xref: /sqlite-3.40.0/src/parse.y (revision 43a9385d)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains SQLite's grammar for SQL.  Process this file
13 ** using the lemon parser generator to generate C code that runs
14 ** the parser.  Lemon will also generate a header file containing
15 ** numeric codes for all of the tokens.
16 */
17 
18 // All token codes are small integers with #defines that begin with "TK_"
19 %token_prefix TK_
20 
21 // The type of the data attached to each token is Token.  This is also the
22 // default type for non-terminals.
23 //
24 %token_type {Token}
25 %default_type {Token}
26 
27 // The generated parser function takes a 4th argument as follows:
28 %extra_argument {Parse *pParse}
29 
30 // This code runs whenever there is a syntax error
31 //
32 %syntax_error {
33   UNUSED_PARAMETER(yymajor);  /* Silence some compiler warnings */
34   if( TOKEN.z[0] ){
35     sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);
36   }else{
37     sqlite3ErrorMsg(pParse, "incomplete input");
38   }
39 }
40 %stack_overflow {
41   sqlite3ErrorMsg(pParse, "parser stack overflow");
42 }
43 
44 // The name of the generated procedure that implements the parser
45 // is as follows:
46 %name sqlite3Parser
47 
48 // The following text is included near the beginning of the C source
49 // code file that implements the parser.
50 //
51 %include {
52 #include "sqliteInt.h"
53 
54 /*
55 ** Disable all error recovery processing in the parser push-down
56 ** automaton.
57 */
58 #define YYNOERRORRECOVERY 1
59 
60 /*
61 ** Make yytestcase() the same as testcase()
62 */
63 #define yytestcase(X) testcase(X)
64 
65 /*
66 ** Indicate that sqlite3ParserFree() will never be called with a null
67 ** pointer.
68 */
69 #define YYPARSEFREENEVERNULL 1
70 
71 /*
72 ** In the amalgamation, the parse.c file generated by lemon and the
73 ** tokenize.c file are concatenated.  In that case, sqlite3RunParser()
74 ** has access to the the size of the yyParser object and so the parser
75 ** engine can be allocated from stack.  In that case, only the
76 ** sqlite3ParserInit() and sqlite3ParserFinalize() routines are invoked
77 ** and the sqlite3ParserAlloc() and sqlite3ParserFree() routines can be
78 ** omitted.
79 */
80 #ifdef SQLITE_AMALGAMATION
81 # define sqlite3Parser_ENGINEALWAYSONSTACK 1
82 #endif
83 
84 /*
85 ** Alternative datatype for the argument to the malloc() routine passed
86 ** into sqlite3ParserAlloc().  The default is size_t.
87 */
88 #define YYMALLOCARGTYPE  u64
89 
90 /*
91 ** An instance of the following structure describes the event of a
92 ** TRIGGER.  "a" is the event type, one of TK_UPDATE, TK_INSERT,
93 ** TK_DELETE, or TK_INSTEAD.  If the event is of the form
94 **
95 **      UPDATE ON (a,b,c)
96 **
97 ** Then the "b" IdList records the list "a,b,c".
98 */
99 struct TrigEvent { int a; IdList * b; };
100 
101 /*
102 ** Disable lookaside memory allocation for objects that might be
103 ** shared across database connections.
104 */
105 static void disableLookaside(Parse *pParse){
106   pParse->disableLookaside++;
107   pParse->db->lookaside.bDisable++;
108 }
109 
110 } // end %include
111 
112 // Input is a single SQL command
113 input ::= cmdlist.
114 cmdlist ::= cmdlist ecmd.
115 cmdlist ::= ecmd.
116 ecmd ::= SEMI.
117 ecmd ::= explain cmdx SEMI.
118 explain ::= .
119 %ifndef SQLITE_OMIT_EXPLAIN
120 explain ::= EXPLAIN.              { pParse->explain = 1; }
121 explain ::= EXPLAIN QUERY PLAN.   { pParse->explain = 2; }
122 %endif  SQLITE_OMIT_EXPLAIN
123 cmdx ::= cmd.           { sqlite3FinishCoding(pParse); }
124 
125 ///////////////////// Begin and end transactions. ////////////////////////////
126 //
127 
128 cmd ::= BEGIN transtype(Y) trans_opt.  {sqlite3BeginTransaction(pParse, Y);}
129 trans_opt ::= .
130 trans_opt ::= TRANSACTION.
131 trans_opt ::= TRANSACTION nm.
132 %type transtype {int}
133 transtype(A) ::= .             {A = TK_DEFERRED;}
134 transtype(A) ::= DEFERRED(X).  {A = @X; /*A-overwrites-X*/}
135 transtype(A) ::= IMMEDIATE(X). {A = @X; /*A-overwrites-X*/}
136 transtype(A) ::= EXCLUSIVE(X). {A = @X; /*A-overwrites-X*/}
137 cmd ::= COMMIT|END(X) trans_opt.   {sqlite3EndTransaction(pParse,@X);}
138 cmd ::= ROLLBACK(X) trans_opt.     {sqlite3EndTransaction(pParse,@X);}
139 
140 savepoint_opt ::= SAVEPOINT.
141 savepoint_opt ::= .
142 cmd ::= SAVEPOINT nm(X). {
143   sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X);
144 }
145 cmd ::= RELEASE savepoint_opt nm(X). {
146   sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X);
147 }
148 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). {
149   sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X);
150 }
151 
152 ///////////////////// The CREATE TABLE statement ////////////////////////////
153 //
154 cmd ::= create_table create_table_args.
155 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). {
156    sqlite3StartTable(pParse,&Y,&Z,T,0,0,E);
157 }
158 createkw(A) ::= CREATE(A).  {disableLookaside(pParse);}
159 
160 %type ifnotexists {int}
161 ifnotexists(A) ::= .              {A = 0;}
162 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;}
163 %type temp {int}
164 %ifndef SQLITE_OMIT_TEMPDB
165 temp(A) ::= TEMP.  {A = 1;}
166 %endif  SQLITE_OMIT_TEMPDB
167 temp(A) ::= .      {A = 0;}
168 create_table_args ::= LP columnlist conslist_opt(X) RP(E) table_options(F). {
169   sqlite3EndTable(pParse,&X,&E,F,0);
170 }
171 create_table_args ::= AS select(S). {
172   sqlite3EndTable(pParse,0,0,0,S);
173   sqlite3SelectDelete(pParse->db, S);
174 }
175 %type table_options {int}
176 table_options(A) ::= .    {A = 0;}
177 table_options(A) ::= WITHOUT nm(X). {
178   if( X.n==5 && sqlite3_strnicmp(X.z,"rowid",5)==0 ){
179     A = TF_WithoutRowid | TF_NoVisibleRowid;
180   }else{
181     A = 0;
182     sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z);
183   }
184 }
185 columnlist ::= columnlist COMMA columnname carglist.
186 columnlist ::= columnname carglist.
187 columnname(A) ::= nm(A) typetoken(Y). {sqlite3AddColumn(pParse,&A,&Y);}
188 
189 // Declare some tokens early in order to influence their values, to
190 // improve performance and reduce the executable size.  The goal here is
191 // to get the "jump" operations in ISNULL through ESCAPE to have numeric
192 // values that are early enough so that all jump operations are clustered
193 // at the beginning, but also so that the comparison tokens NE through GE
194 // are as large as possible so that they are near to FUNCTION, which is a
195 // token synthesized by addopcodes.tcl.
196 //
197 %token ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST.
198 %token CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL.
199 %token OR AND NOT IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ.
200 %token GT LE LT GE ESCAPE.
201 
202 // The following directive causes tokens ABORT, AFTER, ASC, etc. to
203 // fallback to ID if they will not parse as their original value.
204 // This obviates the need for the "id" nonterminal.
205 //
206 %fallback ID
207   ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW
208   CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL FOR
209   IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN
210   QUERY KEY OF OFFSET PRAGMA RAISE RECURSIVE RELEASE REPLACE RESTRICT ROW
211   ROLLBACK SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL WITH WITHOUT
212 %ifdef SQLITE_OMIT_COMPOUND_SELECT
213   EXCEPT INTERSECT UNION
214 %endif SQLITE_OMIT_COMPOUND_SELECT
215   REINDEX RENAME CTIME_KW IF
216   .
217 %wildcard ANY.
218 
219 // Define operator precedence early so that this is the first occurrence
220 // of the operator tokens in the grammer.  Keeping the operators together
221 // causes them to be assigned integer values that are close together,
222 // which keeps parser tables smaller.
223 //
224 // The token values assigned to these symbols is determined by the order
225 // in which lemon first sees them.  It must be the case that ISNULL/NOTNULL,
226 // NE/EQ, GT/LE, and GE/LT are separated by only a single value.  See
227 // the sqlite3ExprIfFalse() routine for additional information on this
228 // constraint.
229 //
230 %left OR.
231 %left AND.
232 %right NOT.
233 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ.
234 %left GT LE LT GE.
235 %right ESCAPE.
236 %left BITAND BITOR LSHIFT RSHIFT.
237 %left PLUS MINUS.
238 %left STAR SLASH REM.
239 %left CONCAT.
240 %left COLLATE.
241 %right BITNOT.
242 
243 // An IDENTIFIER can be a generic identifier, or one of several
244 // keywords.  Any non-standard keyword can also be an identifier.
245 //
246 %token_class id  ID|INDEXED.
247 
248 
249 // And "ids" is an identifer-or-string.
250 //
251 %token_class ids  ID|STRING.
252 
253 // The name of a column or table can be any of the following:
254 //
255 %type nm {Token}
256 nm(A) ::= id(A).
257 nm(A) ::= STRING(A).
258 nm(A) ::= JOIN_KW(A).
259 
260 // A typetoken is really zero or more tokens that form a type name such
261 // as can be found after the column name in a CREATE TABLE statement.
262 // Multiple tokens are concatenated to form the value of the typetoken.
263 //
264 %type typetoken {Token}
265 typetoken(A) ::= .   {A.n = 0; A.z = 0;}
266 typetoken(A) ::= typename(A).
267 typetoken(A) ::= typename(A) LP signed RP(Y). {
268   A.n = (int)(&Y.z[Y.n] - A.z);
269 }
270 typetoken(A) ::= typename(A) LP signed COMMA signed RP(Y). {
271   A.n = (int)(&Y.z[Y.n] - A.z);
272 }
273 %type typename {Token}
274 typename(A) ::= ids(A).
275 typename(A) ::= typename(A) ids(Y). {A.n=Y.n+(int)(Y.z-A.z);}
276 signed ::= plus_num.
277 signed ::= minus_num.
278 
279 // The scanpt non-terminal takes a value which is a pointer to the
280 // input text just past the last token that has been shifted into
281 // the parser.  By surrounding some phrase in the grammar with two
282 // scanpt non-terminals, we can capture the input text for that phrase.
283 // For example:
284 //
285 //      something ::= .... scanpt(A) phrase scanpt(Z).
286 //
287 // The text that is parsed as "phrase" is a string starting at A
288 // and containing (int)(Z-A) characters.  There might be some extra
289 // whitespace on either end of the text, but that can be removed in
290 // post-processing, if needed.
291 //
292 %type scanpt {const char*}
293 scanpt(A) ::= . {
294   assert( yyLookahead!=YYNOCODE );
295   A = yyLookaheadToken.z;
296 }
297 
298 // "carglist" is a list of additional constraints that come after the
299 // column name and column type in a CREATE TABLE statement.
300 //
301 carglist ::= carglist ccons.
302 carglist ::= .
303 ccons ::= CONSTRAINT nm(X).           {pParse->constraintName = X;}
304 ccons ::= DEFAULT scanpt(A) term(X) scanpt(Z).
305                             {sqlite3AddDefaultValue(pParse,X,A,Z);}
306 ccons ::= DEFAULT LP(A) expr(X) RP(Z).
307                             {sqlite3AddDefaultValue(pParse,X,A.z+1,Z.z);}
308 ccons ::= DEFAULT PLUS(A) term(X) scanpt(Z).
309                             {sqlite3AddDefaultValue(pParse,X,A.z,Z);}
310 ccons ::= DEFAULT MINUS(A) term(X) scanpt(Z).      {
311   Expr *p = sqlite3PExpr(pParse, TK_UMINUS, X, 0);
312   sqlite3AddDefaultValue(pParse,p,A.z,Z);
313 }
314 ccons ::= DEFAULT scanpt id(X).       {
315   Expr *p = tokenExpr(pParse, TK_STRING, X);
316   if( p ){
317     sqlite3ExprIdToTrueFalse(p);
318     testcase( p->op==TK_TRUEFALSE && sqlite3ExprTruthValue(p) );
319   }
320   sqlite3AddDefaultValue(pParse,p,X.z,X.z+X.n);
321 }
322 
323 // In addition to the type name, we also care about the primary key and
324 // UNIQUE constraints.
325 //
326 ccons ::= NULL onconf.
327 ccons ::= NOT NULL onconf(R).    {sqlite3AddNotNull(pParse, R);}
328 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I).
329                                  {sqlite3AddPrimaryKey(pParse,0,R,I,Z);}
330 ccons ::= UNIQUE onconf(R).      {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0,
331                                    SQLITE_IDXTYPE_UNIQUE);}
332 ccons ::= CHECK LP expr(X) RP.   {sqlite3AddCheckConstraint(pParse,X);}
333 ccons ::= REFERENCES nm(T) eidlist_opt(TA) refargs(R).
334                                  {sqlite3CreateForeignKey(pParse,0,&T,TA,R);}
335 ccons ::= defer_subclause(D).    {sqlite3DeferForeignKey(pParse,D);}
336 ccons ::= COLLATE ids(C).        {sqlite3AddCollateType(pParse, &C);}
337 
338 // The optional AUTOINCREMENT keyword
339 %type autoinc {int}
340 autoinc(X) ::= .          {X = 0;}
341 autoinc(X) ::= AUTOINCR.  {X = 1;}
342 
343 // The next group of rules parses the arguments to a REFERENCES clause
344 // that determine if the referential integrity checking is deferred or
345 // or immediate and which determine what action to take if a ref-integ
346 // check fails.
347 //
348 %type refargs {int}
349 refargs(A) ::= .                  { A = OE_None*0x0101; /* EV: R-19803-45884 */}
350 refargs(A) ::= refargs(A) refarg(Y). { A = (A & ~Y.mask) | Y.value; }
351 %type refarg {struct {int value; int mask;}}
352 refarg(A) ::= MATCH nm.              { A.value = 0;     A.mask = 0x000000; }
353 refarg(A) ::= ON INSERT refact.      { A.value = 0;     A.mask = 0x000000; }
354 refarg(A) ::= ON DELETE refact(X).   { A.value = X;     A.mask = 0x0000ff; }
355 refarg(A) ::= ON UPDATE refact(X).   { A.value = X<<8;  A.mask = 0x00ff00; }
356 %type refact {int}
357 refact(A) ::= SET NULL.              { A = OE_SetNull;  /* EV: R-33326-45252 */}
358 refact(A) ::= SET DEFAULT.           { A = OE_SetDflt;  /* EV: R-33326-45252 */}
359 refact(A) ::= CASCADE.               { A = OE_Cascade;  /* EV: R-33326-45252 */}
360 refact(A) ::= RESTRICT.              { A = OE_Restrict; /* EV: R-33326-45252 */}
361 refact(A) ::= NO ACTION.             { A = OE_None;     /* EV: R-33326-45252 */}
362 %type defer_subclause {int}
363 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt.     {A = 0;}
364 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X).      {A = X;}
365 %type init_deferred_pred_opt {int}
366 init_deferred_pred_opt(A) ::= .                       {A = 0;}
367 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED.     {A = 1;}
368 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE.    {A = 0;}
369 
370 conslist_opt(A) ::= .                         {A.n = 0; A.z = 0;}
371 conslist_opt(A) ::= COMMA(A) conslist.
372 conslist ::= conslist tconscomma tcons.
373 conslist ::= tcons.
374 tconscomma ::= COMMA.            {pParse->constraintName.n = 0;}
375 tconscomma ::= .
376 tcons ::= CONSTRAINT nm(X).      {pParse->constraintName = X;}
377 tcons ::= PRIMARY KEY LP sortlist(X) autoinc(I) RP onconf(R).
378                                  {sqlite3AddPrimaryKey(pParse,X,R,I,0);}
379 tcons ::= UNIQUE LP sortlist(X) RP onconf(R).
380                                  {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0,
381                                        SQLITE_IDXTYPE_UNIQUE);}
382 tcons ::= CHECK LP expr(E) RP onconf.
383                                  {sqlite3AddCheckConstraint(pParse,E);}
384 tcons ::= FOREIGN KEY LP eidlist(FA) RP
385           REFERENCES nm(T) eidlist_opt(TA) refargs(R) defer_subclause_opt(D). {
386     sqlite3CreateForeignKey(pParse, FA, &T, TA, R);
387     sqlite3DeferForeignKey(pParse, D);
388 }
389 %type defer_subclause_opt {int}
390 defer_subclause_opt(A) ::= .                    {A = 0;}
391 defer_subclause_opt(A) ::= defer_subclause(A).
392 
393 // The following is a non-standard extension that allows us to declare the
394 // default behavior when there is a constraint conflict.
395 //
396 %type onconf {int}
397 %type orconf {int}
398 %type resolvetype {int}
399 onconf(A) ::= .                              {A = OE_Default;}
400 onconf(A) ::= ON CONFLICT resolvetype(X).    {A = X;}
401 orconf(A) ::= .                              {A = OE_Default;}
402 orconf(A) ::= OR resolvetype(X).             {A = X;}
403 resolvetype(A) ::= raisetype(A).
404 resolvetype(A) ::= IGNORE.                   {A = OE_Ignore;}
405 resolvetype(A) ::= REPLACE.                  {A = OE_Replace;}
406 
407 ////////////////////////// The DROP TABLE /////////////////////////////////////
408 //
409 cmd ::= DROP TABLE ifexists(E) fullname(X). {
410   sqlite3DropTable(pParse, X, 0, E);
411 }
412 %type ifexists {int}
413 ifexists(A) ::= IF EXISTS.   {A = 1;}
414 ifexists(A) ::= .            {A = 0;}
415 
416 ///////////////////// The CREATE VIEW statement /////////////////////////////
417 //
418 %ifndef SQLITE_OMIT_VIEW
419 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) eidlist_opt(C)
420           AS select(S). {
421   sqlite3CreateView(pParse, &X, &Y, &Z, C, S, T, E);
422 }
423 cmd ::= DROP VIEW ifexists(E) fullname(X). {
424   sqlite3DropTable(pParse, X, 1, E);
425 }
426 %endif  SQLITE_OMIT_VIEW
427 
428 //////////////////////// The SELECT statement /////////////////////////////////
429 //
430 cmd ::= select(X).  {
431   SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0};
432   sqlite3Select(pParse, X, &dest);
433   sqlite3SelectDelete(pParse->db, X);
434 }
435 
436 %type select {Select*}
437 %destructor select {sqlite3SelectDelete(pParse->db, $$);}
438 %type selectnowith {Select*}
439 %destructor selectnowith {sqlite3SelectDelete(pParse->db, $$);}
440 %type oneselect {Select*}
441 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);}
442 
443 %include {
444   /*
445   ** For a compound SELECT statement, make sure p->pPrior->pNext==p for
446   ** all elements in the list.  And make sure list length does not exceed
447   ** SQLITE_LIMIT_COMPOUND_SELECT.
448   */
449   static void parserDoubleLinkSelect(Parse *pParse, Select *p){
450     if( p->pPrior ){
451       Select *pNext = 0, *pLoop;
452       int mxSelect, cnt = 0;
453       for(pLoop=p; pLoop; pNext=pLoop, pLoop=pLoop->pPrior, cnt++){
454         pLoop->pNext = pNext;
455         pLoop->selFlags |= SF_Compound;
456       }
457       if( (p->selFlags & SF_MultiValue)==0 &&
458         (mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT])>0 &&
459         cnt>mxSelect
460       ){
461         sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
462       }
463     }
464   }
465 }
466 
467 select(A) ::= with(W) selectnowith(X). {
468   Select *p = X;
469   if( p ){
470     p->pWith = W;
471     parserDoubleLinkSelect(pParse, p);
472   }else{
473     sqlite3WithDelete(pParse->db, W);
474   }
475   A = p; /*A-overwrites-W*/
476 }
477 
478 selectnowith(A) ::= oneselect(A).
479 %ifndef SQLITE_OMIT_COMPOUND_SELECT
480 selectnowith(A) ::= selectnowith(A) multiselect_op(Y) oneselect(Z).  {
481   Select *pRhs = Z;
482   Select *pLhs = A;
483   if( pRhs && pRhs->pPrior ){
484     SrcList *pFrom;
485     Token x;
486     x.n = 0;
487     parserDoubleLinkSelect(pParse, pRhs);
488     pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0);
489     pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0);
490   }
491   if( pRhs ){
492     pRhs->op = (u8)Y;
493     pRhs->pPrior = pLhs;
494     if( ALWAYS(pLhs) ) pLhs->selFlags &= ~SF_MultiValue;
495     pRhs->selFlags &= ~SF_MultiValue;
496     if( Y!=TK_ALL ) pParse->hasCompound = 1;
497   }else{
498     sqlite3SelectDelete(pParse->db, pLhs);
499   }
500   A = pRhs;
501 }
502 %type multiselect_op {int}
503 multiselect_op(A) ::= UNION(OP).             {A = @OP; /*A-overwrites-OP*/}
504 multiselect_op(A) ::= UNION ALL.             {A = TK_ALL;}
505 multiselect_op(A) ::= EXCEPT|INTERSECT(OP).  {A = @OP; /*A-overwrites-OP*/}
506 %endif SQLITE_OMIT_COMPOUND_SELECT
507 oneselect(A) ::= SELECT(S) distinct(D) selcollist(W) from(X) where_opt(Y)
508                  groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). {
509 #if SELECTTRACE_ENABLED
510   Token s = S; /*A-overwrites-S*/
511 #endif
512   A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L);
513 #if SELECTTRACE_ENABLED
514   /* Populate the Select.zSelName[] string that is used to help with
515   ** query planner debugging, to differentiate between multiple Select
516   ** objects in a complex query.
517   **
518   ** If the SELECT keyword is immediately followed by a C-style comment
519   ** then extract the first few alphanumeric characters from within that
520   ** comment to be the zSelName value.  Otherwise, the label is #N where
521   ** is an integer that is incremented with each SELECT statement seen.
522   */
523   if( A!=0 ){
524     const char *z = s.z+6;
525     int i;
526     sqlite3_snprintf(sizeof(A->zSelName), A->zSelName,"#%d",++pParse->nSelect);
527     while( z[0]==' ' ) z++;
528     if( z[0]=='/' && z[1]=='*' ){
529       z += 2;
530       while( z[0]==' ' ) z++;
531       for(i=0; sqlite3Isalnum(z[i]); i++){}
532       sqlite3_snprintf(sizeof(A->zSelName), A->zSelName, "%.*s", i, z);
533     }
534   }
535 #endif /* SELECTRACE_ENABLED */
536 }
537 oneselect(A) ::= values(A).
538 
539 %type values {Select*}
540 %destructor values {sqlite3SelectDelete(pParse->db, $$);}
541 values(A) ::= VALUES LP nexprlist(X) RP. {
542   A = sqlite3SelectNew(pParse,X,0,0,0,0,0,SF_Values,0);
543 }
544 values(A) ::= values(A) COMMA LP exprlist(Y) RP. {
545   Select *pRight, *pLeft = A;
546   pRight = sqlite3SelectNew(pParse,Y,0,0,0,0,0,SF_Values|SF_MultiValue,0);
547   if( ALWAYS(pLeft) ) pLeft->selFlags &= ~SF_MultiValue;
548   if( pRight ){
549     pRight->op = TK_ALL;
550     pRight->pPrior = pLeft;
551     A = pRight;
552   }else{
553     A = pLeft;
554   }
555 }
556 
557 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is
558 // present and false (0) if it is not.
559 //
560 %type distinct {int}
561 distinct(A) ::= DISTINCT.   {A = SF_Distinct;}
562 distinct(A) ::= ALL.        {A = SF_All;}
563 distinct(A) ::= .           {A = 0;}
564 
565 // selcollist is a list of expressions that are to become the return
566 // values of the SELECT statement.  The "*" in statements like
567 // "SELECT * FROM ..." is encoded as a special expression with an
568 // opcode of TK_ASTERISK.
569 //
570 %type selcollist {ExprList*}
571 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);}
572 %type sclp {ExprList*}
573 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);}
574 sclp(A) ::= selcollist(A) COMMA.
575 sclp(A) ::= .                                {A = 0;}
576 selcollist(A) ::= sclp(A) scanpt(B) expr(X) scanpt(Z) as(Y).     {
577    A = sqlite3ExprListAppend(pParse, A, X);
578    if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1);
579    sqlite3ExprListSetSpan(pParse,A,B,Z);
580 }
581 selcollist(A) ::= sclp(A) scanpt STAR. {
582   Expr *p = sqlite3Expr(pParse->db, TK_ASTERISK, 0);
583   A = sqlite3ExprListAppend(pParse, A, p);
584 }
585 selcollist(A) ::= sclp(A) scanpt nm(X) DOT STAR. {
586   Expr *pRight = sqlite3PExpr(pParse, TK_ASTERISK, 0, 0);
587   Expr *pLeft = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1);
588   Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
589   A = sqlite3ExprListAppend(pParse,A, pDot);
590 }
591 
592 // An option "AS <id>" phrase that can follow one of the expressions that
593 // define the result set, or one of the tables in the FROM clause.
594 //
595 %type as {Token}
596 as(X) ::= AS nm(Y).    {X = Y;}
597 as(X) ::= ids(X).
598 as(X) ::= .            {X.n = 0; X.z = 0;}
599 
600 
601 %type seltablist {SrcList*}
602 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);}
603 %type stl_prefix {SrcList*}
604 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);}
605 %type from {SrcList*}
606 %destructor from {sqlite3SrcListDelete(pParse->db, $$);}
607 
608 // A complete FROM clause.
609 //
610 from(A) ::= .                {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));}
611 from(A) ::= FROM seltablist(X). {
612   A = X;
613   sqlite3SrcListShiftJoinType(A);
614 }
615 
616 // "seltablist" is a "Select Table List" - the content of the FROM clause
617 // in a SELECT statement.  "stl_prefix" is a prefix of this list.
618 //
619 stl_prefix(A) ::= seltablist(A) joinop(Y).    {
620    if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].fg.jointype = (u8)Y;
621 }
622 stl_prefix(A) ::= .                           {A = 0;}
623 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) as(Z) indexed_opt(I)
624                   on_opt(N) using_opt(U). {
625   A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U);
626   sqlite3SrcListIndexedBy(pParse, A, &I);
627 }
628 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) LP exprlist(E) RP as(Z)
629                   on_opt(N) using_opt(U). {
630   A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U);
631   sqlite3SrcListFuncArgs(pParse, A, E);
632 }
633 %ifndef SQLITE_OMIT_SUBQUERY
634   seltablist(A) ::= stl_prefix(A) LP select(S) RP
635                     as(Z) on_opt(N) using_opt(U). {
636     A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,S,N,U);
637   }
638   seltablist(A) ::= stl_prefix(A) LP seltablist(F) RP
639                     as(Z) on_opt(N) using_opt(U). {
640     if( A==0 && Z.n==0 && N==0 && U==0 ){
641       A = F;
642     }else if( F->nSrc==1 ){
643       A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,0,N,U);
644       if( A ){
645         struct SrcList_item *pNew = &A->a[A->nSrc-1];
646         struct SrcList_item *pOld = F->a;
647         pNew->zName = pOld->zName;
648         pNew->zDatabase = pOld->zDatabase;
649         pNew->pSelect = pOld->pSelect;
650         pOld->zName = pOld->zDatabase = 0;
651         pOld->pSelect = 0;
652       }
653       sqlite3SrcListDelete(pParse->db, F);
654     }else{
655       Select *pSubquery;
656       sqlite3SrcListShiftJoinType(F);
657       pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,SF_NestedFrom,0);
658       A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,pSubquery,N,U);
659     }
660   }
661 %endif  SQLITE_OMIT_SUBQUERY
662 
663 %type dbnm {Token}
664 dbnm(A) ::= .          {A.z=0; A.n=0;}
665 dbnm(A) ::= DOT nm(X). {A = X;}
666 
667 %type fullname {SrcList*}
668 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);}
669 fullname(A) ::= nm(X) dbnm(Y).
670    {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y); /*A-overwrites-X*/}
671 
672 %type joinop {int}
673 joinop(X) ::= COMMA|JOIN.              { X = JT_INNER; }
674 joinop(X) ::= JOIN_KW(A) JOIN.
675                   {X = sqlite3JoinType(pParse,&A,0,0);  /*X-overwrites-A*/}
676 joinop(X) ::= JOIN_KW(A) nm(B) JOIN.
677                   {X = sqlite3JoinType(pParse,&A,&B,0); /*X-overwrites-A*/}
678 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN.
679                   {X = sqlite3JoinType(pParse,&A,&B,&C);/*X-overwrites-A*/}
680 
681 %type on_opt {Expr*}
682 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);}
683 on_opt(N) ::= ON expr(E).   {N = E;}
684 on_opt(N) ::= .             {N = 0;}
685 
686 // Note that this block abuses the Token type just a little. If there is
687 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If
688 // there is an INDEXED BY clause, then the token is populated as per normal,
689 // with z pointing to the token data and n containing the number of bytes
690 // in the token.
691 //
692 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is
693 // normally illegal. The sqlite3SrcListIndexedBy() function
694 // recognizes and interprets this as a special case.
695 //
696 %type indexed_opt {Token}
697 indexed_opt(A) ::= .                 {A.z=0; A.n=0;}
698 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;}
699 indexed_opt(A) ::= NOT INDEXED.      {A.z=0; A.n=1;}
700 
701 %type using_opt {IdList*}
702 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);}
703 using_opt(U) ::= USING LP idlist(L) RP.  {U = L;}
704 using_opt(U) ::= .                        {U = 0;}
705 
706 
707 %type orderby_opt {ExprList*}
708 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);}
709 
710 // the sortlist non-terminal stores a list of expression where each
711 // expression is optionally followed by ASC or DESC to indicate the
712 // sort order.
713 //
714 %type sortlist {ExprList*}
715 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);}
716 
717 orderby_opt(A) ::= .                          {A = 0;}
718 orderby_opt(A) ::= ORDER BY sortlist(X).      {A = X;}
719 sortlist(A) ::= sortlist(A) COMMA expr(Y) sortorder(Z). {
720   A = sqlite3ExprListAppend(pParse,A,Y);
721   sqlite3ExprListSetSortOrder(A,Z);
722 }
723 sortlist(A) ::= expr(Y) sortorder(Z). {
724   A = sqlite3ExprListAppend(pParse,0,Y); /*A-overwrites-Y*/
725   sqlite3ExprListSetSortOrder(A,Z);
726 }
727 
728 %type sortorder {int}
729 
730 sortorder(A) ::= ASC.           {A = SQLITE_SO_ASC;}
731 sortorder(A) ::= DESC.          {A = SQLITE_SO_DESC;}
732 sortorder(A) ::= .              {A = SQLITE_SO_UNDEFINED;}
733 
734 %type groupby_opt {ExprList*}
735 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);}
736 groupby_opt(A) ::= .                      {A = 0;}
737 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;}
738 
739 %type having_opt {Expr*}
740 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);}
741 having_opt(A) ::= .                {A = 0;}
742 having_opt(A) ::= HAVING expr(X).  {A = X;}
743 
744 %type limit_opt {Expr*}
745 
746 // The destructor for limit_opt will never fire in the current grammar.
747 // The limit_opt non-terminal only occurs at the end of a single production
748 // rule for SELECT statements.  As soon as the rule that create the
749 // limit_opt non-terminal reduces, the SELECT statement rule will also
750 // reduce.  So there is never a limit_opt non-terminal on the stack
751 // except as a transient.  So there is never anything to destroy.
752 //
753 //%destructor limit_opt {sqlite3ExprDelete(pParse->db, $$);}
754 limit_opt(A) ::= .       {A = 0;}
755 limit_opt(A) ::= LIMIT expr(X).
756                          {A = sqlite3PExpr(pParse,TK_LIMIT,X,0);}
757 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y).
758                          {A = sqlite3PExpr(pParse,TK_LIMIT,X,Y);}
759 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y).
760                          {A = sqlite3PExpr(pParse,TK_LIMIT,Y,X);}
761 
762 /////////////////////////// The DELETE statement /////////////////////////////
763 //
764 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
765 cmd ::= with(C) DELETE FROM fullname(X) indexed_opt(I) where_opt(W)
766         orderby_opt(O) limit_opt(L). {
767   sqlite3WithPush(pParse, C, 1);
768   sqlite3SrcListIndexedBy(pParse, X, &I);
769   sqlite3DeleteFrom(pParse,X,W,O,L);
770 }
771 %endif
772 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
773 cmd ::= with(C) DELETE FROM fullname(X) indexed_opt(I) where_opt(W). {
774   sqlite3WithPush(pParse, C, 1);
775   sqlite3SrcListIndexedBy(pParse, X, &I);
776   sqlite3DeleteFrom(pParse,X,W,0,0);
777 }
778 %endif
779 
780 %type where_opt {Expr*}
781 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);}
782 
783 where_opt(A) ::= .                    {A = 0;}
784 where_opt(A) ::= WHERE expr(X).       {A = X;}
785 
786 ////////////////////////// The UPDATE command ////////////////////////////////
787 //
788 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
789 cmd ::= with(C) UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y)
790         where_opt(W) orderby_opt(O) limit_opt(L).  {
791   sqlite3WithPush(pParse, C, 1);
792   sqlite3SrcListIndexedBy(pParse, X, &I);
793   sqlite3ExprListCheckLength(pParse,Y,"set list");
794   sqlite3Update(pParse,X,Y,W,R,O,L);
795 }
796 %endif
797 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
798 cmd ::= with(C) UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y)
799         where_opt(W).  {
800   sqlite3WithPush(pParse, C, 1);
801   sqlite3SrcListIndexedBy(pParse, X, &I);
802   sqlite3ExprListCheckLength(pParse,Y,"set list");
803   sqlite3Update(pParse,X,Y,W,R,0,0);
804 }
805 %endif
806 
807 %type setlist {ExprList*}
808 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);}
809 
810 setlist(A) ::= setlist(A) COMMA nm(X) EQ expr(Y). {
811   A = sqlite3ExprListAppend(pParse, A, Y);
812   sqlite3ExprListSetName(pParse, A, &X, 1);
813 }
814 setlist(A) ::= setlist(A) COMMA LP idlist(X) RP EQ expr(Y). {
815   A = sqlite3ExprListAppendVector(pParse, A, X, Y);
816 }
817 setlist(A) ::= nm(X) EQ expr(Y). {
818   A = sqlite3ExprListAppend(pParse, 0, Y);
819   sqlite3ExprListSetName(pParse, A, &X, 1);
820 }
821 setlist(A) ::= LP idlist(X) RP EQ expr(Y). {
822   A = sqlite3ExprListAppendVector(pParse, 0, X, Y);
823 }
824 
825 ////////////////////////// The INSERT command /////////////////////////////////
826 //
827 cmd ::= with(W) insert_cmd(R) INTO fullname(X) idlist_opt(F) select(S). {
828   sqlite3WithPush(pParse, W, 1);
829   sqlite3Insert(pParse, X, S, F, R);
830 }
831 cmd ::= with(W) insert_cmd(R) INTO fullname(X) idlist_opt(F) DEFAULT VALUES.
832 {
833   sqlite3WithPush(pParse, W, 1);
834   sqlite3Insert(pParse, X, 0, F, R);
835 }
836 
837 %type insert_cmd {int}
838 insert_cmd(A) ::= INSERT orconf(R).   {A = R;}
839 insert_cmd(A) ::= REPLACE.            {A = OE_Replace;}
840 
841 %type idlist_opt {IdList*}
842 %destructor idlist_opt {sqlite3IdListDelete(pParse->db, $$);}
843 %type idlist {IdList*}
844 %destructor idlist {sqlite3IdListDelete(pParse->db, $$);}
845 
846 idlist_opt(A) ::= .                       {A = 0;}
847 idlist_opt(A) ::= LP idlist(X) RP.    {A = X;}
848 idlist(A) ::= idlist(A) COMMA nm(Y).
849     {A = sqlite3IdListAppend(pParse->db,A,&Y);}
850 idlist(A) ::= nm(Y).
851     {A = sqlite3IdListAppend(pParse->db,0,&Y); /*A-overwrites-Y*/}
852 
853 /////////////////////////// Expression Processing /////////////////////////////
854 //
855 
856 %type expr {Expr*}
857 %destructor expr {sqlite3ExprDelete(pParse->db, $$);}
858 %type term {Expr*}
859 %destructor term {sqlite3ExprDelete(pParse->db, $$);}
860 
861 %include {
862 
863   /* Construct a new Expr object from a single identifier.  Use the
864   ** new Expr to populate pOut.  Set the span of pOut to be the identifier
865   ** that created the expression.
866   */
867   static Expr *tokenExpr(Parse *pParse, int op, Token t){
868     Expr *p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)+t.n+1);
869     if( p ){
870       memset(p, 0, sizeof(Expr));
871       p->op = (u8)op;
872       p->flags = EP_Leaf;
873       p->iAgg = -1;
874       p->u.zToken = (char*)&p[1];
875       memcpy(p->u.zToken, t.z, t.n);
876       p->u.zToken[t.n] = 0;
877       if( sqlite3Isquote(p->u.zToken[0]) ){
878         if( p->u.zToken[0]=='"' ) p->flags |= EP_DblQuoted;
879         sqlite3Dequote(p->u.zToken);
880       }
881 #if SQLITE_MAX_EXPR_DEPTH>0
882       p->nHeight = 1;
883 #endif
884     }
885     return p;
886   }
887 }
888 
889 expr(A) ::= term(A).
890 expr(A) ::= LP expr(X) RP. {A = X;}
891 expr(A) ::= id(X).          {A=tokenExpr(pParse,TK_ID,X); /*A-overwrites-X*/}
892 expr(A) ::= JOIN_KW(X).     {A=tokenExpr(pParse,TK_ID,X); /*A-overwrites-X*/}
893 expr(A) ::= nm(X) DOT nm(Y). {
894   Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1);
895   Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1);
896   A = sqlite3PExpr(pParse, TK_DOT, temp1, temp2);
897 }
898 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). {
899   Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1);
900   Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1);
901   Expr *temp3 = sqlite3ExprAlloc(pParse->db, TK_ID, &Z, 1);
902   Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3);
903   A = sqlite3PExpr(pParse, TK_DOT, temp1, temp4);
904 }
905 term(A) ::= NULL|FLOAT|BLOB(X). {A=tokenExpr(pParse,@X,X); /*A-overwrites-X*/}
906 term(A) ::= STRING(X).          {A=tokenExpr(pParse,@X,X); /*A-overwrites-X*/}
907 term(A) ::= INTEGER(X). {
908   A = sqlite3ExprAlloc(pParse->db, TK_INTEGER, &X, 1);
909 }
910 expr(A) ::= VARIABLE(X).     {
911   if( !(X.z[0]=='#' && sqlite3Isdigit(X.z[1])) ){
912     u32 n = X.n;
913     A = tokenExpr(pParse, TK_VARIABLE, X);
914     sqlite3ExprAssignVarNumber(pParse, A, n);
915   }else{
916     /* When doing a nested parse, one can include terms in an expression
917     ** that look like this:   #1 #2 ...  These terms refer to registers
918     ** in the virtual machine.  #N is the N-th register. */
919     Token t = X; /*A-overwrites-X*/
920     assert( t.n>=2 );
921     if( pParse->nested==0 ){
922       sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &t);
923       A = 0;
924     }else{
925       A = sqlite3PExpr(pParse, TK_REGISTER, 0, 0);
926       if( A ) sqlite3GetInt32(&t.z[1], &A->iTable);
927     }
928   }
929 }
930 expr(A) ::= expr(A) COLLATE ids(C). {
931   A = sqlite3ExprAddCollateToken(pParse, A, &C, 1);
932 }
933 %ifndef SQLITE_OMIT_CAST
934 expr(A) ::= CAST LP expr(E) AS typetoken(T) RP. {
935   A = sqlite3ExprAlloc(pParse->db, TK_CAST, &T, 1);
936   sqlite3ExprAttachSubtrees(pParse->db, A, E, 0);
937 }
938 %endif  SQLITE_OMIT_CAST
939 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP. {
940   if( Y && Y->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
941     sqlite3ErrorMsg(pParse, "too many arguments on function %T", &X);
942   }
943   A = sqlite3ExprFunction(pParse, Y, &X);
944   if( D==SF_Distinct && A ){
945     A->flags |= EP_Distinct;
946   }
947 }
948 expr(A) ::= id(X) LP STAR RP. {
949   A = sqlite3ExprFunction(pParse, 0, &X);
950 }
951 term(A) ::= CTIME_KW(OP). {
952   A = sqlite3ExprFunction(pParse, 0, &OP);
953 }
954 
955 expr(A) ::= LP nexprlist(X) COMMA expr(Y) RP. {
956   ExprList *pList = sqlite3ExprListAppend(pParse, X, Y);
957   A = sqlite3PExpr(pParse, TK_VECTOR, 0, 0);
958   if( A ){
959     A->x.pList = pList;
960   }else{
961     sqlite3ExprListDelete(pParse->db, pList);
962   }
963 }
964 
965 expr(A) ::= expr(A) AND(OP) expr(Y).    {A=sqlite3PExpr(pParse,@OP,A,Y);}
966 expr(A) ::= expr(A) OR(OP) expr(Y).     {A=sqlite3PExpr(pParse,@OP,A,Y);}
967 expr(A) ::= expr(A) LT|GT|GE|LE(OP) expr(Y).
968                                         {A=sqlite3PExpr(pParse,@OP,A,Y);}
969 expr(A) ::= expr(A) EQ|NE(OP) expr(Y).  {A=sqlite3PExpr(pParse,@OP,A,Y);}
970 expr(A) ::= expr(A) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y).
971                                         {A=sqlite3PExpr(pParse,@OP,A,Y);}
972 expr(A) ::= expr(A) PLUS|MINUS(OP) expr(Y).
973                                         {A=sqlite3PExpr(pParse,@OP,A,Y);}
974 expr(A) ::= expr(A) STAR|SLASH|REM(OP) expr(Y).
975                                         {A=sqlite3PExpr(pParse,@OP,A,Y);}
976 expr(A) ::= expr(A) CONCAT(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);}
977 %type likeop {Token}
978 likeop(A) ::= LIKE_KW|MATCH(A).
979 likeop(A) ::= NOT LIKE_KW|MATCH(X). {A=X; A.n|=0x80000000; /*A-overwrite-X*/}
980 expr(A) ::= expr(A) likeop(OP) expr(Y).  [LIKE_KW]  {
981   ExprList *pList;
982   int bNot = OP.n & 0x80000000;
983   OP.n &= 0x7fffffff;
984   pList = sqlite3ExprListAppend(pParse,0, Y);
985   pList = sqlite3ExprListAppend(pParse,pList, A);
986   A = sqlite3ExprFunction(pParse, pList, &OP);
987   if( bNot ) A = sqlite3PExpr(pParse, TK_NOT, A, 0);
988   if( A ) A->flags |= EP_InfixFunc;
989 }
990 expr(A) ::= expr(A) likeop(OP) expr(Y) ESCAPE expr(E).  [LIKE_KW]  {
991   ExprList *pList;
992   int bNot = OP.n & 0x80000000;
993   OP.n &= 0x7fffffff;
994   pList = sqlite3ExprListAppend(pParse,0, Y);
995   pList = sqlite3ExprListAppend(pParse,pList, A);
996   pList = sqlite3ExprListAppend(pParse,pList, E);
997   A = sqlite3ExprFunction(pParse, pList, &OP);
998   if( bNot ) A = sqlite3PExpr(pParse, TK_NOT, A, 0);
999   if( A ) A->flags |= EP_InfixFunc;
1000 }
1001 
1002 expr(A) ::= expr(A) ISNULL|NOTNULL(E).   {A = sqlite3PExpr(pParse,@E,A,0);}
1003 expr(A) ::= expr(A) NOT NULL.    {A = sqlite3PExpr(pParse,TK_NOTNULL,A,0);}
1004 
1005 %include {
1006   /* A routine to convert a binary TK_IS or TK_ISNOT expression into a
1007   ** unary TK_ISNULL or TK_NOTNULL expression. */
1008   static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){
1009     sqlite3 *db = pParse->db;
1010     if( pA && pY && pY->op==TK_NULL ){
1011       pA->op = (u8)op;
1012       sqlite3ExprDelete(db, pA->pRight);
1013       pA->pRight = 0;
1014     }
1015   }
1016 }
1017 
1018 //    expr1 IS expr2
1019 //    expr1 IS NOT expr2
1020 //
1021 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL.  If expr2
1022 // is any other expression, code as TK_IS or TK_ISNOT.
1023 //
1024 expr(A) ::= expr(A) IS expr(Y).     {
1025   A = sqlite3PExpr(pParse,TK_IS,A,Y);
1026   binaryToUnaryIfNull(pParse, Y, A, TK_ISNULL);
1027 }
1028 expr(A) ::= expr(A) IS NOT expr(Y). {
1029   A = sqlite3PExpr(pParse,TK_ISNOT,A,Y);
1030   binaryToUnaryIfNull(pParse, Y, A, TK_NOTNULL);
1031 }
1032 
1033 expr(A) ::= NOT(B) expr(X).
1034               {A = sqlite3PExpr(pParse, @B, X, 0);/*A-overwrites-B*/}
1035 expr(A) ::= BITNOT(B) expr(X).
1036               {A = sqlite3PExpr(pParse, @B, X, 0);/*A-overwrites-B*/}
1037 expr(A) ::= MINUS expr(X). [BITNOT]
1038               {A = sqlite3PExpr(pParse, TK_UMINUS, X, 0);}
1039 expr(A) ::= PLUS expr(X). [BITNOT]
1040               {A = sqlite3PExpr(pParse, TK_UPLUS, X, 0);}
1041 
1042 %type between_op {int}
1043 between_op(A) ::= BETWEEN.     {A = 0;}
1044 between_op(A) ::= NOT BETWEEN. {A = 1;}
1045 expr(A) ::= expr(A) between_op(N) expr(X) AND expr(Y). [BETWEEN] {
1046   ExprList *pList = sqlite3ExprListAppend(pParse,0, X);
1047   pList = sqlite3ExprListAppend(pParse,pList, Y);
1048   A = sqlite3PExpr(pParse, TK_BETWEEN, A, 0);
1049   if( A ){
1050     A->x.pList = pList;
1051   }else{
1052     sqlite3ExprListDelete(pParse->db, pList);
1053   }
1054   if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0);
1055 }
1056 %ifndef SQLITE_OMIT_SUBQUERY
1057   %type in_op {int}
1058   in_op(A) ::= IN.      {A = 0;}
1059   in_op(A) ::= NOT IN.  {A = 1;}
1060   expr(A) ::= expr(A) in_op(N) LP exprlist(Y) RP. [IN] {
1061     if( Y==0 ){
1062       /* Expressions of the form
1063       **
1064       **      expr1 IN ()
1065       **      expr1 NOT IN ()
1066       **
1067       ** simplify to constants 0 (false) and 1 (true), respectively,
1068       ** regardless of the value of expr1.
1069       */
1070       sqlite3ExprDelete(pParse->db, A);
1071       A = sqlite3ExprAlloc(pParse->db, TK_INTEGER,&sqlite3IntTokens[N],1);
1072     }else if( Y->nExpr==1 ){
1073       /* Expressions of the form:
1074       **
1075       **      expr1 IN (?1)
1076       **      expr1 NOT IN (?2)
1077       **
1078       ** with exactly one value on the RHS can be simplified to something
1079       ** like this:
1080       **
1081       **      expr1 == ?1
1082       **      expr1 <> ?2
1083       **
1084       ** But, the RHS of the == or <> is marked with the EP_Generic flag
1085       ** so that it may not contribute to the computation of comparison
1086       ** affinity or the collating sequence to use for comparison.  Otherwise,
1087       ** the semantics would be subtly different from IN or NOT IN.
1088       */
1089       Expr *pRHS = Y->a[0].pExpr;
1090       Y->a[0].pExpr = 0;
1091       sqlite3ExprListDelete(pParse->db, Y);
1092       /* pRHS cannot be NULL because a malloc error would have been detected
1093       ** before now and control would have never reached this point */
1094       if( ALWAYS(pRHS) ){
1095         pRHS->flags &= ~EP_Collate;
1096         pRHS->flags |= EP_Generic;
1097       }
1098       A = sqlite3PExpr(pParse, N ? TK_NE : TK_EQ, A, pRHS);
1099     }else{
1100       A = sqlite3PExpr(pParse, TK_IN, A, 0);
1101       if( A ){
1102         A->x.pList = Y;
1103         sqlite3ExprSetHeightAndFlags(pParse, A);
1104       }else{
1105         sqlite3ExprListDelete(pParse->db, Y);
1106       }
1107       if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0);
1108     }
1109   }
1110   expr(A) ::= LP select(X) RP. {
1111     A = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
1112     sqlite3PExprAddSelect(pParse, A, X);
1113   }
1114   expr(A) ::= expr(A) in_op(N) LP select(Y) RP.  [IN] {
1115     A = sqlite3PExpr(pParse, TK_IN, A, 0);
1116     sqlite3PExprAddSelect(pParse, A, Y);
1117     if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0);
1118   }
1119   expr(A) ::= expr(A) in_op(N) nm(Y) dbnm(Z) paren_exprlist(E). [IN] {
1120     SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z);
1121     Select *pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0);
1122     if( E )  sqlite3SrcListFuncArgs(pParse, pSelect ? pSrc : 0, E);
1123     A = sqlite3PExpr(pParse, TK_IN, A, 0);
1124     sqlite3PExprAddSelect(pParse, A, pSelect);
1125     if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0);
1126   }
1127   expr(A) ::= EXISTS LP select(Y) RP. {
1128     Expr *p;
1129     p = A = sqlite3PExpr(pParse, TK_EXISTS, 0, 0);
1130     sqlite3PExprAddSelect(pParse, p, Y);
1131   }
1132 %endif SQLITE_OMIT_SUBQUERY
1133 
1134 /* CASE expressions */
1135 expr(A) ::= CASE case_operand(X) case_exprlist(Y) case_else(Z) END. {
1136   A = sqlite3PExpr(pParse, TK_CASE, X, 0);
1137   if( A ){
1138     A->x.pList = Z ? sqlite3ExprListAppend(pParse,Y,Z) : Y;
1139     sqlite3ExprSetHeightAndFlags(pParse, A);
1140   }else{
1141     sqlite3ExprListDelete(pParse->db, Y);
1142     sqlite3ExprDelete(pParse->db, Z);
1143   }
1144 }
1145 %type case_exprlist {ExprList*}
1146 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);}
1147 case_exprlist(A) ::= case_exprlist(A) WHEN expr(Y) THEN expr(Z). {
1148   A = sqlite3ExprListAppend(pParse,A, Y);
1149   A = sqlite3ExprListAppend(pParse,A, Z);
1150 }
1151 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). {
1152   A = sqlite3ExprListAppend(pParse,0, Y);
1153   A = sqlite3ExprListAppend(pParse,A, Z);
1154 }
1155 %type case_else {Expr*}
1156 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);}
1157 case_else(A) ::=  ELSE expr(X).         {A = X;}
1158 case_else(A) ::=  .                     {A = 0;}
1159 %type case_operand {Expr*}
1160 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);}
1161 case_operand(A) ::= expr(X).            {A = X; /*A-overwrites-X*/}
1162 case_operand(A) ::= .                   {A = 0;}
1163 
1164 %type exprlist {ExprList*}
1165 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);}
1166 %type nexprlist {ExprList*}
1167 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);}
1168 
1169 exprlist(A) ::= nexprlist(A).
1170 exprlist(A) ::= .                            {A = 0;}
1171 nexprlist(A) ::= nexprlist(A) COMMA expr(Y).
1172     {A = sqlite3ExprListAppend(pParse,A,Y);}
1173 nexprlist(A) ::= expr(Y).
1174     {A = sqlite3ExprListAppend(pParse,0,Y); /*A-overwrites-Y*/}
1175 
1176 %ifndef SQLITE_OMIT_SUBQUERY
1177 /* A paren_exprlist is an optional expression list contained inside
1178 ** of parenthesis */
1179 %type paren_exprlist {ExprList*}
1180 %destructor paren_exprlist {sqlite3ExprListDelete(pParse->db, $$);}
1181 paren_exprlist(A) ::= .   {A = 0;}
1182 paren_exprlist(A) ::= LP exprlist(X) RP.  {A = X;}
1183 %endif SQLITE_OMIT_SUBQUERY
1184 
1185 
1186 ///////////////////////////// The CREATE INDEX command ///////////////////////
1187 //
1188 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D)
1189         ON nm(Y) LP sortlist(Z) RP where_opt(W). {
1190   sqlite3CreateIndex(pParse, &X, &D,
1191                      sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U,
1192                       &S, W, SQLITE_SO_ASC, NE, SQLITE_IDXTYPE_APPDEF);
1193 }
1194 
1195 %type uniqueflag {int}
1196 uniqueflag(A) ::= UNIQUE.  {A = OE_Abort;}
1197 uniqueflag(A) ::= .        {A = OE_None;}
1198 
1199 
1200 // The eidlist non-terminal (Expression Id List) generates an ExprList
1201 // from a list of identifiers.  The identifier names are in ExprList.a[].zName.
1202 // This list is stored in an ExprList rather than an IdList so that it
1203 // can be easily sent to sqlite3ColumnsExprList().
1204 //
1205 // eidlist is grouped with CREATE INDEX because it used to be the non-terminal
1206 // used for the arguments to an index.  That is just an historical accident.
1207 //
1208 // IMPORTANT COMPATIBILITY NOTE:  Some prior versions of SQLite accepted
1209 // COLLATE clauses and ASC or DESC keywords on ID lists in inappropriate
1210 // places - places that might have been stored in the sqlite_master schema.
1211 // Those extra features were ignored.  But because they might be in some
1212 // (busted) old databases, we need to continue parsing them when loading
1213 // historical schemas.
1214 //
1215 %type eidlist {ExprList*}
1216 %destructor eidlist {sqlite3ExprListDelete(pParse->db, $$);}
1217 %type eidlist_opt {ExprList*}
1218 %destructor eidlist_opt {sqlite3ExprListDelete(pParse->db, $$);}
1219 
1220 %include {
1221   /* Add a single new term to an ExprList that is used to store a
1222   ** list of identifiers.  Report an error if the ID list contains
1223   ** a COLLATE clause or an ASC or DESC keyword, except ignore the
1224   ** error while parsing a legacy schema.
1225   */
1226   static ExprList *parserAddExprIdListTerm(
1227     Parse *pParse,
1228     ExprList *pPrior,
1229     Token *pIdToken,
1230     int hasCollate,
1231     int sortOrder
1232   ){
1233     ExprList *p = sqlite3ExprListAppend(pParse, pPrior, 0);
1234     if( (hasCollate || sortOrder!=SQLITE_SO_UNDEFINED)
1235         && pParse->db->init.busy==0
1236     ){
1237       sqlite3ErrorMsg(pParse, "syntax error after column name \"%.*s\"",
1238                          pIdToken->n, pIdToken->z);
1239     }
1240     sqlite3ExprListSetName(pParse, p, pIdToken, 1);
1241     return p;
1242   }
1243 } // end %include
1244 
1245 eidlist_opt(A) ::= .                         {A = 0;}
1246 eidlist_opt(A) ::= LP eidlist(X) RP.         {A = X;}
1247 eidlist(A) ::= eidlist(A) COMMA nm(Y) collate(C) sortorder(Z).  {
1248   A = parserAddExprIdListTerm(pParse, A, &Y, C, Z);
1249 }
1250 eidlist(A) ::= nm(Y) collate(C) sortorder(Z). {
1251   A = parserAddExprIdListTerm(pParse, 0, &Y, C, Z); /*A-overwrites-Y*/
1252 }
1253 
1254 %type collate {int}
1255 collate(C) ::= .              {C = 0;}
1256 collate(C) ::= COLLATE ids.   {C = 1;}
1257 
1258 
1259 ///////////////////////////// The DROP INDEX command /////////////////////////
1260 //
1261 cmd ::= DROP INDEX ifexists(E) fullname(X).   {sqlite3DropIndex(pParse, X, E);}
1262 
1263 ///////////////////////////// The VACUUM command /////////////////////////////
1264 //
1265 %ifndef SQLITE_OMIT_VACUUM
1266 %ifndef SQLITE_OMIT_ATTACH
1267 cmd ::= VACUUM.                {sqlite3Vacuum(pParse,0);}
1268 cmd ::= VACUUM nm(X).          {sqlite3Vacuum(pParse,&X);}
1269 %endif  SQLITE_OMIT_ATTACH
1270 %endif  SQLITE_OMIT_VACUUM
1271 
1272 ///////////////////////////// The PRAGMA command /////////////////////////////
1273 //
1274 %ifndef SQLITE_OMIT_PRAGMA
1275 cmd ::= PRAGMA nm(X) dbnm(Z).                {sqlite3Pragma(pParse,&X,&Z,0,0);}
1276 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y).    {sqlite3Pragma(pParse,&X,&Z,&Y,0);}
1277 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);}
1278 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y).
1279                                              {sqlite3Pragma(pParse,&X,&Z,&Y,1);}
1280 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP.
1281                                              {sqlite3Pragma(pParse,&X,&Z,&Y,1);}
1282 
1283 nmnum(A) ::= plus_num(A).
1284 nmnum(A) ::= nm(A).
1285 nmnum(A) ::= ON(A).
1286 nmnum(A) ::= DELETE(A).
1287 nmnum(A) ::= DEFAULT(A).
1288 %endif SQLITE_OMIT_PRAGMA
1289 %token_class number INTEGER|FLOAT.
1290 plus_num(A) ::= PLUS number(X).       {A = X;}
1291 plus_num(A) ::= number(A).
1292 minus_num(A) ::= MINUS number(X).     {A = X;}
1293 //////////////////////////// The CREATE TRIGGER command /////////////////////
1294 
1295 %ifndef SQLITE_OMIT_TRIGGER
1296 
1297 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). {
1298   Token all;
1299   all.z = A.z;
1300   all.n = (int)(Z.z - A.z) + Z.n;
1301   sqlite3FinishTrigger(pParse, S, &all);
1302 }
1303 
1304 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z)
1305                     trigger_time(C) trigger_event(D)
1306                     ON fullname(E) foreach_clause when_clause(G). {
1307   sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR);
1308   A = (Z.n==0?B:Z); /*A-overwrites-T*/
1309 }
1310 
1311 %type trigger_time {int}
1312 trigger_time(A) ::= BEFORE|AFTER(X).  { A = @X; /*A-overwrites-X*/ }
1313 trigger_time(A) ::= INSTEAD OF.  { A = TK_INSTEAD;}
1314 trigger_time(A) ::= .            { A = TK_BEFORE; }
1315 
1316 %type trigger_event {struct TrigEvent}
1317 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);}
1318 trigger_event(A) ::= DELETE|INSERT(X).   {A.a = @X; /*A-overwrites-X*/ A.b = 0;}
1319 trigger_event(A) ::= UPDATE(X).          {A.a = @X; /*A-overwrites-X*/ A.b = 0;}
1320 trigger_event(A) ::= UPDATE OF idlist(X).{A.a = TK_UPDATE; A.b = X;}
1321 
1322 foreach_clause ::= .
1323 foreach_clause ::= FOR EACH ROW.
1324 
1325 %type when_clause {Expr*}
1326 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);}
1327 when_clause(A) ::= .             { A = 0; }
1328 when_clause(A) ::= WHEN expr(X). { A = X; }
1329 
1330 %type trigger_cmd_list {TriggerStep*}
1331 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);}
1332 trigger_cmd_list(A) ::= trigger_cmd_list(A) trigger_cmd(X) SEMI. {
1333   assert( A!=0 );
1334   A->pLast->pNext = X;
1335   A->pLast = X;
1336 }
1337 trigger_cmd_list(A) ::= trigger_cmd(A) SEMI. {
1338   assert( A!=0 );
1339   A->pLast = A;
1340 }
1341 
1342 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements
1343 // within a trigger.  The table to INSERT, UPDATE, or DELETE is always in
1344 // the same database as the table that the trigger fires on.
1345 //
1346 %type trnm {Token}
1347 trnm(A) ::= nm(A).
1348 trnm(A) ::= nm DOT nm(X). {
1349   A = X;
1350   sqlite3ErrorMsg(pParse,
1351         "qualified table names are not allowed on INSERT, UPDATE, and DELETE "
1352         "statements within triggers");
1353 }
1354 
1355 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE
1356 // statements within triggers.  We make a specific error message for this
1357 // since it is an exception to the default grammar rules.
1358 //
1359 tridxby ::= .
1360 tridxby ::= INDEXED BY nm. {
1361   sqlite3ErrorMsg(pParse,
1362         "the INDEXED BY clause is not allowed on UPDATE or DELETE statements "
1363         "within triggers");
1364 }
1365 tridxby ::= NOT INDEXED. {
1366   sqlite3ErrorMsg(pParse,
1367         "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements "
1368         "within triggers");
1369 }
1370 
1371 
1372 
1373 %type trigger_cmd {TriggerStep*}
1374 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);}
1375 // UPDATE
1376 trigger_cmd(A) ::=
1377    UPDATE(B) orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z) scanpt(E).
1378    {A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R, B.z, E);}
1379 
1380 // INSERT
1381 trigger_cmd(A) ::= scanpt(B) insert_cmd(R) INTO
1382                       trnm(X) idlist_opt(F) select(S) scanpt(Z).
1383    {A = sqlite3TriggerInsertStep(pParse->db,&X,F,S,R,B,Z);/*A-overwrites-R*/}
1384 
1385 // DELETE
1386 trigger_cmd(A) ::= DELETE(B) FROM trnm(X) tridxby where_opt(Y) scanpt(E).
1387    {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y, B.z, E);}
1388 
1389 // SELECT
1390 trigger_cmd(A) ::= scanpt(B) select(X) scanpt(E).
1391    {A = sqlite3TriggerSelectStep(pParse->db, X, B, E); /*A-overwrites-X*/}
1392 
1393 // The special RAISE expression that may occur in trigger programs
1394 expr(A) ::= RAISE LP IGNORE RP.  {
1395   A = sqlite3PExpr(pParse, TK_RAISE, 0, 0);
1396   if( A ){
1397     A->affinity = OE_Ignore;
1398   }
1399 }
1400 expr(A) ::= RAISE LP raisetype(T) COMMA nm(Z) RP.  {
1401   A = sqlite3ExprAlloc(pParse->db, TK_RAISE, &Z, 1);
1402   if( A ) {
1403     A->affinity = (char)T;
1404   }
1405 }
1406 %endif  !SQLITE_OMIT_TRIGGER
1407 
1408 %type raisetype {int}
1409 raisetype(A) ::= ROLLBACK.  {A = OE_Rollback;}
1410 raisetype(A) ::= ABORT.     {A = OE_Abort;}
1411 raisetype(A) ::= FAIL.      {A = OE_Fail;}
1412 
1413 
1414 ////////////////////////  DROP TRIGGER statement //////////////////////////////
1415 %ifndef SQLITE_OMIT_TRIGGER
1416 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). {
1417   sqlite3DropTrigger(pParse,X,NOERR);
1418 }
1419 %endif  !SQLITE_OMIT_TRIGGER
1420 
1421 //////////////////////// ATTACH DATABASE file AS name /////////////////////////
1422 %ifndef SQLITE_OMIT_ATTACH
1423 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). {
1424   sqlite3Attach(pParse, F, D, K);
1425 }
1426 cmd ::= DETACH database_kw_opt expr(D). {
1427   sqlite3Detach(pParse, D);
1428 }
1429 
1430 %type key_opt {Expr*}
1431 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);}
1432 key_opt(A) ::= .                     { A = 0; }
1433 key_opt(A) ::= KEY expr(X).          { A = X; }
1434 
1435 database_kw_opt ::= DATABASE.
1436 database_kw_opt ::= .
1437 %endif SQLITE_OMIT_ATTACH
1438 
1439 ////////////////////////// REINDEX collation //////////////////////////////////
1440 %ifndef SQLITE_OMIT_REINDEX
1441 cmd ::= REINDEX.                {sqlite3Reindex(pParse, 0, 0);}
1442 cmd ::= REINDEX nm(X) dbnm(Y).  {sqlite3Reindex(pParse, &X, &Y);}
1443 %endif  SQLITE_OMIT_REINDEX
1444 
1445 /////////////////////////////////// ANALYZE ///////////////////////////////////
1446 %ifndef SQLITE_OMIT_ANALYZE
1447 cmd ::= ANALYZE.                {sqlite3Analyze(pParse, 0, 0);}
1448 cmd ::= ANALYZE nm(X) dbnm(Y).  {sqlite3Analyze(pParse, &X, &Y);}
1449 %endif
1450 
1451 //////////////////////// ALTER TABLE table ... ////////////////////////////////
1452 %ifndef SQLITE_OMIT_ALTERTABLE
1453 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). {
1454   sqlite3AlterRenameTable(pParse,X,&Z);
1455 }
1456 cmd ::= ALTER TABLE add_column_fullname
1457         ADD kwcolumn_opt columnname(Y) carglist. {
1458   Y.n = (int)(pParse->sLastToken.z-Y.z) + pParse->sLastToken.n;
1459   sqlite3AlterFinishAddColumn(pParse, &Y);
1460 }
1461 add_column_fullname ::= fullname(X). {
1462   disableLookaside(pParse);
1463   sqlite3AlterBeginAddColumn(pParse, X);
1464 }
1465 kwcolumn_opt ::= .
1466 kwcolumn_opt ::= COLUMNKW.
1467 %endif  SQLITE_OMIT_ALTERTABLE
1468 
1469 //////////////////////// CREATE VIRTUAL TABLE ... /////////////////////////////
1470 %ifndef SQLITE_OMIT_VIRTUALTABLE
1471 cmd ::= create_vtab.                       {sqlite3VtabFinishParse(pParse,0);}
1472 cmd ::= create_vtab LP vtabarglist RP(X).  {sqlite3VtabFinishParse(pParse,&X);}
1473 create_vtab ::= createkw VIRTUAL TABLE ifnotexists(E)
1474                 nm(X) dbnm(Y) USING nm(Z). {
1475     sqlite3VtabBeginParse(pParse, &X, &Y, &Z, E);
1476 }
1477 vtabarglist ::= vtabarg.
1478 vtabarglist ::= vtabarglist COMMA vtabarg.
1479 vtabarg ::= .                       {sqlite3VtabArgInit(pParse);}
1480 vtabarg ::= vtabarg vtabargtoken.
1481 vtabargtoken ::= ANY(X).            {sqlite3VtabArgExtend(pParse,&X);}
1482 vtabargtoken ::= lp anylist RP(X).  {sqlite3VtabArgExtend(pParse,&X);}
1483 lp ::= LP(X).                       {sqlite3VtabArgExtend(pParse,&X);}
1484 anylist ::= .
1485 anylist ::= anylist LP anylist RP.
1486 anylist ::= anylist ANY.
1487 %endif  SQLITE_OMIT_VIRTUALTABLE
1488 
1489 
1490 //////////////////////// COMMON TABLE EXPRESSIONS ////////////////////////////
1491 %type with {With*}
1492 %type wqlist {With*}
1493 %destructor with {sqlite3WithDelete(pParse->db, $$);}
1494 %destructor wqlist {sqlite3WithDelete(pParse->db, $$);}
1495 
1496 with(A) ::= . {A = 0;}
1497 %ifndef SQLITE_OMIT_CTE
1498 with(A) ::= WITH wqlist(W).              { A = W; }
1499 with(A) ::= WITH RECURSIVE wqlist(W).    { A = W; }
1500 
1501 wqlist(A) ::= nm(X) eidlist_opt(Y) AS LP select(Z) RP. {
1502   A = sqlite3WithAdd(pParse, 0, &X, Y, Z); /*A-overwrites-X*/
1503 }
1504 wqlist(A) ::= wqlist(A) COMMA nm(X) eidlist_opt(Y) AS LP select(Z) RP. {
1505   A = sqlite3WithAdd(pParse, A, &X, Y, Z);
1506 }
1507 %endif  SQLITE_OMIT_CTE
1508