(pParse, 0, &X, Y, Z); /*A-overwrites-X*/
1567 }
1568 wqlist(A) ::= wqlist(A) COMMA nm(X) eidlist_opt(Y) AS LP select(Z) RP. {
1569   A = sqlite3WithAdd(pParse, A, &X, Y, Z);
1570 }
1571 %endif  SQLITE_OMIT_CTE
1572